

QNX Neutrino Realtime

Operating System
Programmer’s Guide

For QNX Neutrino 6.3

 2004, QNX Software Systems Ltd.

QNX Software Systems Ltd.
175 Terence Matthews Crescent
Kanata, Ontario
K2M 1W8
Canada
Voice: 613-591-0931
Fax: 613-591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

 QNX Software Systems Ltd. 2004. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise without the prior written permission of QNX Software Systems Ltd.

Although every precaution has been taken in the preparation of this book, we assume no responsibility for any errors or omissions, nor
do we assume liability for damages resulting from the use of the information contained in this book.

Technical support options

To obtain technical support for any QNX product, visit the Technical Support section in the Support area on our website
(www.qnx.com). You’ll find a wide range of support options, including our free web-based QNX Developer’s Network.

QNX, Momentics, Neutrino, and Photon are registered trademarks of QNX Software Systems Ltd.

All other trademarks and registered trademarks belong to their respective owners.

Contents

About This Book xvii
Note to Windows users xx

Recommended reading xx

Compiling and Debugging 11
Choosing the version of the OS 3

Conforming to standards 4

Header files in include 7

Self-hosted or cross-development 7

A simple example 8

Self-hosted 10

Cross-development with network filesystem 10

Cross-development with debugger 11

Cross-development, deeply embedded 11

Using libraries 14

Static linking 15

Dynamic linking 15

Runtime loading 15

Static and dynamic libraries 15

Platform-specific library locations 17

Linking your modules 18

Creating shared objects 19

Debugging 20

Debugging in a self-hosted environment 20

Debugging in a cross-development environment 21

May 31, 2004 Contents iii

 2004, QNX Software Systems Ltd.

The GNU debugger (gdb) 22

The process-level debug agent 22

A simple debug session 29

Configure the target 30

Compile for debugging 30

Start the debug session 30

Get help 31

Sample boot image 33

Programming Overview 352
Process model 37

An application as a set of processes 38

Processes and threads 39

Some definitions 39

Priorities and scheduling 41

Priority range 41

BLOCKED and READY states 42

The ready queue 43

Suspending a running thread 45

When the thread is blocked 45

When the thread is preempted 45

When the thread yields 46

Scheduling algorithms 46

FIFO scheduling 47

Round-robin scheduling 48

Why threads? 49

Summary 50

Processes 513
Starting processes — two methods 53

Process creation 53

Concurrency 54

Using fork() and forkpty() 55

iv Contents May 31, 2004

 2004, QNX Software Systems Ltd.

Inheriting file descriptors 55

Process termination 56

Normal process termination 57

Abnormal process termination 57

Affect of parent termination 59

Detecting process termination 59

Writing a Resource Manager 714
What is a resource manager? 73

Why write a resource manager? 74

Under the covers 77

The types of resource managers 82

Components of a resource manager 83

iofunc layer 83

resmgr layer 84

dispatch layer 85

thread pool layer 87

Simple device resource manager examples 87

Single-threaded device resource manager example 88

Multi-threaded device resource manager example 94

Data carrying structures 97

The Open Control Block (OCB) structure 98

The attribute structure 99

The mount structure 105

Handling the IO READ message 107

Sample code for handling IO READ messages 108

Ways of adding functionality to the resource manager 112

Handling the IO WRITE message 116

Sample code for handling IO WRITE messages 117

Methods of returning and replying 119

Returning with an error 120

Returning using an IOV array that points to your data 120

Returning with a single buffer containing data 121

May 31, 2004 Contents v

 2004, QNX Software Systems Ltd.

Returning success but with no data 121

Getting the resource manager library to do the reply 122

Performing the reply in the server 122

Returning and telling the library to do the default action 124

Handling other read/write details 125

Handling the xtype member 125

Handling pread*() and pwrite*() 127

Handling readcond() 129

Attribute handling 129

Updating the time for reads and writes 130

Combine messages 131

Where combine messages are used 131

The library’s combine-message handling 133

Extending Data Control Structures (DCS) 139

Extending the OCB and attribute structures 139

Extending the mount structure 142

Handling devctl() messages 142

Sample code for handling IO DEVCTL messages 145

Handling ionotify() and select() 149

Sample code for handling IO NOTIFY messages 153

Handling private messages and pulses 160

Handling open(), dup(), and close() messages 163

Handling client unblocking due to signals or timeouts 164

Handling interrupts 166

Sample code for handling interrupts 167

Multi-threaded resource managers 169

Multi-threaded resource manager example 169

Thread pool attributes 171

Thread pool functions 174

Filesystem resource managers 175

Considerations for filesystem resource managers 175

Taking over more than one device 175

vi Contents May 31, 2004

 2004, QNX Software Systems Ltd.

Handling directories 177

Message types 183

Connect messages 183

I/O messages 183

Resource manager data structures 184

Transparent Distributed Processing Using5
Qnet 187

What is Qnet? 189

Benefits of Qnet 189

What works best 190

What type of application is well-suited for Qnet? 191

Qnet drivers 191

How does it work? 192

Locating services using GNS 196

Quality of Service (QoS) and multiple paths 205

Designing a system using Qnet 208

The product 208

Developing your distributed system 209

Configuring the data cards 209

Configuring the controller card 210

Enhancing reliability via multiple transport buses 211

Redundancy and scalability using multiple controller cards
213

Autodiscovery vs static 214

When should you use Qnet, TCP/IP or NFS? 215

Writing a driver for Qnet 218

Writing an Interrupt Handler 2236
Overview 225

Attaching and detaching interrupts 225

The Interrupt Service Routine (ISR) 226

Advanced topics 236

May 31, 2004 Contents vii

 2004, QNX Software Systems Ltd.

Interrupt environment 236

Ordering of shared interrupts 237

Interrupt latency 237

Atomic Operations 237

Heap Analysis: Making Memory Errors a7
Thing of the Past 239

Introduction 241

Dynamic Memory Management 241

Heap Corruption 242

Common sources 244

Detecting and Reporting Errors 246

Using the malloc debug library 247

What’s checked? 250

Controlling the level of checking 251

Manual Checking (Bounds Checking) 255

Getting pointer information 256

Getting the heap buffer size 257

Memory Leaks 258

Tracing 258

Causing a trace and giving results 259

Analyzing dumps 260

Compiler Support 261

C++ issues 261

Bounds checking GCC 263

Summary 264

Freedom from Hardware and PlatformA
Dependencies 265

Common problems 267

I/O space vs memory-mapped 267

Big-endian vs little-endian 268

Alignment and structure packing 269

viii Contents May 31, 2004

 2004, QNX Software Systems Ltd.

Atomic operations 270

Solutions 270

Determining endianness 270

Swapping data if required 271

Accessing unaligned data 272

Examples 273

Accessing I/O ports 276

Conventions for Makefiles andB
Directories 279

Structure 281

Makefile structure 283

The recurse.mk file 283

Macros 284

Directory structure 286

The project level 286

The section level (optional) 286

The OS level 286

The CPU level 287

The variant level 287

Specifying options 287

The common.mk file 287

The variant-level makefile 288

Recognized variant names 288

Using the standard macros and include files 290

The qconfig.mk include file 291

The qrules.mk include file 294

The qtargets.mk include file 298

Advanced topics 299

Collapsing unnecessary directory levels 300

Performing partial builds 301

More uses for LIST 302

GNU configure 303

May 31, 2004 Contents ix

 2004, QNX Software Systems Ltd.

Developing SMP Systems 309C
Introduction 311

Building an SMP image 311

The impact of SMP 312

To SMP or not to SMP 312

Processor affinity 312

SMP and synchronization primitives 313

SMP and FIFO scheduling 313

SMP and interrupts 313

SMP and atomic operations 314

Designing with SMP in mind 315

Use the SMP primitives 315

Assume that threads really do run concurrently 316

Break the problem down 316

Using GDB 319D
GDB commands 321

Command syntax 321

Command completion 322

Getting help 324

Running programs under GDB 327

Compiling for debugging 328

Setting the target 328

Starting your program 329

Your program’s arguments 330

Your program’s environment 331

Your program’s input and output 332

Debugging an already-running process 333

Killing the child process 334

Debugging programs with multiple threads 334

Debugging programs with multiple processes 336

Stopping and continuing 337

Breakpoints, watchpoints, and exceptions 337

x Contents May 31, 2004

 2004, QNX Software Systems Ltd.

Continuing and stepping 352

Signals 357

Stopping and starting multithreaded programs 359

Examining the stack 360

Stack frames 361

Backtraces 362

Selecting a frame 363

Information about a frame 365

MIPS machines and the function stack 366

Examining source files 367

Printing source lines 367

Searching source files 369

Specifying source directories 370

Source and machine code 371

Shared libraries 373

Examining data 374

Expressions 375

Program variables 376

Artificial arrays 378

Output formats 379

Examining memory 381

Automatic display 383

Print settings 385

Value history 392

Convenience variables 394

Registers 396

Floating point hardware 398

Examining the symbol table 398

Altering execution 402

Assignment to variables 403

Continuing at a different address 404

Giving your program a signal 405

May 31, 2004 Contents xi

 2004, QNX Software Systems Ltd.

Returning from a function 406

Calling program functions 406

Patching programs 407

Creating Packages 409E
QNX package manifests (QPM) 411

The packager utility 412

Preparing to package 414

Running packager 415

Scripts 418

Dependencies 419

Photon launch menu 420

Warnings and error messages 420

Testing your package 422

Working with a package-generation (QPG) file 423

Symbolic links 427

Working with components 427

Forcing files into certain packages 428

Merging other QPG files 429

SLIB packages 430

Regenerating a package 431

QPG structure 433

<QPG:Generation> 435

<QPG:Options> 435

<QPG:Responsible> 438

<QPG:Owner> 439

<QPG:MergeFilter> 439

<QPG:Merge> 439

<QPG:Generate> 439

<QPG:Values> 440

Generating a repository 448

Hey, nice package! 449

Product names and descriptions 449

xii Contents May 31, 2004

 2004, QNX Software Systems Ltd.

Reducing the number of packages created 450

Generating patches 451

ARM Memory Management 457F
ARM-specific restrictions and issues 459

NTO TCTL IO behavior 459

Implications of the ARM Cache Architecture 460

ARM-specific features 463

shm ctl() behavior 463

Advanced Qnet Topics 467G
Low-level discussion on Qnet principles 469

Details of Qnet data communication 470

Node descriptors 472

The <sys/netmgr.h> header file 472

Booting over the network 475

Overview 475

Creating directory and setting up configuration files 476

Building an OS image 477

Booting the client 481

Troubleshooting 481

What doesn’t work ... 481

Glossary 483

Index 507

May 31, 2004 Contents xiii

List of Figures

Debugging in a self-hosted environment. 20

Debugging in a cross-development environment. 21

Running the process debug agent with a serial link at 115200
baud. 24

Null-modem cable pinout. 24

Several developers can debug a single target system. 25

Running the process debug agent with a TCP/IP static port. 26

For a TCP/IP dynamic port connection, the inetd process will
manage the port. 27

The QNX OS architecture acts as a kind of “software bus” that
lets you dynamically plug in/out OS modules. This picture
shows the graphics driver sending a message to the font
manager when it wants the bitmap for a font. The font
manager responds with the bitmap. 37

Thread priorities range from 0 (lowest) to 63 (highest). Although
interrupt handlers aren’t scheduled in the same way as
threads, they’re considered to be of a higher priority because
an interrupt handler will preempt any running thread. 42

The ready queue for six threads (A-F) that are READY. All other
threads (G-Z) are BLOCKED. Thread A is currently
running. Thread A, B, and C are at the highest priority, so
they’ll share the processor based on the running thread’s
scheduling algorithm. 44

Thread A blocks, Thread B runs. 47

FIFO scheduling. Thread A runs until it blocks. 48

Round-robin scheduling. Thread A ran until it consumed its
timeslice; the next READY thread (Thread B) now runs.

48

May 31, 2004 List of Figures xv

 2004, QNX Software Systems Ltd.

Under-the-cover communication between the client, the process
manager, and the resource manager. 78

You can use the resmgr layer to handle IO * messages. 85

You can use the dispatch layer to handle IO * messages, select,
pulses, and other messages. 86

Multiple clients with multiple OCBs, all linked to one mount
structure. 98

Returning the optional “struct stat” along with the “struct dirent”
entry can improve efficiency. 182

A simple GNS setup. 197

A redundant GNS setup. 202

Separate global domains. 204

Interrupt request assertion with multiple interrupt sources. 227

Source tree for a multiplatform project. 282

xvi List of Figures May 31, 2004

About This Book

May 31, 2004 About This Book xvii

 2004, QNX Software Systems Ltd.

The Programmer’s Guide is intended for developers who are building
applications that will run under the QNX Neutrino Realtime
Operating System.

Depending on the nature of your application and target platform, you
may also need to refer to Building Embedded Systems.

�

This table may help you find what you need in the Programmer’s
Guide:

When you want to: Go to:

Get started with a “Hello,
world!” program

Compiling and Debugging

Get an overview of the QNX
Neutrino process model and
scheduling methods

Programming Overview

Create and terminate processes Processes

Develop a device driver and/or
resource manager

Writing a Resource Manager

Use native networking Transparent Distributed
Processing Using Qnet

Learn about ISRs in QNX
Neutrino

Writing an Interrupt Handler

Analyze and detect problems
related to dynamic memory
management

Heap Analysis: Making
Memory Errors a Thing of the
Past

Deal with non-x86 issues (e.g.
big-endian vs little-endian)

Appendix A: Freedom from
Hardware and Platform
Dependencies

continued. . .

May 31, 2004 About This Book xix

Note to Windows users  2004, QNX Software Systems Ltd.

When you want to: Go to:

Understand our makefile
methodology

Appendix B: Conventions for
Makefiles and Directories

Write programs for SMP
machines

Appendix C: Developing SMP
Systems

Learn how to use the GDB
debugger

Appendix D: Using GDB

Get your software ready to
distribute

Appendix E: Creating Packages

Find out about using memory
on ARM targets

Appendix F: ARM Memory
Management

Find out about advanced Qnet
topics

Appendix G: Advanced Qnet
Topics

This guide also contains a glossary of terms used in the QNX
Neutrino OS docs.

We assume that you’ve already installed QNX Neutrino and that
you’re familiar with its architecture. For a detailed overview, see the
System Architecture manual.

�

Note to Windows users
In the QNX documentation, we use a forward slash (/) as a delimiter
in all pathnames, including those pointing to Windows files.

We also generally follow POSIX/UNIX filesystem conventions.

Recommended reading
For the most part, the information that’s documented in the
Programmer’s Guide is specific to QNX. For more general
information, we recommend the following books:

Threads:

xx About This Book May 31, 2004

 2004, QNX Software Systems Ltd. Recommended reading

� Butenhof, David R. 1997. Programming with POSIX Threads.
Reading, MA: Addison-Wesley Publishing Company. ISBN
0-201-63392-2.

TCP/IP programming (note that some of the advanced API features
mentioned in the following books might not be supported):

� Hunt, Craig. 2002. TCP/IP Network Administration. Sebastopol,
CA: O’Reilly & Associates. ISBN 0-596-00297-1.

� Stevens, W. Richard. 1997. Unix Network Programming:
Networking APIs: Sockets and XTI. Upper Saddle River, NJ:
Prentice-Hall PTR. ISBN 0-13-490012-X.

� Stevens, W. Richard. 1993. TCP/IP Illustrated, Volume 1 The
Protocols. Reading, MA: Addison-Wesley Publishing Company.
ISBN 0-201-63346-9.

� Stevens, W. Richard. 1995. TCP/IP Illustrated, Volume 2 The
Implementation. Reading, MA: Addison-Wesley Publishing
Company. ISBN 0-201-63354-X.

May 31, 2004 About This Book xxi

Chapter 1

Compiling and Debugging

In this chapter. . .
Choosing the version of the OS 3
Conforming to standards 4
Header files in include 7
Self-hosted or cross-development 7
Using libraries 14
Linking your modules 18
Debugging 20
A simple debug session 29

May 31, 2004 Chapter 1 � Compiling and Debugging 1

 2004, QNX Software Systems Ltd. Choosing the version of the OS

Choosing the version of the OS
The QNX Momentics development suite lets you install and work
with multiple versions of Neutrino. Whether you’re using the
command line or the IDE, you can choose which version of the OS to
build programs for.

Coexistence of 6.3.0 and 6.2.1 is supported only on Windows and
Solaris hosts.

�

When you install QNX Momentics, you get a set of configuration files
that indicate where you’ve install the software. The
QNX CONFIGURATION environment variable stores the location
of the configuration files for the installed versions of Neutrino; on a
self-hosted Neutrino machine, the default is /etc/qconfig.

If you’re using the command-line tools, use the qconfig utility to
configure your machine to use a specific version of Neutrino.

On Windows hosts, use QWinCfg, a graphical front end for qconfig.
You can launch it from the Start menu.

�

Here’s what qconfig does:

� If you run it without any options, qconfig lists the versions that
are installed on your machine.

� If you use the -e option, you can use qconfig to set up the
environment for building software for a specific version of the OS.
For example, if you’re using the Korn shell (ksh), you can
configure your machine like this:
eval `qconfig -n "QNX 6.3.0 Install" -e`

When you start the IDE, it uses your current qconfig choice as the
default version of the OS; if you haven’t chosen a version, the IDE
chooses an entry from the directory identified by
QNX CONFIGURATION. If you want to override the IDE’s choice,

May 31, 2004 Chapter 1 � Compiling and Debugging 3

Conforming to standards  2004, QNX Software Systems Ltd.

you can choose the appropriate build target. For details, see “Version
coexistence” in the Concepts chapter of the IDE User’s Guide.

Neutrino uses these environment variables to locate files on the host
machine:

QNX HOST The location of host-specific files.

QNX TARGET

The location of target backends on the host
machine.

The qconfig utility sets these variables according to the version of
QNX Momentics that you specified.

Conforming to standards
The header files supplied with the C library provide the proper
declarations for the functions and for the number and types of
arguments used with them. Constant values used in conjunction with
the functions are also declared. The files can usually be included in
any order, although individual function descriptions show the
preferred order for specific headers.

When the -ansi option is used, qcc compiles strict ANSI code. Use
this option when you’re creating an application that must conform to
the ANSI standard. The effect on the inclusion of ANSI- and
POSIX-defined header files is that certain portions of the header files
are omitted:

� for ANSI header files, these are the portions that go beyond the
ANSI standard

� for POSIX header files, these are the portions that go beyond the
POSIX standard

You can then use the qcc -D option to define feature-test macros to
select those portions that are omitted. Here are the most commonly
used feature-test macros:

4 Chapter 1 � Compiling and Debugging May 31, 2004

 2004, QNX Software Systems Ltd. Conforming to standards

POSIX C SOURCE=199506

Include those portions of the header files that relate to the
POSIX standard (IEEE Standard Portable Operating System
Interface for Computer Environments - POSIX 1003.1, 1996)

FILE OFFSET BITS=64

Make the libraries use 64-bit file offsets.

LARGEFILE64 SOURCE

Include declarations for the functions that support large files
(those whose names end with 64).

QNX SOURCE

Include everything defined in the header files. This is the
default.

Feature-test macros may be defined on the command line, or in the
source file before any header files are included. The latter is
illustrated in the following example, in which an ANSI- and
POSIX-conforming application is being developed.

#define POSIX C SOURCE=199506
#include <limits.h>
#include <stdio.h>

...
#if defined(QNX SOURCE)
#include "non POSIX header1.h"
#include "non POSIX header2.h"
#include "non POSIX header3.h"

#endif

The source code is then compiled using the -ansi option.

The following ANSI header files are affected by the
POSIX C SOURCE feature test macro:

� <limits.h>

� <setjmp.h>

� <signal.h>

May 31, 2004 Chapter 1 � Compiling and Debugging 5

Conforming to standards  2004, QNX Software Systems Ltd.

� <stdio.h>

� <stdlib.h>

� <time.h>

The following ANSI and POSIX header files are affected by the
QNX SOURCE feature test macro:

Header file Type

<ctype.h> ANSI

<fcntl.h> POSIX

<float.h> ANSI

<limits.h> ANSI

<math.h> ANSI

<process.h> extension to POSIX

<setjmp.h> ANSI

<signal.h> ANSI

<sys/stat.h> POSIX

<stdio.h> ANSI

<stdlib.h> ANSI

<string.h> ANSI

<termios.h> POSIX

<time.h> ANSI

<sys/types.h> POSIX

<unistd.h> POSIX

6 Chapter 1 � Compiling and Debugging May 31, 2004

 2004, QNX Software Systems Ltd. Header files in include

Header files in include
The include directory includes the following subdirectories (in
addition to the usual sys):

arpa ARPA header files concerning the Internet, FTP and
TELNET.

hw Descriptions of various hardware devices.

arm,
mips,
ppc,
sh,
x86 CPU-specific header files. You typically don’t need to

include them directly — they’re included
automatically. There are some files that you might
want to look at:

� Files ending in *intr.h describe interrupt vector
numbers for use with InterruptAttach() and
InterruptAttachEvent().

� Files ending with *cpu.h describe the registers and
other information about the processor.

net Network interface descriptions.

netinet Header files concerning TCP/IP.

snmp Descriptions for the Simple Network Management
Protocol (SNMP).

Self-hosted or cross-development
In the rest of this chapter, we’ll describe how to compile and debug a
QNX system. Your QNX system might be anything from a deeply
embedded turnkey system to a powerful multiprocessor server. You’ll
develop the code to implement your system using development tools

May 31, 2004 Chapter 1 � Compiling and Debugging 7

Self-hosted or cross-development  2004, QNX Software Systems Ltd.

running on the QNX platform itself or on any other supported
cross-development platform.

QNX supports both of these development types:

� self-hosted — you develop and debug on the same system

� cross-development — you develop on your host system, then
transfer and debug the executable on your target hardware.

This section describes the procedures for compiling and debugging
for both types.

A simple example
We’ll now go through the steps necessary to build a simple QNX
system that runs on a standard PC and prints out the text
“Hello, world!” — the classic first C program.

Let’s look at the spectrum of methods available to you to run your
executable:

If your environment is: Then you can:

Self-hosted Compile and link, then run on
host

Cross-development, network
filesystem link

Compile and link, load over
network filesystem, then run on
target

Cross-development, debugger
link

Compile and link, use debugger
as a “network filesystem” to
transfer executable over to
target, then run on target

Cross-development, rebuilding
the image

Compile and link, rebuild entire
image, reboot target.

Which method you use depends on what’s available to you. All the
methods share the same initial step — write the code, then compile

8 Chapter 1 � Compiling and Debugging May 31, 2004

 2004, QNX Software Systems Ltd. Self-hosted or cross-development

and link it for QNX on the platform that you wish to run the program
on.

You can choose how you wish to compile and link your programs:
you can use tools with a command-line interface (via the qcc
command) or you can use an IDE (Integrated Development
Environment) with a graphical user interface (GUI) environment. Our
samples here illustrate the command-line method.

�

The “Hello, world!” program itself is very simple:

#include <stdio.h>

int
main (void)
{

printf ("Hello, world!\n");
return (0);

}

You compile it for PowerPC (big-endian) with the single line:

qcc -V gcc ntoppcbe hello.c -o hello

This executes the C compiler with a special cross-compilation flag,
-V gcc ntoppcbe, that tells the compiler to use the gcc compiler,
QNX-specific includes, libraries, and options to create a PowerPC
(big-endian) executable using the GCC compiler.

To see a list of compilers and platforms supported, simply execute the
command:

qcc -V

If you’re using an IDE, refer to the documentation that came with the
IDE software for more information.

At this point, you should have an executable called hello.

May 31, 2004 Chapter 1 � Compiling and Debugging 9

Self-hosted or cross-development  2004, QNX Software Systems Ltd.

Self-hosted
If you’re using a self-hosted development system, you’re done. You
don’t even have to use the -V cross-compilation flag (as was shown
above), because the qcc driver will default to the current platform.
You can now run hello from the command line:

hello

Cross-development with network filesystem
If you’re using a network filesystem, let’s assume you’ve already set
up the filesystem on both ends. For information on setting this up, see
the Sample Buildfiles appendix in Building Embedded Systems.

Using a network filesystem is the richest cross-development method
possible, because you have access to remotely mounted filesystems.
This is ideal for a number of reasons:

� Your embedded system requires only a network connection; no
disks (and disk controllers) are required.

� You can access all the shipped and custom-developed QNX
utilities — they don’t need to be present on your (limited)
embedded system.

� Multiple developers can share the same filesystem server.

For a network filesystem, you’ll need to ensure that the shell’s PATH
environment variable includes the path to your executable via the
network-mounted filesystem. At this point, you can just type the
name of the executable at the target’s command-line prompt (if you’re
running a shell on the target):

hello

10 Chapter 1 � Compiling and Debugging May 31, 2004

 2004, QNX Software Systems Ltd. Self-hosted or cross-development

Cross-development with debugger
Once the debug agent is running, and you’ve established connectivity
between the host and the target, you can use the debugger to download
the executable to the target, and then run and interact with it.

Download/upload facility

When the debug agent is connected to the host debugger, you can
transfer files between the host and target systems. Note that this is a
general-purpose file transfer facility — it’s not limited to transferring
only executables to the target (although that’s what we’ll be
describing here).

In order for QNX to execute a program on the target, the program
must be available for loading from some type of filesystem. This
means that when you transfer executables to the target, you must
write them to a filesystem. Even if you don’t have a conventional
filesystem on your target, recall that there’s a writable “filesystem”
present under QNX — the /dev/shmem filesystem. This serves as a
convenient RAM-disk for downloading the executables to.

Cross-development, deeply embedded
If your system is deeply embedded and you have no connectivity to
the host system, or you wish to build a system “from scratch,” you’ll
have to perform the following steps (in addition to the common step
of creating the executable(s), as described above):

1 Build a QNX system image.

2 Transfer the system image to the target.

3 Boot the target.

Step 1: Build a QNX system image.

You use a buildfile to build a QNX system image that includes your
program. The buildfile contains a list of files (or modules) to be
included in the image, as well as information about the image. A
buildfile lets you execute commands, specify command arguments,
set environment variables, and so on. The buildfile will look like this:

May 31, 2004 Chapter 1 � Compiling and Debugging 11

Self-hosted or cross-development  2004, QNX Software Systems Ltd.

[virtual=ppcbe,elf] .bootstrap = {
startup-800fads
PATH=/proc/boot procnto-800

}
[+script] .script = {

devc-serppc800 -e -c20000000 -b9600 smc1 &
reopen
hello

}

[type=link] /dev/console=/dev/ser1
[type=link] /usr/lib/ldqnx.so.2=/proc/boot/libc.so
[perms=+r,+x]
libc.so

[data=copy]
[perms=+r,+x]
devc-serppc800
hello

The first part (the four lines starting with [virtual=ppcbe,elf]),
contains information about the kind of image we’re building.

The next part (the five lines starting with [+script]) is the startup
script that indicates what executables (and their command-line
parameters, if any) should be invoked.

The [type=link] lines set up symbolic links to specify the serial
port and shared library file we want to use.

The runtime linker is expected to be found in a file called
ldqnx.so.2, but the runtime linker is currently contained within the
libc.so file, so we make a process manager symbolic link to it.

�

The [perms=+r,+x] lines assign permissions to the binaries that
follow — in this case, we’re setting them to be Readable and
Executable.

Then we include the C shared library, libc.so.

Then the line [data=copy] specifies to the loader that the data
segment should be copied. This applies to all programs that follow the
[data=copy] attribute. The result is that we can run the executable
multiple times.

12 Chapter 1 � Compiling and Debugging May 31, 2004

 2004, QNX Software Systems Ltd. Self-hosted or cross-development

Finally, the last part (the last two lines) is simply the list of files
indicating which files should be included as part of the image. For
more details on buildfile syntax, see the mkifs entry in the Utilities
Reference.

Our example buildfile indicates the following:

� A PowerPC 800 FADS board and ELF boot prefix code are being
used to boot.

� The image should contain devc-serppc800, the serial
communications manager for the PowerPC 80x family, as well as
hello (our test program).

� devc-serppc800 should be started in the background (specified
by the “&” character). It will use a clock rate of 20MHz, a baud
rate of 9600, and an smc1 device.

� Standard input, output, and error should be redirected to
/dev/ser1 (via the reopen command, which by default redirects
to /dev/console, which we’ve linked to /dev/ser1).

� Finally, our hello program should run.

Let’s assume that the above buildfile is called hello.bld. Using the
mkifs utility, you could then build an image by typing:

mkifs hello.bld hello.ifs

Step 2: Transfer the system image to the target.

You now have to transfer the image hello.ifs to the target system.
If your target is a PC, the most universal method of booting is to make
a bootable floppy diskette.

May 31, 2004 Chapter 1 � Compiling and Debugging 13

Using libraries  2004, QNX Software Systems Ltd.

If you’re developing on a platform that has TCP/IP networking and
connectivity to your target, you may be able to boot your QNX target
system using a BOOTP server. For details, see the “BOOTP section”
in the Customizing IPL Programs chapter in Building Embedded
Systems.

�

If your development system is QNX, transfer your image to a floppy
by issuing this command:

dinit -f hello.ifs /dev/fd0

If your development system is Windows NT or Windows 95/98,
transfer your image to a floppy by issuing this command:

dinit -f hello.ifs a:

Step 3: Boot the target.

Place the floppy diskette into your target system and reboot your
machine. The message “Hello, world!” should appear on your
screen.

Using libraries
When you’re developing code, you almost always make use of a
library — a collection of code modules that you or someone else has
already developed (and hopefully debugged). Under QNX, we have
three different ways of using libraries:

� static linking

� dynamic linking

� runtime loading

14 Chapter 1 � Compiling and Debugging May 31, 2004

 2004, QNX Software Systems Ltd. Using libraries

Static linking
You can combine your modules with the modules from the library to
form a single executable that’s entirely self-contained. We call this
static linking. The word “static” implies that it’s not going to change
— all the required modules are already combined into one executable.

Dynamic linking
Rather than build a self-contained executable ahead of time, you can
take your modules and link them in such a way that the Process
Manager will link them to the library modules before your program
runs. We call this dynamic linking. The word “dynamic” here means
that the association between your program and the library modules
that it uses is done at load time, not at linktime (as was the case with
the static version).

Runtime loading
There’s a variation on the theme of dynamic linking called runtime
loading. In this case, the program decides while it’s actually running
that it wishes to load a particular function from a library.

Static and dynamic libraries
To support the two major kinds of linking described above, QNX has
two kinds of libraries: static and dynamic.

Static libraries

A static library is usually identified by a .a (for “archive”) suffix (e.g.
libc.a). The library contains the modules you want to include in
your program and is formatted as a collection of ELF object modules
that the linker can then extract (as required by your program) and bind
with your program at linktime.

This “binding” operation literally copies the object module from the
library and incorporates it into your “finished” executable. The major
advantage of this approach is that when the executable is created, it’s

May 31, 2004 Chapter 1 � Compiling and Debugging 15

Using libraries  2004, QNX Software Systems Ltd.

entirely self-sufficient — it doesn’t require any other object modules
to be present on the target system. This advantage is usually
outweighed by two principal disadvantages, however:

� Every executable created in this manner has its own private copy of
the library’s object modules, resulting in large executable sizes
(and possibly slower loading times, depending on the medium).

� You must relink the executable in order to upgrade the library
modules that it’s using.

Dynamic libraries

A dynamic library is usually identified by a .so (for “shared object”)
suffix (e.g. libc.so). Like a static library, this kind of library also
contains the modules that you want to include in your program, but
these modules are not bound to your program at linktime. Instead,
your program is linked in such a way that the Process Manager causes
your program to be bound to the shared objects at load time.

The Process Manager performs this binding by looking at the program
to see if it references any shared objects (.so files). If it does, then
the Process Manager looks to see if those particular shared objects are
already present in memory. If they’re not, it loads them into memory.
Then the Process Manager patches your program to be able to use the
shared objects. Finally, the Process Manager starts your program.

Note that from your program’s perspective, it isn’t even aware that it’s
running with a shared object versus being statically linked — that
happened before the first line of your program ran!

The main advantage of dynamic linking is that the programs in the
system will reference only a particular set of objects — they don’t
contain them. As a result, programs are smaller. This also means that
you can upgrade the shared objects without relinking the programs.
This is especially handy when you don’t have access to the source
code for some of the programs.

16 Chapter 1 � Compiling and Debugging May 31, 2004

 2004, QNX Software Systems Ltd. Using libraries

dlopen()

When a program decides at runtime that it wants to “augment” itself
with additional code, it will issue the dlopen() function call. This
function call tells the system that it should find the shared object
referenced by the dlopen() function and create a binding between the
program and the shared object. Again, if the shared object isn’t
present in memory already, the system will load it. The main
advantage of this approach is that the program can determine, at
runtime, which objects it needs to have access to.

Note that there’s no real difference between a library of shared
objects that you link against and a library of shared objects that you
load at runtime. Both modules are of the exact same format. The only
difference is in how they get used.

By convention, therefore, we place libraries that you link against
(whether statically or dynamically) into the lib directory, and shared
objects that you load at runtime into the lib/dll (for “dynamically
loaded libraries”) directory.

Note that this is just a convention — there’s nothing stopping you
from linking against a shared object in the lib/dll directory or from
using the dlopen() function call on a shared object in the lib
directory.

Platform-specific library locations
The development tools have been designed to work out of their
processor directories (x86, ppcbe, etc.). This means you can use the
same toolset for any target platform.

If you have development libraries for a certain platform, then put
them into the platform-specific library directory (e.g. /x86/lib),
which is where the compiler tools will look.

You can use the -L option to qcc to explicitly provide a library path.�

May 31, 2004 Chapter 1 � Compiling and Debugging 17

Linking your modules  2004, QNX Software Systems Ltd.

Linking your modules
By default, the toolchain links dynamically. We do this because of all
the benefits mentioned above.

If you want to link statically, then you should specify the -static
option to qcc, which will cause the link stage to look in the library
directory only for static libraries (identified by a .a extension).

For this release of QNX, you can’t use the floating point emulator
(fpemu.so) in statically linked executables.

�

Although we generally discourage linking statically, it does have this
advantage: in an environment with tight configuration management
and software QA, the very same executable can be regenerated at
linktime and known to be complete at runtime.

To link dynamically (the default), you don’t have to do anything.

To link statically and dynamically (some libraries linked one way,
other libraries linked the other way), the two keywords -Bstatic
and -Bdynamic are positional parameters that can be specified to
qcc. All libraries specified after the particular -B option will be
linked in the specified manner. You can have multiple -B options:

qcc ... -Bdynamic lib1 lib2 -Bstatic lib3 lib4 -Bdynamic lib5

This will cause libraries lib1, lib2, and lib5 to be dynamically
linked (i.e. will link against the files lib1.so, lib2.so and
lib5.so), and libraries lib3 and lib4 to be statically linked (i.e.
will link against the files lib3.a and lib4.a).

You may see the extension .1 appended to the name of the shared
object (e.g. libc.so.1). This is a version number. Use the extension
.1 for your first revision, and increment the revision number if
required.

You may wish to use the above “mixed-mode” linking because some
of the libraries you’re using will be needed by only one executable or
because the libraries are small (less than 4K), in which case you’d be
wasting memory to use them as shared libraries. Note that shared

18 Chapter 1 � Compiling and Debugging May 31, 2004

 2004, QNX Software Systems Ltd. Linking your modules

libraries are typically mapped in 4K pages and will require at least
one page for the “text” section and possibly one page for the
“data” section.

When you specify -Bstatic or -Bdynamic, all subsequent libraries
will be linked in the specified manner.

�

Creating shared objects
To create a shared object suitable for linking against:

1 Compile the source files for the library using the -shared
option to qcc.

2 To create the library from the individual object modules, simply
combine them with the linker (this is done via the qcc compiler
driver as well, also using the -shared command-line option).

Make sure that all objects and “static” libs that are pulled into a .so
are position-independent as well (i.e. also compiled with -shared).

�

If you make a shared library that has to static-link against an existing
library, you can’t static-link against the .a version (because those
libraries themselves aren’t compiled in a position-independent
manner). Instead, there’s a special version of the libraries that has a
capital “S” just before the .a extension. For example, instead of
linking against libsocket.a, you’d link against libsocketS.a.
We recommend that you don’t static-link, but rather link against the
.so shared object version.

Specifying an internal name

When you’re building a shared object, you can specify the following
option to qcc:

"-Wl,-hname"

May 31, 2004 Chapter 1 � Compiling and Debugging 19

Debugging  2004, QNX Software Systems Ltd.

(You might need the quotes to pass the option through to the linker
intact, depending on the shell.)

This option sets the internal name of the shared object to name instead
of to the object’s pathname, so you’d use name to access the object
when dynamically linking. You might find this useful when doing
cross-development (e.g. from a Windows NT system to a QNX
target).

Debugging
Now let’s look at the different options you have for debugging the
executable. Just as you have two basic ways of developing
(self-hosted and cross-development), you have similar options for
debugging.

Debugging in a self-hosted environment
The debugger can run on the same platform as the executable being
debugged:

Debugger
Debug
agent

Executable

Debugging in a self-hosted environment.

20 Chapter 1 � Compiling and Debugging May 31, 2004

 2004, QNX Software Systems Ltd. Debugging

In this case, the debugger starts the debug agent, and then establishes
its own communications channel to the debug agent.

Debugging in a cross-development environment
The debugger can run on one platform to debug executables on
another:

Debugger
Debug
agent

Executable

Communications
channel

Debugging in a cross-development environment.

In a cross-development environment, the host and the target systems
must be connected via some form of communications channel.

The two components, the debugger and the debug agent, perform
different functions. The debugger is responsible for presenting a user
interface and for communicating over some communications channel
to the debug agent. The debug agent is responsible for controlling (via
the /proc filesystem) the process being debugged.

All debug information and source remains on the host system. This
combination of a small target agent and a full-featured host debugger
allows for full symbolic debugging, even in the memory-constrained
environments of small targets.

May 31, 2004 Chapter 1 � Compiling and Debugging 21

Debugging  2004, QNX Software Systems Ltd.

In order to debug your programs with full source using the symbolic
debugger, you’ll need to tell the C compiler and linker to include
symbolic information in the object and executable files. For details,
see the qcc docs in the Utilities Reference. Without this symbolic
information, the debugger can provide only assembly-language-level
debugging.

�

The GNU debugger (gdb)
The GNU debugger is a command-line program that provides a very
rich set of options. You’ll find a tutorial-style doc called “Using
GDB” as an appendix in this manual.

Starting gdb

The gdb command can be invoked using the following variants,
which correspond to your target platform:

For this target: Use this command:

ARM ntoarm-gdb

Intel ntox86-gdb

MIPS ntomips-gdb

PowerPC ntoppc-gdb

SH4 ntosh-gdb

For more information, see the gdb entry in the Utilities Reference.

The process-level debug agent
When a breakpoint is encountered and the process-level debug agent
(pdebug) is in control, the process being debugged and all its threads
are stopped. All other processes continue to run and interrupts remain
enabled.

22 Chapter 1 � Compiling and Debugging May 31, 2004

 2004, QNX Software Systems Ltd. Debugging

To use the pdebug agent, you must set up pty support (via
devc-pty) on your target.

�

When the process’s threads are stopped and the debugger is in control,
you may examine the state of any thread within the process. You may
also “freeze” all or a subset of the stopped threads when you continue.
For more info on examining thread states, see your debugger docs.

The pdebug agent may either be included in the image and started in
the image startup script or started later from any available filesystem
that contains pdebug.

The pdebug command-line invocation specifies which device will be
used. (Note that for self-hosted debugging, pdebug is started
automatically by the host debugger.)

You can start pdebug in one of three ways, reflecting the nature of the
connection between the debugger and the debug agent:

� serial connection

� TCP/IP static port connection

� TCP/IP dynamic port connection

Serial connection

If the host and target systems are connected via a serial port, then the
debug agent (pdebug) should be started with the following command:

pdebug devicename[,baud]

This indicates the target’s communications channel (devicename) and
specifies the baud rate (baud).

For example, if the target has a /dev/ser2 connection to the host,
and we want the link to be 115,200 baud, we would specify:

pdebug /dev/ser2,115200

May 31, 2004 Chapter 1 � Compiling and Debugging 23

Debugging  2004, QNX Software Systems Ltd.

/dev/ser2

Serial (115200 baud)

Running the process debug agent with a serial link at 115200 baud.

The QNX target requires a supported serial port. The target is
connected to the host using either a null-modem cable, which allows
two identical serial ports to be directly connected, or a
straight-through cable, depending on the particular serial port
provided on the target.

The null-modem cable crosses the Tx/Rx data and handshaking lines.
In our PowerPC FADS example, you’d use a a straight-through cable.
Most computer stores stock both types of cables.

R x

RTS

CTS

DSR

Gnd

CD

DTR

R I

Tx

Host
(DTE)

Null-modem cable

R x

RTS

CTS

DSR

Gnd

CD

DTR

R I

Tx

Target
(DTE)

Null-modem cable pinout.

TCP/IP connection

If the host and the target are connected via some form of TCP/IP
connection, the debugger and agent can use that connection as well.

24 Chapter 1 � Compiling and Debugging May 31, 2004

 2004, QNX Software Systems Ltd. Debugging

Two types of TCP/IP communications are possible with the debugger
and agent: static port and dynamic port connections (see below).

The QNX target must have a supported Ethernet controller. Note that
since the debug agent requires the TCP/IP manager to be running on
the target, this requires more memory.

This need for extra memory is offset by the advantage of being able to
run multiple debuggers with multiple debug sessions over the single
network cable. In a networked development environment, developers
on different network hosts could independently debug programs on a
single common target.

Developers '
s tat ions

TCP/IP

Target

Several developers can debug a single target system.

For a static port connection, the debug agent is assigned a TCP/IPTCP/IP
static port

connection
port number and will listen for communications on that port only. For
example, the pdebug 1204 command specifies TCP/IP port 1204:

May 31, 2004 Chapter 1 � Compiling and Debugging 25

Debugging  2004, QNX Software Systems Ltd.

TCP/IP

Port 1204

Running the process debug agent with a TCP/IP static port.

If you have multiple developers, each developer could be assigned a
specific TCP/IP port number above the reserved ports 0 to 1024.

For a dynamic port connection, the debug agent is started by inetdTCP/IP
dynamic

port
connection

and communicates via standard input/output. The inetd process
fetches the communications port from the configuration file (typically
/etc/services). The host process debug agent connects to the port
via inetd — the debug agent has no knowledge of the port.

The command to run the process debug agent in this case is simply as
follows (from the inetd.conf file):

pdebug -

26 Chapter 1 � Compiling and Debugging May 31, 2004

 2004, QNX Software Systems Ltd. Debugging

TCP/IP

inetd

Port
1234

pdebug pdebug pdebug

Port
1234

Port
1234

For a TCP/IP dynamic port connection, the inetd process will manage the

port.

Note that this method is also suitable for one or more developers.

The following boot script supports multiple sessions specifying theSample boot
script for
dynamic

port
sessions

same port. Although the port for each session on the pdebug side is
the same, inetd causes unique ports to be used on the debugger side.
This ensures a unique socket pair for each session.

Note that inetd should be included and started in your boot image.
The pdebug program should also be in your boot image (or available
from a mounted filesystem).

The config files could be built into your boot image (as in this sample
script) or linked in from a remote filesystem using the [type=link]
command:

[type=link] /etc/services=/mount point/services
[type=link] /etc/inetd.conf=/mount point/inetd.conf

Here’s the boot script:

May 31, 2004 Chapter 1 � Compiling and Debugging 27

Debugging  2004, QNX Software Systems Ltd.

[virtual=x86,bios +compress] boot = {
startup-bios -N node428
PATH=/proc/boot:/bin:/apk/bin nto:./ procnto

}

[+script] startup-script = {
explicitly running in edited mode for the console link

devc-ser8250 -e -b115200 &
reopen
display msg Welcome to QNX on a PC-compatible BIOS system

tcp/ip with a NE2000 Ethernet adaptor
io-net -dne2000 -pttcpip if=ndi0:10.0.1.172 &
waitfor /dev/socket
inetd &
pipe &

pdebug needs devc-pty and esh
devc-pty &

NFS mount of the QNX filesystem
fs-nfs2 -r 10.89:/x86 /x86 -r 10.89:/home /home &

CIFS mount of the NT filesystem
fs-cifs -b //QA:10.0.1.181:/QARoot /QAc apkleywegt 123 &

NT Hyperterm needs this to interpret backspaces correctly
stty erase=08
reopen /dev/console
[+session] esh

}

[type=link] /usr/lib/ldqnx.so.2=/proc/boot/libc.so
[type=link] /lib=/x86/lib
[type=link] /tmp=/dev/shmem # tmp points to shared memory
[type=link] /dev/console=/dev/ser2 # no local terminal
[type=link] /bin=/x86/bin # executables in the path
[type=link] /apk=/home/apkleywegt # home dir

[perms=+r,+x] <!-- # Boot images made under MS-Windows need -->
<!-- # to be reminded of permissions. -->

devn-ne2000.so
npm-tcpip.so
libc.so
fpemu.so
libsocket.so

[data=copy] # All executables that can be restarted
go below.

devc-ser8250
io-net
pipe
devc-pty
fs-nfs2

28 Chapter 1 � Compiling and Debugging May 31, 2004

 2004, QNX Software Systems Ltd. A simple debug session

fs-cifs
inetd
esh
stty
ping
ls

Data files are created in the named
directory.

/etc/hosts = {
127.0.0.1 localhost
10.89 node89
10.222 node222
10.326 node326
10.0.1.181 QA node437
10.241 APP ENG 1
}

/etc/services = {
ftp 21/tcp
telnet 23/tcp
finger 79/tcp
pdebug 8000/tcp
}

/etc/inetd.conf = {
ftp stream tcp nowait root /bin/fdtpd fdtpd
telnet stream tcp nowait root /bin/telnetd telnetd
finger stream tcp nowait root /bin fingerd
pdebug stream tcp nowait root /bin/pdebug pdebug -
}

A simple debug session
In this example, we’ll be debugging our “Hello, world!” program via
a TCP/IP link. We go through the following steps:

� configuring the target

� compiling for debugging

� starting the debug session

� getting help.

May 31, 2004 Chapter 1 � Compiling and Debugging 29

A simple debug session  2004, QNX Software Systems Ltd.

Configure the target
Let’s assume an x86 target using a basic TCP/IP configuration. The
following lines (from the example boot file at the end of this chapter)
show what’s needed to host the example session:

io-net -dne2000 -pttcpip if=ndi0:10.0.1.172 &
devc-pty &
[+session] pdebug 8000 &

The above specifies that the host IP address is 10.0.1.172 (or 10.428
for short). The pdebug program is configured to use port 8000.

Compile for debugging
We’ll be using the x86 compiler. Note the -g option, which enables
debugging information to be included:

$ qcc -V gcc ntox86 -g -o hello hello.c

Start the debug session
For this simple example, the sources can be found in our working
directory. The gdb debugger provides its own shell; by default its
prompt is (gdb). The following commands would be used to start the
session. To reduce document clutter, we’ll run the debugger in quiet
mode:

Working from the source directory:
(61) con1 /home/allan/src >ntox86-gdb -quiet

Specifying the target IP address and the port
used by pdebug:

(gdb) target qnx 10.428:8000
Remote debugging using 10.428:8000
0x0 in ?? ()

Uploading the debug executable to the target:
(This can be a slow operation. If the executable
is large, you may prefer to build the executable
into your target image.)

30 Chapter 1 � Compiling and Debugging May 31, 2004

 2004, QNX Software Systems Ltd. A simple debug session

Note that the file has to be in the target system’s namespace,
so we can get the executable via a network filesystem, ftp,
or, if no filesystem is present, via the upload command.

(gdb) upload hello /tmp/hello

Loading the symbolic debug information from the
current working directory:
(In this case, "hello" must reside on the host system.)

(gdb) sym hello
Reading symbols from hello...done.

Starting the program:
(gdb) run /tmp/hello
Starting program: /tmp/hello
Trying to find symbol file for ldqnx.so.2
Retrying dynamic interpreter in libc.so.1

Setting the breakpoint on main():
(gdb) break main
Breakpoint 1 at 0x80483ae: file hello.c, line 8.

Allowing the program to continue to the breakpoint
found at main():

(gdb) c
Continuing.
Breakpoint 1, main () at hello.c:8
8 setprio (0,9);

Ready to start the debug session.
(gdb)

Get help
While in a debug session, any of the following commands could be
used as the next action for starting the actual debugging of the project:

n Next instruction

l List the next set of instructions

help Get the help main menu

help data Get the help data menu

May 31, 2004 Chapter 1 � Compiling and Debugging 31

A simple debug session  2004, QNX Software Systems Ltd.

help inspect

Get help for the inspect command

inspect y Inspect the contents of variable y

set y=3 Assign a value to variable y

bt Get a back trace.

Let’s see how to use some of these basic commands.

list command:
(gdb) l
3
4 main () {
5
6 int x,y,z;
7
8 setprio (0,9);
9 printf ("Hi ya!\n");
10
11 x=3;
12 y=2;

press <enter> repeat last command:
(gdb) <enter>
13 z=3*2;
14
15 exit (0);
16
17 }

break on line 11:
(gdb) break 11
Breakpoint 2 at 0x80483c7: file hello.c, line 11.

continue until the first break point:
(gdb) c
Continuing.
Hi ya!

Breakpoint 2, main () at hello.c:11
11 x=3;

Notice that the above command went past the
printf statement at line 9. I/O from the
printf statement is displayed on screen.

32 Chapter 1 � Compiling and Debugging May 31, 2004

 2004, QNX Software Systems Ltd. A simple debug session

inspect variable y, using short form of the
inspect command.

(gdb) ins y
$1 = -1338755812

get some help on step and next commands:
(gdb) help s
Step program until it reaches a different source line.
Argument N means do this N times (or till program stops
for another reason).
(gdb) help n
Step program, proceeding through subroutine calls.
Like the "step" command as long as subroutine calls do not
happen; when they do, the call is treated as one instruction.
Argument N means do this N times (or till program stops
for another reason).

go to the next line of execution:
(gdb) n
12 y=2;
(gdb) n
13 z=3*2;
(gdb) inspect z
$2 = 1
(gdb) n
15 exit (0);
(gdb) inspe z
$3 = 6

continue program execution:
(gdb) continue
Continuing.

Program exited normally.

quit the debugger session:
(gdb) quit
The program is running. Exit anyway? (y or n) y
(61) con1 /home/allan/src >

Sample boot image

[virtual=x86,bios +compress] boot = {
startup-bios -N node428
PATH=/proc/boot:./ procnto

May 31, 2004 Chapter 1 � Compiling and Debugging 33

A simple debug session  2004, QNX Software Systems Ltd.

}

[+script] startup-script = {
explicitly running in edited mode for the console link

devc-ser8250 -e -b115200 &
reopen
display msg Welcome to QNX on a PC-compatible BIOS system

tcp/ip with a NE2000 Ethernet adaptor
io-net -dne2000 -pttcpip if=ndi0:10.0.1.172 &
waitfor /dev/socket
pipe &

pdebug needs devc-pty
devc-pty &

starting pdebug twice on separate ports
[+session] pdebug 8000 &

}

[type=link] /usr/lib/ldqnx.so.2=/proc/boot/libc.so
[type=link] /lib=/x86/lib
[type=link] /tmp=/dev/shmem # tmp points to shared memory
[type=link] /dev/console=/dev/ser2 # no local terminal

[perms=+r,+x] <!-- # Boot images made under MS-Windows need -->
<!-- # to be reminded of permissions. -->

devn-ne2000.so
npm-tcpip.so
libc.so
fpemu.so
libsocket.so

[data=copy] # All executables that can be restarted
go below.

devc-ser8250
io-net
pipe
devc-pty
pdebug
esh
ping
ls

34 Chapter 1 � Compiling and Debugging May 31, 2004

Chapter 2

Programming Overview

In this chapter. . .
Process model 37
Processes and threads 39
Priorities and scheduling 41
Scheduling algorithms 46
Why threads? 49
Summary 50

May 31, 2004 Chapter 2 � Programming Overview 35

 2004, QNX Software Systems Ltd. Process model

Process model
The QNX OS architecture consists of the small Neutrino microkernel
and some number of cooperating processes. These processes
communicate with each other via various forms of interprocess
communication (IPC). Message passing is the primary form of IPC in
QNX.

Software bus

QNX 4
file

manager

DOS file
manager

Process
manager

Flash
file

manager

CD-ROM
file

manager

NFS file
manager

Photon
GUI

manager

Font
manager

Mqueue
manager

CIFS file
manager

Application

Qnet
network
manager

Neutrino
microkernel

Graphics
driver

The QNX OS architecture acts as a kind of “software bus” that lets you

dynamically plug in/out OS modules. This picture shows the graphics driver

sending a message to the font manager when it wants the bitmap for a font.

The font manager responds with the bitmap.

The Photon microGUI windowing system is also made up of a
number of cooperating processes: the GUI manager (Photon), a font
manager (phfontFA), the graphics driver manager (io-graphics),
and others. If the graphics driver needs to draw some text, it sends a

May 31, 2004 Chapter 2 � Programming Overview 37

Process model  2004, QNX Software Systems Ltd.

message to the font manager asking for bitmaps in the desired font for
the text to be drawn in. The font manager responds with the requested
bitmaps, and the graphics driver then draws the bitmaps on the screen.

An application as a set of processes
This idea of using a set of cooperating processes isn’t limited to the
OS “system processes.” Your applications should be written in
exactly the same way. You might have some driver process that
gathers data from some hardware and then needs to pass that data on
to other processes, which then act on that data.

Let’s use the example of an application that’s monitoring the level of
water in a reservoir. Should the water level rise too high, then you’ll
want to alert an operator as well as open some flow-control valve.

In terms of hardware, you’ll have some water-level sensor tied to an
I/O board in a computer. If the sensor detects some water, it will
cause the I/O board to generate an interrupt.

The software consists of a driver process that talks to the I/O board
and contains an interrupt handler to deal with the board’s interrupt.
You’ll also have a GUI process that will display an alarm window
when told to do so by the driver, and finally, another driver process
that will open/close the flow-control valve.

Why break this application into multiple processes? Why not have
everything done in one process? There are several reasons:

1 Each process lives in its own protected memory space. If there’s
a bug such that a pointer has a value that isn’t valid for the
process, then when the pointer is next used, the hardware will
generate a fault, which the kernel handles (the kernel will set
the SIGSEGV signal on the process).

This approach has two benefits. The first is that a stray pointer
won’t cause one process to overwrite the memory of another
process. The implications are that one process can go bad while
other processes keep running.

38 Chapter 2 � Programming Overview May 31, 2004

 2004, QNX Software Systems Ltd. Processes and threads

The second benefit is that the fault will occur precisely when
the pointer is used, not when it’s overwriting some other
process’s memory. If a pointer were allowed to overwrite
another process’s memory, then the problem wouldn’t manifest
itself until later and would therefore be much harder to debug.

2 It’s very easy to add or remove processes from an application as
need be. This implies that applications can be made scalable —
adding new features is simply a matter of adding processes.

3 Processes can be started and stopped on the fly, which comes in
handy for dynamic upgrading or simply for stopping an
offending process.

4 Processing can be easily distributed across multiple processors
in a networked environment.

5 The code for a process is much simpler if it concentrates on
doing a single job. For example, a single process that acts as a
driver, a GUI front-end, and a data logger would be fairly
complex to build and maintain. This complexity would increase
the chances of a bug, and any such bug would likely affect all
the activities being done by the process.

6 Different programmers can work on different processes without
fear of overwriting each other’s work.

Processes and threads
Different operating systems often have different meanings for terms
such as “process,” “thread,” “task,” “program,” and so on.

Some definitions
In the QNX OS, we typically use only the terms process and thread.
An “application” typically means a collection of processes; the term
“program” is usually equivalent to “process.”

A thread is a single flow of execution or control. At the lowest level,
this equates to the program counter or instruction pointer register

May 31, 2004 Chapter 2 � Programming Overview 39

Processes and threads  2004, QNX Software Systems Ltd.

advancing through some machine instructions. Each thread has its
own current value for this register.

A process is a collection of one or more threads that share many
things. Threads within a process share at least the following:

� variables that aren’t on the stack

� signal handlers (although you typically have one thread that
handles signals, and you block them in all the other threads)

� signal ignore mask

� channels

� connections.

Threads don’t share such things as stack, values for the various
registers, SMP thread-affinity mask, and a few other things.

Two threads residing in two different processes don’t share very
much. About the only thing they do share is the CPU. You can have
them share memory between them, but this takes a little setup (see
shm open() in the Library Reference for an example).

When you run a process, you’re automatically running a thread. This
thread is called the “main” thread, since the first
programmer-provided function that runs in a C program is main().
The main thread can then create additional threads if need be.

Only a few things are special about the main thread. One is that if it
returns normally, the code it returns to calls exit(). Calling exit()
terminates the process, meaning that all threads in the process are
terminated. So when you return normally from the main thread, the
process is terminated. When other threads in the process return
normally, the code they return to calls pthread exit(), which
terminates just that thread.

Another special thing about the main thread is that if it terminates in
such a manner that the process is still around (e.g. it calls
pthread exit() and there are other threads in the process), then the
memory for the main thread’s stack is not freed up. This is because

40 Chapter 2 � Programming Overview May 31, 2004

 2004, QNX Software Systems Ltd. Priorities and scheduling

the command-line arguments are on that stack and other threads may
need them. If any other thread terminates, then that thread’s stack is
freed.

Priorities and scheduling
Although there’s a good discussion of priorities and scheduling
policies in the System Architecture manual (see “Thread scheduling”
in the chapter on the microkernel), it will help to go over that topic
here in the context of a programmer’s guide.

QNX provides a priority-driven preemptive architecture.
Priority-driven means that each thread can be given a priority and will
be able to access the CPU based on that priority. If a low-priority
thread and a high-priority thread both want to run, then the
high-priority thread will be the one that gets to run.

Preemptive means that if a low-priority thread is currently running
and then a high-priority thread suddenly wants to run, then the
high-priority thread will take over the CPU and run, thereby
preempting the low-priority thread.

Priority range
Each thread can have a scheduling priority ranging from 1 to 63 (the
highest priority), independent of the scheduling policy. The special
idle thread (in the process manager) has priority 0 and is always ready
to run. A thread inherits the priority of its parent thread by default.

A thread has both a real priority and an effective priority, and is
scheduled in accordance with its effective priority. The thread itself
can change both its real and effective priority together, but the
effective priority may change because of priority inheritance or the
scheduling policy. Normally, the effective priority is the same as the
real priority.

Interrupt handlers are of higher priority than any thread, but they’re
not scheduled in the same way as threads. If an interrupt occurs, then:

May 31, 2004 Chapter 2 � Programming Overview 41

Priorities and scheduling  2004, QNX Software Systems Ltd.

1 Whatever thread was running loses the CPU handling the
interrupt (SMP issues).

2 The hardware runs the kernel.

3 The kernel calls the appropriate interrupt handler.

Priorities

5

0

63

10

P
ri
o
ri
ty

E

D

B C

G

F (idle)

1

.

.

.

.

.

.

.

.

.

.

.

.

.

A

(hardware interrupt handlers)

Thread priorities range from 0 (lowest) to 63 (highest). Although interrupt

handlers aren’t scheduled in the same way as threads, they’re considered to

be of a higher priority because an interrupt handler will preempt any running

thread.

BLOCKED and READY states
To fully understand how scheduling works, you must first understand
what it means when we say a thread is BLOCKED and when a thread
is in the READY state. You must also understand a particular data
structure in the kernel called the ready queue.

42 Chapter 2 � Programming Overview May 31, 2004

 2004, QNX Software Systems Ltd. Priorities and scheduling

A thread is BLOCKED if it doesn’t want the CPU, which might
happen for several reasons, such as:

� The thread is sleeping.

� The thread is waiting for a message from another thread.

� The thread is waiting on a mutex that some other thread owns.

When designing an application, you always try to arrange it so that if
any thread is waiting for something, make sure it isn’t spinning in a
loop using up the CPU. In general, try to avoid polling. If you do have
to poll, then you should try to sleep for some period between polls,
thereby giving lower-priority threads the CPU should they want it.

For each type of blocking there is a blocking state. We’ll discuss these
states briefly as they come up. Examples of some blocking states are
REPLY-blocked, RECEIVE-blocked, MUTEX-blocked,
INTERRUPT-blocked, and NANOSLEEP-blocked.

A thread is READY if it wants a CPU but something else currently
has it. If a thread currently has a CPU, then it’s actually in the
RUNNING state, but for simplicity we’ll just include it as one of the
READY threads. Simply put, a thread that’s either READY or
RUNNING isn’t blocked.

The ready queue
The ready queue is a simplified version of a kernel data structure
consisting of a queue with one entry per priority. Each entry in turn
consists of another queue of the threads that are READY at the
priority. Any threads that aren’t READY aren’t in any of the queues
— but they will be when they become READY.

May 31, 2004 Chapter 2 � Programming Overview 43

Priorities and scheduling  2004, QNX Software Systems Ltd.

Ready
queue

5

0

63

10

P
ri
o
ri
ty

E

D

Blocked

B C

G Z

Idle

F

Active

A

The ready queue for six threads (A-F) that are READY. All other threads

(G-Z) are BLOCKED. Thread A is currently running. Thread A, B, and C are

at the highest priority, so they’ll share the processor based on the running

thread’s scheduling algorithm.

The thread at the head of the highest-priority queue is the active
thread (i.e. actually in the RUNNING state). In diagrams depicting
the ready queue, the active thread is always shown in the left
uppermost area in the diagram.

Every thread is assigned a priority. The scheduler selects the next
thread to run by looking at the priority assigned to every thread in the
READY state (i.e. capable of using the CPU). The thread with the
highest priority that’s at the head of its priority’s queue is selected to
run. In the above diagram, thread A is at the head of priority 10’s
queue, so thread A runs.

44 Chapter 2 � Programming Overview May 31, 2004

 2004, QNX Software Systems Ltd. Priorities and scheduling

Suspending a running thread
The execution of a running thread is temporarily suspended whenever
the microkernel is entered as the result of a kernel call, exception, or
hardware interrupt. A scheduling decision is made whenever the
execution state of any thread changes — it doesn’t matter which
processes the threads might reside within. Threads are scheduled
globally across all processes.

Normally, the execution of the suspended thread will resume, but the
scheduler will perform a context switch from one thread to another
whenever the running thread:

� is blocked

� is preempted

� yields.

When the thread is blocked
The running thread will block when it must wait for some event to
occur (response to an IPC request, wait on a mutex, etc.). The blocked
thread is removed from the ready queue, and the highest-priority
ready thread that’s at the head of its priority’s queue is then allowed to
run. When the blocked thread is subsequently unblocked, it’s placed
on the end of the ready queue for its priority level.

When the thread is preempted
The running thread will be preempted when a higher-priority thread is
placed on the ready queue (it becomes READY as the result of its
block condition being resolved). The preempted thread remains at the
start of the ready queue for that priority, and the higher-priority thread
runs. When it’s time for a thread at that priority level to run again, that
thread resumes execution — a preempted thread will not lose its place
in the queue for its priority level.

May 31, 2004 Chapter 2 � Programming Overview 45

Scheduling algorithms  2004, QNX Software Systems Ltd.

When the thread yields
The running thread voluntarily yields the processor (via sched yield())
and is placed on the end of the ready queue for that priority. The
highest-priority thread then runs (which may still be the thread that
just yielded).

Scheduling algorithms
To meet the needs of various applications, QNX provides these
scheduling algorithms:

� FIFO scheduling — SCHED FIFO

� Round-robin scheduling — SCHED RR

� Sporadic scheduling — SCHED SPORADIC

Another scheduling algorithm (called “other” — SCHED OTHER)
behaves in the same way as round-robin. We don’t recommend using
the “other” scheduling algorithm, because its behavior may change in
the future.

�

Each thread in the system may run using any method. Scheduling
methods are effective on a per-thread basis, not on a global basis for
all threads and processes on a node.

Remember that these scheduling algorithms apply only when two or
more threads that share the same priority are READY (i.e. the threads
are directly competing with each other). If a higher-priority thread
becomes READY, it immediately preempts all lower-priority threads.

In the following diagram, three threads of equal priority are READY.
If Thread A blocks, Thread B will run.

46 Chapter 2 � Programming Overview May 31, 2004

 2004, QNX Software Systems Ltd. Scheduling algorithms

Blocked

Ready

queue

10

C

A

Active

B

P
ri
o
ri
ty

Thread A blocks, Thread B runs.

Although a thread inherits its scheduling algorithm from its parent
thread, the thread can request to change the algorithm applied by the
kernel.

FIFO scheduling
In FIFO (SCHED FIFO) scheduling, a thread selected to run continues
executing until it:

� voluntarily relinquishes control (e.g. it blocks)

� is preempted by a higher-priority thread.

May 31, 2004 Chapter 2 � Programming Overview 47

Scheduling algorithms  2004, QNX Software Systems Ltd.

Ready

queue

10

B C

Active

A

P
ri
o
ri
ty

FIFO scheduling. Thread A runs until it blocks.

Round-robin scheduling
In round-robin (SCHED RR) scheduling, a thread selected to run
continues executing until it:

� voluntarily relinquishes control

� is preempted by a higher-priority thread

� consumes its timeslice.

Ready
queue

10

C A

Active

BPr
io

rit
y

Round-robin scheduling. Thread A ran until it consumed its timeslice; the

next READY thread (Thread B) now runs.

48 Chapter 2 � Programming Overview May 31, 2004

 2004, QNX Software Systems Ltd. Why threads?

A timeslice is the unit of time assigned to every process. Once it
consumes its timeslice, a thread is put at the end of its queue in the
ready queue and the next READY thread at the same priority level is
given control.

A timeslice is calculated as:

4 � ticksize

If your processor is >40MHz, then the ticksize defaults to 1
millisecond; otherwise, it defaults to 10 milliseconds. So, the default
timeslice is either 4 milliseconds (the default for most CPUs) or 40
milliseconds (the default for slower hardware).

Apart from time-slicing, the round-robin scheduling method is
identical to FIFO scheduling.

Why threads?
Now that we know more about priorities, we can talk about why you
might want to use threads. We saw many good reasons for breaking
things up into separate processes, but what’s the purpose of a
multithreaded process?

Let’s take the example of a driver. A driver typically has two
obligations: one is to talk to the hardware and the other is to talk to
other processes. Generally, talking to the hardware is more
time-critical than talking to other processes. When an interrupt comes
in from the hardware, it needs to be serviced in a relatively small
window of time — the driver shouldn’t be busy at that moment
talking to another process.

One way of fixing this problem is to choose a way of talking to other
processes where this situation simply won’t arise (e.g. don’t send
messages to another process such that you have to wait for
acknowledgment, don’t do any time-consuming processing on behalf
of other processes, etc.).

Another way is to use two threads: a higher-priority thread that deals
with the hardware and a lower-priority thread that talks to other
processes. The lower-priority thread can be talking away to other

May 31, 2004 Chapter 2 � Programming Overview 49

Summary  2004, QNX Software Systems Ltd.

processes without affecting the time-critical job at all, because when
the interrupt occurs, the higher-priority thread will preempt the
lower-priority thread and then handle the interrupt.

Although this approach does add the complication of controlling
access to any common data structures between the two threads, QNX
provides synchronization tools such as mutexes (mutual exclusion
locks), which can ensure exclusive access to any data shared between
threads.

Summary
The modular architecture is apparent throughout the entire system:
the QNX OS itself consists of a set of cooperating processes, as does
an application. And each individual process can comprise several
cooperating threads. What “keeps everything together” is the
priority-based preemptive scheduling in the QNX OS, which ensures
that time-critical tasks are dealt with by the right thread or process at
the right time.

50 Chapter 2 � Programming Overview May 31, 2004

Chapter 3

Processes

In this chapter. . .
Starting processes — two methods 53
Process creation 53
Process termination 56
Detecting process termination 59

May 31, 2004 Chapter 3 � Processes 51

 2004, QNX Software Systems Ltd. Starting processes — two methods

As we stated in the Overview chapter, the QNX OS architecture
consists of a small Neutrino microkernel and some number of
cooperating processes. We also pointed out that your applications
should be written the same way — as a set of cooperating processes.

In this chapter, we’ll see how to start processes (also known as
creating processes) from code, how to terminate them, and how to
detect their termination when it happens.

Starting processes — two methods
In embedded applications, there are two typical approaches to starting
your processes at boot time. One approach is to run a shell script that
contains the command lines for running the processes. There are
some useful utilities such as exec, on, and nice for controlling how
those processes are started.

The other approach is to have a starter process run at boot time. This
starter process then starts up all your other processes. This approach
has the advantage of giving you more control over how processes are
started, whereas the script approach is easier for you (or anyone) to
modify quickly.

Process creation
The process manager component of procnto is responsible for
process creation. If a process wants to create another process, it
makes a call to one of the process-creation functions, which then
effectively sends a message to the process manager.

Here are the process-creation functions:

� exec*() family of functions

� fork()

� forkpty()

� popen()

� spawn()

May 31, 2004 Chapter 3 � Processes 53

Process creation  2004, QNX Software Systems Ltd.

� spawn*() family of functions

� system()

� vfork()

For details on each of these functions, see their entries in the Library
Reference. Here we’ll mention some of the things common to many
of them.

Concurrency
Three possibilities can happen to the creator during process creation:

1 The child process is created and runs concurrently with the
parent. In this case, as soon as process creation is successful,
the process manager replies to the parent, and the child is made
READY. If it’s the parent’s turn to run, then the first thing it
does is return from the process-creation function. This may not
be the case if the child process was created at a higher priority
than the parent (in which case the child will run before the
parent gets to run again).

This is how fork(), forkpty(), popen(), and spawn() work. This
is also how the spawn*() family of functions work when the
mode is passed as P NOWAIT or P NOWAITO.

2 The child replaces the parent. In fact, they’re not really parent
and child, because the image of the given process simply
replaces that of the caller. Many things will change, but those
things that uniquely identify a process (such as the process ID)
will remain the same. This is typically referred to as “execing,”
since usually the exec*() functions are used.

Many things will remain the same (including the process ID,
parent process ID, and file descriptors) with the exception of
file descriptors that had the FD CLOEXEC flag set using fcntl().
See the exec*() functions for more on what will and will not be
the same across the exec.

54 Chapter 3 � Processes May 31, 2004

 2004, QNX Software Systems Ltd. Process creation

The login command serves as a good example of execing.
Once the login is successful, the login command execs into a
shell.

Functions you can use for this type of process creation are the
exec*() and spawn*() families of functions, with mode passed
as P OVERLAY.

3 The parent waits until the child terminates. This can be done by
passing the mode as P WAIT for the spawn*() family of
functions.

Note that what is going on underneath the covers in this case is
that spawn() is called as in the first possibility above. Then,
after it returns, waitpid() is called in order to wait for the child
to terminate. This means that you can use any of the functions
mentioned in our first possibility above to achieve the same
thing if you follow them by a call to one of the wait*()
functions (e.g. wait() or waitpid()).

Using fork() and forkpty()
As of this writing, you can’t use fork() and forkpty() in a process that
has threads. The fork() and forkpty() functions will simply return -1
and errno will contain ENOSYS.

Many programmers coming from the Unix world are familiar with the
technique of using a call to fork() followed by a call to one of the
exec*() functions in order to create a process that’s different from the
caller. In QNX, you can usually achieve the same thing in a single call
to one of the spawn*() functions.

�

Inheriting file descriptors
The documentation in the Library Reference for each function
describes in detail what the child inherits from the parent. One thing
that we should talk about here, however, is file-descriptor inheritance.

With many of the process-creation functions, the child inherits the file
descriptors of the parent. For example, if the parent had file descriptor

May 31, 2004 Chapter 3 � Processes 55

Process termination  2004, QNX Software Systems Ltd.

5 in use for a particular file when the parent creates the child, the child
will also have file descriptor 5 in use for that same file. The child’s
file descriptor will have been duped from the parent’s. This means
that at the filesystem manager level, the parent and child have the
same open control block (OCB) for the file, so if the child seeks to
some position in the file, then that changes the parent’s seek position
as well. It also means that the child can do a write(5, buf,

nbytes) without having previously called open().

If you don’t want the child to inherit a particular file descriptor, then
you can use fcntl() to prevent it. Note that this won’t prevent
inheritance of a file descriptor during a fork(). The call to fcntl()
would be:

fcntl(fd, F SETFD, FD CLOEXEC);

If you want the parent to set up exactly which files will be open for
the child, then you can use the fd count and fd map parameters with
spawn(). Note that in this case, only the file descriptors you specify
will be inherited. This is especially useful for redirecting the child’s
standard input (file descriptor 0), standard output (file descriptor 1),
and standard error (file descriptor 2) to places where the parent wants
them to go.

Alternatively this file descriptor inheritance can also be done through
use of fork(), one or more calls to dup(), dup2() and close(), and then
exec*(). The call to fork() creates a child that inherits all the of the
parent’s file descriptors. dup(), dup2() and close() are then used by the
child to rearrange its file descriptors. Lastly, exec*() is called to
replace the child with the process to be created. Though more
complicated, this method of setting up file descriptors is portable
whereas the spawn() method is not.

Process termination
A process can terminate in one of two basic ways:

� normally (e.g. the process terminates itself)

56 Chapter 3 � Processes May 31, 2004

 2004, QNX Software Systems Ltd. Process termination

� abnormally (e.g. the process terminates as the result of a signal’s
being set).

Normal process termination
A process can terminate itself by having any thread in the process call
exit(). Returning from the main thread (i.e. main()) will also terminate
the process, because the code that’s returned to calls exit(). This isn’t
true of threads other than the main thread. Returning normally from
one of them causes pthread exit() to be called, which terminates only
that thread. Of course, if that thread is the last one in the process, then
the process is terminated.

The value passed to exit() or returned from main() is called the exit
status.

Abnormal process termination
A process can be terminated abnormally for a number of reasons.
Ultimately, all of these reasons will result in a signal’s being set on
the process. A signal is something that can interrupt the flow of your
threads at any time. The default action for most signals is to terminate
the process.

Note that what causes a particular signal to be generated is sometimes
processor-dependent.

�

Here are some of the reasons that a process might be terminated
abnormally:

� If any thread in the process tries to use a pointer that doesn’t
contain a valid virtual address for the process, then the hardware
will generate a fault and the kernel will handle the fault by setting
the SIGSEGV signal on the process. By default, this will terminate
the process.

� A floating-point exception will cause the kernel to set the SIGFPE
signal on the process. The default is to terminate the process.

May 31, 2004 Chapter 3 � Processes 57

Process termination  2004, QNX Software Systems Ltd.

� If you create a shared memory object and then map in more than
the size of the object, when you try to write past the size of the
object you’ll be hit with SIGBUS. In this case, the virtual address
used is valid (since the mapping succeeded), but the memory
cannot be accessed.

To get the kernel to display some diagnostics whenever a process
terminates abnormally, configure procnto with multiple -v options.
If the process has fd 2 open, then the diagnostics are displayed using
(stderr); otherwise; you can specify where the diagnostics get
displayed by using the -D option to your startup. For example, the -D
as used in this buildfile excerpt will cause the output to go to a serial
port:

[virtual=x86,bios +compress] .bootstrap = {
startup-bios -D 8250..115200
procnto -vvvv

}

You can also have the current state of a terminated process written to
a file so that you can later bring up the debugger and examine just
what happened. This type of examination is called postmortem
debugging. This happens only if the process is terminated due to one
of these signals:

Signal Description

SIGABRT Program-called abort function

SIGBUS Parity error

SIGEMT EMT instruction

SIGFPE Floating-point error or division by zero

SIGILL Illegal instruction executed

SIGQUIT Quit

SIGSEGV Segmentation violation

continued. . .

58 Chapter 3 � Processes May 31, 2004

 2004, QNX Software Systems Ltd. Detecting process termination

Signal Description

SIGSYS Bad argument to a system call

SIGTRAP Trace trap (not reset when caught)

SIGXCPU Exceeded the CPU limit

SIGXFSZ Exceeded the file size limit

The process that dumps the state to a file when the process terminates
is called dumper, which must be running when the abnormal
termination occurs. This is extremely useful, because embedded
systems may run unassisted for days or even years before a crash
occurs, making it impossible to reproduce the actual circumstances
leading up to the crash.

Affect of parent termination
In some OSes, if a parent process dies, then all of its child processes
die too. This is not the case in QNX.

Detecting process termination
In an embedded application, it’s often important to detect if any
process terminates prematurely and, if so, to handle it. Handling it
may involve something as simple as restarting the process or as
complex as:

1 Notifying other processes that they should put their systems
into a safe state.

2 Resetting the hardware.

This is complicated by the fact that some QNX processes call
procmgr daemon(). Processes that call this function are referred to as
daemons. The procmgr daemon() function:

� detaches the caller from the controlling terminal

� puts it in session 1

May 31, 2004 Chapter 3 � Processes 59

Detecting process termination  2004, QNX Software Systems Ltd.

� optionally, closes all file descriptors except stdin, stdout, and stderr

� optionally, redirects stdin, stdout, stderr to /dev/null.

As a result of the above, their termination is hard to detect.

Another scenario is where a server process wants to know if any of its
clients disappear so that it can clean up any resources it had set aside
on their behalf.

Let’s look at various ways of detecting process termination.

Using the QNX High Availability Toolkit (HAT)

The High Availability Toolkit (HAT) provides components not only
for detecting when processes terminate, but also for recovering from
that termination.

The main component is a process called the High Availability
Manager (HAM) that acts as a “smart watchdog”. Your processes talk
to the HAM using the HAM API. With this API you basically set up
conditions that the HAM should watch for and take actions when
these conditions occur. So the HAM can be told to detect when a
process terminates and to automatically restart the process. It will
even detect the termination of daemon processes.

In fact, the High Availability Manager can restart a number of
processes, wait between restarts for a process to be ready, and notify
the process that this is happening.

The HAM also does heartbeating. Processes can periodically notify
the HAM that they are still functioning correctly. If a process
specified amount of time goes by between these notifications then the
HAM can take some action.

The above are just a sample of what is possible with the HAT.

Detecting termination from a starter process

If you’ve created a set of processes using a starter process as
discussed at the beginning of this section, then all those processes are
children of the starter process, with the exception of those that have
called procmgr daemon(). If all you want to do is detect that one of

60 Chapter 3 � Processes May 31, 2004

 2004, QNX Software Systems Ltd. Detecting process termination

those children has terminated, then a loop that blocks on wait() or
sigwaitinfo() will suffice. Note that when a child process calls
procmgr daemon(), both wait() and sigwaitinfo() behave as if the
child process died, although the child is still running.

The wait() function will block, waiting until any of the caller’s child
processes terminate. There’s also waitpid(), which lets you wait for a
specific child process, wait3(), and wait4(). Lastly, there is waitid(),
which is the lower level of all the wait*() functions and returns the
most information.

The wait*() functions won’t always help, however. If a child process
was created using one of the spawn*() family of functions with the
mode passed as P NOWAITO, then the wait*() functions won’t be
notified of its termination!

What if the child process terminates, but the parent hasn’t yet called
wait*()? This would be the case if one child had already terminated,
so wait*() returned, but then before the parent got back to the wait*(),
a second child terminates. In that case, some information would have
to be stored away about the second child for when the parent does get
around to its wait*().

This is in fact the case. The second child’s memory will have been
freed up, its files will have been closed, and in general the child’s
resources will have been cleaned up with the exception of a few bytes
of memory in the process manager that contain the child’s exit status
or other reason that it had terminated and its process ID. When the
second child is in this state, it’s referred to as a zombie. The child will
remain a zombie until the parent either terminates or finds out about
the child’s termination (e.g. the parent calls wait*()).

What this means is that if a child has terminated and the parent is still
alive but doesn’t yet know about the terminated child (e.g. hasn’t
called wait*()), then the zombie will be hanging around. If the parent
will never care, then you may as well not have the child become a
zombie. To prevent the child from becoming a zombie when it
terminates, create the child process using one of the spawn*() family
of functions and pass P NOWAITO for the mode.

May 31, 2004 Chapter 3 � Processes 61

Detecting process termination  2004, QNX Software Systems Ltd.

The following sample illustrates the use of wait() for waiting for child
processes to terminate.

Sample parent process using wait()

/*

* waitchild.c
*

* This is an example of a parent process that creates some child

* processes and then waits for them to terminate. The waiting is
* done using wait(). When a child process terminates, the

* wait() function returns.
*/

#include <spawn.h>
#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>
#include <sys/wait.h>

main(int argc, char **argv)
{

char *args[] = { "child", NULL };

int i, status;
pid t pid;

struct inheritance inherit;

// create 3 child processes

for (i = 0; i < 3; i++) {
inherit.flags = 0;

if ((pid = spawn("child", 0, NULL, &inherit, args, environ)) == -1)

perror("spawn() failed");
else

printf("spawned child, pid = %d\n", pid);

}

while (1) {

if ((pid = wait(&status)) == -1) {
perror("wait() failed (no more child processes?)");

exit(EXIT FAILURE);

}
printf("a child terminated, pid = %d\n", pid);

if (WIFEXITED(status)) {
printf("child terminated normally, exit status = %d\n",

WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {

printf("child terminated abnormally by signal = %X\n",

WTERMSIG(status));
} // else see documentation for wait() for more macros

}

}

The following is a simple child process to try out with the above
parent.

62 Chapter 3 � Processes May 31, 2004

 2004, QNX Software Systems Ltd. Detecting process termination

#include <stdio.h>
#include <unistd.h>

main(int argc, char **argv)
{

printf("pausing, terminate me somehow\n");
pause();

}

The sigwaitinfo() function will block, waiting until any signals that
the caller tells it to wait for are set on the caller. If a child process
terminates, then the SIGCHLD signal is set on the parent. So all the
parent has to do is request that sigwaitinfo() return when SIGCHLD
arrives.

Sample parent process using sigwaitinfo()

The following sample illustrates the use of sigwaitinfo() for waiting
for child processes to terminate.

/*
* sigwaitchild.c

*

* This is an example of a parent process that creates some child
* processes and then waits for them to terminate. The waiting is

* done using sigwaitinfo(). When a child process terminates, the

* SIGCHLD signal is set on the parent. sigwaitinfo() will return
* when the signal arrives.

*/

#include <errno.h>

#include <spawn.h>
#include <stdio.h>

#include <string.h>

#include <stdlib.h>
#include <unistd.h>

#include <sys/neutrino.h>

void

signal handler(int signo)

{
// do nothing

}

main(int argc, char **argv)

{
char *args[] = { "child", NULL };

int i;

pid t pid;
sigset t mask;

siginfo t info;

struct inheritance inherit;

May 31, 2004 Chapter 3 � Processes 63

Detecting process termination  2004, QNX Software Systems Ltd.

struct sigaction action;

// mask out the SIGCHLD signal so that it will not interrupt us,

// (side note: the child inherits the parents mask)
sigemptyset(&mask);

sigaddset(&mask, SIGCHLD);

sigprocmask(SIG BLOCK, &mask, NULL);

// by default, SIGCHLD is set to be ignored so unless we happen
// to be blocked on sigwaitinfo() at the time that SIGCHLD

// is set on us we will not get it. To fix this, we simply

// register a signal handler. Since we’ve masked the signal
// above, it will not affect us. At the same time we will make

// it a queued signal so that if more than one are set on us,

// sigwaitinfo() will get them all.
action.sa handler = signal handler;

sigemptyset(&action.sa mask);

action.sa flags = SA SIGINFO; // make it a queued signal
sigaction(SIGCHLD, &action, NULL);

// create 3 child processes
for (i = 0; i < 3; i++) {

inherit.flags = 0;

if ((pid = spawn("child", 0, NULL, &inherit, args, environ)) == -1)
perror("spawn() failed");

else
printf("spawned child, pid = %d\n", pid);

}

while (1) {

if (sigwaitinfo(&mask, &info) == -1) {

perror("sigwaitinfo() failed");
continue;

}

switch (info.si signo) {
case SIGCHLD:

// info.si pid is pid of terminated process, it is not POSIX

printf("a child terminated, pid = %d\n", info.si pid);
break;

default:

// should not get here since we only asked for SIGCHLD
}

}
}

Detecting dumped processes

As mentioned above, you can run dumper so that when a process
dies, dumper writes the state of the process to a file.

You can also write your own dumper-type process to run instead of, or
as well as, dumper. This way the terminating process doesn’t have to
be a child of yours.

64 Chapter 3 � Processes May 31, 2004

 2004, QNX Software Systems Ltd. Detecting process termination

To do this, write a resource manager that registers the name,
/proc/dumper with type FTYPE DUMPER. When a process dies
due to one of the appropriate signals, the process manager will open
/proc/dumper and write the pid of the process that died — then it’ll
wait until you reply to the write with success and then it’ll finish
terminating the process.

It’s possible that more than one process will have /proc/dumper
registered at the same time, however, the process manager notifies
only the process that’s at the beginning of its list for that name.
Undoubtedly, you want both your resource manager and dumper to
handle this termination. To do this, request the process manager to put
you, instead of dumper, at the beginning of the /proc/dumper list
by passing RESMGR FLAG BEFORE to resmgr attach(). You must
also open /proc/dumper so that you can communicate with dumper
if it’s running. Whenever your io write handler is called, write the pid
to dumper and do your own handling. Of course this works only
when dumper is run before your resource manager; otherwise, your
open of /proc/dumper won’t work.

The following is a sample process that demonstrates the above:

/*
* dumphandler.c
*
* This demonstrates how you get notified whenever a process dies
* due to any of the following signals:
*
* SIGABRT
* SIGBUS
* SIGEMT
* SIGFPE
* SIGILL
* SIGQUIT
* SIGSEGV
* SIGSYS
* SIGTRAP
* SIGXCPU
* SIGXFSZ
*
* To do so, register the path, /proc/dumper with type FTYPE DUMPER.
* When a process dies due to one of the above signals, the process
* manager will open /proc/dumper, and write the pid of the process
* that died - it will wait until you reply to the write with success
* and then it will finish terminating the process.

May 31, 2004 Chapter 3 � Processes 65

Detecting process termination  2004, QNX Software Systems Ltd.

*
* Note that while it is possible for more than one process to have
* /proc/dumper registered at the same time the process manager will
* only notify the one that is at the beginning of its list for that name.
* But we want both us and dumper to handle this termination. To do
* this we make sure that we get notified instead of dumper by
* asking the process manager to put us at the beginning of its list
* for /proc/dumper (done by passing RESMGR FLAG BEFORE to
* resmgr attach()). We also open /proc/dumper so that we can communicate
* with dumper if it is running. Whenever our io write handler is called,
* we write the pid to dumper and do our own handling. Of course this
* will only work if dumper is run before we are or else our open
* will not work.
*

*/

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>
#include <sys/neutrino.h>
#include <sys/procfs.h>
#include <sys/stat.h>

int io write (resmgr context t *ctp, io write t *msg, RESMGR OCB T *ocb);

static int dumper fd;

resmgr connect funcs t connect funcs;
resmgr io funcs t io funcs;
dispatch t *dpp;
resmgr attr t rattr;
dispatch context t *ctp;
iofunc attr t ioattr;

char *progname = "dumphandler";

main(int argc, char **argv)
{

/* find dumper so that we can pass any pids on to it */
dumper fd = open("/proc/dumper", O WRONLY);

dpp = dispatch create();

memset(&rattr, 0, sizeof(rattr));
rattr.msg max size = 2048;

66 Chapter 3 � Processes May 31, 2004

 2004, QNX Software Systems Ltd. Detecting process termination

iofunc func init(RESMGR CONNECT NFUNCS, &connect funcs,
RESMGR IO NFUNCS, &io funcs);

io funcs.write = io write;

iofunc attr init(&ioattr, S IFNAM | 0600, NULL, NULL);

resmgr attach(dpp, &rattr, "/proc/dumper", FTYPE DUMPER,
RESMGR FLAG BEFORE, &connect funcs, &io funcs, &ioattr);

ctp = dispatch context alloc(dpp);

while (1) {
if ((ctp = dispatch block(ctp)) == NULL) {

fprintf(stderr, "%s: dispatch block failed: %s\n",
progname, strerror(errno));

exit(1);
}
dispatch handler(ctp);

}
}

struct dinfo s {
procfs debuginfo info;
char pathbuffer[PATH MAX]; /* 1st byte is info.path[0] */

};

int
display process info(pid t pid)
{

char buf[PATH MAX + 1];
int fd, status;
struct dinfo s dinfo;
procfs greg reg;

printf("%s: process %d died\n", progname, pid);

sprintf(buf, "/proc/%d/as", pid);

if ((fd = open(buf, O RDONLY|O NONBLOCK)) == -1)
return errno;

status = devctl(fd, DCMD PROC MAPDEBUG BASE, &dinfo, sizeof(dinfo), NULL);
if (status != EOK) {

close(fd);
return status;

}

printf("%s: name is %s\n", progname, dinfo.info.path);

May 31, 2004 Chapter 3 � Processes 67

Detecting process termination  2004, QNX Software Systems Ltd.

/*
* for getting other type of information see sys/procfs.h, sys/debug.h
* and sys/dcmd proc.h
*/

close(fd);
return EOK;

}

int
io write(resmgr context t *ctp, io write t *msg, RESMGR OCB T *ocb)
{

char *pstr;
int status;

if ((status = iofunc write verify(ctp, msg, ocb, NULL)) != EOK)
return status;

if (msg->i.xtype & IO XTYPE MASK != IO XTYPE NONE)
return ENOSYS;

if (ctp->msg max size < msg->i.nbytes + 1)
return ENOSPC; /* not all the message could fit in the message buffer */

pstr = (char *) (&msg->i) + sizeof(msg->i);
pstr[msg->i.nbytes] = ’\0’;

if (dumper fd != -1) {
/* pass it on to dumper so it can handle it too */
if (write(dumper fd, pstr, strlen(pstr)) == -1) {

close(dumper fd);
dumper fd = -1; /* something wrong, no sense in doing it again later */

}
}

if ((status = display process info(atoi(pstr))) == -1)
return status;

IO SET WRITE NBYTES(ctp, msg->i.nbytes);

return EOK;
}

68 Chapter 3 � Processes May 31, 2004

 2004, QNX Software Systems Ltd. Detecting process termination

Detecting the termination of daemons

What would happen if you’ve created some processes that
subsequently made themselves daemons (i.e. called
procmgr daemon())? As we mentioned above, the wait*() functions
and sigwaitinfo() won’t help.

For these you can give the kernel an event, such as one containing a
pulse, and have the kernel deliver that pulse to you whenever a
daemon terminates. This request for notification is done by calling
procmgr event notify() with PROCMGR EVENT DAEMON DEATH in
flags.

See the documentation for procmgr event notify() for an example that
uses this function.

Detecting client termination

The last scenario is where a server process wants to be notified of any
clients that terminate so that it can clean up any resources that it had
set aside for them.

This is very easy to do if the server process is written as a resource
manager, because the resource manager’s io close dup() and
io close ocb() handlers, as well as the ocb free() function, will be
called if a client is terminated for any reason.

May 31, 2004 Chapter 3 � Processes 69

Chapter 4

Writing a Resource Manager

In this chapter. . .
What is a resource manager? 73
Components of a resource manager 83
Simple device resource manager examples 87
Data carrying structures 97
Handling the IO READ message 107
Handling the IO WRITE message 116
Methods of returning and replying 119
Handling other read/write details 125
Attribute handling 129
Combine messages 131
Extending Data Control Structures (DCS) 139
Handling devctl() messages 142
Handling ionotify() and select() 149
Handling private messages and pulses 160
Handling open(), dup(), and close() messages 163
Handling client unblocking due to signals or timeouts 164
Handling interrupts 166
Multi-threaded resource managers 169
Filesystem resource managers 175
Message types 183
Resource manager data structures 184

May 31, 2004 Chapter 4 � Writing a Resource Manager 71

 2004, QNX Software Systems Ltd. What is a resource manager?

What is a resource manager?
This chapter assumes that you’re familiar with message passing. If
you’re not, see the Neutrino Microkernel chapter in the System
Architecture book as well as the MsgSend(), MsgReceivev(), and
MsgReply() series of calls in the Library Reference.

�

A resource manager is a user-level server program that accepts
messages from other programs and, optionally, communicates with
hardware. It’s a process that registers a pathname prefix in the
pathname space (e.g. /dev/ser1), and when registered, other
processes can open that name using the standard C library open()
function, and then read() from, and write() to, the resulting file
descriptor. When this happens, the resource manager receives an open
request, followed by read and write requests.

A resource manager isn’t restricted to handling just open(), read(),
and write() calls — it can support any functions that are based on a
file descriptor or file pointer, as well as other forms of IPC.

In QNX Neutrino, resource managers are responsible for presenting
an interface to various types of devices. In other operating systems,
the managing of actual hardware devices (e.g. serial ports, parallel
ports, network cards, and disk drives) or virtual devices (e.g.
/dev/null, a network filesystem, and pseudo-ttys), is associated
with device drivers. But unlike device drivers, the Neutrino resource
managers execute as processes separate from the kernel.

A resource manager looks just like any other user-level program.�

Adding resource managers in QNX Neutrino won’t affect any other
part of the OS — the drivers are developed and debugged like any
other application. And since the resource managers are in their own
protected address space, a bug in a device driver won’t cause the
entire OS to shut down.

If you’ve written device drivers in most UNIX variants, you’re used to
being restricted in what you can do within a device driver; but since a
device driver in QNX Neutrino is just a regular process, you aren’t

May 31, 2004 Chapter 4 � Writing a Resource Manager 73

What is a resource manager?  2004, QNX Software Systems Ltd.

restricted in what you can do (except for the restrictions that exist
inside an ISR).

For an attach, a resource manager must be run as root.�

A few examples...

A serial port may be managed by a resource manager called
devc-ser8250, although the actual resource may be called
/dev/ser1 in the pathname space. When a process requests serial
port services, it does so by opening a serial port (in this case
/dev/ser1).

fd = open("/dev/ser1", O RDWR);
for (packet = 0; packet < npackets; packet++)

write(fd, packets[packet], PACKET SIZE);
close(fd);

Because resource managers execute as processes, their use isn’t
restricted to device drivers — any server can be written as a resource
manager. For example, a server that’s given DVD files to display in a
GUI interface wouldn’t be classified as a driver, yet it could be written
as a resource manager. It can register the name /dev/dvd and as a
result, clients can do the following:

fd = open("/dev/dvd", O WRONLY);
while (data = get dvd data(handle, &nbytes)) {

bytes written = write(fd, data, nbytes);
if (bytes written != nbytes) {

perror ("Error writing the DVD data");
}

}
close(fd);

Why write a resource manager?
Here are a few reasons why you’d want to write a resource manager:

� The API is POSIX.

74 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. What is a resource manager?

The API for communicating with the resource manager is for the
most part, POSIX. All C programmers are familiar with the open(),
read(), and write() functions. Training costs are minimized, and so
is the need to document the interface to your server.

� You can reduce the number of interface types.

If you have many server processes, writing each server as a
resource manager keeps the number of different interfaces that
clients need to use to a minimum.

An example of this is if you have a team of programmers building
your overall application, and each programmer is writing one or
more servers for that application. These programmers may work
directly for your company, or they may belong to partner
companies who are developing add-on hardware for your modular
platform.

If the servers are resource managers, then the interface to all of
those servers is the POSIX functions: open(), read(), write(), and
whatever else makes sense. For control-type messages that don’t
fit into a read/write model, there’s devctl() (although devctl() isn’t
POSIX).

� Command-line utilities can communicate with resource managers.

Since the API for communicating with a resource manager is the
POSIX set of functions, and since standard POSIX utilities use this
API, the utilities can be used for communicating with the resource
managers.

For instance, the tiny TCP/IP protocol module contains
resource-manager code that registers the name /proc/ipstats.
If you open this name and read from it, the resource manager code
responds with a body of text that describes the statistics for IP.

The cat utility takes the name of a file and opens the file, reads
from it, and displays whatever it reads to standard output (typically
the screen). As a result, you can type:
cat /proc/ipstats

May 31, 2004 Chapter 4 � Writing a Resource Manager 75

What is a resource manager?  2004, QNX Software Systems Ltd.

The resource manager code in the TCP/IP protocol module
responds with text such as:
Ttcpip Sep 5 2000 08:56:16

verbosity level 0
ip checksum errors: 0

udp checksum errors: 0

tcp checksum errors: 0

packets sent: 82
packets received: 82

lo0 : addr 127.0.0.1 netmask 255.0.0.0 up

DST: 127.0.0.0 NETMASK: 255.0.0.0 GATEWAY: lo0

TCP 127.0.0.1.1227 > 127.0.0.1.6000 ESTABLISHED snd 0 rcv 0

TCP 127.0.0.1.6000 > 127.0.0.1.1227 ESTABLISHED snd 0 rcv 0

TCP 0.0.0.0.6000 LISTEN

You could also use command-line utilities for a robot-arm driver.
The driver could register the name, /dev/robot/arm/angle,
and any writes to this device are interpreted as the angle to set the
robot arm to. To test the driver from the command line, you’d type:
echo 87 >/dev/robot/arm/angle

The echo utility opens /dev/robot/arm/angle and writes the
string (“87”) to it. The driver handles the write by setting the robot
arm to 87 degrees. Note that this was accomplished without
writing a special tester program.

Another example would be names such as
/dev/robot/registers/r1, r2, ... Reading from these names
returns the contents of the corresponding registers; writing to these
names set the corresponding registers to the given values.

Even if all of your other IPC is done via some non-POSIX API, it’s
still worth having one thread written as a resource manager for
responding to reads and writes for doing things as shown above.

76 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. What is a resource manager?

Under the covers
Despite the fact that you’ll be using a resource manager API that
hides many details from you, it’s still important to understand what’s
going on under the covers. For example, your resource manager is a
server that contains a MsgReceive() loop, and clients send you
messages using MsgSend*(). This means that you must reply either to
your clients in a timely fashion, or leave your clients blocked but save
the rcvid for use in a later reply.

To help you understand, we’ll discuss the events that occur under the
covers for both the client and the resource manager.

Under the client’s covers

When a client calls a function that requires pathname resolution (e.g.
open(), rename(), stat(), or unlink()), the function subsequently sends
messages to both the process and the resource managers to obtain a
file descriptor. Once the file descriptor is obtained, the client can use it
to send messages directly to the device associated with the pathname.

In the following, the file descriptor is obtained and then the client
writes directly to the device:

/*
* In this stage, the client talks
* to the process manager and the resource manager.
*/

fd = open("/dev/ser1", O RDWR);

/*
* In this stage, the client talks directly to the
* resource manager.
*/

for (packet = 0; packet < npackets; packet++)
write(fd, packets[packet], PACKET SIZE);

close(fd);

For the above example, here’s the description of what happened
behind the scenes. We’ll assume that a serial port is managed by a
resource manager called devc-ser8250, that’s been registered with
the pathname prefix /dev/ser1:

May 31, 2004 Chapter 4 � Writing a Resource Manager 77

What is a resource manager?  2004, QNX Software Systems Ltd.

Device

Client

Resource
manager

Process
manager

1

2

3

4

5

Under-the-cover communication between the client, the process manager,

and the resource manager.

1 The client’s library sends a “query” message. The open() in the
client’s library sends a message to the process manager asking
it to look up a name (e.g. /dev/ser1).

2 The process manager indicates who’s responsible and it returns
the nd, pid, chid, and handle that are associated with the
pathname prefix.

Here’s what went on behind the scenes...
When the devc-ser8250 resource manager registered its
name (/dev/ser1) in the namespace, it called the process
manager. The process manager is responsible for maintaining
information about pathname prefixes. During registration, it
adds an entry to its table that looks similar to this:
0, 47167, 1, 0, 0, /dev/ser1

The table entries represent:

� Node descriptor (nd)

� Process ID of the resource manager (pid)

78 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. What is a resource manager?

� Channel ID that the resource manager receives messages
with (chid)

� Handle (handle)

� Open type (open type)

� Pathname prefix (name).

A resource manager is uniquely identified by a node descriptor,
process ID, and a channel ID. The process manager’s table
entry associates the resource manager with a name, a handle (to
distinguish multiple names when a resource manager registers
more than one name), and an open type.

When the client’s library issued the query call in step 1, the
process manager looked through all of its tables for any
registered pathname prefixes that match the name. Previously,
had another resource manager registered the name /, more than
one match would be found. So, in this case, both / and
/dev/ser1 match. The process manager will reply to the
open() with the list of matched servers or resource managers.
The servers are queried in turn about their handling of the path,
with the longest match being asked first.

3 The client’s library sends a “connect” message to the resource
manager. To do so, it must create a connection to the resource
manager’s channel:
fd = ConnectAttach(nd, pid, chid, 0, 0);

The file descriptor that’s returned by ConnectAttach() is also a
connection ID and is used for sending messages directly to the
resource manager. In this case, it’s used to send a connect
message (IO CONNECT defined in <sys/iomsg.h>)
containing the handle to the resource manager requesting that it
open /dev/ser1.

May 31, 2004 Chapter 4 � Writing a Resource Manager 79

What is a resource manager?  2004, QNX Software Systems Ltd.

Typically, only functions such as open() call ConnectAttach() with an
index argument of 0. Most of the time, you should OR
NTO SIDE CHANNEL into this argument, so that the connection is

made via a side channel, resulting in a connection ID that’s greater
than any valid file descriptor.

�

When the resource manager gets the connect message, it
performs validation using the access modes specified in the
open() call (i.e. are you trying to write to a read-only device?,
etc.)

4 The resource manager generally responds with a pass (and
open() returns with the file descriptor) or fail (the next server is
queried).

5 When the file descriptor is obtained, the client can use it to send
messages directly to the device associated with the pathname.

In the sample code, it looks as if the client opens and writes
directly to the device. In fact, the write() call sends an
IO WRITE message to the resource manager requesting that the

given data be written, and the resource manager responds that it
either wrote some of all of the data, or that the write failed.

Eventually, the client calls close(), which sends an IO CLOSE DUP
message to the resource manager. The resource manager handles this
by doing some cleanup.

Under the resource manager’s covers

The resource manager is a server that uses the QNX Neutrino
send/receive/reply messaging protocol to receive and reply to
messages. The following is pseudo-code for a resource manager:

initialize the resource manager
register the name with the process manager
DO forever

receive a message
SWITCH on the type of message

CASE IO CONNECT:
call io open handler

80 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. What is a resource manager?

ENDCASE
CASE IO READ:

call io read handler
ENDCASE

CASE IO WRITE:
call io write handler
ENDCASE

. /* etc. handle all other messages */

. /* that may occur, performing */

. /* processing as appropriate */
ENDSWITCH

ENDDO

Many of the details in the above pseudo-code are hidden from you by
a resource manager library that you’ll use. For example, you won’t
actually call a MsgReceive*() function — you’ll call a library
function, such as resmgr block() or dispatch block(), that does it for
you. If you’re writing a single-threaded resource manager, you might
provide a message handling loop, but if you’re writing a
multi-threaded resource manager, the loop is hidden from you.

You don’t need to know the format of all the possible messages, and
you don’t have to handle them all. Instead, you register “handler
functions,” and when a message of the appropriate type arrives, the
library calls your handler. For example, suppose you want a client to
get data from you using read() — you’ll write a handler that’s called
whenever an IO READ message is received. Since your handler
handles IO READ messages, we’ll call it an “io read handler.”

The resource manager library:

1 Receives the message.

2 Examines the message to verify that it’s an IO READ message.

3 Calls your io read handler.

However, it’s still your responsibility to reply to the IO READ
message. You can do that from within your io read handler, or later
on when data arrives (possibly as the result of an interrupt from some
data-generating hardware).

May 31, 2004 Chapter 4 � Writing a Resource Manager 81

What is a resource manager?  2004, QNX Software Systems Ltd.

The library does default handling for any messages that you don’t
want to handle. After all, most resource managers don’t care about
presenting proper POSIX filesystems to the clients. When writing
them, you want to concentrate on the code for talking to the device
you’re controlling. You don’t want to spend a lot of time worrying
about the code for presenting a proper POSIX filesystem to the client.

The types of resource managers
In considering how much work you want to do yourself in order to
present a proper POSIX filesystem to the client, you can break
resource managers into two types:

� Device resource managers

� Filesystem resource managers

Device resource managers

Device resource managers create only single-file entries in the
filesystem, each of which is registered with the process manager.
Each name usually represents a single device. These resource
managers typically rely on the resource-manager library to do most of
the work in presenting a POSIX device to the user.

For example, a serial port driver registers names such as /dev/ser1
and /dev/ser2. When the user does ls -l /dev, the library does
the necessary handling to respond to the resulting IO STAT messages
with the proper information. The person who writes the serial port
driver is able to concentrate instead on the details of managing the
serial port hardware.

Filesystem resource managers

Filesystem resource managers register a mountpoint with the process
manager. A mountpoint is the portion of the path that’s registered
with the process manager. The remaining parts of the path are
managed by the filesystem resource manager. For example, when a
filesystem resource manager attaches a mountpoint at /mount, and
the path /mount/home/thomasf is examined:

82 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Components of a resource manager

/mount/ Identifies the mountpoint that’s managed by the
process manager.

home/thomasf

Identifies the remaining part that’s to be managed by
the filesystem resource manager.

Examples of using filesystem resource managers are:

� flash filesystem drivers (although a flash driver toolkit is available
that takes care of these details)

� a tar filesystem process that presents the contents of a tar file as
a filesystem that the user can cd into and ls from

� a mailbox-management process that registers the name
/mailboxes and manages individual mailboxes that look like
directories, and files that contain the actual messages.

Components of a resource manager
A resource manager is composed of some of the following layers:

� iofunc layer (the top layer)

� resmgr layer

� dispatch layer

� thread pool layer (the bottom layer)

iofunc layer
This top layer consists of a set of functions that take care of most of
the POSIX filesystem details for you — they provide a
POSIX-personality. If you’re writing a device resource manager,
you’ll want to use this layer so that you don’t have to worry too much
about the details involved in presenting a POSIX filesystem to the
world.

May 31, 2004 Chapter 4 � Writing a Resource Manager 83

Components of a resource manager  2004, QNX Software Systems Ltd.

This layer consists of default handlers that the resource manager
library uses if you don’t provide a handler. For example, if you don’t
provide an io open handler, iofunc open default() is called.

It also contains helper functions that the default handlers call. If you
override the default handlers with your own, you can still call these
helper functions. For example, if you provide your own io read
handler, you can call iofunc read verify() at the start of it to make sure
that the client has access to the resource.

The names of the functions and structures for this layer have the form
iofunc *. The header file is <sys/iofunc.h>. For more
information, see the Library Reference.

resmgr layer
This layer manages most of the resource manager library details. It:

� examines incoming messages

� calls the appropriate handler to process a message.

If you don’t use this layer, then you’ll have to parse the messages
yourself. Most resource managers use this layer.

The names of the functions and structures for this layer have the form
resmgr *. The header file is <sys/resmgr.h>. For more
information, see the Library Reference.

84 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Components of a resource manager

io_open

io_unlink

io_rename

...

io_read

io_write
...

Read function

Write function

Unlink function

Connect
handlers

I/O handlers

Resource
manager
layer

Handler function

Message
handler
loop

Open function

Rename function

Blocking function

Channel

IPC messages

You can use the resmgr layer to handle IO * messages.

dispatch layer
This layer acts as a single blocking point for a number of different
types of things. With this layer, you can handle:

IO * messages

It uses the resmgr layer for this.

select Processes that do TCP/IP often call select() to block while
waiting for packets to arrive, or for there to be room for
writing more data. With the dispatch layer, you register a
handler function that’s called when a packet arrives. The
functions for this are the select *() functions.

May 31, 2004 Chapter 4 � Writing a Resource Manager 85

Components of a resource manager  2004, QNX Software Systems Ltd.

pulses As with the other layers, you register a handler function
that’s called when a specific pulse arrives. The functions
for this are the pulse *() functions.

other messages

You can give the dispatch layer a range of message types
that you make up, and a handler. So if a message arrives
and the first few bytes of the message contain a type in the
given range, the dispatch layer calls your handler. The
functions for this are the message *() functions.

io_open

io_unlink

io_rename

...

io_read

io_write
...

Read function

Write function

Unlink function

Connect
handlers

I/O handlers

Resource
manager
layer

Handler function

Message
handler
loop

Message handler

Pulse handler

Open function

Rename function

Blocking function

Channel

IPC messages

Select handler

You can use the dispatch layer to handle IO * messages, select, pulses, and

other messages.

86 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Simple device resource manager examples

The following describes the manner in which messages are handled
via the dispatch layer (or more precisely, through dispatch handler()).
Depending on the blocking type, the handler may call the message *()
subsystem. A search is made, based on the message type or pulse
code, for a matching function that was attached using
message attach() or pulse attach(). If a match is found, the attached
function is called.

If the message type is in the range handled by the resource manager
(I/O messages) and pathnames were attached using resmgr attach(),
the resource manager subsystem is called and handles the resource
manager message.

If a pulse is received, it may be dispatched to the resource manager
subsystem if it’s one of the codes handled by a resource manager
(UNBLOCK and DISCONNECT pulses). If a select attach() is done
and the pulse matches the one used by select, then the select
subsystem is called and dispatches that event.

If a message is received and no matching handler is found for that
message type, MsgError(ENOSYS) is returned to unblock the sender.

thread pool layer
This layer allows you to have a single- or multi-threaded resource
manager. This means that one thread can be handling a write() while
another thread handles a read().

You provide the blocking function for the threads to use as well as the
handler function that’s to be called when the blocking function
returns. Most often, you give it the dispatch layer’s functions.
However, you can also give it the resmgr layer’s functions or your
own.

You can use this layer independently of the resource manager layer.

Simple device resource manager examples
The following are two complete but simple device resource manager
examples:

May 31, 2004 Chapter 4 � Writing a Resource Manager 87

Simple device resource manager examples  2004, QNX Software Systems Ltd.

� single-threaded device resource manager

� multi-threaded device resource manager

As you read through this chapter, you’ll encounter many code
snippets. Most of these code snippets have been written so that they
can be combined with either of these simple resource managers.

�

Both of these simple device resource managers model their
functionality after that provided by /dev/null:

� an open() always works

� read() returns zero bytes (indicating EOF)

� a write() of any size “works” (with the data being discarded)

� lots of other POSIX functions work (e.g. chown(), chmod(),
lseek(), etc.).

Single-threaded device resource manager example
Here’s the complete code for a simple single-threaded device resource
manager:

#include <errno.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>

static resmgr connect funcs t connect funcs;
static resmgr io funcs t io funcs;
static iofunc attr t attr;

main(int argc, char **argv)
{

/* declare variables we’ll be using */
resmgr attr t resmgr attr;
dispatch t *dpp;
dispatch context t *ctp;
int id;

88 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Simple device resource manager examples

/* initialize dispatch interface */
if((dpp = dispatch create()) == NULL) {

fprintf(stderr, "%s: Unable to allocate dispatch handle.\n",
argv[0]);

return EXIT FAILURE;
}

/* initialize resource manager attributes */
memset(&resmgr attr, 0, sizeof resmgr attr);
resmgr attr.nparts max = 1;
resmgr attr.msg max size = 2048;

/* initialize functions for handling messages */
iofunc func init(RESMGR CONNECT NFUNCS, &connect funcs,

RESMGR IO NFUNCS, &io funcs);

/* initialize attribute structure used by the device */
iofunc attr init(&attr, S IFNAM | 0666, 0, 0);

/* attach our device name */
id = resmgr attach(dpp, /* dispatch handle */

&resmgr attr, /* resource manager attrs */
"/dev/sample", /* device name */
FTYPE ANY, /* open type */

0, /* flags */
&connect funcs, /* connect routines */
&io funcs, /* I/O routines */
&attr); /* handle */

if(id == -1) {
fprintf(stderr, "%s: Unable to attach name.\n", argv[0]);
return EXIT FAILURE;

}

/* allocate a context structure */
ctp = dispatch context alloc(dpp);

/* start the resource manager message loop */
while(1) {

if((ctp = dispatch block(ctp)) == NULL) {
fprintf(stderr, "block error\n");
return EXIT FAILURE;

}
dispatch handler(ctp);

}
}

May 31, 2004 Chapter 4 � Writing a Resource Manager 89

Simple device resource manager examples  2004, QNX Software Systems Ltd.

Include <sys/dispatch.h> after <sys/iofunc.h> to avoid
warnings about redefining the members of some functions.

�

Let’s examine the example code step-by-step.

Initialize the dispatch interface

/* initialize dispatch interface */
if((dpp = dispatch create()) == NULL) {

fprintf(stderr, "%s: Unable to allocate dispatch handle.\n",
argv[0]);

return EXIT FAILURE;
}

We need to set up a mechanism so that clients can send messages to
the resource manager. This is done via the dispatch create() function
which creates and returns the dispatch structure. This structure
contains the channel ID. Note that the channel ID isn’t actually
created until you attach something, as in resmgr attach(),
message attach(), and pulse attach().

The dispatch structure (of type dispatch t) is opaque; you can’t
access its contents directly. Use message connect() to create a
connection using this hidden channel ID.

�

Initialize the resource manager attributes

/* initialize resource manager attributes */
memset(&resmgr attr, 0, sizeof resmgr attr);
resmgr attr.nparts max = 1;
resmgr attr.msg max size = 2048;

The resource manager attribute structure is used to configure:

� how many IOV structures are available for server replies
(nparts max)

� the minimum receive buffer size (msg max size).

90 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Simple device resource manager examples

For more information, see resmgr attach() in the Library Reference.

Initialize functions used to handle messages

/* initialize functions for handling messages */
iofunc func init(RESMGR CONNECT NFUNCS, &connect funcs,

RESMGR IO NFUNCS, &io funcs);

Here we supply two tables that specify which function to call when a
particular message arrives:

� connect functions table

� I/O functions table

Instead of filling in these tables manually, we call iofunc func init() to
place the iofunc * default() handler functions into the appropriate
spots.

Initialize the attribute structure used by the device

/* initialize attribute structure used by the device */
iofunc attr init(&attr, S IFNAM | 0666, 0, 0);

The attribute structure contains information about our particular
device associated with the name /dev/sample. It contains at least
the following information:

� permissions and type of device

� owner and group ID

Effectively, this is a per-name data structure. Later on, we’ll see how
you could extend the structure to include your own per-device
information.

Put a name into the namespace

/* attach our device name */

id = resmgr attach(dpp, /* dispatch handle */

&resmgr attr, /* resource manager attrs */
"/dev/sample", /* device name */

FTYPE ANY, /* open type */

May 31, 2004 Chapter 4 � Writing a Resource Manager 91

Simple device resource manager examples  2004, QNX Software Systems Ltd.

0, /* flags */
&connect funcs, /* connect routines */

&io funcs, /* I/O routines */

&attr); /* handle */
if(id == -1) {

fprintf(stderr, "%s: Unable to attach name.\n", argv[0]);

return EXIT FAILURE;
}

Before a resource manager can receive messages from other
programs, it needs to inform the other programs (via the process
manager) that it’s the one responsible for a particular pathname prefix.
This is done via pathname registration. When registered, other
processes can find and connect to this process using the registered
name.

In this example, a serial port may be managed by a resource manager
called devc-xxx, but the actual resource is registered as
/dev/sample in the pathname space. Therefore, when a program
requests serial port services, it opens the /dev/sample serial port.

We’ll look at the parameters in turn, skipping the ones we’ve already
discussed.

device name Name associated with our device (i.e.
/dev/sample).

open type Specifies the constant value of FTYPE ANY. This
tells the process manager that our resource manager
will accept any type of open request — we’re not
limiting the kinds of connections we’re going to be
handling.

Some resource managers legitimately limit the types
of open requests they handle. For instance, the
POSIX message queue resource manager only
accepts open messages of type FTYPE MQUEUE.

flags Controls the process manager’s pathname resolution
behavior. By specifying a value of zero, we’ll only
accept requests for the name “/dev/sample”.

92 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Simple device resource manager examples

Allocate the context structure

/* allocate a context structure */
ctp = dispatch context alloc(dpp);

The context structure contains a buffer where messages will be
received. The size of the buffer was set when we initialized the
resource manager attribute structure. The context structure also
contains a buffer of IOVs that the library can use for replying to
messages. The number of IOVs was set when we initialized the
resource manager attribute structure.

For more information, see dispatch context alloc() in the Library
Reference.

Start the resource manager message loop

/* start the resource manager message loop */
while(1) {

if((ctp = dispatch block(ctp)) == NULL) {
fprintf(stderr, "block error\n");
return EXIT FAILURE;

}
dispatch handler(ctp);

}

Once the resource manager establishes its name, it receives messages
when any client program tries to perform an operation (e.g. open(),
read(), write()) on that name.

In our example, once /dev/sample is registered, and a client
program executes:

fd = open ("/dev/sample", O RDONLY);

the client’s C library constructs an IO CONNECT message which it
sends to our resource manager. Our resource manager receives the
message within the dispatch block() function. We then call
dispatch handler() which decodes the message and calls the
appropriate handler function based on the connect and I/O function
tables that we passed in previously. After dispatch handler() returns,

May 31, 2004 Chapter 4 � Writing a Resource Manager 93

Simple device resource manager examples  2004, QNX Software Systems Ltd.

we go back to the dispatch block() function to wait for another
message.

At some later time, when the client program executes:

read (fd, buf, BUFSIZ);

the client’s C library constructs an IO READ message, which is then
sent directly to our resource manager, and the decoding cycle repeats.

Multi-threaded device resource manager example
Here’s the complete code for a simple multi-threaded device resource
manager:

#include <errno.h>

#include <stdio.h>

#include <stddef.h>
#include <stdlib.h>

#include <unistd.h>

/*

* define THREAD POOL PARAM T such that we can avoid a compiler

* warning when we use the dispatch *() functions below
*/

#define THREAD POOL PARAM T dispatch context t

#include <sys/iofunc.h>

#include <sys/dispatch.h>

static resmgr connect funcs t connect funcs;

static resmgr io funcs t io funcs;
static iofunc attr t attr;

main(int argc, char **argv)
{

/* declare variables we’ll be using */

thread pool attr t pool attr;
resmgr attr t resmgr attr;

dispatch t *dpp;

thread pool t *tpp;
dispatch context t *ctp;

int id;

/* initialize dispatch interface */

if((dpp = dispatch create()) == NULL) {
fprintf(stderr, "%s: Unable to allocate dispatch handle.\n",

argv[0]);

return EXIT FAILURE;
}

/* initialize resource manager attributes */
memset(&resmgr attr, 0, sizeof resmgr attr);

resmgr attr.nparts max = 1;

94 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Simple device resource manager examples

resmgr attr.msg max size = 2048;

/* initialize functions for handling messages */

iofunc func init(RESMGR CONNECT NFUNCS, &connect funcs,
RESMGR IO NFUNCS, &io funcs);

/* initialize attribute structure used by the device */
iofunc attr init(&attr, S IFNAM | 0666, 0, 0);

/* attach our device name */

id = resmgr attach(dpp, /* dispatch handle */

&resmgr attr, /* resource manager attrs */
"/dev/sample", /* device name */

FTYPE ANY, /* open type */

0, /* flags */
&connect funcs, /* connect routines */

&io funcs, /* I/O routines */

&attr); /* handle */
if(id == -1) {

fprintf(stderr, "%s: Unable to attach name.\n", argv[0]);

return EXIT FAILURE;
}

/* initialize thread pool attributes */
memset(&pool attr, 0, sizeof pool attr);

pool attr.handle = dpp;
pool attr.context alloc = dispatch context alloc;

pool attr.block func = dispatch block;

pool attr.handler func = dispatch handler;
pool attr.context free = dispatch context free;

pool attr.lo water = 2;

pool attr.hi water = 4;
pool attr.increment = 1;

pool attr.maximum = 50;

/* allocate a thread pool handle */

if((tpp = thread pool create(&pool attr,

POOL FLAG EXIT SELF)) == NULL) {
fprintf(stderr, "%s: Unable to initialize thread pool.\n",

argv[0]);

return EXIT FAILURE;
}

/* start the threads, will not return */

thread pool start(tpp);

}

Most of the code is the same as in the single-threaded example so we
will cover only those parts that not are described above. Also, we’ll
go into more detail on multi-threaded resource managers later in this
chapter, so we’ll keep the details here to a minimum.

For this code sample, the threads are using the dispatch *() functions
(i.e. the dispatch layer) for their blocking loops.

May 31, 2004 Chapter 4 � Writing a Resource Manager 95

Simple device resource manager examples  2004, QNX Software Systems Ltd.

Define THREAD POOL PARAM T

/*
* define THREAD POOL PARAM T such that we can avoid a compiler
* warning when we use the dispatch *() functions below
*/

#define THREAD POOL PARAM T dispatch context t

#include <sys/iofunc.h>
#include <sys/dispatch.h>

The THREAD POOL PARAM T manifest tells the compiler what type
of parameter is passed between the various blocking/handling
functions that the threads will be using. This parameter should be the
context structure used for passing context information between the
functions. By default it is defined as a resmgr context t but since
this sample is using the dispatch layer, we need it to be a
dispatch context t. We define it prior to doing the includes
above since the header files refer to it.

Initialize thread pool attributes

/* initialize thread pool attributes */
memset(&pool attr, 0, sizeof pool attr);
pool attr.handle = dpp;
pool attr.context alloc = dispatch context alloc;
pool attr.block func = dispatch block;
pool attr.handler func = dispatch handler;
pool attr.context free = dispatch context free;
pool attr.lo water = 2;
pool attr.hi water = 4;
pool attr.increment = 1;
pool attr.maximum = 50;

The thread pool attributes tell the threads which functions to use for
their blocking loop and control how many threads should be in
existence at any time. We go into more detail on these attributes when
we talk about multi-threaded resource managers in more detail later in
this chapter.

96 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Data carrying structures

Allocate a thread pool handle

/* allocate a thread pool handle */
if((tpp = thread pool create(&pool attr,

POOL FLAG EXIT SELF)) == NULL) {
fprintf(stderr, "%s: Unable to initialize thread pool.\n",

argv[0]);
return EXIT FAILURE;

}

The thread pool handle is used to control the thread pool. Amongst
other things, it contains the given attributes and flags. The
thread pool create() function allocates and fills in this handle.

Start the threads

/* start the threads, will not return */
thread pool start(tpp);

The thread pool start() function starts up the thread pool. Each newly
created thread allocates a context structure of the type defined by
THREAD POOL PARAM T using the context alloc function we gave
above in the attribute structure. They’ll then block on the block func
and when the block func returns, they’ll call the handler func, both of
which were also given through the attributes structure. Each thread
essentially does the same thing that the single-threaded resource
manager above does for its message loop. THREAD POOL PARAM T

From this point on, your resource manager is ready to handle
messages. Since we gave the POOL FLAG EXIT SELF flag to
thread pool create(), once the threads have been started up,
pthread exit() will be called and this calling thread will exit.

Data carrying structures
The resource manager library defines several key structures for
carrying data:

� Open Control Block (OCB) structure contains per-open data.

� attribute structure contains per-name data.

May 31, 2004 Chapter 4 � Writing a Resource Manager 97

Data carrying structures  2004, QNX Software Systems Ltd.

� mount structure contains per-mountpoint data. (A device resource
manager typically won’t have a mount structure.)

This picture may help explain their interrelationships:

Process
A

Process
B

Process
C

Client OCB A

OCB B

OCB C

Attribute
structure for

/dev/time/hour

Attribute
structure for

/dev/time/min

Mount
structure
(optional)
describing

/dev/time

resmgr
library

Resource manager process

Per open Per name Per mountpoint

Multiple clients with multiple OCBs, all linked to one mount structure.

The Open Control Block (OCB) structure
The Open Control Block (OCB) maintains the state information about
a particular session involving a client and a resource manager. It’s
created during open handling and exists until a close is performed.

This structure is used by the iofunc layer helper functions. (Later on,
we’ll show you how to extend this to include your own data).

The OCB structure contains at least the following:

typedef struct iofunc ocb {

98 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Data carrying structures

IOFUNC ATTR T *attr;
int32 t ioflag;
off t offset;
uint16 t sflag;
uint16 t flags;

} iofunc ocb t;

where the values represent:

attr A pointer to the attribute structure (see below).

ioflag Contains the mode (e.g. reading, writing, blocking) that
the resource was opened with. This information is
inherited from the io connect t structure that’s
available in the message passed to the open handler.

offset User-modifiable. Defines the read/write offset into the
resource (e.g. our current lseek() position within a file).

sflag Defines the sharing mode. This information is inherited
from the io connect t structure that’s available in the
message passed to the open handler.

flags User-modifiable. When the IOFUNC OCB PRIVILEGED
bit is set, a privileged process (i.e. root) performed the
open(). Additionally, you can use flags in the range
IOFUNC OCB FLAGS PRIVATE (see <sys/iofunc.h>)
for your own purposes.

The attribute structure
The iofunc attr t structure defines the characteristics of the
device that you’re supplying the resource manager for. This is used in
conjunction with the OCB structure.

The attribute structure contains at least the following:

typedef struct iofunc attr {
IOFUNC MOUNT T *mount;
uint32 t flags;
int32 t lock tid;

May 31, 2004 Chapter 4 � Writing a Resource Manager 99

Data carrying structures  2004, QNX Software Systems Ltd.

uint16 t lock count;
uint16 t count;
uint16 t rcount;
uint16 t wcount;
uint16 t rlocks;
uint16 t wlocks;
struct iofunc mmap list *mmap list;
struct iofunc lock list *lock list;
void *list;
uint32 t list size;
off t nbytes;
ino t inode;
uid t uid;
gid t gid;
time t mtime;
time t atime;
time t ctime;
mode t mode;
nlink t nlink;
dev t rdev;

} iofunc attr t;

where the values represent:

*mount A pointer to the mount structure.

flags The bit-mapped flags member contains the following
flags:

IOFUNC ATTR ATIME

The access time is no longer valid. Typically
set on a read from the resource.

IOFUNC ATTR CTIME

The change of status time is no longer valid.
Typically set on a file info change.

IOFUNC ATTR DIRTY NLINK

The number of links has changed.

IOFUNC ATTR DIRTY MODE

The mode has changed.

IOFUNC ATTR DIRTY OWNER

The uid or the gid has changed.

100 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Data carrying structures

IOFUNC ATTR DIRTY RDEV

The rdev member has changed, e.g. mknod().

IOFUNC ATTR DIRTY SIZE

The size has changed.

IOFUNC ATTR DIRTY TIME

One or more of mtime, atime, or ctime has
changed.

IOFUNC ATTR MTIME

The modification time is no longer valid.
Typically set on a write to the resource.

Since your resource manager uses these flags, you
can tell right away which fields of the attribute
structure have been modified by the various
iofunc-layer helper routines. That way, if you need to
write the entries to some medium, you can write just
those that have changed. The user-defined area for
flags is IOFUNC ATTR PRIVATE (see
<sys/iofunc.h>).

For details on updating your attribute structure, see
the section on “Updating the time for reads and
writes” below.

lock tid and lock count

To support multiple threads in your resource
manager, you’ll need to lock the attribute structure so
that only one thread at a time is allowed to change it.
The resource manager layer automatically locks the
attribute (using iofunc attr lock()) for you when
certain handler functions are called (i.e. IO *). The
lock tid member holds the thread ID; the lock count
member holds the number of times the thread has
locked the attribute structure. (For more information,
see the iofunc attr lock() and iofunc attr unlock()
functions in the Library Reference.)

May 31, 2004 Chapter 4 � Writing a Resource Manager 101

Data carrying structures  2004, QNX Software Systems Ltd.

count, rcount, wcount, rlocks and wlocks

Several counters are stored in the attribute structure
and are incremented/decremented by some of the
iofunc layer helper functions. Both the functionality
and the actual contents of the message received from
the client determine which specific members are
affected.

This counter: tracks the number of:

count OCBs using this attribute in any
manner. When this count goes to
zero, it means that no one is using
this attribute.

rcount OCBs using this attribute for reading.

wcount OCBs using this attribute for writing.

rlocks read locks currently registered on the
attribute.

wlocks write locks currently registered on
the attribute.

These counts aren’t exclusive. For example, if an
OCB has specified that the resource is opened for
reading and writing, then count, rcount, and wcount
will all be incremented. (See the iofunc attr init(),
iofunc lock default(), iofunc lock(),
iofunc ocb attach(), and iofunc ocb detach()
functions.)

mmap list and lock list

To manage their particular functionality on the
resource, the mmap list member is used by the
iofunc mmap() and iofunc mmap default() functions;

102 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Data carrying structures

the lock list member is used by the
iofunc lock default() function. Generally, you
shouldn’t need to modify or examine these members.

list Reserved for future use.

list size Size of reserved area; reserved for future use.

nbytes User-modifiable. The number of bytes in the
resource. For a file, this would contain the file’s size.
For special devices (e.g. /dev/null) that don’t
support lseek() or have a radically different
interpretation for lseek(), this field isn’t used
(because you wouldn’t use any of the helper
functions, but would supply your own instead.) In
these cases, we recommend that you set this field to
zero, unless there’s a meaningful interpretation that
you care to put to it.

inode This is a mountpoint-specific inode that must be
unique per mountpoint. You can specify your own
value, or 0 to have the process manager fill it in for
you. For filesystem type of applications, this may
correspond to some on-disk structure. In any case,
the interpretation of this field is up to you.

uid and gid The user ID and group ID of the owner of this
resource. These fields are updated automatically by
the chown() helper functions (e.g.
iofunc chown default()) and are referenced in
conjunction with the mode member for
access-granting purposes by the open() help
functions (e.g. iofunc open default()).

mtime, atime, and ctime

The three POSIX time members:

� mtime — modification time (write() updates this).

May 31, 2004 Chapter 4 � Writing a Resource Manager 103

Data carrying structures  2004, QNX Software Systems Ltd.

� atime — access time (read() updates this).

� ctime — change of status time (write(), chmod()
and chown() update this).

One or more of the three time members may be invalidated as a result
of calling an iofunc-layer function. This is to avoid having each and
every I/O message handler go to the kernel and request the current
time of day, just to fill in the attribute structure’s time member(s).

�

POSIX states that these times must be valid when the
fstat() is performed, but they don’t have to reflect the
actual time that the associated change occurred.
Also, the times must change between fstat()
invocations if the associated change occurred
between fstat() invocations. If the associated change
never occurred between fstat() invocations, then the
time returned should be the same as returned last
time. Furthermore, if the associated change occurred
multiple times between fstat() invocations, then the
time need only be different from the previously
returned time.

There’s a helper function that fills the members with
the correct time; you may wish to call it in the
appropriate handlers to keep the time up-to-date on
the device — see the iofunc time update() function.

mode Contains the resource’s mode (e.g. type,
permissions). Valid modes may be selected from the
S * series of constants in <sys/stat.h>.

nlink User-modifiable. Number of links to this particular
name. For names that represent a directory, this value
must be greater than 2.

rdev Contains the device number for a character special
device and the rdev number for a named special
device.

104 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Data carrying structures

The mount structure
The members of the mount structure, specifically the conf and flags
members, modify the behavior of some of the iofunc layer functions.
This optional structure contains at least the following:

typedef struct iofunc mount {
uint32 t flags;
uint32 t conf;
dev t dev;
int32 t blocksize;
iofunc funcs t *funcs;

} iofunc mount t;

The variables are:

flags Contains one relevant bit (manifest constant
IOFUNC MOUNT 32BIT), which indicates that the
offsets used by this resource manager are 32-bit (as
opposed to the extended 64-bit offsets). The
user-modifiable mount flags are defined as
IOFUNC MOUNT FLAGS PRIVATE (see
<sys/iofunc.h>).

conf Contains several bits:

IOFUNC PC CHOWN RESTRICTED

Causes the default handler for the IO CHOWN
message to behave in a manner defined by
POSIX as “chown-restricted”.

IOFUNC PC NO TRUNC

Has no effect on the iofunc layer libraries, but is
returned by the iofunc layer’s default
IO PATHCONF handler.

IOFUNC PC SYNC IO

If not set, causes the default iofunc layer
IO OPEN handler to fail if the client specified

any one of O DSYNC, O RSYNC, or O SYNC.

May 31, 2004 Chapter 4 � Writing a Resource Manager 105

Data carrying structures  2004, QNX Software Systems Ltd.

IOFUNC PC LINK DIR

Controls whether or not root is allowed to link
and unlink directories.

Note that the options mentioned above for the conf
member are returned by the iofunc layer
IO PATHCONF default handler.

dev Contains the device number for the filesystem. This
number is returned to the client’s stat() function in the
struct stat st dev member.

blocksize Contains the block size of the device. On filesystem
types of resource managers, this indicates the native
blocksize of the disk, e.g. 512 bytes.

funcs Contains the following structure:

struct iofunc funcs {
unsigned nfuncs;
IOFUNC OCB T *(*ocb calloc) (resmgr context t *ctp,

IOFUNC ATTR T *attr);
void (*ocb free) (IOFUNC OCB T *ocb);

};

where

nfuncs Indicates the number of functions present in
the structure; it should be filled with the
manifest constant IOFUNC NFUNCS.

ocb calloc() and ocb free()

Allows you to override the OCBs on a
per-mountpoint basis. (See the section titled
“Extending the OCB and attribute structures.”)
If these members are NULL, then the default
library versions are used. You must specify
either both or neither of these functions —
they operate as a matched pair.

106 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling the IO READ message

Handling the IO READ message
The io read handler is responsible for returning data bytes to the
client after receiving an IO READ message. Examples of functions
that send this message are read(), readdir(), fread(), and fgetc(). Let’s
start by looking at the format of the message itself:

struct io read {
uint16 t type;
uint16 t combine len;
int32 t nbytes;
uint32 t xtype;

};

typedef union {
struct io read i;
/* unsigned char data[nbytes]; */
/* nbytes is returned with MsgReply */

} io read t;

As with all resource manager messages, we’ve defined union that
contains the input (coming into the resource manager) structure and a
reply or output (going back to the client) structure. The io read()
function is prototyped with an argument of io read t *msg —
that’s the pointer to the union containing the message.

Since this is a read(), the type member has the value IO READ. The
items of interest in the input structure are:

combine len This field has meaning for a combine message — see
the “Combine messages” section in this chapter.

nbytes How many bytes the client is expecting.

xtype A per-message override, if your resource manager
supports it. Even if your resource manager doesn’t
support it, you should still examine this member.
More on the xtype later (see the section “xtype”).

We’ll create an io read() function that will serve as our handler that
actually returns some data (the fixed string "Hello, world\n").

May 31, 2004 Chapter 4 � Writing a Resource Manager 107

Handling the IO READ message  2004, QNX Software Systems Ltd.

We’ll use the OCB to keep track of our position within the buffer that
we’re returning to the client.

When we get the IO READ message, the nbytes member tells us
exactly how many bytes the client wants to read. Suppose that the
client issues:

read (fd, buf, 4096);

In this case, it’s a simple matter to return our entire "Hello,
world\n" string in the output buffer and tell the client that we’re
returning 13 bytes, i.e. the size of the string.

However, consider the case where the client is performing the
following:

while (read (fd, &character, 1) != EOF) {
printf ("Got a character \"%c\"\n", character);

}

Granted, this isn’t a terribly efficient way for the client to perform
reads! In this case, we would get msg->i.nbytes set to 1 (the size
of the buffer that the client wants to get). We can’t simply return the
entire string all at once to the client — we have to hand it out one
character at a time. This is where the OCB’s offset member comes
into play.

Sample code for handling IO READ messages
Here’s a complete io read() function that correctly handles these
cases:

#include <errno.h>

#include <stdio.h>

#include <stddef.h>
#include <stdlib.h>

#include <unistd.h>
#include <sys/iofunc.h>

#include <sys/dispatch.h>

int io read (resmgr context t *ctp, io read t *msg, RESMGR OCB T *ocb);

static char *buffer = "Hello world\n";

static resmgr connect funcs t connect funcs;

108 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling the IO READ message

static resmgr io funcs t io funcs;
static iofunc attr t attr;

main(int argc, char **argv)
{

/* declare variables we’ll be using */

resmgr attr t resmgr attr;
dispatch t *dpp;

dispatch context t *ctp;
int id;

/* initialize dispatch interface */
if((dpp = dispatch create()) == NULL) {

fprintf(stderr, "%s: Unable to allocate dispatch handle.\n",

argv[0]);
return EXIT FAILURE;

}

/* initialize resource manager attributes */

memset(&resmgr attr, 0, sizeof resmgr attr);

resmgr attr.nparts max = 1;
resmgr attr.msg max size = 2048;

/* initialize functions for handling messages */
iofunc func init(RESMGR CONNECT NFUNCS, &connect funcs,

RESMGR IO NFUNCS, &io funcs);
io funcs.read = io read;

/* initialize attribute structure used by the device */
iofunc attr init(&attr, S IFNAM | 0666, 0, 0);

attr.nbytes = strlen(buffer)+1;

/* attach our device name */

if((id = resmgr attach(dpp, &resmgr attr, "/dev/sample", FTYPE ANY, 0,

&connect funcs, &io funcs, &attr)) == -1) {
fprintf(stderr, "%s: Unable to attach name.\n", argv[0]);

return EXIT FAILURE;

}

/* allocate a context structure */

ctp = dispatch context alloc(dpp);

/* start the resource manager message loop */
while(1) {

if((ctp = dispatch block(ctp)) == NULL) {

fprintf(stderr, "block error\n");
return EXIT FAILURE;

}

dispatch handler(ctp);
}

}

int

io read (resmgr context t *ctp, io read t *msg, RESMGR OCB T *ocb)

{
int nleft;

int nbytes;

int nparts;
int status;

May 31, 2004 Chapter 4 � Writing a Resource Manager 109

Handling the IO READ message  2004, QNX Software Systems Ltd.

if ((status = iofunc read verify (ctp, msg, ocb, NULL)) != EOK)
return (status);

if ((msg->i.xtype & IO XTYPE MASK) != IO XTYPE NONE)
return (ENOSYS);

/*
* On all reads (first and subsequent), calculate

* how many bytes we can return to the client,
* based upon the number of bytes available (nleft)

* and the client’s buffer size

*/

nleft = ocb->attr->nbytes - ocb->offset;

nbytes = min (msg->i.nbytes, nleft);

if (nbytes > 0) {

/* set up the return data IOV */
SETIOV (ctp->iov, buffer + ocb->offset, nbytes);

/* set up the number of bytes (returned by client’s read()) */
IO SET READ NBYTES (ctp, nbytes);

/*
* advance the offset by the number of bytes

* returned to the client.
*/

ocb->offset += nbytes;

nparts = 1;

} else {
/*

* they’ve asked for zero bytes or they’ve already previously

* read everything
*/

IO SET READ NBYTES (ctp, 0);

nparts = 0;

}

/* mark the access time as invalid (we just accessed it) */

if (msg->i.nbytes > 0)

ocb->attr->flags |= IOFUNC ATTR ATIME;

return (RESMGR NPARTS (nparts));

}

The ocb maintains our context for us by storing the offset field, which
gives us the position within the buffer, and by having a pointer to the
attribute structure attr, which tells us how big the buffer actually is
via its nbytes member.

110 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling the IO READ message

Of course, we had to give the resource manager library the address of
our io read() handler function so that it knew to call it. So the code in
main() where we had called iofunc func init() became:

/* initialize functions for handling messages */

iofunc func init(RESMGR CONNECT NFUNCS, &connect funcs,
RESMGR IO NFUNCS, &io funcs);

io funcs.read = io read;

We also needed to add the following to the area above main():

#include <errno.h>

#include <unistd.h>

int io read (resmgr context t *ctp, io read t *msg, RESMGR OCB T *ocb);

static char *buffer = "Hello world\n";"

Where did the attribute structure’s nbytes member get filled in? In
main(), just after we did the iofunc attr init(). We modified main()
slightly:

After this line:

iofunc attr init (&attr, S IFNAM | 0666, 0, 0);

We added this one:

attr.nbytes = strlen (buffer)+1;

At this point, if you were to run the resource manager (our simple
resource manager used the name /dev/sample), you could do:

cat /dev/sample
Hello, world

The return line (RESMGR NPARTS(nparts)) tells the resource
manager library to:

� reply to the client for us

� reply with nparts IOVs.

May 31, 2004 Chapter 4 � Writing a Resource Manager 111

Handling the IO READ message  2004, QNX Software Systems Ltd.

Where does it get the IOV array? It’s using ctp->iov. That’s why
we first used the SETIOV() macro to make ctp->iov point to the
data to reply with.

If we had no data, as would be the case of a read of zero bytes, then
we’d do a return (RESMGR NPARTS(0)). But read() returns with
the number of bytes successfully read. Where did we give it this
information? That’s what the IO SET READ NBYTES() macro was
for. It takes the nbytes that we give it and stores it in the context
structure (ctp). Then when we return to the library, the library takes
this nbytes and passes it as the second parameter to the MsgReplyv().
The second parameter tells the kernel what the MsgSend() should
return. And since the read() function is calling MsgSend(), that’s
where it finds out how many bytes were read.

We also update the access time for this device in the read handler. For
details on updating the access time, see the section on “Updating the
time for reads and writes” below.

Ways of adding functionality to the resource manager
You can add functionality to the resource manager you’re writing in
these fundamental ways:

� Use the default functions encapsulated within your own.

� Use the helper functions within your own.

� Write the entire function yourself.

The first two are almost identical, because the default functions really
don’t do that much by themselves — they rely on the POSIX helper
functions. The third approach has advantages and disadvantages.

Using the default functions

Since the default functions (e.g. iofunc open default()) can be
installed in the jump table directly, there’s no reason you couldn’t
embed them within your own functions.

Here’s an example of how you would do that with your own io open()
handler:

112 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling the IO READ message

main (int argc, char **argv)
{

...

/* install all of the default functions */
iofunc func init (RESMGR CONNECT NFUNCS, &connect funcs,

RESMGR IO NFUNCS, &io funcs);

/* take over the open function */
connect funcs.open = io open;
...

}

int
io open (resmgr context t *ctp, io open t *msg,

RESMGR HANDLE T *handle, void *extra)
{

return (iofunc open default (ctp, msg, handle, extra));
}

Obviously, this is just an incremental step that lets you gain control in
your io open() when the message arrives from the client. You may
wish to do something before or after the default function does its
thing:

/* example of doing something before */

extern int accepting opens now;

int
io open (resmgr context t *ctp, io open t *msg,

RESMGR HANDLE T *handle, void *extra)
{

if (!accepting opens now) {
return (EBUSY);

}

/*
* at this point, we’re okay to let the open happen,
* so let the default function do the "work".
*/

return (iofunc open default (ctp, msg, handle, extra));
}

Or:

/* example of doing something after */

May 31, 2004 Chapter 4 � Writing a Resource Manager 113

Handling the IO READ message  2004, QNX Software Systems Ltd.

int
io open (resmgr context t *ctp, io open t *msg,

RESMGR HANDLE T *handle, void *extra)
{

int sts;

/*
* have the default function do the checking
* and the work for us
*/

sts = iofunc open default (ctp, msg, handle, extra);

/*
* if the default function says it’s okay to let the open happen,
* we want to log the request
*/

if (sts == EOK) {
log open request (ctp, msg);

}
return (sts);

}

It goes without saying that you can do something before and after the
standard default POSIX handler.

The principal advantage of this approach is that you can add to the
functionality of the standard default POSIX handlers with very little
effort.

Using the helper functions

The default functions make use of helper functions — these functions
can’t be placed directly into the connect or I/O jump tables, but they
do perform the bulk of the work.

Here’s the source for the two functions iofunc chmod default() and
iofunc stat default():

int
iofunc chmod default (resmgr context t *ctp, io chmod t *msg,

iofunc ocb t *ocb)
{

return (iofunc chmod (ctp, msg, ocb, ocb -> attr));
}

114 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling the IO READ message

int
iofunc stat default (resmgr context t *ctp, io stat t *msg,

iofunc ocb t *ocb)
{

iofunc time update (ocb -> attr);
iofunc stat (ocb -> attr, & msg -> o);
return (RESMGR PTR (ctp, & msg -> o, sizeof (msg -> o)));

}

Notice how the iofunc chmod() handler performs all the work for the
iofunc chmod default() default handler. This is typical for the simple
functions.

The more interesting case is the iofunc stat default() default handler,
which calls two helper routines. First it calls iofunc time update() to
ensure that all of the time fields (atime, ctime and mtime) are up to
date. Then it calls iofunc stat(), which builds the reply. Finally, the
default function builds a pointer in the ctp structure and returns it.

The most complicated handling is done by the iofunc open default()
handler:

int
iofunc open default (resmgr context t *ctp, io open t *msg,

iofunc attr t *attr, void *extra)
{

int status;

iofunc attr lock (attr);

if ((status = iofunc open (ctp, msg, attr, 0, 0)) != EOK) {
iofunc attr unlock (attr);
return (status);

}

if ((status = iofunc ocb attach (ctp, msg, 0, attr, 0))
!= EOK) {
iofunc attr unlock (attr);
return (status);

}

iofunc attr unlock (attr);
return (EOK);

}

This handler calls four helper functions:

May 31, 2004 Chapter 4 � Writing a Resource Manager 115

Handling the IO WRITE message  2004, QNX Software Systems Ltd.

1 It calls iofunc attr lock() to lock the attribute structure so that it
has exclusive access to it (it’s going to be updating things like
the counters, so we need to make sure no one else is doing that
at the same time).

2 It then calls the helper function iofunc open(), which does the
actual verification of the permissions.

3 Next it calls iofunc ocb attach() to bind an OCB to this request,
so that it will get automatically passed to all of the I/O
functions later.

4 Finally, it calls iofunc attr unlock() to release the lock on the
attribute structure.

Writing the entire function yourself

Sometimes a default function will be of no help for your particular
resource manager. For example, iofunc read default() and
iofunc write default() functions implement /dev/null — they do all
the work of returning 0 bytes (EOF) or swallowing all the message
bytes (respectively).

You’ll want to do something in those handlers (unless your resource
manager doesn’t support the IO READ or IO WRITE messages).

Note that even in such cases, there are still helper functions you can
use: iofunc read verify() and iofunc write verify().

Handling the IO WRITE message
The io write handler is responsible for writing data bytes to the media
after receiving a client’s IO WRITE message. Examples of functions
that send this message are write() and fflush(). Here’s the message:

struct io write {
uint16 t type;
uint16 t combine len;
int32 t nbytes;
uint32 t xtype;
/* unsigned char data[nbytes]; */

};

116 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling the IO WRITE message

typedef union {
struct io write i;
/* nbytes is returned with MsgReply */

} io write t;

As with the io read t, we have a union of an input and an output
message, with the output message being empty (the number of bytes
actually written is returned by the resource manager library directly to
the client’s MsgSend()).

The data being written by the client almost always follows the header
message stored in struct io write. The exception is if the write
was done using pwrite() or pwrite64(). More on this when we discuss
the xtype member.

To access the data, we recommend that you reread it into your own
buffer. Let’s say you had a buffer called inbuf that was “big enough”
to hold all the data you expected to read from the client (if it isn’t big
enough, you’ll have to read the data piecemeal).

Sample code for handling IO WRITE messages
The following is a code snippet that can be added to one of the simple
resource manager examples. It prints out whatever it’s given (making
the assumption that it’s given only character text):

int
io write (resmgr context t *ctp, io write t *msg, RESMGR OCB T *ocb)

{

int status;
char *buf;

if ((status = iofunc write verify(ctp, msg, ocb, NULL)) != EOK)
return (status);

if ((msg->i.xtype & IO XTYPE MASK) != IO XTYPE NONE)
return(ENOSYS);

/* set up the number of bytes (returned by client’s write()) */

IO SET WRITE NBYTES (ctp, msg->i.nbytes);

buf = (char *) malloc(msg->i.nbytes + 1);

if (buf == NULL)
return(ENOMEM);

/*

May 31, 2004 Chapter 4 � Writing a Resource Manager 117

Handling the IO WRITE message  2004, QNX Software Systems Ltd.

* reread the data from the sender’s message buffer.
* We’re not assuming that all of the data fit into the

* resource manager library’s receive buffer.

*/

resmgr msgread(ctp, buf, msg->i.nbytes, sizeof(msg->i));

buf [msg->i.nbytes] = ’\0’; /* just in case the text is not NULL terminated */
printf ("Received %d bytes = ’%s’\n", msg -> i.nbytes, buf);

free(buf);

if (msg->i.nbytes > 0)

ocb->attr->flags |= IOFUNC ATTR MTIME | IOFUNC ATTR CTIME;

return (RESMGR NPARTS (0));

}

Of course, we’ll have to give the resource manager library the address
of our io write handler so that it’ll know to call it. In the code for
main() where we called iofunc func init(), we’ll add a line to register
our io write handler:

/* initialize functions for handling messages */
iofunc func init(RESMGR CONNECT NFUNCS, &connect funcs,

RESMGR IO NFUNCS, &io funcs);

io funcs.write = io write;

You may also need to add the following prototype:

int io write (resmgr context t *ctp, io write t *msg, RESMGR OCB T *ocb);

At this point, if you were to run the resource manager (our simple
resource manager used the name /dev/sample), you could write to
it by doing echo Hello > /dev/sample as follows:

echo Hello > /dev/sample
Received 6 bytes = ’Hello’

Notice how we passed the last argument to resmgr msgread() (the
offset argument) as the size of the input message buffer. This
effectively skips over the header and gets to the data component.

If the buffer you supplied wasn’t big enough to contain the entire
message from the client (e.g. you had a 4K buffer and the client
wanted to write 1 megabyte), you’d have to read the buffer in stages,
using a for loop, advancing the offset passed to resmgr msgread() by
the amount read each time.

118 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Methods of returning and replying

Unlike the io read handler sample, this time we didn’t do anything
with ocb->offset. In this case there’s no reason to. The
ocb->offset would make more sense if we were managing things
that had advancing positions such as a file position.

The reply is simpler than with the io read handler, since a write() call
doesn’t expect any data back. Instead, it just wants to know if the
write succeeded and if so, how many bytes were written. To tell it how
many bytes were written we used the IO SET WRITE NBYTES()
macro. It takes the nbytes that we give it and stores it in the context
structure (ctp). Then when we return to the library, the library takes
this nbytes and passes it as the second parameter to the MsgReplyv().
The second parameter tells the kernel what the MsgSend() should
return. And since the write() function is calling MsgSend(), that’s
where it finds out how many bytes were written.

Since we’re writing to the device, we should also update the
modification, and potentially, the creation time. For details on
updating the modification and change of file status times, see the
section on “Updating the time for reads and writes” below.

Methods of returning and replying
You can return to the resource manager library from your handler
functions in various ways. This is complicated by the fact that the
resource manager library can reply for you if you want it to, but you
must tell it to do so and put the information that it’ll use in all the
right places.

In this section, we’ll discuss the following ways of returning to the
resource manager library:

� Returning with an error

� Returning using an IOV array that points to your data

� Returning with a single buffer containing data

� Returning success but with no data

� Getting the resource manager library to do the reply

May 31, 2004 Chapter 4 � Writing a Resource Manager 119

Methods of returning and replying  2004, QNX Software Systems Ltd.

� Performing the reply in the server

� Returning and telling the library to do the default action

Returning with an error
To reply to the client such that the function the client is calling (e.g.
read()) will return with an error, you simply return with an
appropriate errno value (from <errno.h>).

return (ENOMEM);

You may occasionally see another form in use (historical and
deprecated) that works out to exactly the same thing:

return (RESMGR ERRNO(ENOMEM));

In the case of a read(), both of the above cause the read to return -1
with errno set to ENOMEM.

Returning using an IOV array that points to your data
Sometimes you’ll want to reply with a header followed by one of N
buffers, where the buffer used will differ each time you reply. To do
this, you can set up an IOV array whose elements point to the header
and to a buffer.

The context structure already has an IOV array. If you want the
resource manager library to do your reply for you, then you must use
this array. But the array must contain enough elements for your needs.
To ensure that this is the case, you’d set the nparts max member of
the resmgr attr t structure that you passed to resmgr attach()
when you registered your name in the pathname space.

The following example assumes that the variable i contains the offset
into the array of buffers of the desired buffer to reply with. The 2 in
RESMGR NPARTS(2) tells the library how many elements in
ctp->iov to reply with.

my header t header;

120 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Methods of returning and replying

a buffer t buffers[N];

...

SETIOV(&ctp->iov[0], &header, sizeof(header));
SETIOV(&ctp->iov[1], &buffers[i], sizeof(buffers[i]));
return (RESMGR NPARTS(2));

Returning with a single buffer containing data
An example of this would be replying to a read() where all the data
existed in a single buffer. You’ll typically see this done in two ways:

return (RESMGR PTR(ctp, buffer, nbytes));

And:

SETIOV (ctp->iov, buffer, nbytes);
return (RESMGR NPARTS(1));

The first method, using the RESMGR PTR() macro, is just a
convenience for the second method where a single IOV is returned.

Returning success but with no data
This can be done in a few ways. The most simple would be:

return (EOK);

But you’ll often see:

return (RESMGR NPARTS(0));

Note that in neither case are you causing the MsgSend() to return with
a 0. The value that the MsgSend() returns is the value passed to the
IO SET READ NBYTES(), IO SET WRITE NBYTES(), and other

similar macros. These two were used in the read and write samples
above.

May 31, 2004 Chapter 4 � Writing a Resource Manager 121

Methods of returning and replying  2004, QNX Software Systems Ltd.

Getting the resource manager library to do the reply
In this case, you give the client the data and get the resource manager
library to do the reply for you. However, the reply data won’t be valid
by that time. For example, if the reply data was in a buffer that you
wanted to free before returning, you could use the following:

resmgr msgwrite (ctp, buffer, nbytes, 0);
free (buffer);
return (EOK);

The resmgr msgwrite() copies the contents of buffer into the client’s
reply buffer immediately. Note that a reply is still required in order to
unblock the client so it can examine the data. Next we free the buffer.
Finally, we return to the resource manager library such that it does a
reply with zero-length data. Since the reply is of zero length, it
doesn’t overwrite the data already written into the client’s reply
buffer. When the client returns from its send call, the data is there
waiting for it.

Performing the reply in the server
In all of the previous examples, it’s the resource manager library that
calls MsgReply*() or MsgError() to unblock the client. In some cases,
you may not want the library to reply for you. For instance, you might
have already done the reply yourself, or you’ll reply later. In either
case, you’d return as follows:

return (RESMGR NOREPLY);

Leaving the client blocked, replying later

An example of a resource manager that would reply to clients later is
a pipe resource manager. If the client is doing a read of your pipe but
you have no data for the client, then you have a choice:

� You can reply back with an error (EAGAIN).

Or:

122 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Methods of returning and replying

� You can leave the client blocked and later, when your write handler
function is called, you can reply to the client with the new data.

Another example might be if the client wants you to write out to some
device but doesn’t want to get a reply until the data has been fully
written out. Here are the sequence of events that might follow:

1 Your resource manager does some I/O out to the hardware to
tell it that data is available.

2 The hardware generates an interrupt when it’s ready for a
packet of data.

3 You handle the interrupt by writing data out to the hardware.

4 Many interrupts may occur before all the data is written — only
then would you reply to the client.

The first issue, though, is whether the client wants to be left blocked.
If the client doesn’t want to be left blocked, then it opens with the
O NONBLOCK flag:

fd = open("/dev/sample", O RDWR | O NONBLOCK);

The default is to allow you to block it.

One of the first things done in the read and write samples above was
to call some POSIX verification functions: iofunc read verify() and
iofunc write verify(). If we pass the address of an int as the last
parameter, then on return the functions will stuff that int with zero if
the client doesn’t want to be blocked (O NONBLOCK flag was set) or
with nonzero if the client wants to be blocked.

int nonblock;

if ((status = iofunc read verify (ctp, msg, ocb, &nonblock)) != EOK)
return (status);

...

int nonblock;

if ((status = iofunc write verify (ctp, msg, ocb, &nonblock)) != EOK)
return (status);

May 31, 2004 Chapter 4 � Writing a Resource Manager 123

Methods of returning and replying  2004, QNX Software Systems Ltd.

When it then comes time to decide if we should reply with an error or
reply later, we do:

if (nonblock) {
/* client doesn’t want to be blocked */
return (EAGAIN);

} else {
/*
* The client is willing to be blocked.
* Save at least the ctp->rcvid so that you can
* reply to it later.
*/

...
return (RESMGR NOREPLY);

}

The question remains: How do you do the reply yourself? The only
detail to be aware of is that the rcvid to reply to is ctp->rcvid. If
you’re replying later, then you’d save ctp->rcvid and use the saved
value in your reply.

MsgReply(saved rcvid, 0, buffer, nbytes);

Or:

iov t iov[2];

SETIOV(&iov[0], &header, sizeof(header));
SETIOV(&iov[1], &buffers[i], sizeof(buffers[i]));
MsgReplyv(saved rcvid, 0, iov, 2);

Note that you can fill up the client’s reply buffer as data becomes
available by using resmgr msgwrite() and resmgr msgwritev(). Just
remember to do the MsgReply*() at some time to unblock the client.

Returning and telling the library to do the default action
The default action in most cases is for the library to cause the client’s
function to fail with ENOSYS:

return (RESMGR DEFAULT);

124 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling other read/write details

Handling other read/write details
Topics in this session include:

� Handling the xtype member

� Handling pread*() and pwrite*()

� Handling readcond().

Handling the xtype member
The io read, io write, and io openfd message structures contain a
member called xtype. From struct io read:

struct io read {
...
uint32 t xtype;
...

}

Basically, the xtype contains extended type information that can be
used to adjust the behavior of a standard I/O function. Most resource
managers care about only a few values:

IO XTYPE NONE

No extended type information is being provided.

IO XTYPE OFFSET

If clients are calling pread(), pread64(), pwrite(), or pwrite64(),
then they don’t want you to use the offset in the OCB. Instead,
they’re providing a one-shot offset. That offset follows the
struct io read or struct io write headers that
reside at the beginning of the message buffers.

For example:

struct myread offset {
struct io read read;
struct xtype offset offset;

}

May 31, 2004 Chapter 4 � Writing a Resource Manager 125

Handling other read/write details  2004, QNX Software Systems Ltd.

Some resource managers can be sure that their clients will never
call pread*() or pwrite*(). (For example, a resource manager
that’s controlling a robot arm probably wouldn’t care.) In this
case, you can treat this type of message as an error.

IO XTYPE READCOND

If a client is calling readcond(), they want to impose timing and
return buffer size constraints on the read. Those constraints
follow the struct io read or struct io write

headers at the beginning of the message buffers. For example:

struct myreadcond {
struct io read read;
struct xtype readcond cond;

}

As with IO XTYPE OFFSET, if your resource manager isn’t
prepared to handle readcond(), you can treat this type of
message as an error.

If you’re not expecting extended types (xtype)

The following code sample demonstrates how to handle the case
where you’re not expecting any extended types. In this case, if you
get a message that contains an xtype, you should reply with ENOSYS.
The example can be used in either an io read or io write handler.

int
io read (resmgr context t *ctp, io read t *msg, RESMGR OCB T *ocb)
{

int status;

if ((status = iofunc read verify(ctp, msg, ocb, NULL)) != EOK) {
return (RESMGR ERRNO(status));

}

/* No special xtypes */
if ((msg->i.xtype & IO XTYPE MASK) != IO XTYPE NONE)

return (RESMGR ERRNO(ENOSYS));

...
}

126 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling other read/write details

Handling pread*() and pwrite*()
Here are code examples that demonstrate how to handle an IO READ
or IO WRITE message when a client calls:

� pread*()

� pwrite*().

Sample code for handling IO READ messages in pread*()

The following sample code demonstrates how to handle IO READ for
the case where the client calls one of the pread*() functions.

/* we are defining io pread t here to make the code below simple */
typedef struct {

struct io read read;
struct xtype offset offset;

} io pread t;

int
io read (resmgr context t *ctp, io read t *msg, RESMGR OCB T *ocb)
{

off64 t offset; /* where to read from */
int status;

if ((status = iofunc read verify(ctp, msg, ocb, NULL)) != EOK) {
return(RESMGR ERRNO(status));

}

switch(msg->i.xtype & IO XTYPE MASK) {
case IO XTYPE NONE:

offset = ocb->offset;
break;

case IO XTYPE OFFSET:
/*
* io pread t is defined above
* client is doing a one-shot read to this offset by calling
* one of the pread*() functions
*/
offset = ((io pread t *) msg)->offset.offset;
break;

default:
return(RESMGR ERRNO(ENOSYS));

}

...
}

May 31, 2004 Chapter 4 � Writing a Resource Manager 127

Handling other read/write details  2004, QNX Software Systems Ltd.

Sample code for handling IO WRITE messages in pwrite*()

The following sample code demonstrates how to handle IO WRITE
for the case where the client calls one of the pwrite*() functions. Keep
in mind that the struct xtype offset information follows the
struct io write in the sender’s message buffer. This means that
the data to be written follows the struct xtype offset

information (instead of the normal case where it follows the struct
io write). So, you must take this into account when doing the

resmgr msgread() call in order to get the data from the sender’s
message buffer.

/* we are defining io pwrite t here to make the code below simple */
typedef struct {

struct io write write;
struct xtype offset offset;

} io pwrite t;

int
io write (resmgr context t *ctp, io write t *msg, RESMGR OCB T *ocb)
{

off64 t offset; /* where to write */
int status;
size t skip; /* offset into msg to where the data resides */

if ((status = iofunc write verify(ctp, msg, ocb, NULL)) != EOK) {
return(RESMGR ERRNO(status));

}

switch(msg->i.xtype & IO XTYPE MASK) {
case IO XTYPE NONE:

offset = ocb->offset;
skip = sizeof(io write t);
break;

case IO XTYPE OFFSET:
/*
* io pwrite t is defined above
* client is doing a one-shot write to this offset by
* calling one of the pwrite*() functions
*/
offset = ((io pwrite t *) msg)->offset.offset;
skip = sizeof(io pwrite t);
break;

default:
return(RESMGR ERRNO(ENOSYS));

}

128 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Attribute handling

...

/*
* get the data from the sender’s message buffer,
* skipping all possible header information
*/

resmgr msgreadv(ctp, iovs, niovs, skip);

...
}

Handling readcond()
The same type of operation that was done to handle the
pread()/ IO XTYPE OFFSET case can be used for handling the client’s
readcond() call:

typedef struct {
struct io read read;
struct xtype readcond cond;

} io readcond t

Then:

struct xtype readcond *cond
...

CASE IO XTYPE READCOND:
cond = ((io readcond t *)msg)->cond
break;

}

Then your manager has to properly interpret and deal with the
arguments to readcond(). For more information, see the Library
Reference.

Attribute handling

May 31, 2004 Chapter 4 � Writing a Resource Manager 129

Attribute handling  2004, QNX Software Systems Ltd.

Updating the time for reads and writes
In the read sample above we did:

if (msg->i.nbytes > 0)
ocb->attr->flags |= IOFUNC ATTR ATIME;

According to POSIX, if the read succeeds and the reader had asked
for more than zero bytes, then the access time must be marked for
update. But POSIX doesn’t say that it must be updated right away. If
you’re doing many reads, you may not want to read the time from the
kernel for every read. In the code above, we mark the time only as
needing to be updated. When the next IO STAT or IO CLOSE OCB
message is processed, the resource manager library will see that the
time needs to be updated and will get it from the kernel then. This of
course has the disadvantage that the time is not the time of the read.

Similarly for the write sample above, we did:

if (msg->i.nbytes > 0)
ocb->attr->flags |= IOFUNC ATTR MTIME | IOFUNC ATTR CTIME;

so the same thing will happen.

If you do want to have the times represent the read or write times,
then after setting the flags you need only call the iofunc time update()
helper function. So the read lines become:

if (msg->i.nbytes > 0) {
ocb->attr->flags |= IOFUNC ATTR ATIME;
iofunc time update(ocb->attr);

}

and the write lines become:

if (msg->i.nbytes > 0) {
ocb->attr->flags |= IOFUNC ATTR MTIME | IOFUNC ATTR CTIME;
iofunc time update(ocb->attr);

}

You should call iofunc time update() before you flush out any cached
attributes. As a result of changing the time fields, the attribute
structure will have the IOFUNC ATTR DIRTY TIME bit set in the flags
field, indicating that this field of the attribute must be updated when
the attribute is flushed from the cache.

130 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Combine messages

Combine messages
In this section:

� Where combine messages are used

� The library’s combine-message handling

Where combine messages are used
In order to conserve network bandwidth and to provide support for
atomic operations, combine messages are supported. A combine
message is constructed by the client’s C library and consists of a
number of I/O and/or connect messages packaged together into one.
Let’s see how they’re used.

Atomic operations

Consider a case where two threads are executing the following code,
trying to read from the same file descriptor:

a thread ()
{

char buf [BUFSIZ];

lseek (fd, position, SEEK SET);
read (fd, buf, BUFSIZ);
...

}

The first thread performs the lseek() and then gets preempted by the
second thread. When the first thread resumes executing, its offset into
the file will be at the end of where the second thread read from, not
the position that it had lseek()’d to.

This can be solved in one of three ways:

� The two threads can use a mutex to ensure that only one thread at a
time is using the file descriptor.

� Each thread can open the file itself, thus generating a unique file
descriptor that won’t be affected by any other threads.

May 31, 2004 Chapter 4 � Writing a Resource Manager 131

Combine messages  2004, QNX Software Systems Ltd.

� The threads can use the readblock() function, which performs an
atomic lseek() and read().

Let’s look at these three methods.

In the first approach, if the two threads use a mutex betweenUsing a
mutex themselves, the following issue arises: every read(), lseek(), and

write() operation must use the mutex.

If this practice isn’t enforced, then you still have the exact same
problem. For example, suppose one thread that’s obeying the
convention locks the mutex and does the lseek(), thinking that it’s
protected. However, another thread (that’s not obeying the
convention) can preempt it and move the offset to somewhere else.
When the first thread resumes, we again encounter the problem where
the offset is at a different (unexpected) location. Generally, using a
mutex will be successful only in very tightly managed projects, where
a code review will ensure that each and every thread’s file functions
obey the convention.

The second approach — of using different file descriptors — is aPer-thread
files good general-purpose solution, unless you explicitly wanted the file

descriptor to be shared.

In order for the readblock() function to be able to effect an atomicThe
readblock()

function
seek/read operation, it must ensure that the requests it sends to the
resource manager will all be processed at the same time. This is done
by combining the IO LSEEK and IO READ messages into one
message. Thus, when the base layer performs the MsgReceive(), it
will receive the entire readblock() request in one atomic message.

Bandwidth considerations

Another place where combine messages are useful is in the stat()
function, which can be implemented by calling open(), fstat(), and
close() in sequence.

Rather than generate three separate messages (one for each of the
functions), the C library combines them into one contiguous message.
This boosts performance, especially over a networked connection, and

132 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Combine messages

also simplifies the resource manager, because it’s not forced to have a
connect function to handle stat().

The library’s combine-message handling
The resource manager library handles combine messages by
presenting each component of the message to the appropriate handler
routines. For example, if we get a combine message that has an
IO LSEEK and IO READ in it (e.g. readblock()), the library will call

our io lseek() and io read() functions for us in turn.

But let’s see what happens in the resource manager when it’s handling
these messages. With multiple threads, both of the client’s threads
may very well have sent in their “atomic” combine messages. Two
threads in the resource manager will now attempt to service those two
messages. We again run into the same synchronization problem as we
originally had on the client end — one thread can be part way through
processing the message and can then be preempted by the other
thread.

The solution? The resource manager library provides callouts to lock
the OCB while processing any message (except IO CLOSE and
IO UNBLOCK — we’ll return to these). As an example, when

processing the readblock() combine message, the resource manager
library performs callouts in this order:

1 lock ocb handler

2 IO LSEEK message handler

3 IO READ message handler

4 unlock ocb handler

Therefore, in our scenario, the two threads within the resource
manager would be mutually exclusive to each other by virtue of the
lock — the first thread to acquire the lock would completely process
the combine message, unlock the lock, and then the second thread
would perform its processing.

May 31, 2004 Chapter 4 � Writing a Resource Manager 133

Combine messages  2004, QNX Software Systems Ltd.

Let’s examine several of the issues that are associated with handling
combine messages:

� Component responses

� Component data access

� Locking and unlocking the attribute structure

� Various styles of connect messages

� IO CONNECT COMBINE CLOSE

� IO CONNECT COMBINE

Component responses

As we’ve seen, a combine message really consists of a number of
“regular” resource manager messages combined into one large
contiguous message. The resource manager library handles each
component in the combine message separately by extracting the
individual components and then out calling to the handlers you’ve
specified in the connect and I/O function tables, as appropriate, for
each component.

This generally doesn’t present any new wrinkles for the message
handlers themselves, except in one case. Consider the readblock()
combine message:

Client call: readblock()

Message(s): IO LSEEK , IO READ

Callouts: io lock ocb()
io lseek()
io read()
io unlock ocb()

Ordinarily, after processing the IO LSEEK message, your handler
would return the current position within the file. However, the next
message (the IO READ) also returns data. By convention, only the

134 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Combine messages

last data-returning message within a combine message will actually
return data. The intermediate messages are allowed to return only a
pass/fail indication.

The impact of this is that the IO LSEEK message handler has to be
aware of whether or not it’s being invoked as part of combine
message handling. If it is, it should only return either an EOK
(indicating that the lseek() operation succeeded) or an error indication
to indicate some form of failure.

But if the IO LSEEK handler isn’t being invoked as part of combine
message handling, it should return the EOK and the new offset (or, in
case of error, an error indication only).

Here’s a sample of the code for the default iofunc-layer lseek()
handler:

int
iofunc lseek default (resmgr context t *ctp,

io lseek t *msg,
iofunc ocb t *ocb)

{
/*
* performs the lseek processing here
* may "early-out" on error conditions
*/
. . .

/* decision re: combine messages done here */
if (msg -> i.combine len & IO COMBINE FLAG) {

return (EOK);
}

msg -> o = offset;
return (RESMGR PTR (ctp, &msg -> o, sizeof (msg -> o)));

}

The relevant decision is made in this statement:

if (msg -> i.combine len & IO COMBINE FLAG)

If the IO COMBINE FLAG bit is set in the combine len member, this
indicates that the message is being processed as part of a combine
message.

May 31, 2004 Chapter 4 � Writing a Resource Manager 135

Combine messages  2004, QNX Software Systems Ltd.

When the resource manager library is processing the individual
components of the combine message, it looks at the error return from
the individual message handlers. If a handler returns anything other
than EOK, then processing of further combine message components is
aborted. The error that was returned from the failing component’s
handler is returned to the client.

Component data access

The second issue associated with handling combine messages is how
to access the data area for subsequent message components.

For example, the writeblock() combine message format has an lseek()
message first, followed by the write() message. This means that the
data associated with the write() request is further in the received
message buffer than would be the case for just a simple IO WRITE
message:

Client call: writeblock()

Message(s): IO LSEEK , IO WRITE , data

Callouts: io lock ocb()
io lseek()
io write()
io unlock ocb()

This issue is easy to work around. There’s a resource manager library
function called resmgr msgread() that knows how to get the data
corresponding to the correct message component. Therefore, in the
io write handler, if you used resmgr msgread() instead of MsgRead(),
this would be transparent to you.

Resource managers should always use resmgr msg*() cover
functions.

�

For reference, here’s the source for resmgr msgread():

int resmgr msgread(resmgr context t *ctp,

136 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Combine messages

void *msg,
int nbytes,
int offset)

{
return MsgRead(ctp->rcvid, msg, nbytes, ctp->offset + offset);

}

As you can see, resmgr msgread() simply calls MsgRead() with the
offset of the component message from the beginning of the combine
message buffer. For completeness, there’s also a resmgr msgwrite()
that works in an identical manner to MsgWrite(), except that it
dereferences the passed ctp to obtain the rcvid.

Locking and unlocking the attribute structure

As mentioned above, another facet of the operation of the readblock()
function from the client’s perspective is that it’s atomic. In order to
process the requests for a particular OCB in an atomic manner, we
must lock and unlock the attribute structure pointed to by the OCB,
thus ensuring that only one resource manager thread has access to the
OCB at a time.

The resource manager library provides two callouts for doing this:

� lock ocb

� unlock ocb

These are members of the I/O functions structure. The handlers that
you provide for those callouts should lock and unlock the attribute
structure pointed to by the OCB by calling iofunc attr lock() and
iofunc attr unlock(). Therefore, if you’re locking the attribute
structure, there’s a possibility that the lock ocb callout will block for a
period of time. This is normal and expected behavior. Note also that
the attributes structure is automatically locked for you when your I/O
function is called.

May 31, 2004 Chapter 4 � Writing a Resource Manager 137

Combine messages  2004, QNX Software Systems Ltd.

Connect message types

Let’s take a look at the general case for the io open handler — it
doesn’t always correspond to the client’s open() call!

For example, consider the stat() and access() client function calls.

IO CONNECT COMBINE CLOSE

For a stat() client call, we essentially perform the sequence
open()/fstat()/close(). Note that if we actually did that, three messages
would be required. For performance reasons, we implement the stat()
function as one single combine message:

Client call: stat()

Message(s): IO CONNECT COMBINE CLOSE , IO STAT

Callouts: io open()
io lock ocb()
io stat()
io unlock ocb()
io close()

The IO CONNECT COMBINE CLOSE message causes the io open
handler to be called. It then implicitly (at the end of processing for the
combine message) causes the io close ocb handler to be called.

IO CONNECT COMBINE

For the access() function, the client’s C library will open a connection
to the resource manager and perform a stat() call. Then, based on the
results of the stat() call, the client’s C library access() may perform an
optional devctl() to get more information. In any event, because
access() opened the device, it must also call close() to close it:

Client call: access()

Message(s): IO CONNECT COMBINE , IO STAT
IO DEVCTL (optional)
IO CLOSE

138 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Extending Data Control Structures (DCS)

Callouts: io open()
io lock ocb()
io stat()
io unlock ocb()
io lock ocb() (optional)
io devctl() (optional)
io unlock ocb() (optional)
io close()

Notice how the access() function opened the pathname/device — it
sent it an IO CONNECT COMBINE message along with the IO STAT
message. This creates an OCB (when the io open handler is called),
locks the associated attribute structure (via io lock ocb()), performs
the stat (io stat()), and then unlocks the attributes structure
(io unlock ocb()). Note that we don’t implicitly close the OCB — this
is left for a later, explicit, message. Contrast this handling with that of
the plain stat() above.

Extending Data Control Structures (DCS)
This section contains:

� Extending the OCB and attribute structures

� Extending the mount structures

Extending the OCB and attribute structures
In our /dev/sample example, we had a static buffer associated with
the entire resource. Sometimes you may want to keep a pointer to a
buffer associated with the resource, rather than in a global area. To
maintain the pointer with the resource, we would have to store it in
the attribute structure. Since the attribute structure doesn’t have any
spare fields, we would have to extend it to contain that pointer.

Sometimes you may want to add extra entries to the standard
iofunc *() OCB (iofunc ocb t).

Let’s see how we can extend both of these structures. The basic
strategy used is to encapsulate the existing attributes and OCB

May 31, 2004 Chapter 4 � Writing a Resource Manager 139

Extending Data Control Structures (DCS)  2004, QNX Software Systems Ltd.

structures within a newly defined superstructure that also contains our
extensions. Here’s the code (see the text following the listing for
comments):

/* Define our overrides before including <sys/iofunc.h> */

struct device;
#define IOFUNC ATTR T struct device /* see note 1 */

struct ocb;

#define IOFUNC OCB T struct ocb /* see note 1 */

#include <sys/iofunc.h>

#include <sys/dispatch.h>

struct ocb { /* see note 2 */

iofunc ocb t hdr; /* see note 4; must always be first */
struct ocb *next;

struct ocb **prev; /* see note 3 */
};

struct device { /* see note 2 */
iofunc attr t attr; /* must always be first */

struct ocb *list; /* waiting for write */

};

/* Prototypes, needed since we refer to them a few lines down */

struct ocb *ocb calloc (resmgr context t *ctp, struct device *device);

void ocb free (struct ocb *ocb);

iofunc funcs t ocb funcs = { /* our ocb allocating & freeing functions */

IOFUNC NFUNCS,

ocb calloc,
ocb free

};

/* The mount structure. We have only one, so we statically declare it */

iofunc mount t mountpoint = { 0, 0, 0, 0, &ocb funcs };

/* One struct device per attached name (there’s only one name in this
example) */

struct device deviceattr;

main()

{
...

/*
* deviceattr will indirectly contain the addresses

* of the OCB allocating and freeing functions
*/

deviceattr.attr.mount = &mountpoint;
resmgr attach (..., &deviceattr);

...
}

140 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Extending Data Control Structures (DCS)

/*
* ocb calloc

*

* The purpose of this is to give us a place to allocate our own OCB.
* It is called as a result of the open being done

* (e.g. iofunc open default causes it to be called). We

* registered it through the mount structure.
*/

IOFUNC OCB T
ocb calloc (resmgr context t *ctp, IOFUNC ATTR T *device)

{

struct ocb *ocb;

if (!(ocb = calloc (1, sizeof (*ocb)))) {

return 0;
}

/* see note 3 */
ocb -> prev = &device -> list;

if (ocb -> next = device -> list) {

device -> list -> prev = &ocb -> next;
}

device -> list = ocb;

return (ocb);

}

/*

* ocb free
*

* The purpose of this is to give us a place to free our OCB.

* It is called as a result of the close being done
* (e.g. iofunc close ocb default causes it to be called). We

* registered it through the mount structure.

*/
void

ocb free (IOFUNC OCB T *ocb)

{
/* see note 3 */

if (*ocb -> prev = ocb -> next) {

ocb -> next -> prev = ocb -> prev;
}

free (ocb);
}

Here are the notes for the above code:

1 We place the definitions for our enhanced structures before
including the standard I/O functions header file. Because the
standard I/O functions header file checks to see if the two
manifest constants are already defined, this allows a convenient
way for us to semantically override the structures.

2 Define our new enhanced data structures, being sure to place
the encapsulated members first.

May 31, 2004 Chapter 4 � Writing a Resource Manager 141

Handling devctl() messages  2004, QNX Software Systems Ltd.

3 The ocb calloc() and ocb free() sample functions shown here
cause the newly allocated OCBs to be maintained in a linked
list. Note the use of dual indirection on the struct ocb

**prev; member.

4 You must always place the iofunc structure that you’re
overriding as the first member of the new extended structure.
This lets the common library work properly in the default cases.

Extending the mount structure
You can also extend the iofunc mount t structure in the same
manner as the attribute and OCB structures. In this case, you’d define:

#define IOFUNC MOUNT T struct newmount

then declare the new structure:

struct newmount {
iofunc mount t mount;
int ourflag;

};

Handling devctl() messages
The devctl() function is a general-purpose mechanism for
communicating with a resource manager. Clients can send data to,
receive data from, or both send and receive data from a resource
manager. The format of the client devctl() call is:

devctl(int fd,
int dcmd,
void * data,
size t nbytes,
int * return info);

The following values (described in detail in the devctl()
documentation in the Library Reference) map directly to the
IO DEVCTL message itself:

142 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling devctl() messages

struct io devctl {
uint16 t type;
uint16 t combine len;
int32 t dcmd;
int32 t nbytes;
int32 t zero;

/* char data[nbytes]; */
};

struct io devctl reply {
uint32 t zero;
int32 t ret val;
int32 t nbytes;
int32 t zero2;

/* char data[nbytes]; */
} ;

typedef union {
struct io devctl i;
struct io devctl reply o;

} io devctl t;

As with most resource manager messages, we’ve defined a union
that contains the input structure (coming into the resource manager),
and a reply or output structure (going back to the client). The
io devctl resource manager handler is prototyped with the argument:

io devctl t *msg

which is the pointer to the union containing the message.

The type member has the value IO DEVCTL.

The combine len field has meaning for a combine message; see the
“Combine messages” section in this chapter.

The nbytes value is the nbytes that’s passed to the devctl() function.
The value contains the size of the data to be sent to the device driver,
or the maximum size of the data to be received from the device driver.

The most interesting item of the input structure is the dcmd. that’s
passed to the devctl() function. This command is formed using the
macros defined in <devctl.h>:

#define POSIX DEVDIR NONE 0

May 31, 2004 Chapter 4 � Writing a Resource Manager 143

Handling devctl() messages  2004, QNX Software Systems Ltd.

#define POSIX DEVDIR TO 0x80000000
#define POSIX DEVDIR FROM 0x40000000

#define DIOF(class, cmd, data) ((sizeof(data)<<16) + ((class)<<8) + (cmd) + POSIX DEVDIR FROM)

#define DIOT(class, cmd, data) ((sizeof(data)<<16) + ((class)<<8) + (cmd) + POSIX DEVDIR TO)
#define DIOTF(class, cmd, data) ((sizeof(data)<<16) + ((class)<<8) + (cmd) + POSIX DEVDIR TOFROM)

#define DION(class, cmd) (((class)<<8) + (cmd) + POSIX DEVDIR NONE)

It’s important to understand how these macros pack data to create a
command. An 8-bit class (defined in <devctl.h>) is combined with
an 8-bit subtype that’s manager-specific, and put together in the lower
16 bits of the integer.

The upper 16 bits contain the direction (TO, FROM) as well as a hint
about the size of the data structure being passed. This size is only a
hint put in to uniquely identify messages that may use the same class
and code but pass different data structures.

In the following example, a cmd is generated to indicate that the client
is sending data to the server (TO), but not receiving anything in
return. The only bits that the library or the resource manager layer
look at are the TO and FROM bits to determine which arguments are
to be passed to MsgSend().

struct my devctl msg {
...

}

#define MYDCMD DIOT(DCMD MISC, 0x54, struct my devctl msg)

The size of the structure that’s passed as the last field to the DIO*
macros must be less than 2ˆ14 == 16K. Anything larger than this
interferes with the upper two directional bits.

�

The data directly follows this message structure, as indicated by the
/* char data[nbytes] */ comment in the io devctl

structure.

144 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling devctl() messages

Sample code for handling IO DEVCTL messages
You can add the following code samples to either of the examples
provided in the “Simple device resource manager examples” section.
Both of those code samples provided the name /dev/sample. With
the changes indicated below, the client can use devctl() to set and
retrieve a global value (an integer in this case) that’s maintained in the
resource manager.

The first addition defines what the devctl() commands are going to be.
This is generally put in a common or shared header file:

typedef union my devctl msg {

int tx; //Filled by client on send

int rx; //Filled by server on reply
} data t

#define MY CMD CODE 1
#define MY DEVCTL GETVAL DIOF(DCMD MISC, MY CMD CODE + 0, int)

#define MY DEVCTL SETVAL DIOT(DCMD MISC, MY CMD CODE + 1, int)

#define MY DEVCTL SETGET DIOTF(DCMD MISC, MY CMD CODE + 2, union my devctl msg)

In the above code, we defined three commands that the client can use:

MY DEVCTL SETVAL

Sets the server global to the integer the client provides.

MY DEVCTL GETVAL

Gets the server global and puts that value into the client’s
buffer.

MY DEVCTL SETGET

Sets the server global to the integer the client provides and
returns the previous value of the server global in the client’s
buffer.

Add this code to the main() function:

io funcs.devctl = io devctl; /* For handling IO DEVCTL, sent by devctl() */

And the following code gets added before the main() function:

May 31, 2004 Chapter 4 � Writing a Resource Manager 145

Handling devctl() messages  2004, QNX Software Systems Ltd.

int handle devctl(resmgr context t *ctp, io devctl t *msg, RESMGR OCB T *ocb);

int global integer = 0;

Now, you need to include the new handler function to handle the
IO DEVCTL message:

int io devctl(resmgr context t *ctp, io devctl t *msg, RESMGR OCB T *ocb) {
int nbytes, status, previous;

union {

data t data;
int data32;

// ... other devctl types you can receive

} *rx data;

/*

Let common code handle DCMD ALL * cases.

You can do this before or after you intercept devctl’s depending
on your intentions. Here we aren’t using any pre-defined values

so let the system ones be handled first.

*/
if ((status = iofunc devctl default(ctp, msg, ocb)) != RESMGR DEFAULT) {

return(status);

}
status = nbytes = 0;

/*
Note this assumes that you can fit the entire data portion of

the devctl into one message. In reality you should probably

perform a MsgReadv() once you know the type of message you
have received to suck all of the data in rather than assuming

it all fits in the message. We have set in our main routine
that we’ll accept a total message size of up to 2k so we

don’t worry about it in this example where we deal with ints.

*/
rx data = DEVCTL DATA(msg->i);

/*
Three examples of devctl operations.

SET: Setting a value (int) in the server

GET: Getting a value (int) from the server
SETGET: Setting a new value and returning with the previous value

*/

switch (msg->i.dcmd) {
case MY DEVCTL SETVAL:

global integer = rx data->data32;

nbytes = 0;
break;

case MY DEVCTL GETVAL:

rx data->data32 = global integer;

nbytes = sizeof(rx data->data32);
break;

case MY DEVCTL SETGET:
previous = global integer;

global integer = rx data->data.tx;

146 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling devctl() messages

rx data->data.rx = previous; //Overwrites tx data
nbytes = sizeof(rx data->data.rx);

break;

default:

return(ENOSYS);

}

/* Clear the return message ... note we saved our data after this */
memset(&msg->o, 0, sizeof(msg->o));

/*
If you wanted to pass something different to the return

field of the devctl() you could do it through this member.

*/
msg->o.ret val = status;

/* Indicate the number of bytes and return the message */
msg->o.nbytes = nbytes;

return(RESMGR PTR(ctp, &msg->o, sizeof(msg->o) + nbytes));

}

When working with devctl() handler code, you should be familiar
with the following:

� The default devctl() handler is called before we begin to service
our messages. This allows normal system messages to be
processed. If the message isn’t handled by the default handler, then
it returns RESMGR DEFAULT to indicate that the message might
be a custom message. This means that we should check the
incoming command against commands that our resource manager
understands.

� The data to be passed follows directly after the io devctl t

structure. You can get a pointer to this location by using the
DEVCTL DATA(msg->i) macro defined in <devctl.h>. The

argument to this macro must be the input message structure — if
it’s the union message structure or a pointer to the input message
structure, the pointer won’t point to the right location.

For your convenience, we’ve defined a union of all of the messages
that this server can receive. However, this won’t work with large
data messages. In this case, you’d use resmgr msgread() to read
the message from the client. Our messages are never larger than
sizeof(int) and this comfortably fits into the minimum
receive buffer size.

May 31, 2004 Chapter 4 � Writing a Resource Manager 147

Handling devctl() messages  2004, QNX Software Systems Ltd.

� The last argument to the devctl() function is a pointer to an integer.
If this pointer is provided, then the integer is filled with the value
stored in the msg->o.ret val reply message. This is a
convenient way for a resource manager to return simple status
information without affecting the core devctl() operation. It’s not
used in this example.

� The data being returned to the client is placed at the end of the
reply message. This is the same mechanism used for the input data
so we can use the DEVCTL DATA() function to get a pointer to
this location. With large replies that wouldn’t necessarily fit into
the server’s receive buffer, you should use one of the reply
mechanisms described in the “Methods of returning and replying”
section. Again, in this example, we’re only returning an integer
that fits into the receive buffer without any problem.

If you add the following handler code, a client should be able to open
/dev/sample and subsequently set and retrieve the global integer
value:

int main(int argc, char **argv) {

int fd, ret, val;

data t data;

if ((fd = open("/dev/sample", O RDONLY)) == -1) {
return(1);

}

/* Find out what the value is set to initially */

val = -1;

ret = devctl(fd, MY DEVCTL GETVAL, &val, sizeof(val), NULL);
printf("GET returned %d w/ server value %d \n", ret, val);

/* Set the value to something else */
val = 25;

ret = devctl(fd, MY DEVCTL SETVAL, &val, sizeof(val), NULL);

printf("SET returned %d \n", ret);

/* Verify we actually did set the value */

val = -1;
ret = devctl(fd, MY DEVCTL GETVAL, &val, sizeof(val), NULL);

printf("GET returned %d w/ server value %d == 25? \n", ret, val);

/* Now do a set/get combination */

memset(&data, 0, sizeof(data));
data.tx = 50;

ret = devctl(fd, MY DEVCTL SETGET, &data, sizeof(data), NULL);

printf("SETGET returned with %d w/ server value %d == 25?\n", ret, data.rx);

/* Check set/get worked */

148 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling ionotify() and select()

val = -1;
ret = devctl(fd, MY DEVCTL GETVAL, &val, sizeof(val), NULL);

printf("GET returned %d w/ server value %d == 50? \n", ret, val);

return(0);

}

Handling ionotify() and select()
A client uses ionotify() and select() to ask a resource manager about
the status of certain conditions (e.g. whether input data is available).
The conditions may or may not have been met. The resource manager
can be asked to:

� check the status of the conditions immediately, and return if any
have been met

� deliver an event later on when a condition is met (this is referred to
as arming the resource manager).

The select() function differs from ionotify() in that most of the work is
done in the library. For example, the client code would be unaware
that any event is involved, nor would it be aware of the blocking
function that waits for the event. This is all hidden in the library code
for select().

However, from a resource manager’s point of view, there’s no
difference between ionotify() and select(); they’re handled with the
same code.

For more information on the ionotify() and select() functions, see the
Library Reference.

May 31, 2004 Chapter 4 � Writing a Resource Manager 149

Handling ionotify() and select()  2004, QNX Software Systems Ltd.

Currently, the API for notification handling from your resource
manager doesn’t support multithreaded client processes very well.
Problems may arise when a thread in a client process requests
notification and other threads in the same client process are also
dealing with the resource manager. This is not a problem when the
threads are from different processes.

�

Since ionotify() and select() require the resource manager to do the
same work, they both send the IO NOTIFY message to the resource
manager. The io notify handler is responsible for handling this
message. Let’s start by looking at the format of the message itself:

struct io notify {
uint16 t type;
uint16 t combine len;
int32 t action;
int32 t flags;
struct sigevent event;

};

struct io notify reply {
uint32 t flags;

};

typedef union {
struct io notify i;
struct io notify reply o;

} io notify t;

As with all resource manager messages, we’ve defined a union that
contains the input structure (coming into the resource manager), and a
reply or output structure (going back to the client). The io notify
handler is prototyped with the argument:

io notify t *msg

which is the pointer to the union containing the message.

The items in the input structure are:

� type

150 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling ionotify() and select()

� combine len

� action

� flags

� event.

The type member has the value IO NOTIFY.

The combine len field has meaning for a combine message; see the
“Combine messages” section in this chapter.

The action member is used by the iofunc notify() helper function to
tell it whether it should:

� just check for conditions now

� check for conditions now, and if none are met, arm them

� just arm for transitions.

Since iofunc notify() looks at this, you don’t have to worry about it.

The flags member contains the conditions that the client is interested
in and can be any mixture of the following:

NOTIFY COND INPUT

This condition is met when there are one or more units of input
data available (i.e. clients can now issue reads). The number of
units defaults to 1, but you can change it. The definition of a
unit is up to you: for a character device such as a serial port, it
would be a character; for a POSIX message queue, it would be a
message. Each resource manager selects an appropriate object.

NOTIFY COND OUTPUT

This condition is met when there’s room in the output buffer for
one or more units of data (i.e. clients can now issue writes). The
number of units defaults to 1, but you can change it. The
definition of a unit is up to you — some resource managers may
default to an empty output buffer while others may choose some
percentage of the buffer empty.

May 31, 2004 Chapter 4 � Writing a Resource Manager 151

Handling ionotify() and select()  2004, QNX Software Systems Ltd.

NOTIFY COND OBAND

The condition is met when one or more units of out-of-band
data are available. The number of units defaults to 1, but you
can change it. The definition of out-of-band data is specific to
the resource manager.

The event member is what the resource manager delivers once a
condition is met.

A resource manager needs to keep a list of clients that want to be
notified as conditions are met, along with the events to use to do the
notifying. When a condition is met, the resource manager must
traverse the list to look for clients that are interested in that condition,
and then deliver the appropriate event. As well, if a client closes its
file descriptor, then any notification entries for that client must be
removed from the list.

To make all this easier, the following structure and helper functions
are provided for you to use in a resource manager:

iofunc notify t structure

Contains the three notification lists, one for each
possible condition. Each is a list of the clients to
be notified for that condition.

iofunc notify() Adds or removes notification entries; also polls for
conditions. Call this function inside of your
io notify handler function.

iofunc notify trigger()

Sends notifications to queued clients. Call this
function when one or more conditions have been
met.

iofunc notify remove()

Removes notification entries from the list. Call this
function when the client closes its file descriptor.

152 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling ionotify() and select()

Sample code for handling IO NOTIFY messages
You can add the following code samples to either of the examples
provided in the “Simple device resource manager examples” section.
Both of those code samples provided the name /dev/sample. With
the changes indicated below, clients can use writes to send it data,
which it’ll store as discrete messages. Other clients can use either
ionotify() or select() to request notification when that data arrives.
When clients receive notification, they can issue reads to get the data.

You’ll need to replace this code that’s located above the main()
function:

#include <sys/iofunc.h>

#include <sys/dispatch.h>

static resmgr connect funcs t connect funcs;

static resmgr io funcs t io funcs;

static iofunc attr t attr;

with the following:

struct device attr s;
#define IOFUNC ATTR T struct device attr s

#include <sys/iofunc.h>
#include <sys/dispatch.h>

/*

* define structure and variables for storing the data that is received.

* When clients write data to us, we store it here. When clients do
* reads, we get the data from here. Result ... a simple message queue.

*/

typedef struct item s {
struct item s *next;

char *data;

} item t;

/* the extended attributes structure */

typedef struct device attr s {
iofunc attr t attr;

iofunc notify t notify[3]; /* notification list used by iofunc notify*() */

item t *firstitem; /* the queue of items */
int nitems; /* number of items in the queue */

} device attr t;

/* We only have one device; device attr is its attribute structure */

static device attr t device attr;

int io read(resmgr context t *ctp, io read t *msg, RESMGR OCB T *ocb);
int io write(resmgr context t *ctp, io write t *msg, RESMGR OCB T *ocb);

int io notify(resmgr context t *ctp, io notify t *msg, RESMGR OCB T *ocb);

May 31, 2004 Chapter 4 � Writing a Resource Manager 153

Handling ionotify() and select()  2004, QNX Software Systems Ltd.

int io close ocb(resmgr context t *ctp, void *reserved, RESMGR OCB T *ocb);

static resmgr connect funcs t connect funcs;

static resmgr io funcs t io funcs;

We need a place to keep data that’s specific to our device. A good
place for this is in an attribute structure that we can associate with the
name we registered: /dev/sample. So, in the code above, we
defined device attr t and IOFUNC ATTR T for this purpose. We
talk more about this type of device-specific attribute structure in the
section, “Extending Data Control Structures (DCS).”

We need two types of device-specific data:

� an array of three notification lists — one for each possible
condition that a client can ask to be notified about. In
device attr t, we called this notify.

� a queue to keep the data that gets written to us, and that we use to
reply to a client. For this, we defined item t; it’s a type that
contains data for a single item, as well as a pointer to the next
item t. In device attr t we use firstitem (points to the first
item in the queue), and nitems (number of items).

Note that we removed the definition of attr, since we use device attr
instead.

Of course, we have to give the resource manager library the address of
our handlers so that it’ll know to call them. In the code for main()
where we called iofunc func init(), we’ll add the following code to
register our handlers:

/* initialize functions for handling messages */
iofunc func init(RESMGR CONNECT NFUNCS, &connect funcs,

RESMGR IO NFUNCS, &io funcs);
io funcs.notify = io notify; /* for handling IO NOTIFY, sent as

a result of client calls to ionotify()

and select() */
io funcs.write = io write;

io funcs.read = io read;

io funcs.close ocb = io close ocb;

And, since we’re using device attr in place of attr, we need to change
the code wherever we use it in main(). So, you’ll need to replace this
code:

154 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling ionotify() and select()

/* initialize attribute structure used by the device */
iofunc attr init(&attr, S IFNAM | 0666, 0, 0);

/* attach our device name */
id = resmgr attach(dpp, /* dispatch handle */

&resmgr attr, /* resource manager attrs */

"/dev/sample", /* device name */
FTYPE ANY, /* open type */

0, /* flags */
&connect funcs, /* connect routines */

&io funcs, /* I/O routines */

&attr); /* handle */

with the following:

/* initialize attribute structure used by the device */

iofunc attr init(&device attr.attr, S IFNAM | 0666, 0, 0);
IOFUNC NOTIFY INIT(device attr.notify);

device attr.firstitem = NULL;

device attr.nitems = 0;

/* attach our device name */

id = resmgr attach(dpp, /* dispatch handle */
&resmgr attr, /* resource manager attrs */

"/dev/sample", /* device name */

FTYPE ANY, /* open type */
0, /* flags */

&connect funcs, /* connect routines */
&io funcs, /* I/O routines */

&device attr); /* handle */

Note that we set up our device-specific data in device attr. And, in the
call to resmgr attach(), we passed &device attr (instead of
&attr) for the handle parameter.

Now, you need to include the new handler function to handle the
IO NOTIFY message:

int

io notify(resmgr context t *ctp, io notify t *msg, RESMGR OCB T *ocb)

{
device attr t *dattr = (device attr t *) ocb->attr;

int trig;

/*

* ’trig’ will tell iofunc notify() which conditions are currently
* satisfied. ’dattr->nitems’ is the number of messages in our list of

* stored messages.

*/

trig = NOTIFY COND OUTPUT; /* clients can always give us data */

if (dattr->nitems > 0)
trig |= NOTIFY COND INPUT; /* we have some data available */

May 31, 2004 Chapter 4 � Writing a Resource Manager 155

Handling ionotify() and select()  2004, QNX Software Systems Ltd.

/*
* iofunc notify() will do any necessary handling, including adding

* the client to the notification list is need be.

*/

return (iofunc notify(ctp, msg, dattr->notify, trig, NULL, NULL));

}

As stated above, our io notify handler will be called when a client
calls ionotify() or select(). In our handler, we’re expected to remember
who those clients are, and what conditions they want to be notified
about. We should also be able to respond immediately with conditions
that are already true. The iofunc notify() helper function makes this
easy.

The first thing we do is to figure out which of the conditions we
handle have currently been met. In this example, we’re always able to
accept writes, so in the code above we set the
NOTIFY COND OUTPUT bit in trig. We also check nitems to see if

we have data and set the NOTIFY COND INPUT if we do.

We then call iofunc notify(), passing it the message that was received
(msg), the notification lists (notify), and which conditions have been
met (trig). If one of the conditions that the client is asking about has
been met, and the client wants us to poll for the condition before
arming, then iofunc notify() will return with a value that indicates
what condition has been met and the condition will not be armed.
Otherwise, the condition will be armed. In either case, we’ll return
from the handler with the return value from iofunc notify().

Earlier, when we talked about the three possible conditions, we
mentioned that if you specify NOTIFY COND INPUT, the client is
notified when there’s one or more units of input data available and
that the number of units is up to you. We said a similar thing about
NOTIFY COND OUTPUT and NOTIFY COND OBAND. In the code

above, we let the number of units for all these default to 1. If you want
to use something different, then you must declare an array such as:

int notifycounts[3] = { 10, 2, 1 };

This sets the units for: NOTIFY COND INPUT to 10;
NOTIFY COND OUTPUT to 2; and NOTIFY COND OBAND to 1. We

156 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling ionotify() and select()

would pass notifycounts to iofunc notify() as the second to last
parameter.

Then, as data arrives, we notify whichever clients have asked for
notification. In this sample, data arrives through clients sending us
IO WRITE messages and we handle it using an io write handler.

int
io write(resmgr context t *ctp, io write t *msg, RESMGR OCB T *ocb)

{

device attr t *dattr = (device attr t *) ocb->attr;
int i;

char *p;

int status;
char *buf;

item t *newitem;

if ((status = iofunc write verify(ctp, msg, ocb, NULL)) != EOK)

return (status);

if ((msg->i.xtype & IO XTYPE MASK) != IO XTYPE NONE)

return (ENOSYS);

if (msg->i.nbytes > 0) {

/* Get and store the data */

if ((newitem = malloc(sizeof(item t))) == NULL)
return (errno);

if ((newitem->data = malloc(msg->i.nbytes+1)) == NULL) {

free(newitem);
return (errno);

}
/* reread the data from the sender’s message buffer */

resmgr msgread(ctp, newitem->data, msg->i.nbytes, sizeof(msg->i));

newitem->data[msg->i.nbytes] = NULL;

if (dattr->firstitem)

newitem->next = dattr->firstitem;
else

newitem->next = NULL;

dattr->firstitem = newitem;
dattr->nitems++;

/*
* notify clients who may have asked to be notified when there

* is data

*/

if (IOFUNC NOTIFY INPUT CHECK(dattr->notify, dattr->nitems, 0))
iofunc notify trigger(dattr->notify, dattr->nitems, IOFUNC NOTIFY INPUT);

}

/* set up the number of bytes (returned by client’s write()) */

IO SET WRITE NBYTES(ctp, msg->i.nbytes);

if (msg->i.nbytes > 0)

May 31, 2004 Chapter 4 � Writing a Resource Manager 157

Handling ionotify() and select()  2004, QNX Software Systems Ltd.

ocb->attr->attr.flags |= IOFUNC ATTR MTIME | IOFUNC ATTR CTIME;

return (RESMGR NPARTS(0));

}

The important part of the above io write handler is the code within the
following section:

if (msg->i.nbytes > 0) {
....

}

Here we first allocate space for the incoming data, and then use
resmgr msgread() to copy the data from the client’s send buffer into
the allocated space. Then, we add the data to our queue.

Next, we pass the number of input units that are available to
IOFUNC NOTIFY INPUT CHECK() to see if there are enough units
to notify clients about. This is checked against the notifycounts that
we mentioned above when talking about the io notify handler. If there
are enough units available then we call iofunc notify trigger() telling
it that nitems of data are available (IOFUNC NOTIFY INPUT means
input is available). The iofunc notify trigger() function checks the
lists of clients asking for notification (notify) and notifies any that
asked about data being available.

Any client that gets notified will then perform a read to get the data.
In our sample, we handle this with the following io read handler:

int

io read(resmgr context t *ctp, io read t *msg, RESMGR OCB T *ocb)
{

device attr t *dattr = (device attr t *) ocb->attr;

int status;

if ((status = iofunc read verify(ctp, msg, ocb, NULL)) != EOK)

return (status);

if ((msg->i.xtype & IO XTYPE MASK) != IO XTYPE NONE)
return (ENOSYS);

if (dattr->firstitem) {
int nbytes;

item t *item, *prev;

/* get last item */

item = dattr->firstitem;

158 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling ionotify() and select()

prev = NULL;
while (item->next != NULL) {

prev = item;

item = item->next;
}

/*
* figure out number of bytes to give, write the data to the

* client’s reply buffer, even if we have more bytes than they
* are asking for, we remove the item from our list

*/

nbytes = min (strlen (item->data), msg->i.nbytes);

/* set up the number of bytes (returned by client’s read()) */

IO SET READ NBYTES (ctp, nbytes);

/*

* write the bytes to the client’s reply buffer now since we
* are about to free the data

*/

resmgr msgwrite (ctp, item->data, nbytes, 0);

/* remove the data from the queue */

if (prev)
prev->next = item->next;

else
dattr->firstitem = NULL;

free(item->data);

free(item);
dattr->nitems--;

} else {

/* the read() will return with 0 bytes */
IO SET READ NBYTES (ctp, 0);

}

/* mark the access time as invalid (we just accessed it) */

if (msg->i.nbytes > 0)
ocb->attr->attr.flags |= IOFUNC ATTR ATIME;

return (EOK);
}

The important part of the above io read handler is the code within this
section:

if (firstitem) {
....

}

We first walk through the queue looking for the oldest item. Then we
use resmgr msgwrite() to write the data to the client’s reply buffer.
We do this now because the next step is to free the memory that we’re
using to store that data. We also remove the item from our queue.

May 31, 2004 Chapter 4 � Writing a Resource Manager 159

Handling private messages and pulses  2004, QNX Software Systems Ltd.

Lastly, if a client closes their file descriptor, we must remove them
from our list of clients. This is done using a io close ocb handler:

int

io close ocb(resmgr context t *ctp, void *reserved, RESMGR OCB T *ocb)

{
device attr t *dattr = (device attr t *) ocb->attr;

/*
* a client has closed their file descriptor or has terminated.

* Remove them from the notification list.

*/

iofunc notify remove(ctp, dattr->notify);

return (iofunc close ocb default(ctp, reserved, ocb));

}

In the io close ocb handler, we called iofunc notify remove() and
passed it ctp (contains the information that identifies the client) and
notify (contains the list of clients) to remove the client from the lists.

Handling private messages and pulses
A resource manager may need to receive and handle pulses, perhaps
because an interrupt handler has returned a pulse or some other thread
or process has sent a pulse.

The main issue with pulses is that they have to be received as a
message — this means that a thread has to explicitly perform a
MsgReceive() in order to get the pulse. But unless this pulse is sent to
a different channel than the one that the resource manager is using for
its main messaging interface, it will be received by the library.
Therefore, we need to see how a resource manager can associate a
pulse code with a handler routine and communicate that information
to the library.

The pulse attach() function can be used to associate a pulse code with
a handler function. Therefore, when the dispatch layer receives a
pulse, it will look up the pulse code and see which associated handler
to call to handle the pulse message.

You may also want to define your own private message range to
communicate with your resource manager. Note that the range 0x0 to

160 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling private messages and pulses

0x1FF is reserved for the OS. To attach a range, you use the
message attach() function.

In this example, we create the same resource manager, but this time
we also attach to a private message range and attach a pulse, which is
then used as a timer event.

#include <stdio.h>
#include <stddef.h>

#include <stdlib.h>

#define THREAD POOL PARAM T dispatch context t

#include <sys/iofunc.h>

#include <sys/dispatch.h>

static resmgr connect funcs t connect func;
static resmgr io funcs t io func;

static iofunc attr t attr;

int

timer tick(message context t *ctp, int code, unsigned flags, void *handle) {

union sigval value = ctp->msg->pulse.value;

/*

* Do some useful work on every timer firing
*

*/

printf("received timer event, value %d\n", value.sival int);
return 0;

}

int

message handler(message context t *ctp, int code, unsigned flags, void *handle) {
printf("received private message, type %d\n", code);

return 0;

}

int

main(int argc, char **argv) {
thread pool attr t pool attr;

resmgr attr t resmgr attr;

struct sigevent event;
struct itimer itime;

dispatch t *dpp;

thread pool t *tpp;
resmgr context t *ctp;

int timer id;

int id;

if((dpp = dispatch create()) == NULL) {

fprintf(stderr, "%s: Unable to allocate dispatch handle.\n",argv[0]);

return EXIT FAILURE;
}

memset(&pool attr, 0, sizeof pool attr);
pool attr.handle = dpp;

/* We are doing resmgr and pulse-type attaches.

May 31, 2004 Chapter 4 � Writing a Resource Manager 161

Handling private messages and pulses  2004, QNX Software Systems Ltd.

*
* If you’re going to use custom messages or pulses with

* the message attach() or pulse attach() functions,

* then you MUST use the dispatch functions
* (i.e. dispatch block(), dispatch handler(), ...),

* NOT the resmgr functions (resmgr block(), resmgr handler()).

*/
pool attr.context alloc = dispatch context alloc;

pool attr.block func = dispatch block;
pool attr.handler func = dispatch handler;

pool attr.context free = dispatch context free;

pool attr.lo water = 2;
pool attr.hi water = 4;

pool attr.increment = 1;

pool attr.maximum = 50;

if((tpp = thread pool create(&pool attr, POOL FLAG EXIT SELF)) == NULL) {

fprintf(stderr, "%s: Unable to initialize thread pool.\n",argv[0]);
return EXIT FAILURE;

}

iofunc func init(RESMGR CONNECT NFUNCS, &connect func, RESMGR IO NFUNCS,

&io func);

iofunc attr init(&attr, S IFNAM | 0666, 0, 0);

memset(&resmgr attr, 0, sizeof resmgr attr);
resmgr attr.nparts max = 1;

resmgr attr.msg max size = 2048;

if((id = resmgr attach(dpp, &resmgr attr, "/dev/sample", FTYPE ANY, 0,

&connect func, &io func, &attr)) == -1) {

fprintf(stderr, "%s: Unable to attach name.\n", argv[0]);
return EXIT FAILURE;

}

/* We want to handle our own private messages, of type 0x5000 to 0x5fff */

if(message attach(dpp, NULL, 0x5000, 0x5fff, &message handler, NULL) == -1) {

fprintf(stderr, "Unable to attach to private message range.\n");
return EXIT FAILURE;

}

/* Initialize an event structure, and attach a pulse to it */

if((event.sigev code = pulse attach(dpp, MSG FLAG ALLOC PULSE, 0, &timer tick,
NULL)) == -1) {

fprintf(stderr, "Unable to attach timer pulse.\n");

return EXIT FAILURE;
}

/* Connect to our channel */
if((event.sigev coid = message connect(dpp, MSG FLAG SIDE CHANNEL)) == -1) {

fprintf(stderr, "Unable to attach to channel.\n");

return EXIT FAILURE;
}

event.sigev notify = SIGEV PULSE;
event.sigev priority = -1;

/* We could create several timers and use different sigev values for each */

event.sigev value.sival int = 0;

if((timer id = TimerCreate(CLOCK REALTIME, &event)) == -1) {;

162 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling open(), dup(), and close() messages

fprintf(stderr, "Unable to attach channel and connection.\n");
return EXIT FAILURE;

}

/* And now setup our timer to fire every second */

itime.nsec = 1000000000;

itime.interval nsec = 1000000000;
TimerSettime(timer id, 0, &itime, NULL);

/* Never returns */

thread pool start(tpp);

}

We can either define our own pulse code (e.g. #define
OurPulseCode 57), or we can ask the pulse attach() function to
dynamically generate one for us (and return the pulse code value as
the return code from pulse attach()) by specifying the pulse code as
RESMGR PULSE ALLOC.

See the pulse attach(), MsgSendPulse(), MsgDeliverEvent(), and
MsgReceive() functions in the Library Reference for more
information on receiving and generating pulses.

Handling open(), dup(), and close()
messages
The resource manager library provides another convenient service for
us: it knows how to handle dup() messages.

Suppose that the client executed code that eventually ended up
performing:

fd = open ("/dev/sample", O RDONLY);
...
fd2 = dup (fd);
...
fd3 = dup (fd);
...
close (fd3);
...
close (fd2);
...
close (fd);

May 31, 2004 Chapter 4 � Writing a Resource Manager 163

Handling client unblocking due to signals or timeouts  2004, QNX Software Systems Ltd.

Our resource manager would get an IO CONNECT message for the
first open(), followed by two IO DUP messages for the two dup()
calls. Then, when the client executed the close() calls, we would get
three IO CLOSE messages.

Since the dup() functions generate duplicates of the file descriptors,
we don’t want to allocate new OCBs for each one. And since we’re
not allocating new OCBs for each dup(), we don’t want to release the
memory in each IO CLOSE message when the IO CLOSE messages
arrive! If we did that, the first close would wipe out the OCB.

The resource manager library knows how to manage this for us; it
keeps count of the number of IO DUP and IO CLOSE messages sent
by the client. Only on the last IO CLOSE message will the library
synthesize a call to our IO CLOSE OCB handler.

Most users of the library will want to have the default functions
manage the IO DUP and IO CLOSE messages; you’ll most likely
never override the default actions.

�

Handling client unblocking due to signals or
timeouts
Another convenient service that the resource manager library does for
us is unblocking.

When a client issues a request (e.g. read()), this translates (via the
client’s C library) into a MsgSend() to our resource manager. The
MsgSend() is a blocking call. If the client receives a signal during the
time that the MsgSend() is outstanding, our resource manager needs to
have some indication of this so that it can abort the request.

Because the library set the NTO CHF UNBLOCK flag when it called
ChannelCreate(), we’ll receive a pulse whenever the client tries to
unblock from a MsgSend() that we have MsgReceive()’d.

As an aside, recall that in the QNX Neutrino messaging model the
client can be in one of two states as a result of calling MsgSend(). If

164 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling client unblocking due to signals or timeouts

the server hasn’t yet received the message (via the server’s
MsgReceive()), the client is in a SEND-blocked state — the client is
waiting for the server to receive the message. When the server has
actually received the message, the client transits to a REPLY-blocked
state — the client is now waiting for the server to reply to the message
(via MsgReply()).

When this happens and the pulse is generated, the resource manager
library handles the pulse message and synthesizes an IO UNBLOCK
message.

Looking through the resmgr io funcs t and the
resmgr connect funcs t structures (see the Library Reference),
you’ll notice that there are actually two unblock message handlers:
one in the I/O functions structure and one in the connect functions
structure.

Why two? Because we may get an abort in one of two places. We can
get the abort pulse right after the client has sent the IO OPEN
message (but before we’ve replied to it), or we can get the abort
during an I/O message.

Once we’ve performed the handling of the IO CONNECT message,
the I/O functions’ unblock member will be used to service an unblock
pulse. Therefore, if you’re supplying your own io open handler, be
sure to set up all relevant fields in the OCB before you call
resmgr open bind(); otherwise, your I/O functions’ version of the
unblock handler may get called with invalid data in the OCB. (Note
that this issue of abort pulses “during” message processing arises only
if there are multiple threads running in your resource manager. If
there’s only one thread, then the messages will be serialized by the
library’s MsgReceive() function.)

The effect of this is that if the client is SEND-blocked, the server
doesn’t need to know that the client is aborting the request, because
the server hasn’t yet received it.

Only in the case where the server has received the request and is
performing processing on that request does the server need to know
that the client now wishes to abort.

May 31, 2004 Chapter 4 � Writing a Resource Manager 165

Handling interrupts  2004, QNX Software Systems Ltd.

For more information on these states and their interactions, see the
MsgSend(), MsgReceive(), MsgReply(), and ChannelCreate()
functions in the Library Reference; see also the chapter on
Interprocess Communication in the System Architecture book.

If you’re overriding the default unblock handler, you should always
call the default handler to process any generic unblocking cases first.
For example:

if((status = iofunc unblock default(...)) != RESMGR DEFAULT) {
return status;
}

/* Do your own thing to look for a client to unblock */

This ensures that any client waiting on a resource manager lists (such
as an advisory lock list) will be unblocked if possible.

Handling interrupts
Resource managers that manage an actual hardware resource will
likely need to handle interrupts generated by the hardware. For a
detailed discussion on strategies for interrupt handlers, see the chapter
on Writing an Interrupt Handler in this book.

How do interrupt handlers relate to resource managers? When a
significant event happens within the interrupt handler, the handler
needs to inform a thread in the resource manager. This is usually done
via a pulse (discussed in the “Handling private messages and pulses”
section), but it can also be done with the SIGEV INTR event
notification type. Let’s look at this in more detail.

When the resource manager starts up, it transfers control to
thread pool start(). This function may or may not return, depending
on the flags passed to thread pool create() (if you don’t pass any
flags, the function returns after the thread pool is created). This means
that if you’re going to set up an interrupt handler, you should do so
before starting the thread pool, or use one of the strategies we
discussed above (such as starting a thread for your entire resource
manager).

166 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Handling interrupts

However, if you’re going to use the SIGEV INTR event notification
type, there’s a catch — the thread that attaches the interrupt (via
InterruptAttach() or InterruptAttachEvent()) must be the same thread
that calls InterruptWait().

Sample code for handling interrupts
Here’s an example that includes relevant portions of the interrupt
service routine and the handling thread:

#define INTNUM 0
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>
#include <sys/neutrino.h>

static resmgr connect funcs t connect funcs;
static resmgr io funcs t io funcs;
static iofunc attr t attr;

void *
interrupt thread (void * data)
{

struct sigevent event;
int id;

/* fill in "event" structure */
memset(&event, 0, sizeof(event));
event.sigev notify = SIGEV INTR;

/* intNum is the desired interrupt level */
id = InterruptAttachEvent (INTNUM, &event, 0);

/*... insert your code here ... */

while (1) {
InterruptWait (NULL, NULL);
/* do something about the interrupt,
* perhaps updating some shared
* structures in the resource manager
*
* unmask the interrupt when done
*/
InterruptUnmask(INTNUM, id);

}
}

May 31, 2004 Chapter 4 � Writing a Resource Manager 167

Handling interrupts  2004, QNX Software Systems Ltd.

int
main(int argc, char **argv) {

thread pool attr t pool attr;
resmgr attr t resmgr attr;
dispatch t *dpp;
thread pool t *tpp;
int id;

if((dpp = dispatch create()) == NULL) {
fprintf(stderr, "%s: Unable to allocate dispatch handle.\n",

argv[0]);
return EXIT FAILURE;

}

memset(&pool attr, 0, sizeof pool attr);
pool attr.handle = dpp;
/* We are only doing resmgr-type attach */
pool attr.context alloc = resmgr context alloc;
pool attr.block func = resmgr block;
pool attr.handler func = resmgr handler;
pool attr.context free = resmgr context free;
pool attr.lo water = 2;
pool attr.hi water = 4;
pool attr.increment = 1;
pool attr.maximum = 50;

if((tpp = thread pool create(&pool attr,
POOL FLAG EXIT SELF)) == NULL) {

fprintf(stderr, "%s: Unable to initialize thread pool.\n",
argv[0]);

return EXIT FAILURE;
}

iofunc func init(RESMGR CONNECT NFUNCS, &connect funcs,
RESMGR IO NFUNCS, &io funcs);

iofunc attr init(&attr, S IFNAM | 0666, 0, 0);

memset(&resmgr attr, 0, sizeof resmgr attr);
resmgr attr.nparts max = 1;
resmgr attr.msg max size = 2048;

if((id = resmgr attach(dpp, &resmgr attr, "/dev/sample",
FTYPE ANY, 0,

&connect funcs, &io funcs, &attr)) == -1) {
fprintf(stderr, "%s: Unable to attach name.\n", argv[0]);
return EXIT FAILURE;

}

168 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Multi-threaded resource managers

/* Start the thread that will handle interrupt events. */
pthread create (NULL, NULL, interrupt thread, NULL);

/* Never returns */
thread pool start(tpp);

}

Here the interrupt thread() function uses InterruptAttachEvent() to
bind the interrupt source (intNum) to the event (passed in event), and
then waits for the event to occur.

This approach has a major advantage over using a pulse. A pulse is
delivered as a message to the resource manager, which means that if
the resource manager’s message-handling threads are busy processing
requests, the pulse will be queued until a thread does a MsgReceive().

With the InterruptWait() approach, if the thread that’s executing the
InterruptWait() is of sufficient priority, it unblocks and runs
immediately after the SIGEV INTR is generated.

Multi-threaded resource managers
In this section:

� Multi-threaded Resource Manager example

� Thread pool attributes

� Thread pool functions

Multi-threaded resource manager example
Let’s look at our multi-threaded resource manager example in more
detail.

#include <errno.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>

/*
* define THREAD POOL PARAM T such that we can avoid a compiler

May 31, 2004 Chapter 4 � Writing a Resource Manager 169

Multi-threaded resource managers  2004, QNX Software Systems Ltd.

* warning when we use the dispatch *() functions below
*/

#define THREAD POOL PARAM T dispatch context t

#include <sys/iofunc.h>
#include <sys/dispatch.h>

static resmgr connect funcs t connect funcs;
static resmgr io funcs t io funcs;
static iofunc attr t attr;

main(int argc, char **argv)
{

/* declare variables we’ll be using */
thread pool attr t pool attr;
resmgr attr t resmgr attr;
dispatch t *dpp;
thread pool t *tpp;
dispatch context t *ctp;
int id;

/* initialize dispatch interface */
if((dpp = dispatch create()) == NULL) {

fprintf(stderr, "%s: Unable to allocate dispatch handle.\n",
argv[0]);

return EXIT FAILURE;
}

/* initialize resource manager attributes */
memset(&resmgr attr, 0, sizeof resmgr attr);
resmgr attr.nparts max = 1;
resmgr attr.msg max size = 2048;

/* initialize functions for handling messages */
iofunc func init(RESMGR CONNECT NFUNCS, &connect funcs,

RESMGR IO NFUNCS, &io funcs);

/* initialize attribute structure used by the device */
iofunc attr init(&attr, S IFNAM | 0666, 0, 0);

/* attach our device name */
id = resmgr attach(dpp, /* dispatch handle */

&resmgr attr, /* resource manager attrs */
"/dev/sample", /* device name */
FTYPE ANY, /* open type */

0, /* flags */
&connect funcs, /* connect routines */
&io funcs, /* I/O routines */
&attr); /* handle */

if(id == -1) {

170 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Multi-threaded resource managers

fprintf(stderr, "%s: Unable to attach name.\n", argv[0]);
return EXIT FAILURE;

}

/* initialize thread pool attributes */
memset(&pool attr, 0, sizeof pool attr);
pool attr.handle = dpp;
pool attr.context alloc = dispatch context alloc;
pool attr.block func = dispatch block;
pool attr.handler func = dispatch handler;
pool attr.context free = dispatch context free;
pool attr.lo water = 2;
pool attr.hi water = 4;
pool attr.increment = 1;
pool attr.maximum = 50;

/* allocate a thread pool handle */
if((tpp = thread pool create(&pool attr,

POOL FLAG EXIT SELF)) == NULL) {
fprintf(stderr, "%s: Unable to initialize thread pool.\n",

argv[0]);
return EXIT FAILURE;

}

/* start the threads, will not return */
thread pool start(tpp);

}

The thread pool attribute (pool attr) controls various aspects of the
thread pool, such as which functions get called when a new thread is
started or dies, the total number of worker threads, the minimum
number, and so on.

Thread pool attributes
Here’s the thread pool attr structure:

typedef struct thread pool attr {
THREAD POOL HANDLE T *handle;
THREAD POOL PARAM T *(*block func)(THREAD POOL PARAM T *ctp);
void (*unblock func)(THREAD POOL PARAM T *ctp);
int (*handler func)(THREAD POOL PARAM T *ctp);
THREAD POOL PARAM T *(*context alloc)(THREAD POOL HANDLE T *handle);
void (*context free)(THREAD POOL PARAM T *ctp);
pthread attr t *attr;
unsigned short lo water;
unsigned short increment;

May 31, 2004 Chapter 4 � Writing a Resource Manager 171

Multi-threaded resource managers  2004, QNX Software Systems Ltd.

unsigned short hi water;
unsigned short maximum;
unsigned reserved[8];

} thread pool attr t;

The functions that you fill into the above structure can be taken from
the dispatch layer (dispatch block(), ...), the resmgr layer
(resmgr block(), ...) or they can be of your own making. If you’re not
using the resmgr layer functions, then you’ll have to define
THREAD POOL PARAM T to some sort of context structure for the
library to pass between the various functions. By default, it’s defined
as a resmgr context t but since this sample is using the dispatch
layer, we needed it to be adispatch context t. We defined it
prior to doing the includes above since the header files refer to it.
THREAD POOL PARAM T

Part of the above structure contains information telling the resource
manager library how you want it to handle multiple threads (if at all).
During development, you should design your resource manager with
multiple threads in mind. But during testing, you’ll most likely have
only one thread running (to simplify debugging). Later, after you’ve
ensured that the base functionality of your resource manager is stable,
you may wish to “turn on” multiple threads and revisit the debug
cycle.

The following members control the number of threads that are
running:

lo water Minimum number of blocked threads.

increment Number of thread to create at a time to achieve
lo water.

hi water Maximum number of blocked threads.

maximum Total number of threads created at any time.

The important parameters specify the maximum thread count and the
increment. The value for maximum should ensure that there’s always

172 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Multi-threaded resource managers

a thread in a RECEIVE-blocked state. If you’re at the number of
maximum threads, then your clients will block until a free thread is
ready to receive data. The value you specify for increment will cut
down on the number of times your driver needs to create threads. It’s
probably wise to err on the side of creating more threads and leaving
them around rather than have them being created/destroyed all the
time.

You determine the number of threads you want to be
RECEIVE-blocked on the MsgReceive() at any time by filling in the
lo water parameter.

If you ever have fewer than lo water threads RECEIVE-blocked, the
increment parameter specifies how many threads should be created at
once, so that at least lo water number of threads are once again
RECEIVE-blocked.

Once the threads are done their processing, they will return to the
block function. The hi water variable specifies an upper limit to the
number of threads that are RECEIVE-blocked. Once this limit is
reached, the threads will destroy themselves to ensure that no more
than hi water number of threads are RECEIVE-blocked.

To prevent the number of threads from increasing without bounds, the
maximum parameter limits the absolute maximum number of threads
that will ever run simultaneously.

When threads are created by the resource manager library, they’ll
have a stack size as specified by the thread stack size parameter. If
you want to specify stack size or priority, fill in pool attr.attr with a
proper pthread attr t pointer.

The thread pool attr t structure contains pointers to several
functions:

block func() Called by the worker thread when it needs to block
waiting for some message.

handler func() Called by the thread when it has unblocked
because it received a message. This function
processes the message.

May 31, 2004 Chapter 4 � Writing a Resource Manager 173

Multi-threaded resource managers  2004, QNX Software Systems Ltd.

context alloc() Called when a new thread is created. Returns a
context that this thread uses to do its work.

context free() Free the context when the worker thread exits.

unblock func() Called by the library to shutdown the thread pool
or change the number of running threads.

Thread pool functions
The library provides the following thread pool functions:

thread pool create()

Initializes the pool context. Returns a thread pool handle (tpp)
that’s used to start the thread pool.

thread pool start()

Start the thread pool. This function may or may not return,
depending on the flags passed to thread pool create().

thread pool destroy()

Destroy a thread pool.

thread pool control()

Control the number of threads.

In the example provided in the multi-threaded resource managers
section, thread pool start(tpp) never returns because we set
the POOL FLAG EXIT SELF bit. Also, the POOL FLAG USE SELF
flag itself never returns, but the current thread becomes part of the
thread pool.

�

If no flags are passed (i.e. 0 instead of any flags), the function returns
after the thread pool is created.

174 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Filesystem resource managers

Filesystem resource managers
In this section:

� Considerations for Filesystem Resource Managers

� Taking over more than one device

� Handling directories

Considerations for filesystem resource managers
Since a filesystem resource manager may potentially receive long
pathnames, it must be able to parse and handle each component of the
path properly.

Let’s say that a resource manager registers the mountpoint /mount/,
and a user types:

ls -l /mount/home

where /mount/home is a directory on the device.

ls does the following:

d = opendir("/mount/home");
while (...) {

dirent = readdir(d);
...

}

Taking over more than one device
If we wanted our resource manager to handle multiple devices, the
change is really quite simple. We would call resmgr attach() for each
device name we wanted to register. We would also pass in an
attributes structure that was unique to each registered device, so that
functions like chmod() would be able to modify the attributes
associated with the correct resource.

Here are the modifications necessary to handle both /dev/sample1
and /dev/sample2:

May 31, 2004 Chapter 4 � Writing a Resource Manager 175

Filesystem resource managers  2004, QNX Software Systems Ltd.

/*
* MOD [1]: allocate multiple attribute structures,
* and fill in a names array (convenience)
*/

#define NumDevices 2
iofunc attr t sample attrs [NumDevices];
char *names [NumDevices] =
{

"/dev/sample1",
"/dev/sample2"

};

main ()
{

...
/*
* MOD [2]: fill in the attribute structure for each device
* and call resmgr attach for each device
*/

for (i = 0; i < NumDevices; i++) {
iofunc attr init (&sample attrs [i],

S IFCHR | 0666, NULL, NULL);
pathID = resmgr attach (dpp, &resmgr attr, name[i],

FTYPE ANY, 0,
&my connect funcs,
&my io funcs,
&sample attrs [i]);

}
...

}

The first modification simply declares an array of attributes, so that
each device has its own attributes structure. As a convenience, we’ve
also declared an array of names to simplify passing the name of the
device in the for loop. Some resource managers (such as
devc-ser8250) construct the device names on the fly or fetch them
from the command line.

The second modification initializes the array of attribute structures
and then calls resmgr attach() multiple times, once for each device,
passing in a unique name and a unique attribute structure.

Those are all the changes required. Nothing in our io read() or
io write() functions has to change — the iofunc-layer default
functions will gracefully handle the multiple devices.

176 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Filesystem resource managers

Handling directories
Up until this point, our discussion has focused on resource managers
that associate each device name via discrete calls to resmgr attach().
We’ve shown how to “take over” a single pathname. (Our examples
have used pathnames under /dev, but there’s no reason you couldn’t
take over any other pathnames, e.g. /MyDevice.)

A typical resource manager can take over any number of pathnames.
A practical limit, however, is on the order of a hundred — the real
limit is a function of memory size and lookup speed in the process
manager.

What if you wanted to take over thousands or even millions of
pathnames?

The most straightforward method of doing this is to take over a
pathname prefix and manage a directory structure below that prefix
(or mountpoint).

Here are some examples of resource managers that may wish to do
this:

� A CD-ROM filesystem might take over the pathname prefix
/cdrom, and then handle any requests for files below that
pathname by going out to the CD-ROM device.

� A filesystem for managing compressed files might take over a
pathname prefix of /uncompressed, and then uncompress disk
files on the fly as read requests arrive.

� A network filesystem could present the directory structure of a
remote machine called “flipper” under the pathname prefix of
/mount/flipper and allow the user to access flipper’s files as if
they were local to the current machine.

And those are just the most obvious ones. The reasons (and
possibilities) are almost endless.

The common characteristic of these resource managers is that they all
implement filesystems. A filesystem resource manager differs from

May 31, 2004 Chapter 4 � Writing a Resource Manager 177

Filesystem resource managers  2004, QNX Software Systems Ltd.

the “device” resource managers (that we have shown so far) in the
following key areas:

1 The RESMGR FLAG DIR flag in resmgr attach() informs the
library that the resource manager will accept matches at or
below the defined mountpoint.

2 The IO CONNECT logic has to check the individual pathname
components against permissions and access authorizations. It
must also ensure that the proper attribute is bound when a
particular filename is accessed.

3 The IO READ logic has to return the data for either the “file”
or “directory” specified by the pathname.

Let’s look at these points in turn.

Matching at or below a mountpoint

When we specified the flags argument to resmgr attach() for our
sample resource manager, we specified a 0, implying that the library
should “use the defaults.”

If we specified the value RESMGR FLAG DIR instead of 0, the library
would allow the resolution of pathnames at or below the specified
mountpoint.

The IO OPEN message for filesystems

Once we’ve specified a mountpoint, it would then be up to the
resource manager to determine a suitable response to an open request.
Let’s assume that we’ve defined a mountpoint of /sample fsys for
our resource manager:

pathID = resmgr attach
(dpp,
&resmgr attr,
"/sample fsys", /* mountpoint */
FTYPE ANY,
RESMGR FLAG DIR, /* it’s a directory */

&connect funcs,
&io funcs,
&attr);

178 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Filesystem resource managers

Now when the client performs a call like this:

fopen ("/sample fsys/spud", "r");

we receive an IO CONNECT message, and our io open handler will
be called. Since we haven’t yet looked at the IO CONNECT message
in depth, let’s take a look now:

struct io connect {
unsigned short type;
unsigned short subtype; /* IO CONNECT * */
unsigned long file type; /* FTYPE * in sys/ftype.h */
unsigned short reply max;
unsigned short entry max;
unsigned long key;
unsigned long handle;
unsigned long ioflag; /* O * in fcntl.h, IO FLAG * */
unsigned long mode; /* S IF* in sys/stat.h */
unsigned short sflag; /* SH * in share.h */
unsigned short access; /* S I in sys/stat.h */
unsigned short zero;
unsigned short path len;
unsigned char eflag; /* IO CONNECT EFLAG * */
unsigned char extra type; /* IO EXTRA * */
unsigned short extra len;
unsigned char path[1]; /* path len, null, extra len */

};

Looking at the relevant fields, we see ioflag, mode, sflag, and access,
which tell us how the resource was opened.

The path len parameter tells us how many bytes the pathname takes;
the actual pathname appears in the path parameter. Note that the
pathname that appears is not /sample fsys/spud, as you might
expect, but instead is just spud — the message contains only the
pathname relative to the resource manager’s mountpoint. This
simplifies coding because you don’t have to skip past the mountpoint
name each time, the code doesn’t have to know what the mountpoint
is, and the messages will be a little bit shorter.

Note also that the pathname will never have relative (. and ..) path
components, nor redundant slashes (e.g. spud//stuff) in it — these
are all resolved and removed by the time the message is sent to the
resource manager.

May 31, 2004 Chapter 4 � Writing a Resource Manager 179

Filesystem resource managers  2004, QNX Software Systems Ltd.

When writing filesystem resource managers, we encounter additional
complexity when dealing with the pathnames. For verification of
access, we need to break apart the passed pathname and check each
component. You can use strtok() and friends to break apart the string,
and then there’s iofunc check access(), a convenient iofunc-layer call
that performs the access verification of pathname components leading
up to the target. (See the Library Reference page for the iofunc open()
for information detailing the steps needed for this level of checking.)

The binding that takes place after the name is validated requires that
every path that’s handled has its own attribute structure passed to
iofunc open default(). Unexpected behavior will result if the wrong
attribute is bound to the pathname that’s provided.

�

Returning directory entries from IO READ

When the IO READ handler is called, it may need to return data for
either a file (if S ISDIR (ocb->attr->mode) is false) or a
directory (if S ISDIR (ocb->attr->mode) is true). We’ve seen
the algorithm for returning data, especially the method for matching
the returned data’s size to the smaller of the data available or the
client’s buffer size.

A similar constraint is in effect for returning directory data to a client,
except we have the added issue of returning block-integral data. What
this means is that instead of returning a stream of bytes, where we can
arbitrarily package the data, we’re actually returning a number of
struct dirent structures. (In other words, we can’t return 1.5 of
those structures; we always have to return an integral number.)

A struct dirent looks like this:

struct dirent {
ino t d ino;
off t d offset;
unsigned short d reclen;
unsigned short d namelen;
char d name [NAME MAX + 1];

};

180 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Filesystem resource managers

The d ino member contains a mountpoint-unique file serial number.
This serial number is often used in various disk-checking utilities for
such operations as determining infinite-loop directory links. (Note
that the inode value cannot be zero, which would indicate that the
inode represents an unused entry.)

The d offset member is typically used to identify the directory entry
itself. For a disk-based filesystem, this value might be the actual
offset into the on-disk directory structure.

Other implementations may assign a directory entry index number (0
for the first directory entry in that directory, 1 for the next, and so on).
The only constraint is that the numbering scheme used must be
consistent between the IO LSEEK message handler and the
IO READ message handler.

For example, if you’ve chosen to have d offset represent a directory
entry index number, this means that if an IO LSEEK message causes
the current offset to be changed to 7, and then an IO READ request
arrives, you must return directory information starting at directory
entry number 7.

The d reclen member contains the size of this directory entry and any
other associated information (such as an optional struct stat

structure appended to the struct dirent entry; see below).

The d namelen parameter indicates the size of the d name parameter,
which holds the actual name of that directory entry. (Since the size is
calculated using strlen(), the \0 string terminator, which must be
present, is not counted.)

So in our io read handler, we need to generate a number of struct
dirent entries and return them to the client.

If we have a cache of directory entries that we maintain in our
resource manager, it’s a simple matter to construct a set of IOVs to
point to those entries. If we don’t have a cache, then we must
manually assemble the directory entries into a buffer and then return
an IOV that points to that.

May 31, 2004 Chapter 4 � Writing a Resource Manager 181

Filesystem resource managers  2004, QNX Software Systems Ltd.

Instead of returning just the struct dirent in the IO READReturning
information
associated

with a
directory
structure

message, you can also return a struct stat. Although this will
improve efficiency, returning the struct stat is entirely optional.
If you don’t return one, the users of your device will then have to call
the stat() function to get that information. (This is basically a usage
question. If your device is typically used in such a way that readdir()
is called, and then stat() is called, it will be more efficient to return
both. See the documentation for readdir() in the Library Reference
for more information.)

The extra struct stat information is returned after each directory
entry:

struct dirent

struct stat

Alignment filler

struct dirent

struct stat

Alignment filler

Returning the optional “struct stat” along with the “struct dirent” entry can

improve efficiency.

The struct stat must be aligned on an 8-byte boundary. The
d reclen member of the struct dirent must contain the size of
both structures, including any filler necessary for alignment.

�

182 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Message types

Message types
Generally, a resource manager receives two types of messages:

� connect messages

� I/O messages.

Connect messages
A connect message is issued by the client to perform an operation
based on a pathname. This may be a message that establishes a longer
term relationship between the client and the resource manager (e.g.
open()), or it may be a message that is a “one-shot” event (e.g.
rename()).

The library looks at the connect funcs parameter (of type
resmgr connect funcs t — see the Library Reference) and calls
out to the appropriate function.

If the message is the IO CONNECT message (and variants)
corresponding with the open() outcall, then a context needs to be
established for further I/O messages that will be processed later. This
context is referred to as an OCB (Open Control Block) — it holds any
information required between the connect message and subsequent
I/O messages.

Basically, the OCB is a good place to keep information that needs to
be stored on a per-open basis. An example of this would be the
current position within a file. Each open file descriptor would have its
own file position. The OCB is allocated on a per-open basis. During
the open handling, you’d initialize the file position; during read and
write handling, you’d advance the file position. For more information,
see the section “The open control block (OCB) structure.”

I/O messages
An I/O message is one that relies on an existing binding (e.g. OCB)
between the client and the resource manager.

May 31, 2004 Chapter 4 � Writing a Resource Manager 183

Resource manager data structures  2004, QNX Software Systems Ltd.

An an example, an IO READ (from the client’s read() function)
message depends on the client’s having previously established an
association (or context) with the resource manager by issuing an
open() and getting back a file descriptor. This context, created by the
open() call, is then used to process the subsequent I/O messages, like
the IO READ.

There are good reasons for this design. It would be inefficient to pass
the full pathname for each and every read() request, for example. The
open() handler can also perform tasks that we want done only once
(e.g. permission checks), rather than with each I/O message. Also,
when the read() has read 4096 bytes from a disk file, there may be
another 20 megabytes still waiting to be read. Therefore, the read()
function would need to have some context information telling it the
position within the file it’s reading from, how much has been read,
and so on.

The resmgr io funcs t structure is filled in a manner similar to
the connect functions structure resmgr connect funcs t.

Notice that the I/O functions all have a common parameter list. The
first entry is a resource manager context structure, the second is a
message (the type of which matches the message being handled and
contains parameters sent from the client), and the last is an OCB
(containing what we bound when we handled the client’s open()
function).

Resource manager data structures
resmgr attr t control structure

The resmgr attr t control structure contains at least the
following:

typedef struct resmgr attr {
unsigned flags;
unsigned nparts max;
unsigned msg max size;
int (*other func)(resmgr context t *, void *msg);
unsigned reserved[4];

} resmgr attr t;

184 Chapter 4 � Writing a Resource Manager May 31, 2004

 2004, QNX Software Systems Ltd. Resource manager data structures

nparts max The number of components that should be
allocated to the IOV array.

msg max size The size of the message buffer.

These members will be important when you start
writing your own handler functions.

If you specify a value of zero for nparts max, the
resource manager library will bump the values to
the minimum usable by the library itself. Why
would you want to set the size of the IOV array?
As we’ve seen in the Getting the resource manager
library to do the reply section, you can tell the
resource manager library to do our replying for us.
We may want to give it an IOV array that points to
N buffers containing the reply data. But, since
we’ll ask the library to do the reply for us, we need
to use its IOV array, which of course would need
to be big enough to point to our N buffers.

flags Lets you change the behavior of the resource
manager interface.

other func Lets you specify a routine to call in cases where
the resource manager gets an I/O message that it
doesn’t understand. (In general, we don’t
recommend that you use this member. For more
information, see the following section.) To attach
an other func, you must set the
RESMGR FLAG ATTACH OTHERFUNC flag.

If the resource manager library gets an I/O
message that it doesn’t know how to handle, it’ll
call the routine specified by the other func
member, if non-NULL. (If it’s NULL, the resource
manager library will return an ENOSYS to the

May 31, 2004 Chapter 4 � Writing a Resource Manager 185

Resource manager data structures  2004, QNX Software Systems Ltd.

client, effectively stating that it doesn’t know what
this message means.)

You might specify a non-NULL value for
other func in the case where you’ve specified some
form of custom messaging between clients and
your resource manager, although the recommended
approach for this is the devctl() function call
(client) and the IO DEVCTL message handler
(server) or a MsgSend*() function call (client) and
the IO MSG message handler (server).

For non-I/O message types, you should use the
message attach() function, which attaches a
message range for the dispatch handle. When a
message with a type in that range is received, the
dispatch block() function calls a user-supplied
function that’s responsible for doing any specific
work, such as replying to the client.

186 Chapter 4 � Writing a Resource Manager May 31, 2004

Chapter 5

Transparent Distributed Processing
Using Qnet

In this chapter. . .
What is Qnet? 189
Benefits of Qnet 189
How does it work? 192
Locating services using GNS 196
Quality of Service (QoS) and multiple paths 205
Designing a system using Qnet 208
Autodiscovery vs static 214
When should you use Qnet, TCP/IP or NFS? 215
Writing a driver for Qnet 218

May 31, 2004 Chapter 5 � Transparent Distributed Processing Using Qnet 187

 2004, QNX Software Systems Ltd. What is Qnet?

QNX Momentics Transparent Distributed Processing (TDP) allows
you to leverage the processing power of your entire network by
sharing resources and services transparently over the network. TDP
uses Neutrino native network protocol Qnet to link the devices in your
network.

What is Qnet?
Qnet is QNX Neutrino’s protocol for distributed networking. Using
Qnet, you can build a transparent distributed-processing platform that
is fast and scalable. This is accomplished by extending the Neutrino
message passing architecture over a network. This creates a group of
tightly integrated Neutrino nodes (systems) or CPUs — a Neutrino
native network.

A program running on a Neutrino node in this Qnet network can
transparently access any resource, whether it’s a file, device, or
another process. These resources reside on any other node (a
computer, a workstation or a CPU in a system) in the Qnet network.
The Qnet protocol builds an optimized network that provides a fast
and seamless interface between Neutrino nodes.

For a high-level description, see Native Networking (Qnet) in the
System Architecture guide; for information about what the user needs
to know about networking, see Using Qnet for Transparent
Distributed Processing in the Neutrino User’s Guide.

For more advanced topics and programming hints on Qnet, see
Advanced Qnet Topics appendix.

�

Benefits of Qnet
The Qnet protocol extends interprocess communication (IPC)
transparently over a network of microkernels. This is done by taking
advantage of the Neutrino’s message-passing paradigm. Message
passing is the central theme of Neutrino that manages a group of
cooperating processes by routing messages. This enhances the

May 31, 2004 Chapter 5 � Transparent Distributed Processing Using Qnet 189

Benefits of Qnet  2004, QNX Software Systems Ltd.

efficiency of all transactions among all processes throughout the
system.

For more information about message passing and Qnet, see Advanced
Qnet Topics appendix.

What works best
The Qnet protocol is deployed as a network of trusted machines. It
lets these machines share all their resources efficiently with minimum
overhead. This is accomplished by allowing a client process to send a
message to a remote manager in the same way that it sends a message
to a local one. See the “How does it work?” section of this chapter.
For example, using Qnet, you can use the Neutrino utilities (cp, mv
and so on) to manipulate files anywhere on the Qnet Network as if
they were on your machine — by communicating with the filesystem
manager on the remote nodes. In addition, the Qnet protocol doesn’t
do any authentication of remote requests. Files are protected by the
normal permissions that apply to users and groups (see “File
ownership and permissions” in Working with Files in the User’s
Guide).

Qnet, through its distributed processing platform, lets you do the
following tasks efficiently:

� access your remote filesystem

� scale your application with unprecedented ease

� write applications using a collection of cooperating processes that
communicate transparently with each other using Neutrino
message passing

� extend your application easily beyond a single processor or
symmetric multi-processor to several single processor machines
and distribute your processes among these processors

� divide your large application into several processes that coordinate
their work using messages

190 Chapter 5 � Transparent Distributed Processing Using Qnet May 31, 2004

 2004, QNX Software Systems Ltd. Benefits of Qnet

� debug your application easily for processes that communicate at a
very low level, and that use Neutrino’s memory protection feature

� use builtin remote procedure call functionality.

Since Qnet extends Neutrino message passing over the network, other
forms of interprocess communication (e.g. signals, message queues,
and named semaphores) also work over the network.

What type of application is well-suited for Qnet?
Any application that inherently needs more than one computer, due to
its processing or physical layout requirements, could likely benefit
from Qnet.

For example, you can apply Qnet networking successfully in many
industrial-automation applications (e.g. a fabrication plant, with
computers scattered around). From an application standpoint, Qnet
provides an efficient form of distributed computing where all
computers look like one big computer because Qnet extends the
fundamental Neutrino message passing across all the computers.

Another useful application is in the telecom space, where you need to
implement large routers that have several processors. From an
architectural standpoint, these routers generally have some interface
cards and a central processor that runs a set of server processes. Each
interface card, in turn, has a processor that runs another set of
interface (e.g. client) processes. These client processes communicate
via Qnet using Neutrino message passing with the server processes on
the central processor, as if they were all running on the same
processor. The scalability of Qnet allows more and more interface
cards to be plugged into the router, without any code changes required
to the application.

Qnet drivers
In order to support different hardware, you may need to write a driver
for Qnet. The driver essentially performs three functions: transmits a
packet, receives a packet, and resolves the remote node’s interface.

May 31, 2004 Chapter 5 � Transparent Distributed Processing Using Qnet 191

How does it work?  2004, QNX Software Systems Ltd.

In most cases, you don’t need a specific driver for your hardware, for
example, for implementing a local area network using Ethernet
hardware or for implementing TCP/IP networking that require IP
encapsulation. In these cases, the underlying io-net and tcpip

layer is sufficient to interface with the Qnet layer for transmitting and
receiving packets. You use standard Neutrino drivers to implement
Qnet over a local area network or to encapsulate Qnet messages in IP
(TCP/IP) to allow Qnet to be routed to remote networks.

But suppose you want to set up a very tightly coupled network
between two CPUs over a super-fast interconnect (e.g. PCI or
RapidIO). You can easily take advantage of the performance of such a
high-speed link, because Qnet can talk directly to your hardware
driver. There’s no io-net layer in this case. All you need is a little
code at the very bottom of Qnet layer that understands how to transmit
and receive packets. This is simple as there is a standard internal API
between the rest of Qnet and this very bottom portion, the driver
interface. Qnet already supports different packet transmit/receive
interfaces, so adding another is reasonably straightforward. The
transport mechanism of Qnet (called the L4) is quite generic and can
be configured for different size MTUs, whether or not ACK packets
or CRC checks are required, to take the full advantage of your link’s
advanced features (e.g. guaranteed reliability).

For details about how to write a driver, see the section on “Writing a
driver for Qnet” later in this chapter.

The QNX Momentics Transparent Distributed Processing Source Kit
(TDP SK) is available to help you develop custom drivers and/or
modify Qnet components to suit your particular application. For more
information, contact your sales representative.

How does it work?
As explained in the System Architecture guide, Neutrino client and
server applications communicate by Neutrino message passing.
Function calls that need to communicate with a manager application,
such as the POSIX functions open(), write(), read(), ioctl(), or other
functions such as devctl() are all built on Neutrino message passing.

192 Chapter 5 � Transparent Distributed Processing Using Qnet May 31, 2004

 2004, QNX Software Systems Ltd. How does it work?

Qnet allows these messages to be sent over a network. If these
messages are being sent over a network, how is a message sent to a
remote manager vs a local manager?

When you access local devices or manager processes (such as a serial
device, TCP/IP socket, or mqueue), you access these devices by
opening a pathname under /dev. This may be apparent in the
application source code:

/*Open a serial device*/
fd = open("/dev/ser1",O RDWR....);

or it may not. For example, when you open a socket:

/*Create a UDP socket*/
sock = socket(AF INET, SOCK DGRAM, 0);

The socket() function opens a pathname under /dev called
/dev/socket/2 (in the case of AF INET, which is address family
two). The socket() function call uses this pathname to establish a
connection with the socket manager (npm-tcpip.so), just as the
open() call above established a connection to the serial device
manager (devc-ser8250).

The magic of this is that you access all managers by the name that
they added to the pathname space. For more information, see the
Writing a Resource Manager chapter.

When you enable the Qnet native network protocol, the pathname
spaces of all the nodes in your Qnet network are added to yours. The
pathname space of remote nodes appears (by default) under the prefix
/net.

Under QNX 4, you use a double slash followed by a node number to
refer to another node.

�

The /net directory is created by the Qnet protocol manager
(npm-qnet.so). If, for example, the other node is called node1, its
pathname space appears as follows:

May 31, 2004 Chapter 5 � Transparent Distributed Processing Using Qnet 193

How does it work?  2004, QNX Software Systems Ltd.

/net/node1/dev/socket
/net/node1/dev/ser1
/net/node1/home
/net/node1/bin
....

So with Qnet, you can now open pathnames (files or managers) on
other remote Qnet nodes, in the same way that you open files locally.
This means that you can access regular files or manager processes on
other Qnet nodes as if they were executing on your local node.

First, let’s see some basic examples of Qnet use:

� To display the contents of a file on another machine (node1), you
can use less, specifying the path through /net:
less /net/node1/etc/TIMEZONE

� To get system information about all of the remote nodes that are
listed in /net, use pidin with the net argument:
$ pidin net

� You can use pidin with the -n option to get information about the
processes on another machine:
pidin -n node1 | less

� You can even run a process on another machine, using the -f
option to the on command:
on -f node date

In all of these uses, the application source or the libraries (for
example libc) they depend on, simply open the pathnames under
/net. For example, if you wish to make use of a serial device on
another node node1, perform an open() function with the pathname
/net/node1/dev/ser1 i.e.

fd = open("/net/node1/dev/ser1",O RDWR...);

194 Chapter 5 � Transparent Distributed Processing Using Qnet May 31, 2004

 2004, QNX Software Systems Ltd. How does it work?

As you can see, the code required for accessing remote resources and
local resources is identical. The only change is the pathname used.

In the TCP/IP socket() case, it’s the same, but implemented
differently. In the socket case, you don’t directly open a filename.
This is done inside the socket library. In this case, an environment
variable is provided to set the pathname for the socket call (the SOCK
environment variable — see npm-tcpip.so).

Some other applications are:

Remote filesystem access

In order to access /tmp/file1 file on node1

remotely from another node, use
/net/node1/tmp/file1 in open().

Message queue

You can create or open a message queue by using
mq open(). The mqueue manager must be running.
When a queue is created, it appears in the pathname
space under /dev/mqueue. So, you can access
/dev/mqueue on node1 from another node by
using /net/node1/dev/mqueue.

Semaphores Using Qnet, you can create or access named
semaphores in another node. For example, use
/net/node1/semphore location in the
sem open() function. This creates or accesses the
named semaphore in node1. Note that the mqueue
manager must be running for applications in order to
use named semaphores.

This brings up an important issue for the client application or libraries
that a client application uses. If you think that your application will be
distributed over a network, you will want to include the capability to
specify another pathname for connecting to your services. This way,
your application will have the flexibility of being able to connect to

May 31, 2004 Chapter 5 � Transparent Distributed Processing Using Qnet 195

Locating services using GNS  2004, QNX Software Systems Ltd.

local or remote services via a user-configuration adjustment. This
could be as simple as the ability to pass a node name. In your code,
you would add the prefix /net/node name to any pathname that may
be opened on the remote node. In the local case, or default case if
appropriate, you could omit this prefix when accessing local
managers.

In this example, you’re using standard resource managers, such as
would be developed using the resource manager framework (see the
Writing a Resource Manager chapter). For further information, or for
a more in-depth view of Qnet, see Advanced Qnet Topics appendix.

There is another design issue to contend with at this point: the above
design is a static one. If you have services at known locations, or the
user will be placing services at known locations, then this may be
sufficient. It would be convenient, though, if your client application
could locate these services automatically, without the need to know
what nodes exist in the Qnet network, or what pathname they’ve
added to the namespace. You can now use the Global Name Service
(gns) manager to locate services with an arbitrary name representing
that service. For example, you can locate a service with a name such
as printer instead of opening a pathname of
/net/node/dev/par1 for a parallel port device. The printer
name locates the parallel port manager process, whether it’s running
locally or remotely.

Locating services using GNS
You use gns, the Global Name Service or GNS manager to locate
services. GNS is a standalone resource manager. With the help of this
utility, an application can advertise, look up, and use (connect to) a
service across Qnet network, without knowing the details of where
the service is, or who the provider is.

Different modes of gns

The gns utility runs in two different modes: server- and client-mode.
A server-mode manager is a central database that stores advertised
services, and handles lookup and connect requests. A client-mode

196 Chapter 5 � Transparent Distributed Processing Using Qnet May 31, 2004

 2004, QNX Software Systems Ltd. Locating services using GNS

manager relays advertisement, lookup, and connect requests between
local application and the GNS server(s).

For more information on starting and configuring GNS, see the gns
utility in the Utilities Reference.

Here’s a simple layout for a GNS client and a GNS server distributed
over a network:

Name Path

printer /net/node1/dev/name/global/printer

... ...

GNS client GNS server

Application:Manager:

name_attach
("printer")

name_open
("printer")

Global Name
Service

Qnet Qnet

/dev/par1

node1 node2

A simple GNS setup.

In this example, there’s one gns client and one gns server. As far as
an application is concerned, the GNS service is one entity. The
client-server relationship is only between gns processes (we’ll
examine this later). The server GNS process keeps track of the
globally registered services, while the client GNS process on the other
node relays gns requests for that node to the gns server.

May 31, 2004 Chapter 5 � Transparent Distributed Processing Using Qnet 197

Locating services using GNS  2004, QNX Software Systems Ltd.

When a client and server application interacts with the GNS service,
they use the following APIs:

Server

name attach()

Register your service with the GNS server.

name detach()

Deregister your service with the GNS server.

Client

name open() Open a service via the GNS server.

name close() Close the service opened with name open().

Registering a Service

In order to use GNS, you need to first register the manager process
with GNS, by calling name attach().

When you register a service, you need to decide whether to register
this manager’s service locally or globally. If you register your service
locally, only the local node is able to see this service; another node is
not able to see it. This allows you to have client applications that look
for service names rather than pathnames on the node it is executing
on. This document highlights registering services globally.

When you register GNS service globally, any node on the network
running a client application can use this service, provided the node is
running a gns client process and is connected to the gns server, along
with client applications on the nodes running the gns server process.
You can use a typical name attach() call as follows:

if ((attach = name attach(NULL, "printer", NAME FLAG ATTACH GLOBAL)) == NULL) {

return EXIT FAILURE;
}

First thing you do is to pass the flag NAME FLAG ATTACH GLOBAL.
This causes your service to be registered globally instead locally.

198 Chapter 5 � Transparent Distributed Processing Using Qnet May 31, 2004

 2004, QNX Software Systems Ltd. Locating services using GNS

The last thing to note is the name. This is the name that clients search
for. This name can have a single level, as above, or it can be nested,
such as printer/ps. The call looks like this:

if ((attach = name attach(NULL, "printer/ps", NAME FLAG ATTACH GLOBAL)) == NULL) {
return EXIT FAILURE;

}

Nested names have no impact on how the service works. The only
difference is how the services are organized in the filesystem
generated by gns. For example:

$ ls -l /dev/name/global/

total 2
dr-xr-xr-x 0 root techies 1 Feb 06 16:20 net

dr-xr-xr-x 0 root techies 1 Feb 06 16:21 printer

$ ls -l /dev/name/global/printer

total 1

dr-xr-xr-x 0 root techies 1 Feb 06 16:21 ps

The first argument to the name attach() function is the dispatch
handle. You pass a dispatch handle to name attach() once you’ve
already created a dispatch structure. If this argument is NULL, a
dispatch structure is created automatically.

What happens if more than one instance of the server application (or
two or more applications that register the same service name) are
started and registered with GNS? This is treated as a redundant
service. If one application terminates or detaches its service, the other
service takes over. However, it’s not a round-robin configuration; all
requests go to one application until it’s no longer available. At that
point, the requests resolve to another application that had registered
the same service. There is no guaranteed ordering.

There’s no credential restriction for applications that are attached as
local services. An application can attach a service globally only if the
application has root privilege.

When your application is to terminate, or you wish not to provide
access to the service via GNS, you should call name detach(). This
removes the service from GNS.

For more information, see name attach() and name detach().

May 31, 2004 Chapter 5 � Transparent Distributed Processing Using Qnet 199

Locating services using GNS  2004, QNX Software Systems Ltd.

Your client should call name open() to locate the service. If you wish
to locate a global service, you need to pass the flag
NAME FLAG ATTACH GLOBAL:

if ((fd = name open("printer", NAME FLAG ATTACH GLOBAL)) == -1) {
return EXIT FAILURE;

}

or:

if ((fd = name open("printer/ps", NAME FLAG ATTACH GLOBAL)) == -1) {
return EXIT FAILURE;

}

If you don’t specify this flag, GNS looks only for a local service. The
function returns an fd that you can then use to access the service
manager by sending messages, just as if you it had opened the service
directly as /dev/par1, or /net/node/dev/par1.

GNS Path namespace

A service is represented by a path namespace (without a leading “/”)
and is registered under /dev/name/global or /dev/name/local,
depending on how it attaches itself. Every machine running a gns
client or server on the same network has the same view of the
/dev/name/global namespace. Each machine has its own local
namespace /dev/name/local that reflects its own local services.

Here’s an example after a service called printer has attached itself
globally:

$ ls -l /dev/name/global/

total 2

dr-xr-xr-x 0 root techies 1 Feb 06 16:20 net
dr-xr-xr-x 0 root techies 1 Feb 06 16:21 printer

Deploying the gns processes

When you deploy the gns processes on your network, you start the
gns process in two modes: server and client. You need at least one
gns process running as a server on one node, and you can have one or
more gns clients running on the remaining nodes. The role of the gns

200 Chapter 5 � Transparent Distributed Processing Using Qnet May 31, 2004

 2004, QNX Software Systems Ltd. Locating services using GNS

server process is to maintain the database that stores the advertised
services. The role of a client gns process is to relay requests from its
node to the gns server process on the other node. A gns process must
be running on each node that wishes to access GNS.

It’s possible to start multiple global name service managers (gns
process) in server mode on different nodes. You can deploy
server-mode gns processes in two ways: as redundant servers, or as
servers that handle two or more different global domains.

In the first scenario, you have two or more servers with identical
database information. The gns client processes are started with
contact information for both servers. Operations are then sent to all
gns server processes. The gns servers, however, don’t communicate
with each other. This means that if an application on one gns server
node wants to register a global service, another gns server can’t do it.
This doesn’t affect other applications on the network, because when
they connect to that service, both GNS servers are contacted.

May 31, 2004 Chapter 5 � Transparent Distributed Processing Using Qnet 201

Locating services using GNS  2004, QNX Software Systems Ltd.

/dev/par1

GNS server

node1 node2

Name Path

printer /net/node3/dev/name/global/printer

... ...

GNS server

Manager

GNS client

node3

Application

GNS client

node4

Application

GNS client

node5

Name Path

printer /net/node3/dev/name/global/printer

... ...

A redundant GNS setup.

You don’t have to start all redundant gns servers at the same time.
You can start one gns server process first, and then start a second gns

server process at a later time. In this case, use the special option -s
backup server on the second gns server process to make it download
the current service database from another node that’s already running
the gns server process. When you do this, the clients connected to the

202 Chapter 5 � Transparent Distributed Processing Using Qnet May 31, 2004

 2004, QNX Software Systems Ltd. Locating services using GNS

first node (that’s already running the gns server process) are notified
of the existence of the other server.

In the second scenario, you maintain more than one global domain.
For example, assume you have two nodes, each running a gns server
process. You also have a client node that’s running a gns client
process and is connecting to one of the servers. A different client
node connects to the other server. Each server node has unique
services registered by each client. A client connected to server node1
can’t see the service registered on the server node2.

May 31, 2004 Chapter 5 � Transparent Distributed Processing Using Qnet 203

Locating services using GNS  2004, QNX Software Systems Ltd.

/dev/par1

GNS server

node2

Name Path

printer /net/node5/dev/name/global/printer

... ...

node1

GNS server

Manager

GNS client

node3

Application

GNS client

node4

Name Path

printer /net/node3/dev/name/global/printer

... ...

/dev/par1

GNS client

node5

Manager

GNS client

node6

Application

Separate global domains.

204 Chapter 5 � Transparent Distributed Processing Using Qnet May 31, 2004

 2004, QNX Software Systems Ltd. Quality of Service (QoS) and multiple paths

What is demonstrated in each scenario is that it’s the client that
determines whether a server is acting as a redundant server or not. If a
client is configured to connect to two or more servers, then those
servers are redundant servers for that client’s services. The client can
see the services that exist on those servers, and it registers its services
with those servers.

There’s no limit to the number of server mode gns processes that can
be run on the network. Increasing the number of servers, however, in
a redundant environment can increase network use and make gns
function calls such as name attach() more expensive as clients send
requests to each server that exists in its configuration. It’s
recommended that you run only as many gns servers in a redundant
configuration as your system design requires and no more than that.

For more information, see gns documentation in the Utilities
Reference.

Quality of Service (QoS) and multiple paths
Quality of Service (QoS) is an issue that often arises in
high-availability networks as well as realtime control systems. In the
Qnet context, QoS really boils down to transmission media selection
— in a system with two or more network interfaces, Qnet chooses
which one to use, according to the policy you specify.

If you have only a single network interface, the QoS policies don’t
apply at all.

�

QoS policies

Qnet supports transmission over multiple networks and provides the
following policies for specifying how Qnet should select a network
interface for transmission:

loadbalance (the default)

Qnet is free to use all available network links, and
shares transmission equally among them.

May 31, 2004 Chapter 5 � Transparent Distributed Processing Using Qnet 205

Quality of Service (QoS) and multiple paths  2004, QNX Software Systems Ltd.

preferred Qnet uses one specified link, ignoring all other
networks (unless the preferred one fails).

exclusive Qnet uses one — and only one — link, ignoring all
others, even if the exclusive link fails.

loadbalance

Qnet decides which links to use for sending packets, depending on
current load and link speeds as determined by io-net. A packet is
queued on the link that can deliver the packet the soonest to the
remote end. This effectively provides greater bandwidth between
nodes when the links are up (the bandwidth is the sum of the
bandwidths of all available links) and allows a graceful degradation of
service when links fail.

If a link does fail, Qnet switches to the next available link. By default,
this switch takes a few seconds the first time, because the network
driver on the bad link will have timed out, retried, and finally died.
But once Qnet “knows” that a link is down, it will not send user data
over that link. (This is a significant improvement over the QNX 4
implementation.)

The time required to switch to another link can be set to whatever is
appropriate for your application using command line options of Qnet.
See npm-qnet-l4 lite.so documentation.

Using these options, you can create a redundant behavior by
minimizing the latency that occurs when switching to another
interface in case one of the interfaces fail.

While load-balancing among the live links, Qnet sends periodic
maintenance packets on the failed link in order to detect recovery.
When the link recovers, Qnet places it back into the pool of available
links.

The loadbalance QoS policy is the default.�

206 Chapter 5 � Transparent Distributed Processing Using Qnet May 31, 2004

 2004, QNX Software Systems Ltd. Quality of Service (QoS) and multiple paths

preferred

With this policy, you specify a preferred link to use for transmissions.
Qnet uses only that one link until it fails. If your preferred link fails,
Qnet then turns to the other available links and resumes transmission,
using the loadbalance policy.

Once your preferred link is available again, Qnet again uses only that
link, ignoring all others (unless the preferred link fails).

exclusive

You use this policy when you want to lock transmissions to only one
link. Regardless of how many other links are available, Qnet will
latch onto the one interface you specify. And if that exclusive link
fails, Qnet will not use any other link.

Why would you want to use the exclusive policy? Suppose you
have two networks, one much faster than the other, and you have an
application that moves large amounts of data. You might want to
restrict transmissions to only the fast network, in order to avoid
swamping the slow network if the fast one fails.

Specifying QoS policies

You specify the QoS policy as part of the pathname. For example, to
access /net/node1/dev/ser1 with a QoS of exclusive, you
could use the following pathname:

/net/node1˜exclusive:en0/dev/ser1

The QoS parameter always begins with a tilde (˜) character. Here
we’re telling Qnet to lock onto the en0 interface exclusively, even if it
fails.

Symbolic links

You can set up symbolic links to the various “QoS-qualified”
pathnames:

ln -sP /net/note1˜preferred:en1 /remote/sql server

May 31, 2004 Chapter 5 � Transparent Distributed Processing Using Qnet 207

Designing a system using Qnet  2004, QNX Software Systems Ltd.

This assigns an “abstracted” name of /remote/sql server to the
node node1 with a preferred QoS (i.e. over the en1 link).

You can’t create symbolic links inside /net because Qnet takes over
that namespace.

�

Abstracting the pathnames by one level of indirection gives you
multiple servers available in a network, all providing the same
service. When one server fails, the abstract pathname can be
“remapped” to point to the pathname of a different server. For
example, if node1 fails, then a monitoring program could detect this
and effectively issue:

rm /remote/sql server
ln -sP /net/magenta /remote/sql server

This removes node1 and reassigns the service to node2. The real
advantage here is that applications can be coded based on the abstract
“service name” rather than be bound to a specific node name.

For a real world example of choosing appropriate QoS policy in an
application, see the following section on designing a system using
Qnet.

Designing a system using Qnet
The product

In order to explain the design of a system that takes advantage of the
power of Qnet by performing distributed processing, consider a
multiprocessor hardware configuration that is suitable for a typical
telecom box. This configuration has a generic controller card and
several data cards to start with. These cards are interconnected by a
high-speed transport (HST) bus. The controller card configures the
box by communicating with the data cards, and establishes/enables
data transport in and out of the box (i.e. data cards) by routing
packets.

208 Chapter 5 � Transparent Distributed Processing Using Qnet May 31, 2004

 2004, QNX Software Systems Ltd. Designing a system using Qnet

Controller
card

Data
cards

High-speed
transport

The typical challenges to consider for this type of box include:

� Configuring the data cards

� Configuring the controller card

� Replacing a data card

� Enhancing reliability via multiple transport buses

� Enhancing reliability via multiple controller cards.

Developing your distributed system
You need several pieces of software components (along with the
hardware) to build your distributed system. Before going into further
details, you may review the following sections from Using Qnet for
Transparent Distributed Processing chapter in the Neutrino User’s
Guide:

� Software components for Qnet networking

� Starting Qnet

� Conventions for naming nodes.

Configuring the data cards
Power up the data cards to start procnto and qnet in sequence.
These data cards need a minimal amount of flash memory (e.g.
typically 1 MB) to store the Neutrino image.

In the buildfile of the data cards, you should link the directories of the
data cards to the controller cards as follows:

May 31, 2004 Chapter 5 � Transparent Distributed Processing Using Qnet 209

Designing a system using Qnet  2004, QNX Software Systems Ltd.

[type=link] /bin = /net/cc0/bin
[type=link] /sbin = /net/cc0/sbin
[type=link] /usr = /net/cc0/usr

where cc0 is the name of the the controller card.

Assuming that the data card has a console and shell prompt, try the
following commands:

$ ls /net

You get a list of boards running Neutrino and Qnet:

cc0 dc0 dc1 dc2 dc3

Or, use the following command on a data card:

$ ls /net/cc0

You get the following output (i.e. the contents of the root of the
filesystem for the controller card):

. .inodes mnt0 tmp

.. .longfilenames mnt1 usr

.altboot bin net var

.bad blks dev proc xfer

.bitmap etc sbin

.boot home scratch

Configuring the controller card
Configure the controller card in order to access different servers
running on it — either by the data cards, or by the controller card
itself. Make sure that the controller card has a larger amount of flash
memory than the data cards do. This flash memory contains all the
binaries, data and configuration files that the applications on the data
cards access as if they were on a local storage device.

Call the following API to communicate with the mqueue server by
any application:

210 Chapter 5 � Transparent Distributed Processing Using Qnet May 31, 2004

 2004, QNX Software Systems Ltd. Designing a system using Qnet

mq open("/net/cc0/dev/mqueue/app q",)

A simple variation of the above command requires that you run the
following command during initialization:

$ ln -s /net/cc0/dev/mqueue /mq

Then all applications, whether they’re running on the data cards or on
the controller card, can call:

mq open("/mq/app q",)

Similarly, applications can even utilize the TCP/IP stack running on
the controller card.

Enhancing reliability via multiple transport buses
Qnet provides design choices to improve the reliability of a
high-speed transport bus, most often a single-point of failure in such
type of telecom box.

High-speed
transport

HST0

HST1

Controller
card

Data
cards

You can choose between different transport selections to achieve a
different Quality of Service (or QoS), such as:

� load-balance — no interface specified

� preferred — specify an interface, but allow failover

� exclusive — specify an interface, no failover.

May 31, 2004 Chapter 5 � Transparent Distributed Processing Using Qnet 211

Designing a system using Qnet  2004, QNX Software Systems Ltd.

These selections allow you to control how data will flow via different
transports.

In order to do that, first, find out what interfaces are available. Use the
following command at the prompt of any card:

ls /dev/io-net

You see the following:

hs0 hs1

These are the interfaces available: HST 0 and HST 1.

Select your choice of transport as follows:

Use this command: To select this transport:

ls /net/cc0 Loadbalance, the default
choice

ls /net/cc0˜preferred:hs0 Preferred. Try HST 0 first; if
that fails, then transmit on
HST 1.

ls /net/cc0˜exclusive:hs0 Exclusive. Try HST 0 first. If
that fails, terminate
transmission.

You can have another economical variation of the above hardware
configuration:

High-speed transport

Controller
card

Data
cards

Low-speed transport

212 Chapter 5 � Transparent Distributed Processing Using Qnet May 31, 2004

 2004, QNX Software Systems Ltd. Designing a system using Qnet

This configuration has asymmetric transport: a High-Speed Transport
(HST) and a reliable and economical Low-Speed Transport (LST).
You might use the HST for user data, and the LST exclusively for
out-of-band control (which can be very helpful for diagnosis and
during booting). For example, if you use generic Ethernet as the LST,
you could use a bootp ROM on the data cards to economically boot
— no flash would be required on the data cards.

With asymmetric transport, use of the QoS policy as described above
likely becomes even more useful. You might want some applications
to use the HST link first, but use the LST if the HST fails. You might
want applications that transfer large amounts of data to exclusively
use the HST, to avoid swamping the LST.

Redundancy and scalability using multiple controller
cards

Redundancy

The reliability of such a telecom box also hinges on the controller
card, that’s a critical component and certainly a potential SPOF
(single point of failure). You can increase the reliability of this
telecom box by using additional controller cards.

The additional controller card is for redundancy. Add another
controller card as shown below:

Controller
card

Data
cards

High-speed
transport

Controller
card

Once the (second) controller card is installed, the challenge is in the
determination of the primary controller card. This is done by the
software running on the controller cards. By default, applications on
the data cards access the primary controller card. Assuming cc0 is

May 31, 2004 Chapter 5 � Transparent Distributed Processing Using Qnet 213

Autodiscovery vs static  2004, QNX Software Systems Ltd.

the primary controller card, Use the following command to access this
card in /cc directory:

ln -s /net/cc0 /cc

The above indirection makes communication between data card and
controller card transparent. In fact, the data cards remain unaware of
the number of controller cards, or which card is the primary controller
card.

Applications on the data cards access the primary controller card. In
the event of failure of the primary controller card, the secondary
controller card takes over. The applications on the data cards redirect
their communications via Qnet to the secondary controller card.

Scalability

You can also scale your resources to run a particular server
application using additional controller cards. For example, if your
controller card (either a SMP or non-SMP board) doesn’t have the
necessary resources (e.g. CPU cycle, memory), you could increase
the total processor and box resources by using additional controller
cards. Qnet transparently distributes the (load of) application servers
across two or more controller cards.

Autodiscovery vs static
When you’re creating a network of Neutrino hosts via Qnet, one thing
you must consider is how they locate and address each other. This
falls into two categories: autodiscovery and static mappings.

The decision to use one or the other can depend on security and ease
of use.

214 Chapter 5 � Transparent Distributed Processing Using Qnet May 31, 2004

 2004, QNX Software Systems Ltd. When should you use Qnet, TCP/IP or NFS?

The discussion in this section applies only to
npm-qnet-l4 lite.so (default). The other shared object
npm-qnet-compat.so doesn’t have the same functionality. You
may also find the information on available Qnet resolvers in the
description of npm-qnet-l4 lite.so.

�

The autodiscovery mechanism (i.e. ndp — Node Discovery Protocol;
see npm-qnet-l4 lite.so for more information) allows Qnet
nodes to discover each other automatically on a transport that supports
broadcast. This is a very convenient and dynamic way to build your
network, and doesn’t require user intervention to access a new node.

One issue to consider is whether or not the physical link being used
by your Qnet nodes is secure. Can another untrusted Qnet node be
added to this physical network of Qnet nodes? If the answer is yes,
you should consider another resolver (file: filename). If you use
this resolver, only the nodes listed in the file can be accessed. This file
consists of node names and a string representing the addressing
scheme of your transport layer. In the Ethernet case, this is the unique
MAC address of the Qnet node listed. If you’re using the file resolver
for this purpose, you also want to specify the option auto add=0 in
npm-qnet-l4 lite.so. This keeps your node from responding to
node discovery protocol requests and adding a host that isn’t listed in
your resolver file.

Another available resolver, dns lets you access another Qnet node if
you know its name (IP). This is used in combination with the IP
transport (npm-qnet-compat.so option bind=ip). Since it doesn’t
have an auto add feature as the ndp resolver does, you don’t need
to specify a similar Qnet option. Your Qnet node resolve the remote
Qnet node’s name only via the file used by the Qnet file resolver.

When should you use Qnet, TCP/IP or NFS?
In your network design, when should you use Qnet, TCP/IP, or NFS?
The decision depends on what your intended application is and what
machines you need to connect.

May 31, 2004 Chapter 5 � Transparent Distributed Processing Using Qnet 215

When should you use Qnet, TCP/IP or NFS?  2004, QNX Software Systems Ltd.

The advantage of using Qnet is that it lets you build a truly distributed
processing system with incredible scalability. For many applications,
it could be a benefit to be able to share resources among your
application systems (nodes). Qnet implements a native network
protocol to build this distributed processing system.

The basic purpose of Qnet is to extend Neutrino message passing to
work over a network link. It lets these machines share all their
resources with little overhead. A Qnet network is a trusted
environment where resources are tightly integrated, and remote
manager processes can be accessed transparently. For example, with
Qnet, you can use the Neutrino utilities (cp, mv and so on) to
manipulate files anywhere on the Qnet network as if they were on
your machine. Because it’s meant for a group of trusted machines
(such as you’d find in an embedded system), Qnet doesn’t do any
authentication of remote requests. Also, the application really doesn’t
know whether it’s accessing a resource on a remote system; and most
importantly, the application doesn’t need any special code to handle
this capability.

If you’re developing a system that requires remote procedure calling
(RPC), or remote file access, Qnet provides this capability
transparently. In fact, you use a form of remote procedure call (a
Neutrino message pass) every time you access a manager on your
Neutrino system. Since Qnet creates an environment where there’s no
difference between accessing a manager locally or remotely, remote
procedure calling (capability) is builtin. You don’t need to write
source code to distribute your services. Also, since you are sharing
the filesystem between systems, there’s no need for NFS to access
files on other Neutrino hosts (of the same endian), because you can
access remote filesystem managers the same way you access your
local one. Files are protected by the normal permissions that apply to
users and groups (see “File ownership and permissions” in the
Working with Files chapter in the User’s Guide).

There are several ways to control access to a Qnet node, if required:

� Bind Qnet to a specific network interface; this ensures that the
protocol functions only on that specific interface.

216 Chapter 5 � Transparent Distributed Processing Using Qnet May 31, 2004

 2004, QNX Software Systems Ltd. When should you use Qnet, TCP/IP or NFS?

� Use maproot and mapany options to control — in a limited way
— what other users can do on your system.

� Use a static list of your peer systems instead of dynamically
discovering them.

You can also configure Qnet to be used on a local LAN, or routed
over to a WAN if necessary (encapsulated in the IP protocol).

Depending on your system design, you may need to include TCP/IP
protocols along with Qnet, or instead of Qnet. For example, you could
use a TCP/IP-based protocol to connect your Qnet cluster to a host
that’s running another operating system, such as a monitoring station
that controls your system, or another host providing remote access to
your system. You’ll probably want to deploy standard protocols (e.g
SNMP, HTTP, or a telnet console) for this purpose. If all the hosts
in your system are running different operating systems, then your
likely choice to connect them would be TCP/IP. The TCP/IP protocols
typically do authentication to control access; it’s useful for connecting
machines that you don’t necessarily trust.

QNX
Neutrino

Windows
QNX

Neutrino

QNX
Neutrino

Monitoring
host

TCP/IP
(SNMP,
HTTP)

Qnet

May 31, 2004 Chapter 5 � Transparent Distributed Processing Using Qnet 217

Writing a driver for Qnet  2004, QNX Software Systems Ltd.

You can also build a Neutrino-based TCP/IP network. A Neutrino
TCP/IP network can access resources located on any other system that
supports TCP/IP protocol. For a discussion of Neutrino TCP/IP
specifics, see TCP/IP Networking in the System Architecture guide.

�

Another issue may be the required behavior. For example, NFS has
been designed for filesystem operations between all hosts and all
endians. It’s widely supported and a connectionless protocol. In NFS,
the server can be shut down and restarted, and the client resumes
automatically. NFS also uses authentication and controls directory
access. However, NFS retries forever to reach a remote host if it
doesn’t respond, whereas Qnet can return an error if connectivity is
lost to a remote host. For more information, see “NFS filesystem” in
Working with Filesystems in the User’s Guide).

If you require broadcast or multicast services, you need to look at
TCP/IP functionalities, because Qnet is based on Neutrino message
passing, and has no concept of broadcasting or multicasting.

Writing a driver for Qnet
In order to support different hardware, you may need to write a driver
for Neutrino’s Qnet. The driver essentially performs three functions:
transmitting a packet, receiving a packet, and resolving the remote
node’s interface (address). This section describes some of the issues
you’ll face when you need to write a driver.

First, let’s define what exactly a driver is, from Qnet’s perspective.
When Qnet is run with its default binding of raw Ethernet (e.g.
bind=en0), you’ll find the following arrangement of layers that
exists in the node:

218 Chapter 5 � Transparent Distributed Processing Using Qnet May 31, 2004

 2004, QNX Software Systems Ltd. Writing a driver for Qnet

TCP/IP Qnet

io-net

Ethernet driver

(e.g. devn-speedo)

en0

In the above case, io-net is actually the driver that transmits and
receives packets, and thus acts as a hardware-abstraction layer. Qnet
doesn’t care about the details of the Ethernet hardware or driver.

So, if you simply want new Ethernet hardware supported, you don’t
need to write a Qnet-specific driver. What you need is just a normal
Ethernet driver that knows how to interface to io-net.

There is a bit of code at the very bottom of Qnet that’s specific to
io-net and has knowledge of exactly how io-net likes to transmit
and receive packets. This is the L4 driver API abstraction layer.

Let’s take a look at the arrangement of layers that exist in the node
when Qnet is run with the optional binding of IP encapsulation (e.g.
bind=ip):

May 31, 2004 Chapter 5 � Transparent Distributed Processing Using Qnet 219

Writing a driver for Qnet  2004, QNX Software Systems Ltd.

TCP/IP

Qnet

io-net

Ethernet driver

(e.g. devn-speedo)

/dev/io-net/en0

As far as Qnet is concerned, the TCP/IP stack is now its driver.
This stack is responsible for transmitting and receiving packets.

Therefore, if IP encapsulation is acceptable for your application, you
really don’t need to write a Qnet driver, you can use any existing IP
transport mechanism.

Again, it’s worth mentioning that at the very bottom of Qnet there is a
bit of code (L4 driver API) that’s specific to TCP/IP and knows
exactly how to transmit and receive packets using the TCP/IP stack.

If you have some superfast network hardware that you don’t want to
write an io-net driver for, you could get the ultimate in performance
by writing a dedicated driver. A possible arrangement of layers is as
follows:

Qnet

Your superfast
hardware driver

220 Chapter 5 � Transparent Distributed Processing Using Qnet May 31, 2004

 2004, QNX Software Systems Ltd. Writing a driver for Qnet

Just as before, Qnet needs a little code at the very bottom that knows
exactly how to transmit and receive packets to this new driver. There
exists a standard internal API (L4 driver API) between the rest of
Qnet and this very bottom portion, the driver interface. Qnet already
supports different packet transmit/receive interfaces, so adding
another is reasonably straightforward. The transport mechanism of
Qnet (called the L4) is quite generic, and can be configured for
different size MTUs, whether or not ACK packets or CRC checks are
required, to take the full advantage of your link’s advanced features
(e.g. guaranteed reliability).

For more details, see the QNX Momentics Transparent Distributed
Processing Source Kit (TDP SK) documentation.

May 31, 2004 Chapter 5 � Transparent Distributed Processing Using Qnet 221

Chapter 6

Writing an Interrupt Handler

In this chapter. . .
Overview 225
Advanced topics 236

May 31, 2004 Chapter 6 � Writing an Interrupt Handler 223

 2004, QNX Software Systems Ltd. Overview

Overview
The key to handling hardware events in a timely manner is for the
hardware to generate an interrupt. An interrupt is simply a pause in,
or “interruption” of, whatever the processor was doing, along with a
request to do something else.

The hardware will generate an interrupt whenever it has reached some
state where software intervention is desired. Instead of having the
software continually poll the hardware, an interrupt is the preferred
method of “finding out” that the hardware requires some kind of
service. The software that handles the interrupt is therefore typically
called an Interrupt Service Routine (ISR).

Although crucial in a realtime system, interrupt handling has
unfortunately been a very difficult and awkward task in many
traditional operating systems. Not so with QNX. As you’ll see in this
chapter, handling interrupts is almost trivial; given the fast
context-switch times in QNX, most if not all of the “work” (usually
done by the ISR) is actually done by a thread.

Let’s take a look at the QNX interrupt functions and at some ways of
dealing with interrupts.

Attaching and detaching interrupts
In order to install an ISR, the software must tell the OS that it wishes
to associate the ISR with a particular source of interrupts. On x86
platforms, there are generally 16 hardware Interrupt Request lines
(IRQs) and several sources of software interrupts. On the MIPS and
PPC platforms, the actual number of interrupts depends on the
hardware configuration supplied by the manufacturer of the board. In
any case, a thread specifies which interrupt source it wants to
associate with which ISR, using the InterruptAttach() or
InterruptAttachEvent() function calls.

When the software wishes to dissociate the ISR from the interrupt
source, it can call InterruptDetach():

#define IRQ3 3

May 31, 2004 Chapter 6 � Writing an Interrupt Handler 225

Overview  2004, QNX Software Systems Ltd.

/* forward reference for handler */
extern const sigevent *serint (void *, int);
...

/*
* associate interrupt handler "serint"
* with IRQ 3, the 2nd PC serial port
*/

ThreadCtl(NTO TCTL IO, 0);
id = InterruptAttach (IRQ3, serint, NULL, 0, 0);
...

/* perform some processing */
...

/* done, detach the interrupt source. */
InterruptDetach (id);

Because the interrupt handler can potentially gain control of the
machine, we don’t let just anybody associate an interrupt.

The thread must have I/O Privity — the privilege associated with
being able to manipulate hardware I/O ports and affect the processor
interrupt enable flag (the x86 processor instructions in, ins, out,
outs, cli, and sti). Since currently only the root account can gain
I/O Privity, this effectively limits the association of interrupt sources
with ISR code.

Let’s now take a look at the ISR itself.

The Interrupt Service Routine (ISR)
In our example above, the function serint() is the ISR. In general, an
ISR is responsible for:

� determining which hardware device requires servicing, if any

� performing some kind of servicing of that hardware (usually this is
done by simply reading and/or writing the hardware’s registers)

� updating some data structures shared between the ISR and some of
the threads running in the application

� signalling the application that some kind of event has occurred.

226 Chapter 6 � Writing an Interrupt Handler May 31, 2004

 2004, QNX Software Systems Ltd. Overview

Depending on the complexity of the hardware device, the ISR, and the
application, some of the above steps may be omitted.

Let’s take a look at these steps in turn.

Determining the source of the interrupt

Depending on your hardware configuration, there may actually be
multiple hardware sources associated with an interrupt. This issue is a
function of your specific hardware and bus type. This characteristic
(plus good programming style) mandates that your ISR ensure that
the hardware associated with it actually caused the interrupt.

Most PIC (Programmable Interrupt Controller) chips can be
programmed to respond to interrupts in either an edge-sensitive or
level-sensitive manner. Depending on this programming, interrupts
may be sharable.

For example:

1 2 3 4

Time

Hardware interrupt
request line

IRQx

Intx

IRQy

Inty

Active

Inactive

Interrupt request assertion with multiple interrupt sources.

In the above scenario, if the PIC is operating in a level-sensitive
mode, the IRQ is considered active whenever it’s high. In this
configuration, while the second assertion (step 2) doesn’t itself cause
a new interrupt, the interrupt is still considered active even when the

May 31, 2004 Chapter 6 � Writing an Interrupt Handler 227

Overview  2004, QNX Software Systems Ltd.

original cause of the interrupt is removed (step 3). Not until the last
assertion is cleared (step 4) will the interrupt be considered inactive.

In edge-triggered mode, the interrupt is “noticed” only once, at step 1.
Only when the interrupt line is cleared, and then reasserted, does the
PIC consider another interrupt to have occurred.

QNX allows ISR handlers to be stacked, meaning that multiple ISRs
can be associated with one particular IRQ. The impact of this is that
each handler in the chain must look at its associated hardware and
determine if it caused the interrupt. This works reliably in a
level-sensitive environment, but not an edge-triggered environment.

To illustrate this, consider the case where two hardware devices are
sharing an interrupt. We’ll call these devices “HW-A” and “HW-B.”
Two ISR routines are attached to one interrupt source (via the
InterruptAttach() or InterruptAttachEvent() call), in order (i.e. ISR-A
is attached first in the chain, ISR-B second).

Now, suppose HW-B asserts the interrupt line first. QNX will detect
the interrupt and dispatch the two handlers in order — ISR-A runs
first and decides (correctly) that its hardware did not cause the
interrupt. Then ISR-B runs and decides (correctly) that its hardware
did cause the interrupt; it then starts servicing the interrupt. But before
ISR-B clears the source of the interrupt, HW-A asserts an interrupt.

If you have an edge-triggered bus, when ISR-B clears the source ofEdge-
triggered

IRQ
the interrupt, the IRQ line is still held active (by HW-A). But because
it’s edge-triggered, the PIC is waiting for the next clear/assert
transition before it decides that another interrupt has occurred. Since
ISR-A already ran, it can’t possibly run again to actually clear the
source of the interrupt. The result is a “hung” system, because the
interrupt will never transit clear/asserted again, so no further
interrupts on that IRQ line will ever be recognized.

On a level-sensitive bus, when ISR-B clears the source of theLevel-
sensitive

IRQ
interrupt, the IRQ line is still held active (by HW-A). When ISR-B
finishes running and QNX sends an EOI (End Of Interrupt) command

228 Chapter 6 � Writing an Interrupt Handler May 31, 2004

 2004, QNX Software Systems Ltd. Overview

to the PIC, the PIC immediately reinterrupts the kernel, causing
ISR-A (and then ISR-B) to run.

Since ISR-A will clear the source of the interrupt (and ISR-B won’t
do anything, because its associated hardware doesn’t require
servicing), everything will function as expected.

Servicing the hardware

The above discussion may lead you to the conclusion that
“level-sensitive is good; edge-triggered is bad.” However, another
issue comes into play.

In a level-sensitive environment, your ISR must clear the source of the
interrupt (or at least mask it via InterruptMask()) before it completes.
(If it didn’t, then when the kernel issued the EOI to the PIC, the PIC
would then immediately reissue a processor interrupt and the kernel
would loop forever, continually calling your ISR code.)

In an edge-triggered environment, there’s no such requirement,
because the interrupt won’t be noticed again until it transits clear to
asserted.

In general, to actually service the interrupt, your ISR has to do very
little — the minimum it can get away with is to clear the source of the
interrupt and then schedule a thread to actually do the work of
handling the interrupt. This is the recommended approach, for a
number of reasons:

� Context-switch times between the ISR completing and a thread
executing are very small — typically on the order of a few
microseconds.

� The type of functions that the ISR itself can execute is very limited
(7 kernel functions).

� The ISR runs at a priority higher than any software priority in the
system — having the ISR consume a significant amount of
processor has a negative impact on the realtime aspects of QNX.

May 31, 2004 Chapter 6 � Writing an Interrupt Handler 229

Overview  2004, QNX Software Systems Ltd.

Since the range of hardware attached to an interrupt source can be
very diverse, the specific how-to’s of servicing the interrupt are
beyond the scope of this document — this really depends on what
your hardware requires you to do.

�

When the ISR is servicing the interrupt, it can’t make any kernel callsSafe
functions (except for the few that we’ll talk about shortly). This means that the

ISR really shouldn’t call any library functions, because their
underlying implementation may use kernel calls. Since our library is
thread safe, even some of the “simple” library calls may try to allocate
a mutex, (possibly) resulting in a kernel call.

Because the str*() and mem*() functions (such as strcpy() and
memcpy()) are very useful in an ISR, these functions are guaranteed
safe to call, with the notable exception of strdup(), which allocates
memory and therefore uses a mutex.

�

Let’s look at the calls that the ISR can use:

� InterruptEnable() (not recommended)

� InterruptDisable() (not recommended)

� InterruptLock()

� InterruptUnlock()

� InterruptMask()

� InterruptUnmask()

To prevent a thread and ISR from interfering with each other, you’ll
need to tell the kernel to disable interrupts. On a single processor
system, you can simply disable interrupts using the processor’s
“disable interrupts” opcode. But on an SMP system, disabling
interrupts on one processor won’t disable them on another processor.

The function InterruptDisable() (and the reverse, InterruptEnable())
performs this operation on a single-processor system. The function

230 Chapter 6 � Writing an Interrupt Handler May 31, 2004

 2004, QNX Software Systems Ltd. Overview

InterruptLock() (and the reverse, InterruptUnlock()) performs this
operation on an SMP system.

We recommend that you always use the SMP versions of these
functions — this will make your code portable to SMP systems with a
negligible amount of overhead.

�

The InterruptMask() and InterruptUnmask() functions disable and
enable the PIC’s recognition of a particular hardware IRQ line. These
calls are useful if your interrupt handler ISR is provided by the kernel
via InterruptAttachEvent() or if you can’t clear the cause of the
interrupt in a level-sensitive environment quickly. (This would
typically be the case if clearing the source of the interrupt is
time-consuming — you don’t want to spend a lot of time in the
interrupt handler. The classic example of this is a floppy disk
controller, where clearing the source of the interrupt may take many
milliseconds.) In this case, the ISR would call InterruptMask() and
schedule a thread to do the actual work. The thread would call
InterruptUnmask() when it had cleared the source of the interrupt.

Note that these two functions are counting — InterruptUnmask()
must be called the same number of times as InterruptMask() in order
to have the interrupt source considered enabled again.

Updating common data structures

Another issue that arises when using interrupts is how to safely
update data structures in use between the ISR and the threads in the
application. Two important characteristics are worth repeating:

� The ISR runs at a higher priority than any software thread.

� The ISR can’t issue kernel calls (except as noted).

This means that thread-level synchronization (such as mutexes,
condvars, etc.) can’t be used.

Because the ISR runs at a higher priority than any software thread, it’s
up to the thread to protect itself against any preemption caused by the
ISR. Therefore, the thread will issue InterruptDisable() and

May 31, 2004 Chapter 6 � Writing an Interrupt Handler 231

Overview  2004, QNX Software Systems Ltd.

InterruptEnable() calls around any critical data manipulation
operations. Since these calls effectively turn off interrupts, the thread
should keep the data manipulation operations to a bare minimum.

With SMP, there’s an additional consideration: one processor could be
running the ISR, and another processor could be running a thread
related to the ISR. Therefore, on an SMP system, you must use the
InterruptLock() and InterruptUnlock() functions instead. Again, using
these functions on a non-SMP system is safe; they’ll work just like
InterruptDisable() and InterruptEnable(), albeit with an
insignificantly small performance penalty.

Another solution that can be used in some cases to at least guarantee
atomic accesses to data elements is to use the atomic *() function
calls (below).

Signalling the application code

Since the environment the ISR operates in is very limited, generally
you’ll want to perform most (if not all) of your actual “servicing”
operations at the thread level.

At this point, you have two choices:

� You may decide that some time-critical functionality needs to be
done in the ISR, with a thread being scheduled later to do the
“real” work.

� You may decide that nothing needs to be done in the ISR; you just
want to schedule a thread.

This is effectively the difference between InterruptAttach() (where an
ISR is attached to the IRQ) and InterruptAttachEvent() (where a
struct sigevent is bound to the IRQ).

Let’s take a look at the prototype for an ISR function and the
InterruptAttach() and InterruptAttachEvent() functions:

int
InterruptAttach (int intr,

const struct sigevent * (*handler) (void *, int),
const void *area,
int size,

232 Chapter 6 � Writing an Interrupt Handler May 31, 2004

 2004, QNX Software Systems Ltd. Overview

unsigned flags);

int
InterruptAttachEvent (int intr,

const struct sigevent *event,
unsigned flags);

const struct sigevent *
handler (void *area, int id);

Looking at the prototype for InterruptAttach(), the function associatesUsing
InterruptAttach() the IRQ vector (intr) with your ISR handler (handler), passing it a

communications area (area). The size and flags arguments aren’t
germane to our discussion here (they’re described in the Library
Reference for the InterruptAttach() function).

For the ISR, the handler() function takes a void * pointer and an
int identification parameter; it returns a const struct sigevent

* pointer. The void * area parameter is the value given to the
InterruptAttach() function — any value you put in the area parameter
to InterruptAttach() will be passed to your handler() function. (This is
simply a convenient way of coupling the interrupt handler ISR to
some data structure. You’re certainly free to pass in a NULL value if
you wish.)

After it has read some registers from the hardware or done whatever
processing is required for servicing, the ISR may or may not decide to
schedule a thread to actually do the work. In order to schedule a
thread, the ISR simply returns a pointer to a const struct

sigevent structure — the kernel looks at the structure and delivers
the event to the destination. (See the Library Reference under
MsgDeliverEvent() for a discussion of event types that can be
returned.) If the ISR decides not to schedule a thread, it simply
returns a NULL value.

As mentioned in the documentation for MsgDeliverEvent(), the event
returned can be a signal or a pulse. You may find that a signal or a
pulse is satisfactory, especially if you already have a signal or pulse
handler for some other reason.

May 31, 2004 Chapter 6 � Writing an Interrupt Handler 233

Overview  2004, QNX Software Systems Ltd.

Note, however, that for ISRs we can also return a SIGEV INTR. This
is a special event that really has meaning only for an ISR and its
associated controlling thread.

A very simple, elegant, and fast way of servicing interrupts from the
thread level is to have a thread dedicated to interrupt processing. The
thread attaches the interrupt (via InterruptAttach()) and then the
thread blocks, waiting for the ISR to tell it to do something. Blocking
is achieved via the InterruptWait() call. This call blocks until the ISR
returns a SIGEV INTR event:

main ()
{

// perform initializations, etc.
...
// start up a thread that is dedicated to interrupt processing
pthread create (NULL, NULL, int thread, NULL);
...
// perform other processing, as appropriate
...

}

// this thread is dedicated to handling and managing interrupts
void *
int thread (void *arg)
{

// enable I/O privilege
ThreadCtl (NTO TCTL IO, NULL);
...
// initialize the hardware, etc.
...
// attach the ISR to IRQ 3
InterruptAttach (IRQ3, isr handler, NULL, 0, 0);
...
// perhaps boost this thread’s priority here
...
// now service the hardware when the ISR says to
while (1)
{

InterruptWait (NULL, NULL);
// at this point, when InterruptWait unblocks,
// the ISR has returned a SIGEV INTR, indicating
// that some form of work needs to be done.

...
// do the work
...

234 Chapter 6 � Writing an Interrupt Handler May 31, 2004

 2004, QNX Software Systems Ltd. Overview

// if the isr handler did an InterruptMask, then
// this thread should do an InterruptUnmask to
// allow interrupts from the hardware

}
}

// this is the ISR
const struct sigevent *
isr handler (void *arg, int id)
{

// look at the hardware to see if it caused the interrupt
// if not, simply return (NULL);
...
// in a level-sensitive environment, clear the cause of
// the interrupt, or at least issue InterruptMask to
// disable the PIC from reinterrupting the kernel
...
// return a pointer to an event structure (preinitialized
// by main) that contains SIGEV INTR as its notification type.
// This causes the InterruptWait in "int thread" to unblock.
return (&event);

}

In the above code sample, we see a typical way of handling interrupts.
The main thread creates a special interrupt-handling thread
(int thread()). The sole job of that thread is to service the interrupts at
the thread level. The interrupt-handling thread attaches an ISR to the
interrupt (isr handler()), and then waits for the ISR to tell it to do
something. The ISR informs (unblocks) the thread by returning an
event structure with the notification type set to SIGEV INTR.

This approach has a number of advantages over using an event
notification type of SIGEV SIGNAL or SIGEV PULSE:

� The application doesn’t have to have a MsgReceive() call (which
would be required to wait for a pulse).

� The application doesn’t have to have a signal-handler function
(which would be required to wait for a signal).

� If the interrupt servicing is critical, the application can create the
int thread() thread with a high priority — when the SIGEV INTR is
returned from the isr handler() function, if the int thread()
function is of sufficient priority, it will run immediately. There’s no

May 31, 2004 Chapter 6 � Writing an Interrupt Handler 235

Advanced topics  2004, QNX Software Systems Ltd.

delay as there might be, for example, between the time that the
ISR sent a pulse and another thread eventually called a
MsgReceive() to get it.

The only caveat to be noted when using InterruptWait() is that the
thread that attached the interrupt is the one that must wait for the
SIGEV INTR.

Most of the discussion above for InterruptAttach() applies to theUsing

InterruptAttachEvent()InterruptAttachEvent() function, with the obvious exception of the
ISR. There’s no ISR in this case — the kernel notes that you called
InterruptAttachEvent() and handles the interrupt itself. Since you also
bound a struct sigevent to the IRQ, the kernel can now dispatch
the event. The major advantage is that we’re avoiding a context
switch into the ISR and back.

An important point to note is that the kernel will automatically
perform an InterruptMask() in the interrupt handler. Therefore, it’s up
to you to perform an InterruptUnmask() when you actually clear the
source of the interrupt in your interrupt-handling thread. This is why
InterruptMask() and InterruptUnmask() are counting.

Advanced topics
Now that we’ve seen the basics of handling interrupts, let’s take a
look at some more details and some advanced topics.

Interrupt environment
When your ISR is running, it runs in the context of the process that
attached it, except with a different stack. Since the kernel uses an
internal interrupt-handling stack for hardware interrupts, your ISR is
impacted in that the internal stack is small. Generally, you can assume
that you have about 200 bytes available.

The PIC doesn’t get the EOI command until after all ISRs for that
particular interrupt have been run. Then the kernel itself issues the
EOI — your code should not issue the EOI command.

236 Chapter 6 � Writing an Interrupt Handler May 31, 2004

 2004, QNX Software Systems Ltd. Advanced topics

Normally, any interrupt sources that don’t have an ISR associated
with them are masked off by the kernel. The kernel will automatically
unmask an interrupt source when at least one ISR is attached to it and
will mask the source when no more ISRs are attached.

Ordering of shared interrupts
If you’re using interrupt sharing, then by default when you attach an
ISR using InterruptAttach() or InterruptAttachEvent(), the new ISR
will go to the beginning of the list of ISRs for that interrupt. You can
specifically request that your ISR be placed at the end of the list by
specifying a flags argument of NTO INTR FLAGS END.

Note that there’s no way to specify any other order (e.g. middle, 5th,
2nd, etc.).

Interrupt latency
Another factor of concern for realtime systems is the amount of time
taken between the generation of the hardware interrupt and the first
line of code executed by the ISR. There are two factors to consider
here:

� If any thread in the system uses the InterruptDisable() or
InterruptLock() function call, then no interrupts will be processed
until the InterruptEnable() or InterruptUnlock() function call is
issued.

� In any event, if interrupts are enabled, the kernel will begin
executing the first line of the first ISR (in case multiple ISRs are
associated with an interrupt) in short order (e.g. under 21 CPU
instructions on an x86).

Atomic Operations
Some convenience functions are defined in the include file
<atomic.h> — these allow you to perform atomic operations (i.e.
operations that are guaranteed to be indivisible or uninterruptible).

May 31, 2004 Chapter 6 � Writing an Interrupt Handler 237

Advanced topics  2004, QNX Software Systems Ltd.

Using these functions alleviates the need to disable and enable
interrupts around certain small, well-defined operations with
variables, such as:

� adding a value

� subtracting a value

� clearing bits

� setting bits

� toggling bits

Variables used in an ISR must be marked as “volatile”.

See the Library Reference under atomic *() for more information.

238 Chapter 6 � Writing an Interrupt Handler May 31, 2004

Chapter 7

Heap Analysis: Making Memory
Errors a Thing of the Past

In this chapter. . .
Introduction 241
Dynamic Memory Management 241
Heap Corruption 242
Detecting and Reporting Errors 246
Manual Checking (Bounds Checking) 255
Memory Leaks 258
Compiler Support 261
Summary 264

May 31, 2004 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past 239

 2004, QNX Software Systems Ltd. Introduction

Introduction
If you develop a program that dynamically allocates memory, you’re
also responsible for tracking any memory that you allocate whenever
a task is performed, and for releasing that memory when it’s no longer
required. If you fail to track the memory correctly you may introduce
“memory leaks,” or unintentionally write to an area outside of the
memory space.

Conventional debugging techniques usually prove to be ineffective for
locating the source of corruption or leak because memory-related
errors typically manifest themselves in an unrelated part of the
program. Tracking down an error in a multithreaded environment
becomes even more complicated because the threads all share the
same memory address space.

In this chapter, we’ll introduce you to a special version of our
memory management functions that’ll help you to diagnose your
memory management problems.

Dynamic Memory Management
In a program, you’ll dynamically request memory buffers or blocks of
a particular size from the runtime environment using malloc(),
realloc(), or calloc(), and then you’ll release them back to the runtime
environment when they’re no longer required using free().

The memory allocator ensures that your requests are satisfied by
managing a region of the program’s memory area known as the heap.
In this heap, it tracks all of the information — such as the size of the
original block — about the blocks and heap buffers that it has
allocated to your program, in order that it can make the memory
available to you during subsequent allocation requests. When a block
is released, it places it on a list of available blocks called a free list. It
usually keeps the information about a block in the header that
precedes the block itself in memory.

The runtime environment grows the size of the heap when it no longer
has enough memory available to satisfy allocation requests, and it

May 31, 2004 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past 241

Heap Corruption  2004, QNX Software Systems Ltd.

returns memory from the heap to the system when the program
releases memory.

Heap Corruption
Heap corruption occurs when a program damages the allocator’s view
of the heap. The outcome can be relatively benign and cause a
memory leak (where some memory isn’t returned to the heap and is
inaccessible to the program afterwards), or it may be fatal and cause a
memory fault, usually within the allocator itself. A memory fault
typically occurs within the allocator when it manipulates one or more
of its free lists after the heap has been corrupted.

It’s especially difficult to identify the source of corruption when the
source of the fault is located in another part of the code base. This is
likely to happen if the fault occurs when:

� a program attempts to free memory

� a program attempts to allocate memory after it’s been freed

� the heap is corrupted long before the release of a block of memory

� the fault occurs on a subsequent block of memory

� contiguous memory blocks are used

� your program is multithreaded

� the memory allocation strategy changes.

Contiguous memory blocks

When contiguous blocks are used, a program that writes outside of
the bounds can corrupt the allocator’s information about the block of
memory it’s using, as well as, the allocator’s view of the heap. The
view may include a block of memory that’s before or after the block
being used, and it may or may not be allocated. In this case, a fault in
the allocator will likely occur during an unrelated allocation or release
attempt.

242 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past May 31, 2004

 2004, QNX Software Systems Ltd. Heap Corruption

Multithreaded programs

Multithreaded execution may cause a fault to occur in a different
thread from the thread that actually corrupted the heap, because
threads interleave requests to allocate or release memory.

When the source of corruption is located in another part of the code
base, conventional debugging techniques usually prove to be
ineffective. Conventional debugging typically applies breakpoints —
such as stopping the program from executing — to narrow down the
offending section of code. While this may be effective for
single-threaded programs, it’s often unyielding for multithreaded
execution because the fault may occur at an unpredictable time and
the act of debugging the program may influence the appearance of the
fault by altering the way that thread execution occurs. Even when the
source of the error has been narrowed down, there may be a
substantial amount of manipulation performed on the block before it’s
released, particularly for long-lived heap buffers.

Allocation strategy

A program that works in a particular memory allocation strategy may
abort when the allocation strategy is changed in a minor way. A good
example of this would be a memory overrun condition (for more
information see “Overrun and underrun errors,” below) where the
allocator is free to return blocks that are larger than requested in order
to satisfy allocation requests. Under this circumstance, the program
may behave normally in the presence of overrun conditions. But a
simple change, such as changing the size of the block requested, may
result in the allocation of a block of the exact size requested, resulting
in a fatal error for the offending program.

Fatal errors may also occur if the allocator is configured slightly
differently, or if the allocator policy is changed in a subsequent
release of the runtime library. This makes it all the more important to
detect errors early in the lifecycle of an application, even if it doesn’t
exhibit fatal errors in the testing phase.

May 31, 2004 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past 243

Heap Corruption  2004, QNX Software Systems Ltd.

Common sources
Some of the most common sources of heap corruption include:

� a memory assignment that corrupts the header of an allocated
block

� an incorrect argument that’s passed to a memory allocation
function

� an allocator that made certain assumptions in order to avoid
keeping additional memory to validate information, or to avoid
costly runtime checking

� invalid information that’s passed in a request, such as to free().

� overrun and underrun errors

� releasing memory

� using uninitialized or stale pointers.

Even the most robust allocator can occasionally fall prey to the above
problems.

Let’s take a look at the last three bullets in more detail:

Overrun and underrun errors

Overrun and underrun errors occur when your program writes outside
of the bounds of the allocated block. They’re one of the most difficult
type of heap corruption to track down, and usually the most fatal to
program execution.

Overrun errors occur when the program writes past the end of the
allocated block. Frequently this causes corruption in the next
contiguous block in the heap, whether or not it’s allocated. When this
occurs, the behavior that’s observed varies depending on whether that
block is allocated or free, and whether it’s associated with a part of
the program related to the source of the error. When a neighboring
block that’s allocated becomes corrupted, the corruption is usually
apparent when that block is released elsewhere in the program. When

244 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past May 31, 2004

 2004, QNX Software Systems Ltd. Heap Corruption

an unallocated block becomes corrupted, a fatal error will usually
result during a subsequent allocation request. Although this may well
be the next allocation request, it’s actually dependent on a complex
set of conditions that could result in a fault at a much later point in
time, in a completely unrelated section of the program, especially
when small blocks of memory are involved.

Underrun errors occur when the program writes before the start of the
allocated block. Often they corrupt the header of the block itself, and
sometimes, the preceding block in memory. Underrun errors usually
result in a fault that occurs when the program attempts to release a
corrupted block.

Releasing memory

Requests to release memory requires your program to track the
pointer for the allocated block and pass it to the free() function. If the
pointer is stale, or if it doesn’t point to the exact start of the allocated
block, it may result in heap corruption.

A pointer is stale when it refers to a block of memory that’s already
been released. A duplicate request to free() involves passing free() a
stale pointer — there’s no way to know whether this pointer refers to
unallocated memory, or to memory that’s been used to satisfy an
allocation request in another part of the program.

Passing a stale pointer to free() may result in a fault in the allocator, or
worse, it may release a block that’s been used to satisfy another
allocation request. If this happens, the code making the allocation
request may compete with another section of code that subsequently
allocated the same region of heap, resulting in corrupted data for one
or both. The most effective way to avoid this error is to NULL out
pointers when the block is released, but this is uncommon, and
difficult to do when pointers are aliased in any way.

A second common source of errors is to attempt to release an interior
pointer (i.e. one that’s somewhere inside the allocated block rather
than at the beginning). This isn’t a legal operation, but it may occur
when the pointer has been used in conjunction with pointer
arithmetic. The result of providing an interior pointer is highly

May 31, 2004 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past 245

Detecting and Reporting Errors  2004, QNX Software Systems Ltd.

dependent on the allocator and is largely unpredictable, but it
frequently results in a fault in the free() call.

A more rare source of errors is to pass an uninitialized pointer to
free(). If the uninitialized pointer is an automatic (stack) variable, it
may point to a heap buffer, causing the types of coherency problems
described for duplicate free() requests above. If the pointer contains
some other nonNULL value, it may cause a fault in the allocator.

Using uninitialized or stale pointers

If you use uninitialized or stale pointers, you might corrupt the data in
a heap buffer that’s allocated to another part of the program, or see
memory overrun or underrun errors.

Detecting and Reporting Errors
The primary goal for detecting heap corruption problems is to
correctly identify the source of the error, rather than getting a fault in
the allocator at some later point in time.

A first step to achieving this goal is to create an allocator that’s able to
determine whether the heap was corrupted on every entry into the
allocator, whether it’s for an allocation request or for a release
request. For example, on a release request, the allocator should be
capable of determining whether:

� the pointer given to it is valid

� the associated block’s header is corrupt

� either of the neighboring blocks are corrupt.

To achieve this goal, we’ll use a replacement library for the allocator
that can keep additional block information in the header of every heap
buffer. This library may be used during the testing of the application
to help isolate any heap corruption problems. When a source of heap
corruption is detected by this allocator, it can print an error message
indicating:

� the point at which the error was detected

246 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past May 31, 2004

 2004, QNX Software Systems Ltd. Detecting and Reporting Errors

� the program location that made the request

� information about the heap buffer that contained the problem.

The library technique can be refined to also detect some of the sources
of errors that may still elude detection, such as memory overrun or
underrun errors, that occur before the corruption is detected by the
allocator. This may be done when the standard libraries are the
vehicle for the heap corruption, such as an errant call to memcpy(), for
example. In this case, the standard memory manipulation functions
and string functions can be replaced with versions that make use of
the information in the debugging allocator library to determine if their
arguments reside in the heap, and whether they would cause the
bounds of the heap buffer to be exceeded. Under these conditions, the
function can then call the error reporting functions to provide
information about the source of the error.

Using the malloc debug library
The malloc debug library provides the capabilities described in the
above section. It’s available when you link to either the normal
memory allocator library, or to the debug library:

To access: Link using this option:

Nondebug library -lmalloc

Debug library -lmalloc g

If you use the debug library, you must also
include:

/usr/lib/malloc g

as the first entry of your
$LD LIBRARY PATH environment variable
before running your application.

May 31, 2004 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past 247

Detecting and Reporting Errors  2004, QNX Software Systems Ltd.

In this chapter all references to the malloc library refer to the debug
version, unless otherwise specified.

�

Both versions of the library share the same internal shared object
name, so it’s actually possible to link against the nondebug library and
test using the debug library when you run your application. To do
this, you must change the $LD LIBRARY PATH as indicated above.

The nondebug library doesn’t perform heap checking; it provides the
same memory allocator as the system library.

By default, the malloc library provides a minimal level of checking.
When an allocation or release request is performed, the library checks
only the immediate block under consideration and its neighbors
looking for sources of heap corruption.

Additional checking and more informative error reporting can be
done by using additional calls provided by the malloc library. The
mallopt() function provides control over the types of checking
performed by the library. There are also debug versions of each of the
allocation and release routines that can be used to provide both file
and line information during error reporting. In addition to reporting
the file and line information about the caller when an error is detected,
the error reporting mechanism prints out the file and line information
that was associated with the allocation of the offending heap buffer.

To control the use of the malloc library and obtain the correct
prototypes for all the entry points into it, it’s necessary to include a
different header file for the library. This header file is included in
<malloc g/malloc.h>. If you want to use any of the functions
defined in this header file, other than mallopt(), make sure that you
link your application with the debug library. If you forget, you’ll get
undefined references during the link.

The recommended practice for using the library is to always make use
of the library for debug variants in builds. In this case, the macro used
to identify the debug variant in C code should trigger the inclusion of
the <malloc g/malloc.h> header file, and the malloc debug
library option should always be added to the link command. In

248 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past May 31, 2004

 2004, QNX Software Systems Ltd. Detecting and Reporting Errors

addition, you may want to follow the practice of always adding an
exit handler that provides a dump of leaked memory, and initialization
code that turns on a reasonable level of checking for the debug variant
of the program.

The malloc library achieves what it needs to do by keeping additional
information in the header of each heap buffer. The header information
includes an additional 36 bytes for keeping doubly-linked lists of all
allocated blocks, file, line and other debug information, flags and a
CRC of the header. The allocation policies and configuration are
identical to the normal system memory allocation routines except for
the additional internal overhead imposed by the malloc library. This
allows the malloc library to perform checks without altering the size
of blocks requested by the program. Such manipulation could result
in an alteration of the behavior of the program with respect to the
allocator, yielding different results when linked against the malloc
library.

All allocated blocks are integrated into a number of allocation chains
associated with allocated regions of memory kept by the allocator in
arenas or blocks. The malloc library has intimate knowledge about
the internal structures of the allocator, allowing it to use short-cuts to
find the correct heap buffer associated with any pointer, resorting to a
lookup on the appropriate allocation chain only when necessary. This
minimizes the performance penalty associated with validating
pointers, but it’s still significant.

The time and space overheads imposed by the malloc library are too
great to make it suitable for use as a production library, but are
manageable enough to allow them to be used during the test phase of
development and during program maintenance.

There is one caveat which must be mentioned here. The use of certain
optimization options such as -O1, -O2 or -O3 do not allow the malloc
debug library to work correctly. The problem occurs due to the fact
that, during compilation and linking, the gcc call builtin functions
instead of calling intended functions such as strcpy() or strcmp(). You
should use -fno-builtin option to circumvent this problem.

May 31, 2004 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past 249

Detecting and Reporting Errors  2004, QNX Software Systems Ltd.

What’s checked?
As indicated above, the malloc library provides a minimal level of
checking by default. This includes a check of the integrity of the
allocation chain at the point of the local heap buffer on every
allocation request. In addition, the flags and CRC of the header are
checked for integrity. When the library can locate the neighboring
heap buffers, it also checks their integrity. There are also checks
specific to each type of allocation request that are done. Call-specific
checks are described according to the type of call below.

Additional checks can be turned on using the mallopt() call. For more
information on the types of checking, and the sources of heap
corruption that can be detected, see “Controlling the level of
checking,” below.

Allocating memory

When a heap buffer is allocated using any of the heap allocation
routines, the heap buffer is added to the allocation chain for the arena
or block within the heap that the heap buffer was allocated from. At
this time, any problems detected in the allocation chain for the arena
or block are reported. After successfully inserting the allocated buffer
in the allocation chain, the previous and next buffers in the chain are
also checked for consistency.

Reallocating memory

When an attempt is made to resize a buffer through a call to the
realloc() function, the pointer is checked for validity if it’s a
nonNULL value. If it’s valid, the header of the heap buffer is checked
for consistency. If the buffer is large enough to satisfy the request, the
buffer header is modified and the call returns. If a new buffer is
required to satisfy the request, memory allocation is performed to
obtain a new buffer large enough to satisfy the request with the same
consistency checks being applied as in the case of memory allocation
described above. The original buffer is then released.

If fill-area boundary checking is enabled (described in the “Manual
Checking” section) the guard code checks are also performed on the

250 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past May 31, 2004

 2004, QNX Software Systems Ltd. Detecting and Reporting Errors

allocated buffer before it’s actually resized. If a new buffer is used,
the guard code checks are done just before releasing the old buffer.

Releasing memory

This includes, but isn’t limited to, checking to ensure that the pointer
provided to a free() request is correct and points to an allocated heap
buffer. Guard code checks may also be performed on release
operations to allow fill-area boundary checking.

Controlling the level of checking
The mallopt() function call allows extra checks to be enabled within
the library.

mallopt()

int mallopt (int cmd,
int value);

cmd An integer that indicates the parameter (or option) to be
affected by the call.

Options used to enable additional checks in the library
include:

MALLOC CKACCESS

Turn on (or off) boundary checking for memory and
string operations.

MALLOC FILLAREA

Turn on (or off) fill-area boundary checking.

MALLOC CKCHAIN

Enable (or disable) full-chain checking.

For each of the above options, an integer argument value of
one indicates that the given type of checking should be
enabled from that point onward.

May 31, 2004 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past 251

Detecting and Reporting Errors  2004, QNX Software Systems Ltd.

value Indicate whether checking is to be performed. An integer
value that can hold any legal value for malloc options or
parameters.

Description of optional checks

MALLOC CKACCESS

Turn on (or off) boundary checking for memory and string
operations. This helps to detect buffer overruns and underruns
that are a result of memory or string operations. When on, each
pointer operand to a memory or string operation is checked to
see if it’s a heap buffer. If it is, the size of the heap buffer is
checked and the information is used to ensure that no
assignments are made beyond the bounds of the heap buffer. If
an attempt is made that would assign past the buffer boundary, a
diagnostic warning message is printed.

Here’s how you can use this option to find an overrun error:

...
char *p;
int opt;
opt = 1;
mallopt(MALLOC CKACCESS, opt);
p = malloc(strlen("hello "));
strcpy(p, "hello, there! "); /* a warning is generated here */
...

The following illustrates how access checking can trap a
reference through a stale pointer:

...
char *p;
int opt;
opt = 1;
mallopt(MALLOC CKACCESS, opt);
p = malloc(30);
free(p);
strcpy(p, "hello, there! ");

MALLOC FILLAREA

Turn on (or off) fill-area boundary checking. Fill-area boundary
checking validates that the program hasn’t overrun the

252 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past May 31, 2004

 2004, QNX Software Systems Ltd. Detecting and Reporting Errors

user-requested size of a heap buffer. It does this by applying a
guard code check when the buffer is released or when it’s
resized. The guard code check works by filling any excess
space available at the end of the heap buffer with a pattern of
bytes. When the buffer is released or resized, the trailing
portion is checked to see if the pattern is still present. If not, a
diagnostic warning message is printed.

The effect of turning on fill-area boundary checking is a little
different than enabling other checks. The checking is performed
only on memory buffers allocated after the point in time at
which the check was enabled. Memory buffers allocated before
the change won’t have the checking performed.

Here’s how you can catch an overrun with the fill-area boundary
checking option:

...
int *foo, *p, i, opt;
opt = 1;
mallopt(MALLOC FILLAREA, opt);
foo = (int *)malloc(10*4);
for (p = foo, i = 12; i > 0; p++, i--)

*p = 89;
free(foo); /* a warning is generated here */

MALLOC CKCHAIN

Enable (or disable) full-chain checking. This option is
expensive and should be considered as a last resort when some
code is badly corrupting the heap and otherwise escapes the
detection of boundary checking or fill-area boundary checking.
This can occur under a number of circumstances, particularly
when they’re related to direct pointer assignments. In this case,
the fault may occur before a check such as fill area boundary
checking can be applied. There are also circumstances in which
both fill-area boundary checking and the normal attempts to
check the headers of neighboring buffers fails to detect the
source of the problem. This may happen if the buffer that’s
overrun is the first or last buffer associated with a block or
arena. It may also happen when the allocator chooses to satisfy

May 31, 2004 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past 253

Detecting and Reporting Errors  2004, QNX Software Systems Ltd.

some requests, particularly those for large buffers, with a buffer
that exactly fits the program’s requested size.

Full-chain checking traverses the entire set of allocation chains
for all arenas and blocks in the heap every time a memory
operation (including allocation requests) is performed. This
allows the developer to narrow down the search for a source of
corruption to the nearest memory operation.

Forcing verification

You can force a full allocation chain check at certain points while
your program is executing, without turning on chain checking.
Specify the following option for cmd:

MALLOC VERIFY

Perform a chain check immediately. If an error is found,
perform error handling.

Specifying an error handler

Typically, when the library detects an error, a diagnostic message is
printed and the program continues executing. In cases where the
allocation chains or another crucial part of the allocator’s view is
hopelessly corrupted, an error message is printed and the program is
aborted (via abort()).

You can override this default behavior by specifying a handler that
determines what is done when a warning or a fatal condition is
detected.

cmd Specify the error handler to use.

MALLOC FATAL

Specify the malloc fatal handler.

MALLOC WARN

Specify the malloc warning handler handler.

254 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past May 31, 2004

 2004, QNX Software Systems Ltd. Manual Checking (Bounds Checking)

value An integer value that indicates which one of the standard
handlers provided by the library.

M HANDLE ABORT

Terminate execution with a call to abort().

M HANDLE EXIT

Exit immediately.

M HANDLE IGNORE

Ignore the error and continue.

Any of these handlers can be ORed with the value, MALLOC DUMP,
to cause a complete dump of the heap before the handler takes action.

�

Here’s how you can cause a memory overrun error to abort your
program:

...
int *foo, *p, i;
int opt;
opt = 1;
mallopt(MALLOC FILLAREA, opt);
foo = (int *)malloc(10*4);
for (p = foo, i = 12; i > 0; p++, i--)

*p = 89;
opt = M HANDLE ABORT;
mallopt(MALLOC WARN, opt);
free(foo); /* a fatal error is generated here */

Manual Checking (Bounds Checking)
There are times when it may be desirable to obtain information about
a particular heap buffer or print a diagnostic or warning message
related to that heap buffer. This is particularly true when the program
has its own routines providing memory manipulation and the
developer wishes to provide bounds checking. This can also be useful
for adding additional bounds checking to a program to isolate a

May 31, 2004 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past 255

Manual Checking (Bounds Checking)  2004, QNX Software Systems Ltd.

problem such as a buffer overrun or underrun that isn’t associated
with a call to a memory or string function.

In the latter case, rather than keeping a pointer and performing direct
manipulations on the pointer, the program may define a pointer type
that contains all relevant information about the pointer, including the
current value, the base pointer and the extent of the buffer. Access to
the pointer can then be controlled through macros or access functions.
The accessors can perform the necessary bounds checks and print a
warning message in response to attempts to exceed the bounds.

Any attempt to dereference the current pointer value can be checked
against the boundaries obtained when the pointer was initialized. If
the boundary is exceeded the malloc warning() function should be
called to print a diagnostic message and perform error handling. The
arguments are: file, line, message.

Getting pointer information
To obtain information about the pointer, two functions are provided:

find malloc ptr()

void* find malloc ptr (const void* ptr,
arena range t* range);

This function finds information about the heap buffer
containing the given C pointer, including the type of
allocation structure it’s contained in and the pointer to the
header structure for the buffer. The function returns a
pointer to the Dhead structure associated with this
particular heap buffer. The pointer returned can be used in
conjunction with the DH () macros to obtain more
information about the heap buffer. If the pointer doesn’t
point into the range of a valid heap buffer, the function
returns NULL.

For example, the result from find malloc ptr() can be used
as an argument to DH ULEN() to find out the size that the
program requested for the heap buffer in the call to
malloc(), calloc() or a subsequent call to realloc().

256 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past May 31, 2004

 2004, QNX Software Systems Ltd. Manual Checking (Bounds Checking)

mptr() char* mptr (const char* ptr);

Return a pointer to the beginning of the heap buffer
containing the given C pointer. Information about the size
of the heap buffer can be obtained with a call to msize()
or musize() with the value returned from this call.

Getting the heap buffer size
Three interfaces are provided so that you can obtain information
about the size of a heap buffer:

msize() ssize t msize(const char* ptr);

Return the actual size of the heap buffer given the
pointer to the beginning of the heap buffer. The
value returned by this function is the actual size of
the buffer as opposed to the program-requested size
for the buffer. The pointer must point to the
beginning of the buffer — as in the case of the value
returned by mptr() — in order for this function to
work.

musize() ssize t musize(const char* ptr);

Return the program-requested size of the heap buffer
given the pointer to the beginning of the heap buffer.
The value returned by this function is the size
argument that was given to the routine that allocated
the block, or to a subsequent invocation of realloc()
that caused the block to grow.

DH ULEN() DH ULEN(ptr)

Return the program-requested size of the heap buffer
given a pointer to the Dhead structure, as returned
by a call to find malloc ptr(). This is a macro that
performs the appropriate cast on the pointer
argument.

May 31, 2004 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past 257

Memory Leaks  2004, QNX Software Systems Ltd.

Memory Leaks
The ability of the malloc library to keep full allocation chains of all
the heap memory allocated by the program — as opposed to just
accounting for some heap buffers — allows heap memory leaks to be
detected by the library in response to requests by the program. Leaks
can be detected in the program by performing tracing on the entire
heap. This is described in the sections that follow.

Tracing
Tracing is an operation that attempts to determine whether a heap
object is reachable by the program. In order to be reachable, a heap
buffer must be available either directly or indirectly from a pointer in
a global variable or on the stack of one of the threads. If this isn’t the
case, then the heap buffer is no longer visible to the program and can’t
be accessed without constructing a pointer that refers to the heap
buffer — presumably by obtaining it from a persistent store such as a
file or a shared memory object. The set of global variables and stack
for all threads is called the root set. Because the root set must be
stable for tracing to yield valid results, tracing requires that all threads
other than the one performing the trace be suspended while the trace
is performed.

Tracing operates by constructing a reachability graph of the entire
heap. It begins with a root set scan that determines the root set
comprising the initial state of the reachability graph. The roots that
can be found by tracing are:

� data of the program

� uninitialized data of the program

� initialized and uninitialized data of any shared objects dynamically
linked into the program

� used portion of the stacks of all active threads in the program.

Once the root set scan is complete, tracing initiates a mark operation
for each element of the root set. The mark operation looks at a node

258 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past May 31, 2004

 2004, QNX Software Systems Ltd. Memory Leaks

of the reachability graph, scanning the memory space represented by
the node, looking for pointers into the heap. Since the program may
not actually have a pointer directly to the start of the buffer — but to
some interior location — and it isn’t possible to know which part of
the root set or a heap object actually contains a pointer, tracing
utilizes specialized techniques for coping with ambiguous roots. The
approach taken is described as a conservative pointer estimation since
it assumes that any word-sized object on a word-aligned memory cell
that could point to a heap buffer or the interior of that heap buffer
actually points to the heap buffer itself.

Using conservative pointer estimation for dealing with ambiguous
roots, the mark operation finds all children of a node of the
reachability graph. For each child in the heap that’s found, it checks
to see whether the heap buffer has been marked as referenced. If the
buffer has been marked, the operation moves on to the next child.
Otherwise, the trace marks the buffer, and recursively initiates a mark
operation on that heap buffer.

The tracing operation is complete when the reachability graph has
been fully traversed. At this time every heap buffer that’s reachable
will have been marked, as could some buffers that aren’t actually
reachable, due to the conservative pointer estimation. Any heap buffer
that hasn’t been marked is definitely unreachable, constituting a
memory leak. At the end of the tracing operation, all unmarked nodes
can be reported as leaks.

Causing a trace and giving results
A program can cause a trace to be performed and memory leaks to be
reported by calling the malloc dump unreferenced() function
provided by the library:

int malloc dump unreferenced (int fd,
int detail);

Suspend all threads, clear the mark information for all heap buffers,
perform the trace operation, and print a report of all memory leaks
detected. All items are reported in memory order.

May 31, 2004 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past 259

Memory Leaks  2004, QNX Software Systems Ltd.

fd The file descriptor on which the report should be produced.

detail Indicate how the trace operation should deal with any heap
corruption problems it encounters. For a value of:

1 Any problems encountered can be treated as fatal
errors. After the error encountered is printed abort
the program. No report is produced.

0 Print case errors, and a report based on whatever
heap information is recoverable.

Analyzing dumps
The dump of unreferenced buffers prints out one line of information
for each unreferenced buffer. The information provided for a buffer
includes:

� address of the buffer

� function that was used to allocate it (malloc(), calloc(), realloc())

� file that contained the allocation request, if available

� line number or return address of the call to the allocation function

� size of the allocated buffer.

File and line information is available if the call to allocate the buffer
was made using one of the library’s debug interfaces. Otherwise, the
return address of the call is reported in place of the line number. In
some circumstances, no return address information is available. This
usually indicates that the call was made from a function with no frame
information, such as the system libraries. In such cases, the entry can
usually be ignored and probably isn’t a leak.

From the way tracing is performed we can see that some leaks may
escape detection and may not be reported in the output. This happens
if the root set or a reachable buffer in the heap has something that
looks like a pointer to the buffer.

260 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past May 31, 2004

 2004, QNX Software Systems Ltd. Compiler Support

Likewise, each reported leak should be checked against the suspected
code identified by the line or call return address information. If the
code in question keeps interior pointers — pointers to a location
inside the buffer, rather than the start of the buffer — the trace
operation will likely fail to find a reference to the buffer. In this case,
the buffer may well not be a leak. In other cases, there is almost
certainly a memory leak.

Compiler Support
Manual bounds checking can be avoided in circumstances where the
compiler is capable of supporting bounds checking under control of a
compile-time option. For C compilers this requires explicit support in
the compiler. Patches are available for the Gnu C Compiler that allow
it to perform bounds checking on pointers in this manner. This will be
dealt with later. For C++ compilers extensive bounds checking can be
performed through the use of operator overloading and the
information functions described earlier.

C++ issues
In place of a raw pointer, C++ programs can make use of a
CheckedPtr template that acts as a smart pointer. The smart pointer
has initializers that obtain complete information about the heap buffer
on an assignment operation and initialize the current pointer position.
Any attempt to dereference the pointer causes bounds checking to be
performed and prints a diagnostic error in response an attempt to
dereference a value beyond the bounds of the buffer. The
CheckedPtr template is provided in the <malloc g/malloc>

header for C++ programs.

The checked pointer template provided for C++ programs can be
modified to suit the needs of the program. The bounds checking
performed by the checked pointer is restricted to checking the actual
bounds of the heap buffer, rather than the program requested size.

For C programs it’s possible to compile individual modules that obey
certain rules with the C++ compiler to get the behavior of the

May 31, 2004 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past 261

Compiler Support  2004, QNX Software Systems Ltd.

CheckedPtr template. C modules obeying these rules are written to
a dialect of ANSI C that can be referred to as Clean C.

Clean C

The Clean C dialect is that subset of ANSI C that is compatible with
the C++ language. Writing Clean C requires imposing coding
conventions to the C code that restrict use to features that are
acceptable to a C++ compiler. This section provides a summary of
some of the more pertinent points to be considered. It is a mostly
complete but by no means exhaustive list of the rules that must be
applied.

To use the C++ checked pointers, the module including all header
files it includes must be compatible with the Clean C subset. All the
system headers for QNX Neutrino as well as the
<malloc g/malloc.h> header satisfy this requirement.

The most obvious aspect to Clean C is that it must be strict ANSI C
with respect to function prototypes and declarations. The use of K&R
prototypes or definitions isn’t allowable in Clean C. Similarly, default
types for variable and function declarations can’t be used.

Another important consideration for declarations is that forward
declarations must be provided when referencing an incomplete
structure or union. This frequently occurs for linked data structures
such as trees or lists. In this case the forward declaration must occur
before any declaration of a pointer to the object in the same or another
structure or union. For example, a list node may be declared as
follows:

struct ListNode;
struct ListNode {

struct ListNode *next;
void *data;

};

Operations on void pointers are more restrictive in C++. In particular,
implicit coercions from void pointers to other types aren’t allowed
including both integer types and other pointer types. Void pointers
should be explicitly cast to other types.

262 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past May 31, 2004

 2004, QNX Software Systems Ltd. Compiler Support

The use of const should be consistent with C++ usage. In particular,
pointers that are declared as const must always be used in a
compatible fashion. Const pointers can’t be passed as non-const
arguments to functions unless const is cast away.

C++ example

Here’s how the overrun example from earlier could have the exact
source of the error pinpointed with checked pointers:

typedef CheckedPtr<int> intp t;
...
intp t foo, p;
int i;
int opt;
opt = 1;
mallopt(MALLOC FILLAREA, opt);
foo = (int *)malloc(10*4);
opt = M HANDLE ABORT;
mallopt(MALLOC WARN, opt);
for (p = foo, i = 12; i > 0; p++, i--)

p = 89; / a fatal error is generated here */
opt = M HANDLE IGNORE;
mallopt(MALLOC WARN, opt);
free(foo);

Bounds checking GCC
Bounds checking GCC is a variant of GCC that allows individual
modules to be compiled with bounds checking enabled. When a heap
buffer is allocated within a checked module, information about the
buffer is added to the runtime information about the memory space
kept on behalf of the compiler. Attempts to dereference or update the
pointer in checked modules invokes intrinsic functions that obtain
information about the bounds of the object — it may be stack, heap or
an object in the data segment — and checks to see that the reference
is in bounds. When an access is out of bounds, the runtime
environment generates an error.

The bounds checking variant of GCC hasn’t been ported to the QNX
Neutrino environment. In order to check objects that are kept within
the data segment of the application, the compiler runtime environment

May 31, 2004 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past 263

Summary  2004, QNX Software Systems Ltd.

requires some Unix functions that aren’t provided by QNX Neutrino.
The intrinsics would have to be modified to work in the QNX
Neutrino environment.

The model for obtaining information about heap buffers with this
compiler is also slightly different than the model employed by the
malloc library. Instead of this, the compiler includes an alternative
malloc implementation that registers checked heap buffers with a tree
data structure outside of the program’s control. This tree is used for
searches made by the intrinsics to obtain information about checked
objects. This technique may take more time than the malloc
mechanism for some programs, and is incompatible with the checking
and memory leak detection provided by the malloc library. Rather
than performing multiple test runs, a port which reimplemented the
compiler intrinsics to obtain heap buffer information from the malloc
library would be desirable.

Summary
When you develop an application, we recommend that you test it
against a debug version that incorporates the malloc library to detect
possible sources of memory errors, such as overruns and memory
leaks.

The malloc library and the different levels of compiler support can be
very useful in detecting the source of overrun errors (which may
escape detection during integration testing) during unit testing and
program maintenance. However, in this case, more stringent checking
for low-level bounds checking of individual pointers may prove
useful. The use of the Clean C subset may also help by facilitating the
use of C++ templates for low-level checking. Otherwise, you might
consider porting the bounds checking variant of GCC to meet your
individual project requirements.

264 Chapter 7 � Heap Analysis: Making Memory Errors a Thing of the Past May 31, 2004

Appendix A

Freedom from Hardware and
Platform Dependencies

In this appendix. . .
Common problems 267
Solutions 270

May 31, 2004 Appendix: A � Freedom from Hardware and Platform Dependencies 265

 2004, QNX Software Systems Ltd. Common problems

Common problems
With the advent of multiplatform support, which involves non-x86
platforms as well as peripheral chipsets across these multiple
platforms, we don’t want to have to write different versions of device
drivers for each and every platform.

While some platform dependencies are unavoidable, let’s talk about
some of the things that you as a developer can do to minimize the
impact. At QNX Software Systems, we’ve had to deal with these
same issues — for example, we support the 8250 serial chip on
several different types of processors. Ethernet controllers, SCSI
controllers, and others are no exception.

Let’s look at these problems:

� I/O space vs memory-mapped

� Big-endian vs little-endian

� alignment and structure packing

� atomic operations.

I/O space vs memory-mapped
The x86 architecture has two distinct address spaces:

� 16-address-line I/O space

� 32-address-line instruction and data space.

The processor asserts a hardware line to the external bus to indicate
which address space is being referenced. The x86 has special
instructions to deal with I/O space (e.g. IN AL, DX vs MOV
AL, address). Common hardware design on an x86 indicates that the
control ports for peripherals live in the I/O address space. On non-x86
platforms, this requirement doesn’t exist — all peripheral devices are
mapped into various locations within the same address space as the
instruction and code memory.

May 31, 2004 Appendix: A � Freedom from Hardware and Platform Dependencies 267

Common problems  2004, QNX Software Systems Ltd.

Big-endian vs little-endian
Big-endian vs little-endian is another compatibility issue with various
processor architectures. The issue stems from the byte ordering of
multibyte constants. The x86 architecture is little-endian. For
example, the hexadecimal number 0x12345678 is stored in memory as:

address contents
0 0x78
1 0x56
2 0x34
3 0x12

A big-endian processor would store the data in the following order:

address contents
0 0x12
1 0x34
2 0x56
3 0x78

This issue is worrisome on a number of fronts:

� typecast mangling

� hardware access

� network transparency.

The first and second points are closely related.

Typecast mangling

Consider the following code:

func ()
{

long a = 0x12345678;
char *p;

p = (char *) &a;
printf ("%02X\n", *p);

}

268 Appendix: A � Freedom from Hardware and Platform Dependencies May 31, 2004

 2004, QNX Software Systems Ltd. Common problems

On a big-endian machine, this will print the value “0x78”; on a
little-endian machine it will print “0x12”. This is one of the big
(pardon the pun) reasons that typecasts are generally frowned upon by
structured programmers.

Hardware access

Sometimes the hardware can present you with a conflicting choice of
the “correct” size for a chunk of data. Consider a piece of hardware
that has a 4K memory window. If the hardware brings various data
structures into view with that window, it’s impossible to determine
a priori what the data size should be for a particular element of the
window. Is it a 32-bit long integer? An 8-bit character? Blindly
performing operations as in the above code sample will land you in
trouble, because the CPU will determine what it believes to be the
correct endianness, regardless of what the hardware manifests.

Network transparency

These issues are naturally compounded when heterogeneous CPUs
are used in a network with messages being passed among them. If the
implementor of the message-passing scheme doesn’t decide up front
what byte order will be used, then some form of identification needs
to be done so that a machine with a different byte ordering can receive
and correctly decode a message from another machine. This problem
has been solved with protocols like TCP/IP, where a defined network
byte order is always adhered to, even between homogeneous
machines whose byte order differs from the network byte order.

Alignment and structure packing
On the x86 CPU, you can access any sized data object at any address
(albeit some accesses are more efficient than others). On non-x86
CPUs, you can’t — as a general rule, you can access only N-byte
objects on an N-byte boundary. For example, to access a 4-byte long
integer, it must be aligned on a 4-byte address (e.g. 0x7FBBE008). An
address like 0x7FBBE009 will cause the CPU to generate a fault. (An
x86 processor happily generates multiple bus cycles and gets the data
anyway.)

May 31, 2004 Appendix: A � Freedom from Hardware and Platform Dependencies 269

Solutions  2004, QNX Software Systems Ltd.

Generally, this will not be a problem with structures defined in the
header files for QNX, as we’ve taken care to ensure that the members
are aligned properly. The major place that this occurs is with
hardware devices that can map a window into the address space (for
configuration registers, etc.), and protocols where the protocol itself
presents data in a nonaligned manner (e.g. CIFS/SMB protocol).

Atomic operations
One final problem that can occur with different families of processors,
and SMP configurations in general, is that of atomic access to
variables. Since this is so prevalent with interrupt service routines and
their handler threads, we’ve already talked about this in the chapter on
Writing an Interrupt Handler.

Solutions
Now that we’ve seen the problems, let’s take a look at some of the
solutions you can use. The following header files are shipped standard
with QNX:

<gulliver.h>

isolates big-endian vs little-endian issues

<hw/inout.h>

provides input and output functions for I/O or memory address
spaces

Determining endianness
The file <gulliver.h> contains macros to help resolve endian
issues. The first thing you may need to know is the target system’s
endianness, which you can find out via the following macros:

LITTLEENDIAN

defined if little-endian

270 Appendix: A � Freedom from Hardware and Platform Dependencies May 31, 2004

 2004, QNX Software Systems Ltd. Solutions

BIGENDIAN

defined if big-endian

A common coding style in the header files (e.g. <gulliver.h>) is to
check which macro is defined and to report an error if none is defined:

#if defined(LITTLEENDIAN)
// do whatever for little-endian
#elif defined(BIGENDIAN)
// do whatever for big-endian
#else
#error ENDIAN Not defined for system
#endif

The #error statement will cause the compiler to generate an error
and abort the compilation.

Swapping data if required
Suppose you need to ensure that data obtained in the host order (i.e.
whatever is “native” on this machine) is returned in a particular order,
either big- or little-endian. Or vice versa: you want to convert data
from host order to big- or little-endian. You can use the following
macros (described here as if they’re functions for syntactic
convenience):

ENDIAN LE16()

uint16 t ENDIAN LE16 (uint16 t var)

If the host is little-endian, this macro does nothing (expands simply to
var); else, it performs a byte swap.

ENDIAN LE32()

uint32 t ENDIAN LE32 (uint32 t var)

If the host is little-endian, this macro does nothing (expands simply to
var); else, it performs a quadruple byte swap.

May 31, 2004 Appendix: A � Freedom from Hardware and Platform Dependencies 271

Solutions  2004, QNX Software Systems Ltd.

ENDIAN LE64()

uint64 t ENDIAN LE64 (uint64 t var)

If the host is little-endian, this macro does nothing (expands simply to
var); else, it swaps octets of bytes.

ENDIAN BE16()

uint16 t ENDIAN BE16 (uint16 t var)

If the host is big-endian, this macro does nothing (expands simply to
var); else, it performs a byte swap.

ENDIAN BE32()

uint32 t ENDIAN BE32 (uint32 t var)

If the host is big-endian, this macro does nothing (expands simply to
var); else, it performs a quadruple byte swap.

ENDIAN BE64()

uint64 t ENDIAN BE64 (uint64 t var)

If the host is big-endian, this macro does nothing (expands simply to
var); else, it swaps octets of bytes.

Accessing unaligned data
To access data on nonaligned boundaries, you have to access the data
one byte at a time (the correct endian order is preserved during byte
access). The following macros (documented as functions for
convenience) accomplish this:

UNALIGNED RET16()

uint16 t UNALIGNED RET16 (uint16 t *addr16)

Returns a 16-bit quantity from the address specified by addr16.

272 Appendix: A � Freedom from Hardware and Platform Dependencies May 31, 2004

 2004, QNX Software Systems Ltd. Solutions

UNALIGNED RET32()

uint32 t UNALIGNED RET32 (uint32 t *addr32)

Returns a 32-bit quantity from the address specified by addr32.

UNALIGNED RET64()

uint64 t UNALIGNED RET64 (uint64 t *addr64)

Returns a 64-bit quantity from the address specified by addr64.

UNALIGNED PUT16()

void UNALIGNED PUT16 (uint16 t *addr16, uint16 t

val16)

Stores the 16-bit value val16 into the address specified by addr16.

UNALIGNED PUT32()

void UNALIGNED PUT32 (uint32 t *addr32, uint32 t

val32)

Stores the 32-bit value val32 into the address specified by addr32.

UNALIGNED PUT64()

void UNALIGNED PUT64 (uint64 t *addr64, uint64 t

val64)

Stores the 64-bit value val64 into the address specified by addr64.

Examples
Here are some examples showing how to access different pieces of
data using the macros introduced so far.

Mixed-endian accesses

This code is written to be portable. It accesses little data (i.e. data
that’s known to be stored in little-endian format, perhaps as a result of
some on-media storage scheme), and then manipulates it, writing the
data back. This illustrates that the ENDIAN *() macros are
bidirectional.

May 31, 2004 Appendix: A � Freedom from Hardware and Platform Dependencies 273

Solutions  2004, QNX Software Systems Ltd.

uint16 t native data;
uint16 t little data;

native data = ENDIAN LE16 (little data);// used as "from little-endian"
native data++; // do something with native form

little data = ENDIAN LE16 (native data);// used as "to little-endian"

Accessing hardware with dual-ported memory

Hardware devices with dual-ported memory may “pack” their
respective fields on nonaligned boundaries. For example, if we had a
piece of hardware with the following layout, we’d have a problem:

Address Size Name

0x18000000 1 PKTTYPE

0x18000001 4 PKTCRC

0x18000005 2 PKTLEN

Let’s see why.

The first field, PKTTYPE, is fine — it’s a 1-byte field, which
according to the rules could be located anywhere. But the second and
third fields aren’t fine. The second field, PKTCRC, is a 4-byte object,
but it’s not located on a 4-byte boundary (the address is not evenly
divisible by 4). The third field, PKTLEN, suffers from a similar
problem — it’s a 2-byte field that’s not on a 2-byte boundary.

The ideal solution would be for the hardware manufacturer to obey
the same alignment rules that are present on the target processor, but
this isn’t always possible. For example, if the hardware presented a
raw data buffer at certain memory locations, the hardware would have
no idea how you wish to interpret the bytes present — it would simply
manifest them in memory.

To access these fields, you’d make a set of manifest constants for their
offsets:

#define PKTTYPE OFF 0x0000

274 Appendix: A � Freedom from Hardware and Platform Dependencies May 31, 2004

 2004, QNX Software Systems Ltd. Solutions

#define PKTCRC OFF 0x0001
#define PKTLEN OFF 0x0005

Then, you’d map the memory region via mmap device memory().
Let’s say it gave you a char * pointer called ptr. Using this pointer,
you’d be tempted to:

cr1 = *(ptr + PKTTYPE OFF);
// wrong!
sr1 = * (uint32 t *) (ptr + PKTCRC OFF);
er1 = * (uint16 t *) (ptr + PKTLEN OFF);

However, this would give you an alignment fault on non-x86
processors for the sr1 and er1 lines.

One solution would be to manually assemble the data from the
hardware, byte by byte. And that’s exactly what the UNALIGNED *()
macros do. Here’s the rewritten example:

cr1 = *(ptr + PKTTYPE OFF);
// correct!
sr1 = UNALIGNED RET32 (ptr + PKTCRC OFF);
er1 = UNALIGNED RET16 (ptr + PKTLEN OFF);

The access for cr1 didn’t change, because it was already an 8-bit
variable — these are always “aligned.” However, the access for the
16- and 32-bit variables now uses the macros.

An implementation trick used here is to make the pointer that serves
as the base for the mapped area by a char * — this lets us do pointer
math on it.

To write to the hardware, you’d again use macros, but this time the
UNALIGNED PUT*() versions:

*(ptr + PKTTYPE OFF) = cr1;
UNALIGNED PUT32 (ptr + PKTCRC OFF, sr1);
UNALIGNED PUT16 (ptr + PKTLEN OFF, er1);

Of course, if you’re writing code that should be portable to
different-endian processors, you’ll want to combine the above tricks
with the previous endian macros. Let’s define the hardware as

May 31, 2004 Appendix: A � Freedom from Hardware and Platform Dependencies 275

Solutions  2004, QNX Software Systems Ltd.

big-endian. In this example, we’ve decided that we’re going to store
everything that the program uses in host order and do translations
whenever we touch the hardware:

cr1 = *(ptr + PKTTYPE OFF); // endian neutral
sr1 = ENDIAN BE32 (UNALIGNED RET32 (ptr + PKTCRC OFF));
er1 = ENDIAN BE16 (UNALIGNED RET16 (ptr + PKTLEN OFF));

And:

*(ptr + PKTTYPE OFF) = cr1; // endian neutral
UNALIGNED PUT32 (ptr + PKTCRC OFF, ENDIAN BE32 (sr1));
UNALIGNED PUT16 (ptr + PKTLEN OFF, ENDIAN BE16 (er1));

Here’s a simple way to remember which ENDIAN *() macro to use.
Recall that the ENDIAN *() macros won’t change the data on their
respective platforms (i.e. the LE macro will return the data unchanged
on a little-endian platform, and the BE macro will return the data
unchanged on a big-endian platform). Therefore, to access the data
(which we know has a defined endianness), we effectively want to
select the same macro as the type of data. This way, if the platform is
the same as the type of data present, no changes will occur (which is
what we expect).

Accessing I/O ports
When porting code that accesses hardware, the x86 architecture has a
set of instructions that manipulate a separate address space called the
I/O address space. This address space is completely separate from the
memory address space. On non-x86 platforms (MIPS, PPC, etc.),
such an address space doesn’t exist — all devices are mapped into
memory.

In order to keep code portable, we’ve defined a number of functions
that isolate this behavior. By including the file <hw/inout.h>, you
get the following functions:

in8() Reads an 8-bit value.

in16(), inbe16(), inle16()

Reads a 16-bit value.

276 Appendix: A � Freedom from Hardware and Platform Dependencies May 31, 2004

 2004, QNX Software Systems Ltd. Solutions

in32(), inbe32(), inle32()

Reads a 32-bit value.

in8s() Reads a number of 8-bit values.

in16s() Reads a number of 16-bit values.

in32s() Reads a number of 32-bit values.

out8() Writes a 8-bit value.

out16(), outbe16(), outle16()

Writes a 16-bit value.

out32(), outbe32(), outle32()

Writes a 32-bit value.

out8s() Writes a number of 8-bit values.

out16s() Writes a number of 16-bit values.

out32s() Writes a number of 32-bit values.

On the x86 architecture, these functions perform the machine
instructions in, out, rep ins*, and rep outs*. On non-x86
architectures, they dereference the supplied address (the addr
parameter) and perform memory accesses.

The bottom line is that code written for the x86 will be portable to
MIPS and PPC. Consider the following fragment:

iir = in8 (baseport);
if (iir & 0x01) {

return;
}

On an x86 platform, this will perform IN AL, DX, whereas on a
MIPS or PPC, it will dereference the 8-bit value stored at location
baseport.

Note that the calling process must use mmap device io() to access the
device’s I/O registers.

May 31, 2004 Appendix: A � Freedom from Hardware and Platform Dependencies 277

Appendix B

Conventions for Makefiles and
Directories

In this appendix. . .
Structure 281
Specifying options 287
Using the standard macros and include files 290
Advanced topics 299

May 31, 2004 Appendix: B � Conventions for Makefiles and Directories 279

 2004, QNX Software Systems Ltd. Structure

In this appendix, we’ll take a look at the supplementary files used in
the QNX development environment. Although we use the standard
make command to create libraries and executables, you’ll notice we
use some of our own conventions in the Makefile syntax.

We’ll start with a general description of a full, multiplatform source
tree. Then we’ll look at how you can build a tree for your products.
Finally, we’ll wrap up with a discussion of some advanced topics,
including collapsing unnecessary levels and performing partial builds.

Although you’re certainly not obliged to use our format for the
directory structure and related tools, you may choose to use it because
it’s convenient for developing multiplatform code.

Structure
Here’s a sample directory tree for a product that can be built for two
different operating systems (QNX 4 and QNX Neutrino), on five CPU
platforms (x86, MIPS, PowerPC, ARM, and SH4), with both endian
combinations on the MIPS and PowerPC:

May 31, 2004 Appendix: B � Conventions for Makefiles and Directories 281

Structure  2004, QNX Software Systems Ltd.

project

sec1 sec2

qnx4 nto

x86mips ppc

oo.be o.le o.be o.le

Project level

Section level

OS level

CPU level

Variant level

sh

o.le

arm

o.le

Source tree for a multiplatform project.

We’ll talk about the names of the directory levels shortly. At each
directory level is a Makefile file used by the make utility to
determine what to do in order to make the final executable.

However, if you examine the makefiles, you can see that most of them
simply contain:

include recurse.mk

Why do we have makefiles at every level? Because make can recurse
into the bottommost directory level (the Variant level in the diagram).
That’s where the actual work of building the product occurs. This
means that you could type make at the topmost directory, and it would
go into all the subdirectories and compile everything. Or you could
type make from a particular point in the tree, and it would compile
only what’s needed from that point down.

282 Appendix: B � Conventions for Makefiles and Directories May 31, 2004

 2004, QNX Software Systems Ltd. Structure

We’ll discuss how to cause make to compile only certain parts of the
source tree, even if invoked from the top of the tree, in the “Advanced
topics” section.

When deciding where to place source files, as a rule of thumb you
should place them as high up in the directory tree as possible. This
not only reduces the number of directory levels to traverse when
looking for source, but also encourages you to develop source that’s
as generic (i.e. non-OS, non-CPU, and non-board-specific) as
possible. Lower directory levels are reserved for more and more
specific pieces of source code.

�

If you look at the source tree that we ship, you’ll notice that we follow
the directory structure defined above, but with a few shortcuts. We’ll
cover those shortcuts in the “Advanced Topics” section.

Makefile structure
As mentioned earlier, the makefile structure is almost identical,
regardless of the level that the makefile is found in. All makefiles
(except the bottommost level) include the recurse.mk file and may
set one or more macros.

Here’s an example of one of our standard (nonbottommost)
Makefiles:

LATE DIRS=boards
include recurse.mk

The recurse.mk file
The recurse.mk file resides under /usr/include/mk. This
directory contains other files that are included within makefiles. Note
that while the make utility automatically searches /usr/include,
we’ve created symbolic links from there to /usr/include/mk.

The recurse.mk include file is typically used by higher-level
makefiles to recurse into lower-level makefiles. All subdirectories

May 31, 2004 Appendix: B � Conventions for Makefiles and Directories 283

Structure  2004, QNX Software Systems Ltd.

present are scanned for files called makefile or Makefile. Any
subdirectories that contain such files are recursed into, then make is
invoked from within those directories, and so on, down the directory
tree.

The special filename Makefile.dnm (“dnm” stands for “Do Not
Make”) can be placed next to a real Makefile to cause recurse.mk
not to descend into that directory. The contents of Makefile.dnm
aren’t examined in any way — you can use touch to create an empty
file for it.

Macros
The example given above uses the LATE DIRS macro. Here are the
macros that can be placed within a makefile:

� EARLY DIRS

� LATE DIRS

� LIST

� MAKEFILE

� CHECKFORCE

The EARLY DIRS and LATE DIRS macros

To give you some control over the ordering of the directories, the
macros EARLY DIRS and LATE DIRS specify directories to be
recursed into before or after all others. You’d use this facility with
directory trees that contain one directory that depends on another
directory at the same level — you want the independent directory to
be done first, followed by the dependent directory.

In our example above, we’ve specified a LATE DIRS value of boards,
because the boards directory depends on the library directory (lib).

Note that the EARLY DIRS and LATE DIRS macros accept a list of
directories. The list is treated as a group, with no defined ordering
within that group.

284 Appendix: B � Conventions for Makefiles and Directories May 31, 2004

 2004, QNX Software Systems Ltd. Structure

The LIST macro

The LIST macro serves as a tag for the particular directory level that
the makefile is found in.

The LIST macro can contain a list of names that are separated by
spaces. This is used when we squash directory levels together; see
“Advanced Topics,” later in this appendix.

Here are the common values corresponding to the directory levels:

� VARIANT

� CPU

� OS

Note that you’re free to define whatever values you wish — these are
simply conventions that we’ve adopted for the three directory levels
specified. See the section on “More uses for LIST,” below.

Once the directory has been identified via a tag in the makefile, you
can specifically exclude or include the directory and its descendents in
a make invocation. See “Performing partial builds” below.

The MAKEFILE macro

The MAKEFILE macro identifies the name of the makefile that
recurse.mk should search for in the child directories. Normally this
is [Mm]akefile, but you can set it to anything you wish by changing
the MAKEFILE macro. For example, in a GNU configure-style
makefile, you’d set it to GNUmakefile (see “GNU configure,”
later in this appendix.

The CHECKFORCE macro

The CHECKFORCE macro is a trigger. Its actual value is unimportant,
but if you set it, the recurse.mk file looks for Makefile.force
files in the subdirectories. If it finds one, that directory is recursed
into, even if the LIST macro settings would normally prevent this from
happening.

May 31, 2004 Appendix: B � Conventions for Makefiles and Directories 285

Structure  2004, QNX Software Systems Ltd.

Directory structure
Let’s look at the directory levels themselves in some detail. Note that
you can add as many levels as you want above the levels described
here — these levels would reflect your product. For example, in a
factory automation system, the product would consist of the entire
system — you would then have several subdirectories under that
directory level to describe various projects within that product (e.g.
gui, pidloop, robot plc, etc.).

The project level
The project level directory is used mainly to store the bulk of the
source code and other directories. These directories would be
structured logically around the project being developed. For our
factory automation example, a particular project level might be the
gui directory, which would contain the source code for the graphical
user interface as well as further subdirectories.

The section level (optional)
The section level directory is used to contain the source base relevant
to a part of the project. It may be omitted if not required; see
“Collapsing unnecessary directory levels,” below.

The OS level
If you were building products to run on multiple operating systems,
you’d include an OS level directory structure. This would serve as a
branchpoint for OS-specific subdirectories. In our factory floor
example, the gui section might be built for both QNX 4 and QNX
Neutrino, whereas the other sections might be built just for QNX
Neutrino.

If no OS level is detected, QNX Neutrino is assumed.

286 Appendix: B � Conventions for Makefiles and Directories May 31, 2004

 2004, QNX Software Systems Ltd. Specifying options

The CPU level
Since we’re building executables and libraries for multiple platforms,
we need a place to serve as a branchpoint for the different CPUs.
Generally, the CPU level would contain nothing but subdirectories for
the various CPUs, but it may also contain CPU-specific source files.

The variant level
Finally, the variant level contains object, library, or executable files
specific to a particular variant of the processor. For example, a MIPS
processor could operate in big-endian or little-endian mode. In that
case, we’d have to generate two different sets of output modules. On
the other hand, an x86 processor is a little-endian machine only, so we
need to build only one set of output modules.

Specifying options
At the project level, there’s a file called common.mk.

This file contains any special flags and settings that need to be in
effect in order to compile and link.

At the bottommost level (the variant level), the format of the makefile
is different — it doesn’t include recurse.mk, but instead includes
common.mk (from the project level).

The common.mk file
The common.mk include file is where you put the traditional makefile
options, such as compiler options.

In order for the common.mk makefile to be able to determine which
system to build the particular objects, libraries, or executables for, we
analyze the pathname components in the bottommost level in reverse
order as follows:

� the last component is assigned to the VARIANT1 macro

� the next previous component is assigned to the CPU macro

� the next previous component is assigned to the OS macro

May 31, 2004 Appendix: B � Conventions for Makefiles and Directories 287

Specifying options  2004, QNX Software Systems Ltd.

� the next previous component is assigned to the SECTION macro

� the next previous component is assigned to the PROJECT macro.

For example, if we have a pathname of
/source/factory/robot plc/driver/nto/mips/o.be, then
the macros are set as follows:

Macro Value

VARIANT1 o.be

CPU mips

OS nto

SECTION driver

PROJECT robot plc

The variant-level makefile
The variant-level makefile (i.e. the bottommost makefile in the tree)
contains the single line:

include ../../common.mk

The number of ../ components must be correct to get at the
common.mk include file, which resides in the project level of the tree.
The reason that the number of ../ components isn’t necessarily the
same in all cases has to do with whether directory levels are being
collapsed.

Recognized variant names
Variant names can be combined into a compound variant; use a period
(.), dash (-) or slash (/) between the variants.

The common makefiles are triggered by a number of distinguished
variant names:

288 Appendix: B � Conventions for Makefiles and Directories May 31, 2004

 2004, QNX Software Systems Ltd. Specifying options

a The image being built is an object library.

so The image being built is a shared object. If neither a nor
so is present in the compound variant, an executable is
being built.

shared Compile the object files for .so use, but don’t create an
actual shared object. You typically use this name in an
a.shared variant to create a static link archive that can
be linked into a shared object.

g Compile and link the source with the debugging flag set.

be, le Compile and link the source to generate big (if be) or
little (if le) endian code. If a CPU supports bi-endian
operation, one of these variants should always be present
in the compound variant name. Conversely, if the CPU is
mono-endian, neither be nor le should be specified in
the compound variant.

gcc Use the GCC (gcc) compiler to compile the source. If
you don’t specify a compiler, the makefiles provide a
default.

o This is the NULL variant name. It’s used when building
an image that doesn’t really have any variant components
to it (e.g an executable for an x86 CPU, which doesn’t
support bi-endian operation).

Variant names can be placed in any order in the compound variant,
but to avoid confusing a source configuration management tool (e.g.
CVS), make sure that the last variant in the list never looks like a
generated file suffix. In other words, don’t use variant names ending
in .a, .so, or .o.

The following table lists some examples:

May 31, 2004 Appendix: B � Conventions for Makefiles and Directories 289

Using the standard macros and include files  2004, QNX Software Systems Ltd.

Variant Purpose

g.le A debugging version of a little-endian executable.

so.be A big-endian version of a shared object.

403.be A user-defined “403” variant for a big-endian system.

The only valid characters for variant names are letters, digits, and
underscores ().

�

In order for the source code to tell what variant(s) it’s being compiled
for, the common makefiles arrange for each variant name to be
postfixed to the string VARIANT and have that defined as a C or
assembler macro on the command line. For example, if the compound
variant is so.403.be, the following C macros are defined:
VARIANT so, VARIANT 403, and VARIANT be. Note that neither
VARIANT be nor VARIANT le is defined on a CPU that doesn’t
support bi-endian operation, so any endian-specific code should
always test for the C macros LITTLEENDIAN or BIGENDIAN
(instead of VARIANT le or VARIANT be) to determine what
endianness it’s running under.

Using the standard macros and include files
We’ve described the pieces you’ll provide when building your system,
including the common.mk include file. There are two other include
files to discuss:

� qconfig.mk

� qmacros.mk

We’ll also look at some of the macros that are set or used by those
include files.

290 Appendix: B � Conventions for Makefiles and Directories May 31, 2004

 2004, QNX Software Systems Ltd. Using the standard macros and include files

The qconfig.mk include file
Since the common makefiles have a lot of defaults based on the names
of various directories, you can simplify your life enormously in the
common.mk include file if you choose your directory names to match
what the common makefiles want. For example, if the name of the
project directory is the same as the name of the image, you don’t have
to set the NAME macro in common.mk.

The prototypical common.mk file looks like this:

ifndef QCONFIG
QCONFIG=qconfig.mk
endif
include $(QCONFIG)

Preset make macros go here

include $(MKFILES ROOT)/qtargets.mk

Post-set make macros go here

The qconfig.mk include file provides the root paths to various
install, and usage trees on the system, along with macros that define
the compilers and some utility commands that the makefiles use. The
purpose of the qconfig.mk include file is to let you tailor the root
directories, compilers, and commands used at your site, if they differ
from the standard ones that we use and ship. Therefore, nothing in a
project’s makefiles should refer to a compiler name, absolute path, or
command name directly. Always use the qconfig.mk macros.

The qconfig.mk file resides in /usr/include/mk as
qconf-os.mk (where os is the host OS, e.g. nto, qnx4, solaris, NT),
which is a symbolic link from the place where make wants to find it
(namely /usr/include/qconfig.mk). You can override the
location of the include file by specifying a value for the QCONFIG
macro.

If you wish to override the values of some of the macros defined in
qconfig.mk without modifying the contents of the file, set the
QCONF OVERRIDE environment variable (or make macro) to be
the name of a file to include at the end of the main qconfig.mk file.

May 31, 2004 Appendix: B � Conventions for Makefiles and Directories 291

Using the standard macros and include files  2004, QNX Software Systems Ltd.

Preset macros

Before including qtargets.mk, some macros need to be set to
determine things like what additional libraries need to be searched in
the link, the name of the image (if it doesn’t match the project
directory name), and so on. This would be done in the area tagged as
“Preset make macros go here” in the sample above.

Postset macros

Following the include of qtargets.mk, you can override or (more
likely) add to the macros set by qtargets.mk. This would be done
in the area tagged as “Post-set make macros go here” in the
sample above.

qconfig.mk macros

Here’s a summary of the macros available from qconfig.mk:

CP HOST Copy files from one spot to another.

LN HOST Create a symbolic link from one file to another.

RM HOST Remove files from the filesystem.

TOUCH HOST Update a file’s access and modification times.

PWD HOST Print the full path of the current working directory.

CL which Compile and link.

CC which Compile C/C++ source to an object file.

AS which Assemble something to an object file.

AR which Generate an object file library (archive).

LR which Link a list of objects/libraries to a relocatable object
file.

LD which Link a list of objects/libraries to a executable/shared
object.

292 Appendix: B � Conventions for Makefiles and Directories May 31, 2004

 2004, QNX Software Systems Ltd. Using the standard macros and include files

UM which Add a usage message to an executable.

The which parameter can be either the string HOST for compiling
something for the host system or a triplet of the form os cpu compiler
to specify a combination of target OS and CPU, as well as the
compiler to be used.

The os would usually be the string nto to indicate QNX Neutrino.
The cpu would be one of x86, mips, ppc, arm or sh. Finally, the
compiler would be one of gcc.

For example, the macro CC nto x86 gcc would be used to specify:

� the compilation tool

� a QNX Neutrino target system

� an x86 platform

� the GNU GCC compiler

The following macro would contain the command-line sequence
required to invoke the GCC compiler:

CC nto x86 gcc = qcc -Vgcc ntox86 -c

The macros CP HOST, LN HOST, RM HOST, TOUCH HOST, and
PWD HOST are used by the various makefiles to decouple the OS
commands from the commands used to perform the given actions. For
example, under most POSIX systems, the CP HOST macro expands to
the cp utility. Under other operating systems, it may expand to
something else (e.g. copy).

In addition to the macros mentioned above, you can use the following
macros to specify options to be placed at the end of the corresponding
command lines:

� CLPOST which

� CCPOST which

� ASPOST which

May 31, 2004 Appendix: B � Conventions for Makefiles and Directories 293

Using the standard macros and include files  2004, QNX Software Systems Ltd.

� ARPOST which

� LRPOST which

� LDPOST which

� UMPOST which

The parameter “which” is the same as defined above: either the string
“HOST” or the ordered triplet defining the OS, CPU, and compiler.

For example, specifying the following:

CCPOST nto x86 gcc = -ansi

would cause the command line specified by CC nto x86 gcc to
have the additional string “-ansi” appended after it.

The qrules.mk include file
The qrules.mk include file has the definitions for compiling.

The following macros can be set and/or inspected when qrules.mk

is used. Since the qtargets.mk file includes qrules.mk, these are
available there as well. Don’t modify those that are marked
“(read-only).”

VARIANT LIST (read-only)

A space-separated list of the variant names macro.
Useful with the $(filter ...) make function
for picking out individual variant names.

CPU The name of the target CPU. Defaults to the name
of the next directory up with all parent directories
stripped off.

CPU ROOT (read-only)

The full pathname of the directory tree up to and
including the OS level.

294 Appendix: B � Conventions for Makefiles and Directories May 31, 2004

 2004, QNX Software Systems Ltd. Using the standard macros and include files

OS The name of the target OS. Defaults to the name of
the directory two levels up with all parent
directories stripped off.

OS ROOT (read-only)

The full pathname of the directory tree up to and
including the OS level.

SECTION The name of the section. Set only if there’s a
section level in the tree.

SECTION ROOT (read-only)

The full pathname of the directory tree up to and
including the section level.

PROJECT (read-only)

The basename() of the directory containing the
common.mk file.

PROJECT ROOT (read-only)

The full pathname of the directory tree up to and
including the project level.

PRODUCT (read-only)

The basename() of the directory above the project
level.

PRODUCT ROOT (read-only)

The full pathname of the directory tree up to and
including the product level.

NAME The basename() of the executable or library being
built. Defaults to $(PROJECT).

SRCVPATH A space-separated list of directories to search for
source files. Defaults to all the directories from the
current working directory up to and including the
project root directory. You’d almost never want to
set this; use EXTRA SRCVPATH to add paths
instead.

May 31, 2004 Appendix: B � Conventions for Makefiles and Directories 295

Using the standard macros and include files  2004, QNX Software Systems Ltd.

EXTRA SRCVPATH

Added to the end of SRCVPATH. Defaults to none.

INCVPATH A space-separated list of directories to search for
include files. Defaults to $(SRCVPATH) plus
$(USE ROOT INCLUDE). You’d almost never want
to set this; use EXTRA INCVPATH to add paths
instead.

EXTRA INCVPATH

Added to INCVPATH just before the
$(USE ROOT INCLUDE). Default is none.

LIBVPATH A space-separated list of directories to search for
library files. Defaults to:

. $(INSTALL ROOT support)/$(OS)/$(CPUDIR)/lib $(USE ROOT LIB).

You’ll almost never want to use this; use
EXTRA LIBVPATH to add paths instead.

EXTRA LIBVPATH

Added to LIBVPATH just before
$(INSTALL ROOT support)/$(OS)/$(CPUDIR)/lib.
Default is none.

DEFFILE The name of an assembler define file created by
mkasmoff. Default is none.

SRCS A space-separated list of source files to be
compiled. Defaults to all *.s, *.S, *.c, and *.cc
files in SRCVPATH.

EXCLUDE OBJS

A space-separated list of object files not to be
included in the link/archive step. Defaults to none.

EXTRA OBJS A space-separated list of object files to be added to
the link/archive step even though they don’t have

296 Appendix: B � Conventions for Makefiles and Directories May 31, 2004

 2004, QNX Software Systems Ltd. Using the standard macros and include files

corresponding source files (or have been excluded
by EXCLUDE OBJS). Default is none.

LIBS A space-separated list of library stems to be
included in the link. Default is none.

CCFLAGS Flags to add to the C compiler command line.

ASFLAGS Flags to add to the assembler command line.

LDFLAGS Flags to add to the linker command line.

VFLAG which Flags to add to the command line for C compiles,
assemblies, and links; see below.

CCVFLAG which

Flags to add to C compiles; see below.

ASVFLAG which

Flags to add to assemblies; see below.

LDVFLAG which

Flags to add to links; see below.

OPTIMIZE TYPE

The optimization type; one of:

� OPTIMIZE TYPE=TIME — optimize for
execution speed

� OPTIMIZE TYPE=SIZE — optimize for
executable size (the default)

� OPTIMIZE TYPE=NONE — turn off
optimization.

Note that for the VFLAG which, CCVFLAG which, ASVFLAG which,
and LDVFLAG which macros, the which part is the name of a variant.
This combined macro is passed to the appropriate command line. For
example, if there were a variant called “403,” then the macro
VFLAG 403 would be passed to the C compiler, assembler, and linker.

May 31, 2004 Appendix: B � Conventions for Makefiles and Directories 297

Using the standard macros and include files  2004, QNX Software Systems Ltd.

Don’t use this mechanism to define a C macro constant that you can
test in the source code to see if you’re in a particular variant. The
makefiles do that automatically for you. Don’t set the *VFLAG *
macros for any of the distinguished variant names (listed in the
“Recognized variant names” section, above). The common makefiles
will get confused if you do.

�

The qtargets.mk include file
The qtargets.mk include file has the linking and installation rules.

The following macros can be set and/or inspected when
qtargets.mk is used:

INSTALLDIR Subdirectory where the executable or library is to
be installed. Defaults to bin for executables and
lib/dll for DLLs. If set to /dev/null, then no
installation is done.

USEFILE The file containing the usage message for the
application. Defaults to none for archives and
shared objects and to
$(PROJECT ROOT)/$(NAME).use for executables.
The application-specific makefile can set the macro
to a null string, in which case nothing is added to
the executable.

LINKS A space-separated list of symbolic link names that
are aliases for the image being installed. They’re
placed in the same directory as the image. Default
is none.

PRE TARGET, POST TARGET

Extra steps to do before/after the main target.

PRE CLEAN, POST CLEAN

Extra steps to do before/after clean target.

298 Appendix: B � Conventions for Makefiles and Directories May 31, 2004

 2004, QNX Software Systems Ltd. Advanced topics

PRE ICLEAN, POST ICLEAN

Extra steps to do before/after iclean target.

PRE HINSTALL, POST HINSTALL

Extra steps to do before/after hinstall target.

PRE CINSTALL, POST CINSTALL

Extra steps to do before/after cinstall target.

PRE INSTALL, POST INSTALL

Extra steps to do before/after install target.

PRE BUILD, POST BUILD

Extra steps to do before/after building the image.

SO VERSION Set the SONAME version number when building a
shared object (the default is 1).

PINFO Define information to go into the *.pinfo file.

For example, you can use the PINFO NAME option
to to keep a permanent record of the original
filename of a binary. If you use this option, the
name that you specify appears in the information
from the use -i filename command. Otherwise,
the information from use -i contains the NAME
entry specified outside of the PINFO define.

For more information about PINFO, see the
hook pinfo() function described below for the GNU
configure command.

Advanced topics
In this section, we’ll discuss how to:

� collapse unnecessary directory levels

� perform partial builds

� use GNU configure

May 31, 2004 Appendix: B � Conventions for Makefiles and Directories 299

Advanced topics  2004, QNX Software Systems Ltd.

Collapsing unnecessary directory levels
The directory structure shown above (in “Structure”) defines the
complete tree — every possible directory level is shown. In the real
world, however, some of these directory levels aren’t required. For
example, you may wish to build a particular module for a PowerPC in
little-endian mode and never need to build it for anything else
(perhaps due to hardware constraints). Therefore, it seems a waste to
have a variant level that has only the directory o.le and a CPU level
that has only the directory ppc.

In this situation, you can collapse unnecessary directory components
out of the tree. You do this by simply separating the name of the
components with dashes (-) rather than slashes (/).

For example, in our source tree (/usr/src/hardware), let’s look at
the startup/boards/800fads/ppc-be makefile:

include ../common.mk

In this case, we’ve specified both the variant (as “be” for big-endian)
and the CPU (as “ppc” for PowerPC) with a single directory.

Why did we do this? Because the 800fads directory refers to a very
specific board — it’s not going to be useful for anything other than a
PowerPC running in big-endian mode.

In this case, the makefile macros would have the following values:

Macro Value

VARIANT1 ppc-be

CPU ppc

OS nto (default)

SECTION 800fads

PROJECT boards

300 Appendix: B � Conventions for Makefiles and Directories May 31, 2004

 2004, QNX Software Systems Ltd. Advanced topics

The addvariant command knows how to create both the squashed
and unsquashed versions of the directory tree. You should always use
it when creating the OS, CPU, and variant levels of the tree.

Performing partial builds
By using the LIST tag in the makefile, you can cause the make
command to perform a partial build, even if you’re at the top of the
source tree.

If you were to simply type make without having used the LIST tag, all
directories would be recursed into and everything would be built.

However, by defining a macro on make’s command line, you can:

� recurse into only the specified tagged directories

Or:

� recurse into all of the directories except for the specified tagged
ones.

Let’s consider an example. The following (issued from the top of the
source tree):

make CPULIST=x86

causes only the directories that are at the CPU level and below (and
tagged as LIST=CPU), and that are called x86, to be recursed into.

You can specify a space-separated list of directories (note the use of
quoting in the shell to capture the space character):

make "CPULIST=x86 mips"

This causes the x86 and MIPS versions to be built.

There’s also the inverse form, which causes the specific lists not to be
built:

make EXCLUDE CPULIST=ppc

May 31, 2004 Appendix: B � Conventions for Makefiles and Directories 301

Advanced topics  2004, QNX Software Systems Ltd.

This causes everything except the PowerPC versions to be built.

As you can see from the above examples, the following are all related
to each other via the CPU portion:

� LIST=CPU

� CPULIST

� EXCLUDE CPULIST

More uses for LIST

Besides using the standard LIST values that we use, you can also
define your own. Therefore, in certain makefiles, you’d put the
following definition:

LIST=CONTROL

Then you can decide to build (or prevent from building) various
subcomponents marked with CONTROL. This might be useful in a
very big project, where compilation times are long and you need to
test only a particular subsection, even though other subsections may
be affected and would ordinarily be made.

For example, if you had marked two directories, robot plc and
pidloop, with the LIST=CONTROL macro within the makefile, you
could then make just the robot plc module:

make CONTROLLIST=robot plc

Or make both (note the use of quoting in the shell to capture the space
character):

make "CONTROLLIST=robot plc pidloop"

Or make everything except the robot plc module:

make EXCLUDE CONTROLLIST=robot plc

Or make only the robot plc module for MIPS big-endian:

make CONTROLLIST=robot plc CPULIST=mips VARIANTLIST=be

302 Appendix: B � Conventions for Makefiles and Directories May 31, 2004

 2004, QNX Software Systems Ltd. Advanced topics

GNU configure
The way things are being done now can be used with any future
third-party code that uses a GNU ./configure script for
configuration.

The steps given below shouldn’t overwrite any existing files in the
project; they just add new ones.

�

Here’s how to set up a project:

1 Go to the root directory of your project.

2 Use addvariant to create a Makefile in the project root
directory that looks like this:
LIST=OS CPU VARIANT
MAKEFILE=GNUmakefile
include recurse.mk

3 Now, create a directory (or directories) of the form
os-cpu-variant, e.g. nto-x86-o or nto-mips-le. This the
same as our common makefiles, except that rather than being in
different directories, all the levels are squashed together (which
recurse.mk knows because it has multiple recursion control
variables specified).

You can add further variants following the first ones, if there are
additional different variations that you need to build.

For example, the GCC directories look like:
nto-x86-o-ntoarm for the Neutrino/X86 hosted,
Neutrino/ARM targeted compiler, or
solaris-sparc-o-ntox86 for the Solaris/Sparc hosted,
Neutrino/X86 targeted compiler.

4 In each of the new directories, use addvariant to create a file
called a GNUmakefile (note the name!) that looks like this:
ifndef QCONFIG
QCONFIG=qconfig.mk
endif
include $(QCONFIG)

May 31, 2004 Appendix: B � Conventions for Makefiles and Directories 303

Advanced topics  2004, QNX Software Systems Ltd.

include $(MKFILES ROOT)/qmake-cfg.mk

5 In the root of the project, create a build-hooks file. It’s a
shell script, so it needs be marked as executable. It needs to
define one or more of the following shell functions (described
in more detail below):

� hook preconfigure()

� hook postconfigure()

� hook premake()

� hook postmake()

� hook pinfo()

Every time that you type make in one of the newly created directories,
the GNUmakefile is read (a small trick that works only with GNU
make). GNUmakefile in turn invokes the
/usr/include/mk/build-cfg script, which notices whether or
not configure has been run in the directory:

� If it hasn’t, build-cfg invokes the hook preconfigure() function,
then the project’s configure, and then the hook postconfigure()
function.

� If the configure has already been done, or we just did it
successfully, build-cfg invokes the hook premake(), then does a
make -fMakefile, then hook postmake(), then hook pinfo().

If a function isn’t defined in build-hooks, build-cfg doesn’t
bother trying to invoke it.

Within the build-hooks script, the following variables are available:

SYSNAME This is the host OS (e.g. nto, solaris) that we’re
running on. This is automatically set by
build-cfg based on the results of uname.

304 Appendix: B � Conventions for Makefiles and Directories May 31, 2004

 2004, QNX Software Systems Ltd. Advanced topics

TARGET SYSNAME

This is the target OS (e.g. nto, win32) that we’re
going to be generating executables for. It’s set
automatically by build-cfg, based on the
directory that you’re in.

make CC This variable is used to set the CC make variable
when we invoke make. This typically sets the
compiler that make uses. It’s set automatically by
build-cfg, based on the directory that you’re in.

make opts Any additional options that you want to pass to
make (the default is "").

make cmds The command goals passed to make (e.g. all). It’s
set automatically by build-cfg what you passed
on the original make command line.

configure opts The list of options that should be passed to
configure. The default is "", but --srcdir=..
is automatically added just before configure is
called.

hook preconfigure()

This function is invoked just before we run the project’s configure
script. Its main job is to set the configure opts variable properly. Here’s
a fairly complicated example (this is from GCC):

The "target" variable is the compilation target: "ntoarm", "ntox86", etc.
function hook preconfigure {

case ${SYSNAME} in

nto)
case "${target}" in

nto*) basedir=/usr ;;

*) basedir=/opt/QNXsdk/host/qnx6/x86/usr ;;
esac

;;
solaris)

host cpu=$(uname -p)

case ${host cpu} in
i[34567]86) host cpu=x86 ;;

esac

basedir=/opt/QNXsdk/host/solaris/${host cpu}/usr
;;

May 31, 2004 Appendix: B � Conventions for Makefiles and Directories 305

Advanced topics  2004, QNX Software Systems Ltd.

*)
echo "Don’t have config for ${SYSNAME}"

exit 1

;;
esac

configure opts="${configure opts} --target=${target}"

configure opts="${configure opts} --prefix=${basedir}"
configure opts="${configure opts} --exec-prefix=${basedir}"

configure opts="${configure opts} --with-local-prefix=${basedir}"
configure opts="${configure opts} --enable-haifa"

configure opts="${configure opts} --enable-languages=c++"

configure opts="${configure opts} --enable-threads=posix"
configure opts="${configure opts} --with-gnu-as"

configure opts="${configure opts} --with-gnu-ld"

configure opts="${configure opts} --with-as=${basedir}/bin/${target}-as"
configure opts="${configure opts} --with-ld=${basedir}/bin/${target}-ld"

if [${SYSNAME} == nto]; then

configure opts="${configure opts} --enable-multilib"
configure opts="${configure opts} --enable-shared"

else

configure opts="${configure opts} --disable-multilib"
fi

}

hook postconfigure()

This is invoked after configure has been successfully run. Usually
you don’t need to define this function, but sometimes you just can’t
quite convince configure to do the right thing, so you can put some
hacks in here to munge things appropriately. For example, again from
GCC:

function hook postconfigure {

echo "s/ˆGCC CFLAGS *=/&-I\$\(QNX TARGET\)\/usr\/include /" >/tmp/fix.$$

if [${SYSNAME} == nto]; then
echo "s/OLDCC = cc/OLDCC = .\/xgcc -B.\/ -I \$\(QNX TARGET\)\/usr\/include/" >>/tmp/fix.$$

echo "/ˆINCLUDES = /s/\$/ -I\$\(QNX TARGET\)\/usr\/include/" >>/tmp/fix.$$

if [${target} == ntosh]; then
We’ve set up GCC to support both big and little endian, but

we only actually support little endian right now. This will

cause the configures for the target libraries to fail, since
it will test the compiler by attempting a big endian compile

which won’t link due to a missing libc & crt?.o files.

Hack things by forcing compiles/links to always be little endian
sed -e "s/ˆCFLAGS FOR TARGET *=/&-ml /" <Makefile >1.$$

mv 1.$$ Makefile
fi

else

Only need to build libstdc++ & friends on one host
rm -Rf ${target}

echo "s/OLDCC = cc/OLDCC = .\/xgcc -B.\//" >>/tmp/fix.$$
fi

cd gcc

306 Appendix: B � Conventions for Makefiles and Directories May 31, 2004

 2004, QNX Software Systems Ltd. Advanced topics

sed -f/tmp/fix.$$ <Makefile >1.$$
mv 1.$$ Makefile

cd ..

rm /tmp/fix.$$
}

hook premake()

This function is invoked just before the make. You don’t usually need
it.

hook postmake()

This function is invoked just after the make. We haven’t found a use
for this one yet, but included it for completeness.

hook pinfo()

This function is invoked after hook postmake(). Theoretically, we
don’t need this hook at all and we could do all its work in
hook postmake(), but we’re keeping it separate in case we get fancier
in the future.

This function is responsible for generating all the *.pinfo files in
the project. It does this by invoking the gen pinfo() function that’s
defined in build-cfg, which generates one .pinfo. The command
line for gen pinfo() is:

gen pinfo [-nsrc name] install name install dir pinfo line...

The arguments are:

src name The name of the pinfo file (minus the .pinfo
suffix). If it’s not specified, gen pinfo() uses
install name.

install name The basename of the executable when it’s installed.

install dir The directory the executable should be installed in.
If it doesn’t begin with a /, the target CPU directory
is prepended to it. For example, if install dir is

May 31, 2004 Appendix: B � Conventions for Makefiles and Directories 307

Advanced topics  2004, QNX Software Systems Ltd.

usr/bin and you’re generating an X86 executable,
the true installation directory is /x86/usr/bin.

pinfo line Any additional pinfo lines that you want to add. You
can repeat this argument as many times as required.
Favorites include:

� DESCRIPTION="This executable

performs no useful purpose"

� SYMLINK=foobar.so

Here’s an example from the nasm project:

function hook pinfo {

gen pinfo nasm usr/bin LIC=NASM DESCRIPTION="Netwide X86 Assembler"

gen pinfo ndisasm usr/bin LIC=NASM DESCRIPTION="Netwide X86 Disassembler"
}

308 Appendix: B � Conventions for Makefiles and Directories May 31, 2004

Appendix C

Developing SMP Systems

In this appendix. . .
Introduction 311
The impact of SMP 312
Designing with SMP in mind 315

May 31, 2004 Appendix: C � Developing SMP Systems 309

 2004, QNX Software Systems Ltd. Introduction

Introduction
As described in the System Architecture guide, there’s an SMP
(Symmetrical MultiProcessor) version of QNX that runs on:

� Pentium-based multiprocessor systems that conform to the Intel
MultiProcessor Specification (MP Spec)

� PowerPC-based systems.

If you have one of these systems, then you’re probably itching to try it
out, but are wondering what you have to do to get QNX running on it.
Well, the answer is not much. The only part of QNX that’s different
for an SMP system is the Neutrino microkernel — another example of
the advantages of a microkernel architecture!

Building an SMP image
Assuming you’re already familiar with building a bootable image for
a single-processor system (as described in the Making an OS Image
chapter in Building Embedded Systems), let’s look at what you have to
change in the buildfile for an SMP system.

As we mentioned above, basically all you need to use is the SMP
kernel (procnto-smp) when building the image.

Here’s an example of a buildfile:

A simple SMP buildfile

[virtual=x86,bios] .bootstrap = {
startup-bios
PATH=/proc/boot procnto-smp

}
[+script] .script = {

devc-con -e &
reopen /dev/con1
[+session] PATH=/proc/boot esh

}

libc.so
[type=link] /usr/lib/ldqnx.so.2=/proc/boot/libc.so

[data=copy]
devc-con

May 31, 2004 Appendix: C � Developing SMP Systems 311

The impact of SMP  2004, QNX Software Systems Ltd.

esh
ls

After building the image, you proceed in the same way as you would
with a single-processor system.

The impact of SMP
Although the actual changes to the way you set up the processor to
run SMP are fairly minor, the fact that you’re running on an SMP
system can have a major impact on your software!

The main thing to keep in mind is this: in a single processor
environment, it may be a nice “design abstraction” to pretend that
threads execute in parallel; under an SMP system, they really do
execute in parallel!

In this section, we’ll examine the impact of SMP on your system
design.

To SMP or not to SMP
It’s possible to use the non-SMP kernel on an SMP box. In this case,
only processor 0 will be used; the other processors won’t run your
code. This is a waste of additional processors, of course, but it does
mean that you can run images from single-processor boxes on an
SMP box. (You can also run SMP-ready images on single-processor
boxes.)

It’s also possible to run the SMP kernel on a uniprocessor system, but
it requires a 486 or higher on x86 architectures, and PPCs require an
SMP-capable implementation.

Processor affinity
One issue that often arises in an SMP environment can be put like this:
“Can I make it so that one processor handles the GUI, another handles
the database, and the other two handle the realtime functions?”

The answer is: “Yes, absolutely.”

312 Appendix: C � Developing SMP Systems May 31, 2004

 2004, QNX Software Systems Ltd. The impact of SMP

This is done through the magic of processor affinity — the ability to
associate certain programs (or even threads within programs) with a
particular processor or processors.

Processor affinity works like this. When a thread starts up, its
processor affinity mask is set to allow it to run on all processors. This
implies that there’s no inheritance of the processor affinity mask, so
it’s up to the thread to use ThreadCtl() with the
NTO TCTL RUNMASK control flag to set the processor affinity mask.

The processor affinity mask is simply a bitmap; each bit position
indicates a particular processor. For example, the processor affinity
mask 0x05 (binary 00000101) allows the thread to run on processors
0 (the 0x01 bit) and 2 (the 0x04 bit).

SMP and synchronization primitives
Standard synchronization primitives (barriers, mutexes, condvars,
semaphores, and all of their derivatives, e.g. sleepon locks) are safe to
use on an SMP box. You don’t have to do anything special here.

SMP and FIFO scheduling
A common single-processor “trick” for coordinated access to a shared
memory region is to use FIFO scheduling between two threads
running at the same priority. The idea is that one thread will access
the region and then call SchedYield() to give up its use of the
processor. Then, the second thread would run and access the region.
When it was done, the second thread too would call SchedYield(), and
the first thread would run again. Since there’s only one processor,
both threads would cooperatively share that processor.

This FIFO trick won’t work on an SMP system, because both threads
may run simultaneously on different processors. You’ll have to use
the more “proper” thread synchronization primitives (e.g. a mutex).

SMP and interrupts
The following method is closely related to the FIFO scheduling trick.
On a single-processor system, a thread and an interrupt service

May 31, 2004 Appendix: C � Developing SMP Systems 313

The impact of SMP  2004, QNX Software Systems Ltd.

routine were mutually exclusive, due to the fact that the ISR ran at a
priority higher than that of any thread. Therefore, the ISR would be
able to preempt the thread, but the thread would never be able to
preempt the ISR. So the only “protection” required was for the thread
to indicate that during a particular section of code (the critical
section) interrupts should be disabled.

Obviously, this scheme breaks down in an SMP system, because
again the thread and the ISR could be running on different processors.

The solution in this case is to use the InterruptLock() and
InterruptUnlock() calls to ensure that the ISR won’t preempt the
thread at an unexpected point. But what if the thread preempts the
ISR? The solution is the same — use InterruptLock() and
InterruptUnlock() in the ISR as well.

We recommend that you always use the InterruptLock() and
InterruptUnlock() function calls, both in the thread and in the ISR.
The small amount of extra overhead on a single-processor box is
negligible.

�

SMP and atomic operations
Note that if you wish to perform simple atomic operations, such as
adding a value to a memory location, it isn’t necessary to turn off
interrupts to ensure that the operation won’t be preempted. Instead,
use the functions provided in the C include file <atomic.h>, which
allow you to perform the following operations with memory locations
in an atomic manner:

Function Operation

atomic add() Add a number.

atomic add value() Add a number and return the original
value of *loc.

continued. . .

314 Appendix: C � Developing SMP Systems May 31, 2004

 2004, QNX Software Systems Ltd. Designing with SMP in mind

Function Operation

atomic clr() Clear bits.

atomic clr value() Clear bits and return the original value of
*loc.

atomic set() Set bits.

atomic set value() set bits and return the original value of
*loc.

atomic sub() Subtract a number.

atomic sub value() Subtract a number and return the original
value of *loc.

atomic toggle() Toggle (complement) bits

atomic toggle value() Toggle (complement) bits and return the
original value of *loc.

The * value() functions may be slower on some systems (e.g. 386) —
don’t use them unless you really want the return value.

�

Designing with SMP in mind
You may not have an SMP system today, but wouldn’t it be great if
your software just ran faster on one when you or your customer
upgrade the hardware?

While the general topic of how to design programs so that they can
scale to N processors is still the topic of research, this section contains
some general tips.

Use the SMP primitives
Don’t assume that your program will run only on one processor. This
means staying away from the FIFO synchronization trick mentioned
above. Also, you should use the SMP-aware InterruptLock() and
InterruptUnlock() functions.

May 31, 2004 Appendix: C � Developing SMP Systems 315

Designing with SMP in mind  2004, QNX Software Systems Ltd.

By doing this, you’ll be “SMP-ready” with little negative impact on a
single-processor system.

Assume that threads really do run concurrently
As mentioned above, it’s not merely a useful “programming
abstraction” to pretend that threads run simultaneously; you should
design as if they really do. That way, when you move to an SMP
system, you won’t have any nasty surprises.

Break the problem down
Most problems can be broken down into independent, parallel tasks.
Some are easy to break down, some are hard, and some are
impossible. Generally, you want to look at the data flow going
through a particular problem. If the data flows are independent (i.e.
one flow doesn’t rely on the results of another), this can be a good
candidate for parallelization within the process by starting multiple
threads. Consider the following graphics program snippet:

do graphics ()
{

int x;

for (x = 0; x < XRESOLUTION; x++) {
do one line (x);

}
}

In the above example, we’re doing ray-tracing. We’ve looked at the
problem and decided that the function do one line() only generates
output to the screen — it doesn’t rely on the results from any other
invocation of do one line().

To make optimal use of an SMP system, you would start multiple
threads, each running on one processor.

The question then becomes how many threads to start. Obviously,
starting XRESOLUTION threads (where XRESOLUTION is far greater
than the number of processors, perhaps 1024 to 4) is not a particularly
good idea — you’re creating a lot of threads, all of which will

316 Appendix: C � Developing SMP Systems May 31, 2004

 2004, QNX Software Systems Ltd. Designing with SMP in mind

consume stack resources and kernel resources as they compete for the
limited pool of CPUs.

A simple solution would be to find out the number of CPUs that you
have available to you (via the system page pointer) and divide the
work up that way:

#include <sys/syspage.h>

int num x per cpu;

do graphics ()
{

int num cpus;
int i;
pthread t *tids;

// figure out how many CPUs there are...
num cpus = syspage ptr -> num cpu;

// allocate storage for the thread IDs
tids = malloc (num cpus * sizeof (pthread t));

// figure out how many X lines each CPU can do
num x per cpu = XRESOLUTION / num cpus;

// start up one thread per CPU, passing it the ID
for (i = 0; i < num cpus; i++) {

pthread create (&tids[i], NULL, do lines, (void *) i);
}

// now all the "do lines" are off running on the processors

// we need to wait for their termination
for (i = 0; i < num cpus; i++) {

pthread join (tids[i], NULL);
}

// now they are all done
}

void *
do lines (void *arg)
{

int cpunum = (int) arg; // convert void * to an integer
int x;

for (x = cpunum * num x per cpu; x < (cpunum + 1) *
num x per cpu; x++) { do line (x);

May 31, 2004 Appendix: C � Developing SMP Systems 317

Designing with SMP in mind  2004, QNX Software Systems Ltd.

}
}

The above approach will allow the maximum number of threads to
run simultaneously on the SMP system. There’s no point creating
more threads than there are CPUs, because they’ll simply compete
with each other for CPU time.

An alternative approach is to use a semaphore. You could preload the
semaphore with the count of available CPUs. Then, you create
threads whenever the semaphore indicates that a CPU is available.
This is conceptually simpler, but involves thread creation/destruction
overhead for each iteration.

318 Appendix: C � Developing SMP Systems May 31, 2004

Appendix D

Using GDB

In this appendix. . .
GDB commands 321
Running programs under GDB 327
Stopping and continuing 337
Examining the stack 360
Examining source files 367
Examining data 374
Examining the symbol table 398
Altering execution 402

May 31, 2004 Appendix: D � Using GDB 319

 2004, QNX Software Systems Ltd. GDB commands

The QNX implementation of GDB includes some extensions:

This extension: Sets: See:

target qnx The target Setting the target

set qnxinheritenv Where the remote
process inherits its
environment from

Your program’s
environment

set qnxremotecwd Working directory
for the remote
process

Starting your
program

set qnxtimeout Timeout for
remote reads

Setting the target

GDB commands
You can abbreviate a GDB command to the first few letters of the
command name, if that abbreviation is unambiguous; and you can
repeat certain GDB commands by typing just Enter. You can also use
the Tab key to get GDB to fill out the rest of a word in a command (or
to show you the alternatives available, if there’s more than one
possibility).

You may also place GDB commands in an initialization file and these
commands will be run before any that have been entered via the
command line. See gdb in the Utilities Reference for more details on
file naming and precedence.

Command syntax
A GDB command is a single line of input. There’s no limit on how
long it can be. It starts with a command name, which is followed by
arguments whose meaning depends on the command name. For
example, the command step accepts an argument that is the number
of times to step, as in step 5. You can also use the step command

May 31, 2004 Appendix: D � Using GDB 321

GDB commands  2004, QNX Software Systems Ltd.

with no arguments. Some command names don’t allow any
arguments.

GDB command names may always be truncated if that abbreviation is
unambiguous. Other possible command abbreviations are listed in the
documentation for individual commands. In some cases, even
ambiguous abbreviations are allowed; for example, s is specifically
defined as equivalent to step even though there are other commands
whose names start with s. You can test abbreviations by using them
as arguments to the help command.

A blank line as input to GDB (typing just Enter) means to repeat the
previous command. Certain commands (for example, run) don’t
repeat this way; these are commands whose unintentional repetition
might cause trouble and which you’re unlikely to want to repeat.

When you repeat the list and x commands with Enter, they
construct new arguments rather than repeat exactly as typed. This
permits easy scanning of source or memory.

GDB can also use Enter in another way: to partition lengthy output, in
a way similar to the common utility more. Since it’s easy to press one
Enter too many in this situation, GDB disables command repetition
after any command that generates this sort of display.

Any text from a # to the end of the line is a comment. This is useful
mainly in command files.

Command completion
GDB can fill in the rest of a word in a command for you if there’s
only one possibility; it can also show you what the valid possibilities
are for the next word in a command, at any time. This works for GDB
commands, GDB subcommands, and the names of symbols in your
program.

Press the Tab key whenever you want GDB to fill out the rest of a
word. If there’s only one possibility, GDB fills in the word, and waits
for you to finish the command (or press Enter to enter it). For
example, if you type:

(gdb) info bre Tab

322 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. GDB commands

GDB fills in the rest of the word breakpoints, since that is the only
info subcommand beginning with bre:

(gdb) info breakpoints

You can either press Enter at this point, to run the info
breakpoints command, or backspace and enter something else, if
breakpoints doesn’t look like the command you expected. (If you
were sure you wanted info breakpoints in the first place, you
might as well just type Enter immediately after info bre, to exploit
command abbreviations rather than command completion).

If there’s more than one possibility for the next word when you press
Tab, GDB sounds a bell. You can either supply more characters and
try again, or just press Tab a second time; GDB displays all the
possible completions for that word. For example, you might want to
set a breakpoint on a subroutine whose name begins with make , but
when you type:

b make Tab

GDB just sounds the bell. Typing Tab again displays all the function
names in your program that begin with those characters, for example:

make a section from file make environ
make abs section make function type
make blockvector make pointer type
make cleanup make reference type
make command make symbol completion list
(gdb) b make

After displaying the available possibilities, GDB copies your partial
input (b make in the example) so you can finish the command.

If you just want to see the list of alternatives in the first place, you can
press Esc followed by ? (rather than press Tab twice).

Sometimes the string you need, while logically a “word”, may contain
parentheses or other characters that GDB normally excludes from its
notion of a word. To permit word completion to work in this situation,
you may enclose words in ’ (single quote marks) in GDB commands.

May 31, 2004 Appendix: D � Using GDB 323

GDB commands  2004, QNX Software Systems Ltd.

The most likely situation where you might need this is in typing the
name of a C++ function. This is because C++ allows function
overloading (multiple definitions of the same function, distinguished
by argument type). For example, when you want to set a breakpoint
you may need to distinguish whether you mean the version of name
that takes an int parameter, name(int), or the version that takes a
float parameter, name(float). To use the word-completion
facilities in this situation, type a single quote ’ at the beginning of the
function name. This alerts GDB that it may need to consider more
information than usual when you press Tab, or Esc followed by ?, to
request word completion:

(gdb) b ’bubble(Esc?
bubble(double,double) bubble(int,int)
(gdb) b ’bubble(

In some cases, GDB can tell that completing a name requires using
quotes. When this happens, GDB inserts the quote for you (while
completing as much as it can) if you don’t type the quote in the first
place:

(gdb) b bub Tab

GDB alters your input line to the following, and rings a bell:

(gdb) b ’bubble(

In general, GDB can tell that a quote is needed (and inserts it) if you
haven’t yet started typing the argument list when you ask for
completion on an overloaded symbol.

Getting help
You can always ask GDB itself for information on its commands,
using the command help.

help

h You can use help (h) with no arguments to display a
short list of named classes of commands:

324 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. GDB commands

(gdb) help
List of classes of commands:

running -- Running the program
stack -- Examining the stack
data -- Examining data
breakpoints -- Making program stop at certain
points
files -- Specifying and examining files
status -- Status inquiries
support -- Support facilities
user-defined -- User-defined commands
aliases -- Aliases of other commands
obscure -- Obscure features

Type "help" followed by a class name for a list
of commands in that class.
Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if
unambiguous.
(gdb)

help class Using one of the general help classes as an argument,
you can get a list of the individual commands in that
class. For example, here’s the help display for the
class status:

(gdb) help status
Status inquiries.

List of commands:

show -- Generic command for showing things set
with "set"
info -- Generic command for printing status

Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if
unambiguous.
(gdb)

May 31, 2004 Appendix: D � Using GDB 325

GDB commands  2004, QNX Software Systems Ltd.

help command

With a command name as help argument, GDB
displays a short paragraph on how to use that
command.

complete args

The complete args command lists all the possible
completions for the beginning of a command. Use
args to specify the beginning of the command you
want completed. For example:

complete i

results in:

info
inspect
ignore

This is intended for use by GNU Emacs.

In addition to help, you can use the GDB commands info and show

to inquire about the state of your program, or the state of GDB itself.
Each command supports many topics of inquiry; this manual
introduces each of them in the appropriate context. The listings under
info and show in the index point to all the sub-commands.

info This command (abbreviated i) is for describing the state of
your program. For example, you can list the arguments
given to your program with info args, list the registers
currently in use with info registers, or list the
breakpoints you’ve set with info breakpoints. You can
get a complete list of the info sub-commands with help

info.

set You can assign the result of an expression to an
environment variable with set. For example, you can set
the GDB prompt to a $-sign with set prompt $.

326 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Running programs under GDB

show In contrast to info, show is for describing the state of
GDB itself. You can change most of the things you can
show, by using the related command set; for example, you
can control what number system is used for displays with
set radix, or simply inquire which is currently in use
with show radix.

To display all the settable parameters and their current
values, you can use show with no arguments; you may also
use info set. Both commands produce the same display.

Here are three miscellaneous show subcommands, all of which are
exceptional in lacking corresponding set commands:

show version

Show what version of GDB is running. You should include this
information in GDB bug-reports. If multiple versions of GDB
are in use at your site, you may occasionally want to determine
which version of GDB you’re running; as GDB evolves, new
commands are introduced, and old ones may wither away. The
version number is also announced when you start GDB.

show copying

Display information about permission for copying GDB.

show warranty

Display the GNU “NO WARRANTY” statement.

Running programs under GDB
To run a program under GDB, you must first generate debugging
information when you compile it. You may start GDB with its
arguments, if any, in an environment of your choice. You may redirect
your program’s input and output, debug an already running process,
or kill a child process.

May 31, 2004 Appendix: D � Using GDB 327

Running programs under GDB  2004, QNX Software Systems Ltd.

Compiling for debugging
Debugging information is stored in the object file; it describes the
data type of each variable or function and the correspondence
between source line numbers and addresses in the executable code.

To request debugging information, specify the -g option when you
run the compiler.

GCC, the GNU C compiler, supports -g with or without -O, making it
possible to debug optimized code. We recommend that you always
use -g whenever you compile a program. You may think your
program is correct, but there’s no sense in pushing your luck.

When you debug a program compiled with -g -O, remember that the
optimizer is rearranging your code; the debugger shows you what is
really there. Don’t be too surprised when the execution path doesn’t
exactly match your source file! An extreme example: if you define a
variable, but never use it, GDB never sees that variable — because the
compiler optimizes it out of existence.

Some things don’t work as well with -g -O as with just -g,
particularly on machines with instruction scheduling. If in doubt,
recompile with -g alone, and if this fixes the problem, please report it
to the Free Software Foundation as a bug (and include a test case!).

Setting the target
When you start the debugger, you need to specify the target to use
because the default target isn’t supported:

target qnx com port specifier | host:port | pty

The pty option spawns a pdebug server on the local machine and
connects via a pty.

The devc-pty manager must be running on the machine that’s
running pdebug, and a ptyp/ttyp pair must be available.

�

Here’s a sample:

328 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Running programs under GDB

(gdb) target qnx 10.109:8000
Remote debugging using 10.109:8000
0x0 in ?? ()
(gdb) sym hello
Reading symbols from hello...done.
(gdb) run /local/src/test/hello
Starting program: /local/src/test/hello
(gdb)

If your communication line is slow, you might need to set the timeout
for remote reads:

set qnxtimeout time

where time is the timeout, in seconds. The default is 10 seconds.

Starting your program
set qnxremotecwd path

Specify the remote process’s working directory. You should
do this before starting your program.

run

r Use the run command to start your program under GDB.
You must first specify the program name with an argument to
GDB (see the description of the gdb utility).

The run creates an inferior process and makes that process
run your program.

The execution of a program is affected by certain information it
receives from its superior. GDB provides ways to specify this
information, which you must do before starting your program. (You
can change it after starting your program, but such changes affect
your program the next time you start it.) This information may be
divided into the following categories:

Arguments Specify the arguments to give your program as the
arguments of the run command. If a shell is
available on your target, the shell is used to pass the

May 31, 2004 Appendix: D � Using GDB 329

Running programs under GDB  2004, QNX Software Systems Ltd.

arguments, so that you may use normal conventions
(such as wildcard expansion or variable
substitution) in describing the arguments. In Unix
systems, you can control which shell is used with
the SHELL environment variable. See “Your
program’s arguments/”

Environment Your program normally inherits its environment
from GDB, but you can use the GDB commands
set environment and unset environment to
change parts of the environment that affect your
program. See “Your program’s environment.”

While input and output redirection work, you can’t use pipes to pass
the output of the program you’re debugging to another program; if
you attempt this, GDB is likely to wind up debugging the wrong
program.

�

When you issue the run command, your program is loaded but
doesn’t execute immediately. Use the continue command to start
your program. For more information, see “Stopping and continuing.”
While your program is stopped, you may call functions in your
program, using the print or call commands. See “Examining
data.”

If the modification time of your symbol file has changed since the last
time GDB read its symbols, GDB discards its symbol table and reads
it again. When it does this, GDB tries to retain your current
breakpoints.

Your program’s arguments
The arguments to your program can be specified by the arguments of
the run command.

A run command with no arguments uses the same arguments used by
the previous run, or those set by the set args command.

330 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Running programs under GDB

set args Specify the arguments to be used the next time your
program is run. If set args has no arguments, run
executes your program with no arguments. Once
you’ve run your program with arguments, using set

args before the next run is the only way to run it
again without arguments.

show args Show the arguments to give your program when it’s
started.

Your program’s environment
The environment consists of a set of environment variables and their
values. Environment variables conventionally record such things as
your user name, your home directory, your terminal type, and your
search path for programs to run. Usually you set up environment
variables with the shell and they’re inherited by all the other programs
you run. When debugging, it can be useful to try running your
program with a modified environment without having to start GDB
over again.

set qnxinheritenv value

If value is 0 (the default), the process inherits its
environment from GDB. If value is 1, the process
inherits its environment from pdebug.

path directory Add directory to the front of the PATH environment
variable (the search path for executables), for both
GDB and your program. You may specify several
directory names, separated by a colon (:) or
whitespace. If directory is already in the path, it’s
moved to the front, so it’s searched sooner.

You can use the string $cwd to refer to the current
working directory at the time GDB searches the
path. A period (.) refers to the directory where you
executed the path command. GDB replaces the
period in the directory argument by the current path
before adding directory to the search path.

May 31, 2004 Appendix: D � Using GDB 331

Running programs under GDB  2004, QNX Software Systems Ltd.

show paths Display the list of search paths for executables (the
PATH environment variable).

show environment [varname]

Print the value of environment variable varname to
be given to your program when it starts. If you
don’t supply varname, print the names and values
of all environment variables to be given to your
program. You can abbreviate environment as
env.

set environment varname [=] value

Set environment variable varname to value. The
value changes for your program only, not for GDB
itself. The value may be any string; the values of
environment variables are just strings, and any
interpretation is supplied by your program itself.
The value parameter is optional; if it’s eliminated,
the variable is set to a null value.

For example, this command:

set env USER=foo

tells a Unix program, when subsequently run, that
its user is named foo.

unset environment varname

Remove variable varname from the environment to
be passed to your program. This is different from
set env varname =, in that unset
environment removes the variable from the
environment, rather than assign it an empty value.

Your program’s input and output
By default, the program you run under GDB does input and output to
the same terminal that GDB uses. GDB switches the terminal to its
own terminal modes to interact with you, but it records the terminal

332 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Running programs under GDB

modes your program was using and switches back to them when you
continue running your program.

You can redirect your program’s input and/or output using shell
redirection with the run command. For example,

run > outfile

starts your program, diverting its output to the file outfile.

Debugging an already-running process
attach process-id

This command attaches to a running process — one that was
started outside GDB. (The info files command shows your
active targets.) The command takes as its argument a process
ID. To find out a process ID, use the pidin utility; for more
information, see the Utilities Reference.

The attach command doesn’t repeat if you press Enter a
second time after executing the command.

To use attach, you must have permission to send the process a
signal.

When using attach, you should first use the file command to
specify the program running in the process and load its symbol table.

The first thing GDB does after arranging to debug the specified
process is to stop it. You can examine and modify an attached process
with all the GDB commands that are ordinarily available when you
start processes with run. You can insert breakpoints; you can step and
continue; you can modify storage. If you want the process to continue
running, use the continue command after attaching GDB to the
process.

detach When you’ve finished debugging the attached process,
you can use the detach command to release it from
GDB control. Detaching the process continues its

May 31, 2004 Appendix: D � Using GDB 333

Running programs under GDB  2004, QNX Software Systems Ltd.

execution. After the detach command, that process and
GDB become completely independent once more, and
you’re ready to attach another process or start one with
run. The detach command doesn’t repeat if you press
Enter again after executing the command.

If you exit GDB or use the run command while you have an attached
process, you kill that process. By default, GDB asks for confirmation
if you try to do either of these things; you can control whether or not
you need to confirm by using the set confirm command.

Killing the child process
kill Kill the child process in which your program is running

under GDB.

This command is useful if you wish to debug a core dump instead of a
running process. GDB ignores any core dump file while your program
is running.

The kill command is also useful if you wish to recompile and relink
your program. With QNX, it’s possible to modify an executable file
while it’s running in a process. If you want to run the new version, kill
the child process; when you next type run, GDB notices that the file
has changed, and reads the symbol table again (while trying to
preserve your current breakpoint settings).

Debugging programs with multiple threads
In QNX, a single program may have more than one thread of
execution. Each thread has its own registers and execution stack, and
perhaps private memory.

GDB provides these facilities for debugging multithreaded programs:

� thread threadno, a command to switch between threads

� info threads, a command to inquire about existing threads

� thread apply [threadno] [all] args,

334 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Running programs under GDB

a command to apply a command to a list of threads

� thread-specific breakpoints

The GDB thread debugging facility lets you observe all threads while
your program runs — but whenever GDB takes control, one thread in
particular is always the focus of debugging. This thread is called the
current thread. Debugging commands show program information
from the perspective of the current thread.

GDB associates its own thread number — always a single integer —
with each thread in your program.

info threads

Display a summary of all threads currently in your program.
GDB displays for each thread (in this order):

1 Thread number assigned by GDB

2 Target system’s thread identifier (systag)

3 Current stack frame summary for that thread.

An asterisk * to the left of the GDB thread number indicates the
current thread. For example:

(gdb) info threads
3 process 35 thread 27 0x34e5 in sigpause ()
2 process 35 thread 23 0x34e5 in sigpause ()

* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
at threadtest.c:68

thread threadno

Make thread number threadno the current thread. The
command argument threadno is the internal GDB thread
number, as shown in the first field of the info threads

display. GDB responds by displaying the system identifier of
the thread you selected and its current stack frame summary:

(gdb) thread 2
[Switching to process 35 thread 23]
0x34e5 in sigpause ()

May 31, 2004 Appendix: D � Using GDB 335

Running programs under GDB  2004, QNX Software Systems Ltd.

thread apply [threadno] [all] args

The thread apply command lets you apply a command to
one or more threads. Specify the numbers of the threads that
you want affected with the command argument threadno. To
apply a command to all threads, use thread apply all args.

Whenever GDB stops your program because of a breakpoint or a
signal, it automatically selects the thread where that breakpoint or
signal happened. GDB alerts you to the context switch with a
message of the form [Switching to systag] to identify the thread.

See “Stopping and starting multithreaded programs” for more
information about how GDB behaves when you stop and start
programs with multiple threads.

See “Setting watchpoints” for information about watchpoints in
programs with multiple threads.

Debugging programs with multiple processes
GDB has no special support for debugging programs that create
additional processes using the fork() function. When a program forks,
GDB continues to debug the parent process, and the child process
runs unimpeded. If you’ve set a breakpoint in any code that the child
then executes, the child gets a SIGTRAP signal, which (unless it
catches the signal) causes it to terminate.

However, if you want to debug the child process, there’s a
workaround that isn’t too painful:

1 Put a call to sleep() in the code that the child process executes
after the fork. It may be useful to sleep only if a certain
environment variable is set, or a certain file exists, so that the
delay doesn’t occur when you don’t want to run GDB on the
child.

2 While the child is sleeping, use the pidin utility to get its
process ID (for more information, see the Utilities Reference).

336 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Stopping and continuing

3 Tell GDB (a new invocation of GDB if you’re also debugging
the parent process) to attach to the child process (see
“Debugging an already-running process”). From that point on
you can debug the child process just like any other process that
you’ve attached to.

Stopping and continuing
Inside GDB, your program may stop for any of several reasons, such
as a signal, a breakpoint, or reaching a new line after a GDB
command such as step. You may then examine and change variables,
set new breakpoints or remove old ones, and then continue execution.
Usually, the messages shown by GDB provide ample explanation of
the status of your program — but you can also explicitly request this
information at any time.

info program

Display information about the status of your program: whether
it’s running or not, what process it is, and why it stopped.

Breakpoints, watchpoints, and exceptions
A breakpoint makes your program stop whenever a certain point in
the program is reached. For each breakpoint, you can add conditions
to control in finer detail whether your program stops. You can set
breakpoints with the break command and its variants (see “Setting
breakpoints”) to specify the place where your program should stop by
line number, function name or exact address in the program. In
languages with exception handling (such as GNU C++), you can also
set breakpoints where an exception is raised (see “Breakpoints and
exceptions”).

A watchpoint is a special breakpoint that stops your program when
the value of an expression changes. You must use a different
command to set watchpoints (see “Setting watchpoints”), but aside
from that, you can manage a watchpoint like any other breakpoint:
you enable, disable, and delete both breakpoints and watchpoints
using the same commands.

May 31, 2004 Appendix: D � Using GDB 337

Stopping and continuing  2004, QNX Software Systems Ltd.

You can arrange to have values from your program displayed
automatically whenever GDB stops at a breakpoint. See “Automatic
display.”

GDB assigns a number to each breakpoint or watchpoint when you
create it; these numbers are successive integers starting with 1. In
many of the commands for controlling various features of breakpoints
you use the breakpoint number to say which breakpoint you want to
change. Each breakpoint may be enabled or disabled; if disabled, it
has no effect on your program until you enable it again.

Setting breakpoints

Breakpoints are set with the break b) command. The debugger
convenience variable $bpnum records the number of the breakpoints
you’ve set most recently; see “Convenience variables” for a
discussion of what you can do with convenience variables.

You have several ways to say where the breakpoint should go:

break function

Set a breakpoint at entry to function. When using source
languages such as C++ that permit overloading of
symbols, function may refer to more than one possible
place to break. See “Breakpoint menus” for a discussion
of that situation.

break +offset
break -offset

Set a breakpoint some number of lines forward or back
from the position at which execution stopped in the
currently selected frame.

break linenum

Set a breakpoint at line linenum in the current source file.
That file is the last file whose source text was printed. This
breakpoint stops your program just before it executes any
of the code on that line.

338 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Stopping and continuing

break filename:linenum

Set a breakpoint at line linenum in source file filename.

break filename:function

Set a breakpoint at entry to function found in file filename.
Specifying a filename as well as a function name is
superfluous except when multiple files contain similarly
named functions.

break *address

Set a breakpoint at address address. You can use this to set
breakpoints in parts of your program that don’t have
debugging information or source files.

break When called without any arguments, break sets a
breakpoint at the next instruction to be executed in the
selected stack frame (see “Examining the Stack”). In any
selected frame but the innermost, this makes your program
stop as soon as control returns to that frame. This is
similar to the effect of a finish command in the frame
inside the selected frame — except that finish doesn’t
leave an active breakpoint. If you use break without an
argument in the innermost frame, GDB stops the next time
it reaches the current location; this may be useful inside
loops.

GDB normally ignores breakpoints when it resumes
execution, until at least one instruction has been executed.
If it didn’t do this, you wouldn’t be able to proceed past a
breakpoint without first disabling the breakpoint. This rule
applies whether or not the breakpoint already existed
when your program stopped.

break ... if cond

Set a breakpoint with condition cond; evaluate the
expression cond each time the breakpoint is reached, and
stop only if the value is nonzero — that is, if cond
evaluates as true. The ellipsis (...) stands for one of the

May 31, 2004 Appendix: D � Using GDB 339

Stopping and continuing  2004, QNX Software Systems Ltd.

possible arguments described above (or no argument)
specifying where to break. For more information on
breakpoint conditions, see “Break conditions.”

There are several variations on the break command, all using the
same syntax as above:

tbreak Set a breakpoint enabled only for one stop. The
breakpoint is set in the same way as for the break
command, except that it’s automatically deleted
after the first time your program stops there. See
“Disabling breakpoints.”

hbreak Set a hardware-assisted breakpoint. The breakpoint
is set in the same way as for the break command,
except that it requires hardware support (and some
target hardware may not have this support).

The main purpose of this is EPROM/ROM code
debugging, so you can set a breakpoint at an
instruction without changing the instruction.

thbreak Set a hardware-assisted breakpoint enabled only
for one stop. The breakpoint is set in the same way
as for the break command. However, like the
tbreak command, the breakpoint is automatically
deleted after the first time your program stops
there. Also, like the hbreak command, the
breakpoint requires hardware support, which some
target hardware may not have. See “Disabling
breakpoints” and “Break conditions.”

rbreak regex Set breakpoints on all functions matching the
regular expression regex. This command sets an
unconditional breakpoint on all matches, printing a
list of all breakpoints it set. Once these breakpoints
are set, they’re treated just like the breakpoints set
with the break command. You can delete them,

340 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Stopping and continuing

disable them, or make them conditional the same
way as any other breakpoint.

When debugging C++ programs, rbreak is useful
for setting breakpoints on overloaded functions
that aren’t members of any special classes.

The following commands display information about breakpoints and
watchpoints:

info breakpoints [n]
info break [n]
info watchpoints [n]

Print a table of all breakpoints and watchpoints set and not
deleted, with the following columns for each breakpoint:

� Breakpoint Numbers.

� Type — breakpoint or watchpoint.

� Disposition — whether the breakpoint is marked to be
disabled or deleted when hit.

� Enabled or Disabled — enabled breakpoints are marked with
y, disabled with n.

� Address — where the breakpoint is in your program, as a
memory address.

� What — where the breakpoint is in the source for your
program, as a file and line number.

If a breakpoint is conditional, info break shows the
condition on the line following the affected breakpoint;
breakpoint commands, if any, are listed after that.

An info break command with a breakpoint number n as
argument lists only that breakpoint. The convenience variable
$ and the default examining-address for the x command are
set to the address of the last breakpoint listed (see “Examining
memory”).

The info break command displays the number of times the
breakpoint has been hit. This is especially useful in conjunction

May 31, 2004 Appendix: D � Using GDB 341

Stopping and continuing  2004, QNX Software Systems Ltd.

with the ignore command. You can ignore a large number of
breakpoint hits, look at the breakpoint information to see how
many times the breakpoint was hit, and then run again, ignoring
one less than that number. This gets you quickly to the last hit
of that breakpoint.

GDB lets you set any number of breakpoints at the same place in your
program. There’s nothing silly or meaningless about this. When the
breakpoints are conditional, this is even useful (see “Break
conditions”).

GDB itself sometimes sets breakpoints in your program for special
purposes, such as proper handling of longjmp (in C programs).
These internal breakpoints are assigned negative numbers, starting
with -1; info breakpoints doesn’t display them.

You can see these breakpoints with the GDB maintenance command,
maint info breakpoints.

maint info breakpoints

Using the same format as info breakpoints, display both
the breakpoints you’ve set explicitly and those GDB is using for
internal purposes. The type column identifies what kind of
breakpoint is shown:

� breakpoint — normal, explicitly set breakpoint.

� watchpoint — normal, explicitly set watchpoint.

� longjmp — internal breakpoint, used to handle correctly
stepping through longjmp calls.

� longjmp resume — internal breakpoint at the target of a
longjmp.

� until — temporary internal breakpoint used by the GDB
until command.

� finish — temporary internal breakpoint used by the GDB
finish command.

342 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Stopping and continuing

Setting watchpoints

You can use a watchpoint to stop execution whenever the value of an
expression changes, without having to predict a particular place where
this may happen.

Although watchpoints currently execute two orders of magnitude
more slowly than other breakpoints, they can help catch errors where
in cases where you have no clue what part of your program is the
culprit.

watch expr Set a watchpoint for an expression. GDB breaks
when expr is written into by the program and its
value changes.

rwatch arg Set a watchpoint that breaks when watch arg is read
by the program. If you use both watchpoints, both
must be set with the rwatch command.

awatch arg Set a watchpoint that breaks when arg is read and
written into by the program. If you use both
watchpoints, both must be set with the awatch
command.

info watchpoints

This command prints a list of watchpoints and
breakpoints; it’s the same as info break.

In multithreaded programs, watchpoints have only limited usefulness.
With the current watchpoint implementation, GDB can watch the
value of an expression in a single thread only. If you’re confident that
the expression can change due only to the current thread’s activity
(and if you’re also confident that no other thread can become current),
then you can use watchpoints as usual. However, GDB may not notice
when a noncurrent thread’s activity changes the expression.

�

May 31, 2004 Appendix: D � Using GDB 343

Stopping and continuing  2004, QNX Software Systems Ltd.

Breakpoints and exceptions

Some languages, such as GNU C++, implement exception handling.
You can use GDB to examine what caused your program to raise an
exception and to list the exceptions your program is prepared to
handle at a given point in time.

catch exceptions

You can set breakpoints at active exception handlers by using
the catch command. The exceptions argument is a list of
names of exceptions to catch.

You can use info catch to list active exception handlers. See
“Information about a frame.”

There are currently some limitations to exception handling in GDB:

� If you call a function interactively, GDB normally returns control
to you when the function has finished executing. If the call raises
an exception, however, the call may bypass the mechanism that
returns control to you and cause your program to continue running
until it hits a breakpoint, catches a signal that GDB is listening for,
or exits.

� You can’t raise an exception interactively.

� You can’t install an exception handler interactively.

Sometimes catch isn’t the best way to debug exception handling: if
you need to know exactly where an exception is raised, it’s better to
stop before the exception handler is called, since that way you can see
the stack before any unwinding takes place. If you set a breakpoint in
an exception handler instead, it may not be easy to find out where the
exception was raised.

To stop just before an exception handler is called, you need some
knowledge of the implementation. In the case of GNU C++,
exceptions are raised by calling a library function named

raise exception(), which has the following ANSI C interface:

344 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Stopping and continuing

void raise exception (void **addr, void *id);

/* addr is where the exception identifier is stored.
id is the exception identifier. */

To make the debugger catch all exceptions before any stack
unwinding takes place, set a breakpoint on raise exception(). See
“Breakpoints, watchpoints, and exceptions.”

With a conditional breakpoint (see “Break conditions”) that depends
on the value of id, you can stop your program when a specific
exception is raised. You can use multiple conditional breakpoints to
stop your program when any of a number of exceptions are raised.

Deleting breakpoints

You often need to eliminate a breakpoint or watchpoint once it’s done
its job and you no longer want your program to stop there. This is
called deleting the breakpoint. A breakpoint that has been deleted no
longer exists and is forgotten.

With the clear command you can delete breakpoints according to
where they are in your program. With the delete command you can
delete individual breakpoints or watchpoints by specifying their
breakpoint numbers.

You don’t have to delete a breakpoint to proceed past it. GDB
automatically ignores breakpoints on the first instruction to be
executed when you continue execution without changing the
execution address.

clear Delete any breakpoints at the next instruction to be
executed in the selected stack frame (see “Selecting a
frame”). When the innermost frame is selected, this is a
good way to delete a breakpoint where your program just
stopped.

clear function
clear filename:function

Delete any breakpoints set at entry to function.

May 31, 2004 Appendix: D � Using GDB 345

Stopping and continuing  2004, QNX Software Systems Ltd.

clear linenum
clear filename:linenum

Delete any breakpoints set at or within the code of the
specified line.

delete [breakpoints] [bnums...]

Delete the breakpoints or watchpoints of the numbers
specified as arguments. If no argument is specified, delete
all breakpoints (GDB asks for confirmation, unless you’ve
set confirm off). You can abbreviate this command
as d.

Disabling breakpoints

Rather than delete a breakpoint or watchpoint, you might prefer to
disable it. This makes the breakpoint inoperative as if it had been
deleted, but remembers the information on the breakpoint so that you
can enable it again later.

You disable and enable breakpoints and watchpoints with the enable
and disable commands, optionally specifying one or more
breakpoint numbers as arguments. Use info break or info watch

to print a list of breakpoints or watchpoints if you don’t know which
numbers to use.

A breakpoint or watchpoint can have any of the following states:

Enabled The breakpoint stops your program. A breakpoint
set with the break command starts out in this state.

Disabled The breakpoint has no effect on your program.

Enabled once The breakpoint stops your program, but then
becomes disabled. A breakpoint set with the
tbreak command starts out in this state.

Enabled for deletion

The breakpoint stops your program, but
immediately afterwards it’s deleted permanently.

346 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Stopping and continuing

You can use the following commands to enable or disable breakpoints
and watchpoints:

disable [breakpoints] [bnums...]

Disable the specified breakpoints — or all breakpoints, if none
is listed. A disabled breakpoint has no effect but isn’t forgotten.
All options such as ignore-counts, conditions and commands
are remembered in case the breakpoint is enabled again later.
You may abbreviate disable as dis.

enable [breakpoints] [bnums...]

Enable the specified breakpoints (or all defined breakpoints).
They become effective once again in stopping your program.

enable [breakpoints] once bnums...

Enable the specified breakpoints temporarily. GDB disables any
of these breakpoints immediately after stopping your program.

enable [breakpoints] delete bnums...

Enable the specified breakpoints to work once, then die. GDB
deletes any of these breakpoints as soon as your program stops
there.

Except for a breakpoint set with tbreak (see “Setting breakpoints”),
breakpoints that you set are initially enabled; subsequently, they
become disabled or enabled only when you use one of the commands
above. (The command until can set and delete a breakpoint of its
own, but it doesn’t change the state of your other breakpoints; see
“Continuing and stepping.”)

Break conditions

The simplest sort of breakpoint breaks every time your program
reaches a specified place. You can also specify a condition for a
breakpoint. A condition is just a Boolean expression in your
programming language (see “Expressions”). A breakpoint with a
condition evaluates the expression each time your program reaches it,
and your program stops only if the condition is true.

May 31, 2004 Appendix: D � Using GDB 347

Stopping and continuing  2004, QNX Software Systems Ltd.

This is the converse of using assertions for program validation; in that
situation, you want to stop when the assertion is violated — that is,
when the condition is false. In C, if you want to test an assertion
expressed by the condition assert, you should set the condition !
assert on the appropriate breakpoint.

Conditions are also accepted for watchpoints; you may not need them,
since a watchpoint is inspecting the value of an expression anyhow —
but it might be simpler, say, to just set a watchpoint on a variable
name, and specify a condition that tests whether the new value is an
interesting one.

Break conditions can have side effects, and may even call functions in
your program. This can be useful, for example, to activate functions
that log program progress, or to use your own print functions to
format special data structures. The effects are completely predictable
unless there’s another enabled breakpoint at the same address. (In that
case, GDB might see the other breakpoint first and stop your program
without checking the condition of this one.) Note that breakpoint
commands are usually more convenient and flexible for the purpose of
performing side effects when a breakpoint is reached (see
“Breakpoint command lists”).

Break conditions can be specified when a breakpoint is set, by using
if in the arguments to the break command. See “Setting
breakpoints.” They can also be changed at any time with the
condition command. The watch command doesn’t recognize the
if keyword; condition is the only way to impose a further
condition on a watchpoint.

condition bnum expression

Specify expression as the break condition for breakpoint or
watchpoint number bnum. After you set a condition, breakpoint
bnum stops your program only if the value of expression is true
(nonzero, in C). When you use condition, GDB checks
expression immediately for syntactic correctness, and to
determine whether symbols in it have referents in the context of
your breakpoint. GDB doesn’t actually evaluate expression at

348 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Stopping and continuing

the time the condition command is given, however. See
“Expressions.”

condition bnum

Remove the condition from breakpoint number bnum. It
becomes an ordinary unconditional breakpoint.

A special case of a breakpoint condition is to stop only when the
breakpoint has been reached a certain number of times. This is so
useful that there’s a special way to do it, using the ignore count of the
breakpoint. Every breakpoint has an ignore count, which is an integer.
Most of the time, the ignore count is zero, and therefore has no effect.
But if your program reaches a breakpoint whose ignore count is
positive, then instead of stopping, it just decrements the ignore count
by one and continues. As a result, if the ignore count value is n, the
breakpoint doesn’t stop the next n times your program reaches it.

ignore bnum count

Set the ignore count of breakpoint number bnum to count. The
next count times the breakpoint is reached, your program’s
execution doesn’t stop; other than to decrement the ignore
count, GDB takes no action.

To make the breakpoint stop the next time it’s reached, specify a
count of zero.

When you use continue to resume execution of your program
from a breakpoint, you can specify an ignore count directly as
an argument to continue, rather than use ignore. See
“Continuing and stepping.”

If a breakpoint has a positive ignore count and a condition, the
condition isn’t checked. Once the ignore count reaches zero,
GDB resumes checking the condition.

You could achieve the effect of the ignore count with a
condition such as $foo-- <= 0 using a debugger convenience
variable that’s decremented each time. See “Convenience
variables.”

May 31, 2004 Appendix: D � Using GDB 349

Stopping and continuing  2004, QNX Software Systems Ltd.

Breakpoint command lists

You can give any breakpoint (or watchpoint) a series of commands to
execute when your program stops due to that breakpoint. For
example, you might want to print the values of certain expressions, or
enable other breakpoints.

commands [bnum]
... command-list ...

end

Specify a list of commands for breakpoint number bnum. The
commands themselves appear on the following lines. Type a
line containing just end to terminate the commands.

To remove all commands from a breakpoint, type commands
and follow it immediately with end; that is, give no commands.

With no bnum argument, commands refers to the last
breakpoint or watchpoint set (not to the breakpoint most
recently encountered).

Pressing Enter as a means of repeating the last GDB command is
disabled within a command-list.

You can use breakpoint commands to start your program up again.
Just use the continue command, or step, or any other command
that resumes execution.

Commands in command-list that follow a command that resumes
execution are ignored. This is because any time you resume execution
(even with a simple next or step), you may encounter another
breakpoint — which could have its own command list, leading to
ambiguities about which list to execute.

If the first command you specify in a command list is silent, the
usual message about stopping at a breakpoint isn’t printed. This may
be desirable for breakpoints that are to print a specific message and
then continue. If none of the remaining commands print anything, you
see no sign that the breakpoint was reached. The silent command is
meaningful only at the beginning of a breakpoint command list.

350 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Stopping and continuing

The commands echo, output, and printf allow you to print
precisely controlled output, and are often useful in silent breakpoints.

For example, here’s how you could use breakpoint commands to print
the value of x at entry to foo() whenever x is positive:

break foo if x>0
commands
silent
printf "x is %d\n",x
cont
end

One application for breakpoint commands is to compensate for one
bug so you can test for another. Put a breakpoint just after the
erroneous line of code, give it a condition to detect the case in which
something erroneous has been done, and give it commands to assign
correct values to any variables that need them. End with the
continue command so that your program doesn’t stop, and start
with the silent command so that no output is produced. Here’s an
example:

break 403
commands
silent
set x = y + 4
cont
end

Breakpoint menus

Some programming languages (notably C++) permit a single function
name to be defined several times, for application in different contexts.
This is called overloading. When a function name is overloaded,
break function isn’t enough to tell GDB where you want a
breakpoint.

If you realize this is a problem, you can use something like break
function(types) to specify which particular version of the function you
want. Otherwise, GDB offers you a menu of numbered choices for
different possible breakpoints, and waits for your selection with the

May 31, 2004 Appendix: D � Using GDB 351

Stopping and continuing  2004, QNX Software Systems Ltd.

prompt >. The first two options are always [0] cancel and [1]

all. Typing 1 sets a breakpoint at each definition of function, and
typing 0 aborts the break command without setting any new
breakpoints.

For example, the following session excerpt shows an attempt to set a
breakpoint at the overloaded symbol String::after(). We choose three
particular definitions of that function name:

(gdb) b String::after
[0] cancel
[1] all
[2] file:String.cc; line number:867
[3] file:String.cc; line number:860
[4] file:String.cc; line number:875
[5] file:String.cc; line number:853
[6] file:String.cc; line number:846
[7] file:String.cc; line number:735
> 2 4 6
Breakpoint 1 at 0xb26c: file String.cc, line 867.
Breakpoint 2 at 0xb344: file String.cc, line 875.
Breakpoint 3 at 0xafcc: file String.cc, line 846.
Multiple breakpoints were set.
Use the "delete" command to delete unwanted
breakpoints.

(gdb)

Continuing and stepping
Continuing means resuming program execution until your program
completes normally. In contrast, stepping means executing just one
more “step” of your program, where “step” may mean either one line
of source code, or one machine instruction (depending on what
particular command you use). Either when continuing or when
stepping, your program may stop even sooner, due to a breakpoint or
a signal. (If due to a signal, you may want to use handle, or use
signal 0 to resume execution. See “Signals.”)

352 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Stopping and continuing

continue [ignore-count]
c [ignore-count]
fg [ignore-count]

Resume program execution, at the address where your program
last stopped; any breakpoints set at that address are bypassed.
The optional argument ignore-count lets you specify a further
number of times to ignore a breakpoint at this location; its effect
is like that of ignore (see “Break conditions”).

The argument ignore-count is meaningful only when your
program stopped due to a breakpoint. At other times, the
argument to continue is ignored.

The synonyms c and fg are provided purely for convenience,
and have exactly the same behavior as continue.

To resume execution at a different place, you can use return (see
“Returning from a function”) to go back to the calling function; or
jump (see “Continuing at a different address”) to go to an arbitrary
location in your program.

A typical technique for using stepping is to set a breakpoint (see
“Breakpoints, watchpoints, and exceptions”) at the beginning of the
function or the section of your program where a problem is believed
to lie, run your program until it stops at that breakpoint, and then step
through the suspect area, examining the variables that are interesting,
until you see the problem happen.

step Continue running your program until control
reaches a different source line, then stop it and
return control to GDB. This command is
abbreviated s.

May 31, 2004 Appendix: D � Using GDB 353

Stopping and continuing  2004, QNX Software Systems Ltd.

If you use the step command while control is within a function that
was compiled without debugging information, execution proceeds
until control reaches a function that does have debugging information.
Likewise, it doesn’t step into a function that is compiled without
debugging information. To step through functions without debugging
information, use the stepi command, described below.

�

The step command stops only at the first
instruction of a source line. This prevents multiple
stops in switch statements, for loops, etc. The step
command stops if a function that has debugging
information is called within the line.

Also, the step command enters a subroutine only
if there’s line number information for the
subroutine. Otherwise it acts like the next
command. This avoids problems when using cc

-gl on MIPS machines.

step count Continue running as in step, but do so count times.
If a breakpoint is reached, or a signal not related to
stepping occurs before count steps, stepping stops
right away.

next [count] Continue to the next source line in the current
(innermost) stack frame. This is similar to step,
but function calls that appear within the line of code
are executed without stopping. Execution stops
when control reaches a different line of code at the
original stack level that was executing when you
gave the next command. This command is
abbreviated n.

The count argument is a repeat count, as for step.

The next command stops only at the first
instruction of a source line. This prevents the
multiple stops in switch statements, for loops, etc.

354 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Stopping and continuing

finish Continue running until just after function in the
selected stack frame returns. Print the returned
value (if any).

Contrast this with the return command (see
“Returning from a function”).

u

until Continue running until a source line past the current
line in the current stack frame is reached. This
command is used to avoid single-stepping through a
loop more than once. It’s like the next command,
except that when until encounters a jump, it
automatically continues execution until the program
counter is greater than the address of the jump.

This means that when you reach the end of a loop
after single-stepping though it, until makes your
program continue execution until it exits the loop.
In contrast, a next command at the end of a loop
simply steps back to the beginning of the loop,
which forces you to step through the next iteration.

The until command always stops your program if
it attempts to exit the current stack frame.

The until command may produce somewhat
counterintuitive results if the order of machine code
doesn’t match the order of the source lines. For
example, in the following excerpt from a debugging
session, the f (frame) command shows that
execution is stopped at line 206; yet when we use
until, we get to line 195:

(gdb) f
#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
206 expand input();
(gdb) until
195 for (; argc > 0; NEXTARG) {

This happened because, for execution efficiency, the
compiler had generated code for the loop closure

May 31, 2004 Appendix: D � Using GDB 355

Stopping and continuing  2004, QNX Software Systems Ltd.

test at the end, rather than the start, of the loop —
even though the test in a C for-loop is written
before the body of the loop. The until command
appeared to step back to the beginning of the loop
when it advanced to this expression; however, it
hasn’t really gone to an earlier statement — not in
terms of the actual machine code.

An until command with no argument works by
means of single instruction stepping, and hence is
slower than until with an argument.

until location
u location Continue running your program until either the

specified location is reached, or the current stack
frame returns. The location is any of the forms of
argument acceptable to break (see “Setting
breakpoints”). This form of the command uses
breakpoints, and hence is quicker than until
without an argument.

stepi [count]
si [count] Execute one machine instruction, then stop and

return to the debugger.

It’s often useful to do display/i $pc when
stepping by machine instructions. This makes GDB
automatically display the next instruction to be
executed, each time your program stops. See
“Automatic display.”

The count argument is a repeat count, as in step.

nexti [count]
ni [count] Execute one machine instruction, but if it’s a

function call, proceed until the function returns.

The count argument is a repeat count, as in next.

356 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Stopping and continuing

Signals
A signal is an asynchronous event that can happen in a program. The
operating system defines the possible kinds of signals, and gives each
kind a name and a number. The table below gives several examples of
signals:

Signal: Received when:

SIGINT You type an interrupt, Ctrl – C

SIGSEGV The program references a place in memory far away
from all the areas in use.

SIGALRM The alarm clock timer goes off (which happens only if
your program has requested an alarm).

Some signals, including SIGALRM, are a normal part of the
functioning of your program. Others, such as SIGSEGV, indicate
errors; these signals are fatal (killing your program immediately) if
the program hasn’t specified in advance some other way to handle the
signal. SIGINT doesn’t indicate an error in your program, but it’s
normally fatal so it can carry out the purpose of the interrupt: to kill
the program.

GDB has the ability to detect any occurrence of a signal in your
program. You can tell GDB in advance what to do for each kind of
signal. Normally, it’s set up to:

� Ignore signals like SIGALRM that don’t indicate an error so as not
to interfere with their role in the functioning of your program.

� Stop your program immediately whenever an error signal happens.

You can change these settings with the handle command.

May 31, 2004 Appendix: D � Using GDB 357

Stopping and continuing  2004, QNX Software Systems Ltd.

info signals

info handle

Print a table of all the kinds of signals and how GDB has been
told to handle each one. You can use this to see the signal
numbers of all the defined types of signals.

handle signal keywords...

Change the way GDB handles signal signal. The signal can be
the number of a signal or its name (with or without the SIG at
the beginning). The keywords say what change to make.

The keywords allowed by the handle command can be abbreviated.
Their full names are:

nostop GDB shouldn’t stop your program when this signal
happens. It may still print a message telling you that the
signal has come in.

stop GDB should stop your program when this signal
happens. This implies the print keyword as well.

print GDB should print a message when this signal happens.

noprint GDB shouldn’t mention the occurrence of the signal at
all. This implies the nostop keyword as well.

pass GDB should allow your program to see this signal; your
program can handle the signal, or else it may terminate
if the signal is fatal and not handled.

nopass GDB shouldn’t allow your program to see this signal.

When a signal stops your program, the signal isn’t visible until you
continue. Your program sees the signal then, if pass is in effect for
the signal in question at that time. In other words, after GDB reports a
signal, you can use the handle command with pass or nopass to
control whether your program sees that signal when you continue.

358 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Stopping and continuing

You can also use the signal command to prevent your program from
seeing a signal, or cause it to see a signal it normally doesn’t see, or to
give it any signal at any time. For example, if your program stopped
due to some sort of memory reference error, you might store correct
values into the erroneous variables and continue, hoping to see more
execution; but your program would probably terminate immediately
as a result of the fatal signal once it saw the signal. To prevent this,
you can continue with signal 0. See “Giving your program a
signal.”

Stopping and starting multithreaded programs
When your program has multiple threads (see “Debugging programs
with multiple threads”), you can choose whether to set breakpoints on
all threads, or on a particular thread.

break linespec thread threadno
break linespec thread threadno if ...

The linespec specifies source lines; there are several ways of
writing them, but the effect is always to specify some source
line.

Use the qualifier thread threadno with a breakpoint command
to specify that you want GDB to stop the program only when a
particular thread reaches this breakpoint. The threadno is one of
the numeric thread identifiers assigned by GDB, shown in the
first column of the info threads display.

If you don’t specify thread threadno when you set a
breakpoint, the breakpoint applies to all threads of your
program.

You can use the thread qualifier on conditional breakpoints as
well; in this case, place thread threadno before the breakpoint
condition, like this:

(gdb) break frik.c:13 thread 28 if bartab > lim

May 31, 2004 Appendix: D � Using GDB 359

Examining the stack  2004, QNX Software Systems Ltd.

Whenever your program stops under GDB for any reason, all threads
of execution stop, not just the current thread. This lets you examine
the overall state of the program, including switching between threads,
without worrying that things may change underfoot.

Conversely, whenever you restart the program, all threads start
executing. This is true even when single-stepping with commands like
step or next.

In particular, GDB can’t single-step all threads in lockstep. Since
thread scheduling is up to the Neutrino microkernel (not controlled by
GDB), other threads may execute more than one statement while the
current thread completes a single step. Moreover, in general, other
threads stop in the middle of a statement, rather than at a clean
statement boundary, when the program stops.

You might even find your program stopped in another thread after
continuing or even single-stepping. This happens whenever some
other thread runs into a breakpoint, a signal, or an exception before
the first thread completes whatever you requested.

Examining the stack
When your program has stopped, the first thing you need to know is
where it stopped and how it got there.

Each time your program performs a function call, information about
the call is generated. That information includes the location of the call
in your program, the arguments of the call, and the local variables of
the function being called. The information is saved in a block of data
called a stack frame. The stack frames are allocated in a region of
memory called the call stack.

When your program stops, the GDB commands for examining the
stack allow you to see all of this information.

One of the stack frames is selected by GDB, and many GDB
commands refer implicitly to the selected frame. In particular,
whenever you ask GDB for the value of a variable in your program,
the value is found in the selected frame. There are special GDB

360 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining the stack

commands to select whichever frame you’re interested in. See
“Selecting a frame.”

When your program stops, GDB automatically selects the currently
executing frame and describes it briefly, similar to the frame
command (see “Information about a frame”).

Stack frames
The call stack is divided up into contiguous pieces called stack
frames, or frames for short; each frame is the data associated with one
call to one function. The frame contains the arguments given to the
function, the function’s local variables, and the address at which the
function is executing.

When your program is started, the stack has only one frame, that of
the function main(). This is called the initial frame or the outermost
frame. Each time a function is called, a new frame is made. Each time
a function returns, the frame for that function invocation is
eliminated. If a function is recursive, there can be many frames for the
same function. The frame for the function in which execution is
actually occurring is called the innermost frame. This is the most
recently created of all the stack frames that still exist.

Inside your program, stack frames are identified by their addresses. A
stack frame consists of many bytes, each of which has its own
address; each kind of computer has a convention for choosing one
byte whose address serves as the address of the frame. Usually this
address is kept in a register called the frame pointer register while
execution is going on in that frame.

GDB assigns numbers to all existing stack frames, starting with 0 for
the innermost frame, 1 for the frame that called it, and so on upward.
These numbers don’t really exist in your program; they’re assigned by
GDB to give you a way of designating stack frames in GDB
commands.

Some compilers provide a way to compile functions so that they
operate without stack frames. (For example, the gcc option
-fomit-frame-pointer generates functions without a frame.)

May 31, 2004 Appendix: D � Using GDB 361

Examining the stack  2004, QNX Software Systems Ltd.

This is occasionally done with heavily used library functions to save
the frame setup time. GDB has limited facilities for dealing with
these function invocations. If the innermost function invocation has
no stack frame, GDB nevertheless regards it as though it had a
separate frame, which is numbered 0 as usual, allowing correct
tracing of the function call chain. However, GDB has no provision for
frameless functions elsewhere in the stack.

frame args The frame command lets you move from one stack
frame to another, and to print the stack frame you
select. The args may be either the address of the
frame or the stack frame number. Without an
argument, frame prints the current stack frame.

select-frame

The select-frame command lets you move from
one stack frame to another without printing the
frame. This is the silent version of frame.

Backtraces
A backtrace is a summary of how your program got where it is. It
shows one line per frame, for many frames, starting with the currently
executing frame (frame 0), followed by its caller (frame 1), and on up
the stack.

backtrace

bt Print a backtrace of the entire stack, with one line
per frame, for all frames in the stack.

You can stop the backtrace at any time by typing
the system interrupt character, normally Ctrl – C.

backtrace n
bt n Similar, but print only the innermost n frames.

backtrace -n
bt -n Similar, but print only the outermost n frames.

362 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining the stack

The names where and info stack (info s) are additional aliases
for backtrace.

Each line in the backtrace shows the frame number and the function
name. The program counter value is also shown — unless you use
set print address off. The backtrace also shows the source
filename and line number, as well as the arguments to the function.
The program counter value is omitted if it’s at the beginning of the
code for that line number.

Here’s an example of a backtrace. It was made with the command bt

3, so it shows the innermost three frames:

#0 m4 traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
at builtin.c:993

#1 0x6e38 in expand macro (sym=0x2b600) at macro.c:242
#2 0x6840 in expand token (obs=0x0, t=177664, td=0xf7fffb08)

at macro.c:71
(More stack frames follow...)

The display for frame 0 doesn’t begin with a program counter value,
indicating that your program has stopped at the beginning of the code
for line 993 of builtin.c.

Selecting a frame
Most commands for examining the stack and other data in your
program work on whichever stack frame is selected at the moment.
Here are the commands for selecting a stack frame; all of them finish
by printing a brief description of the stack frame just selected.

frame n
f n Select frame number n. Recall that frame 0 is the

innermost (currently executing) frame, frame 1 is the
frame that called the innermost one, and so on. The
highest-numbered frame is the one for main.

frame addr
f addr Select the frame at address addr. This is useful

mainly if the chaining of stack frames has been
damaged by a bug, making it impossible for GDB to

May 31, 2004 Appendix: D � Using GDB 363

Examining the stack  2004, QNX Software Systems Ltd.

assign numbers properly to all frames. In addition,
this can be useful when your program has multiple
stacks and switches between them.

On the MIPS architecture, frame needs two
addresses: a stack pointer and a program counter.

up n Move n frames up the stack. For positive numbers,
this advances toward the outermost frame, to higher
frame numbers, to frames that have existed longer.
The default for n is 1.

down n Move n frames down the stack. For positive
numbers, this advances toward the innermost frame,
to lower frame numbers, to frames that were created
more recently. The default for n is 1. You may
abbreviate down as do.

All of these commands end by printing two lines of output describing
the frame. The first line shows the frame number, the function name,
the arguments, and the source file and line number of execution in that
frame. The second line shows the text of that source line.

For example:

(gdb) up
#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)

at env.c:10
10 read input file (argv[i]);

After such a printout, the list command with no arguments prints
ten lines centered on the point of execution in the frame. See
“Printing source lines.”

up-silently n
down-silently n

These two commands are variants of up and down; they differ
in that they do their work silently, without causing display of
the new frame. They’re intended primarily for use in GDB
command scripts, where the output might be unnecessary and
distracting.

364 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining the stack

Information about a frame
There are several other commands to print information about the
selected stack frame:

frame

f When used without any argument, this command
doesn’t change which frame is selected, but prints a
brief description of the currently selected stack
frame. It can be abbreviated f. With an argument,
this command is used to select a stack frame. See
“Selecting a frame.”

info frame

info f This command prints a verbose description of the
selected stack frame, including:

� the address of the frame

� the address of the next frame down (called by
this frame)

� the address of the next frame up (caller of this
frame)

� the language in which the source code
corresponding to this frame is written

� the address of the frame’s arguments

� the program counter saved in it (the address of
execution in the caller frame)

� which registers were saved in the frame

The verbose description is useful when something
has gone wrong that has made the stack format fail
to fit the usual conventions.

info frame addr
info f addr

Print a verbose description of the frame at address
addr, without selecting that frame. The selected
frame remains unchanged by this command. This

May 31, 2004 Appendix: D � Using GDB 365

Examining the stack  2004, QNX Software Systems Ltd.

requires the same kind of address (more than one
for some architectures) that you specify in the
frame command. See “Selecting a frame.”

info args Print the arguments of the selected frame, each on a
separate line.

info locals Print the local variables of the selected frame, each
on a separate line. These are all variables (declared
either static or automatic) accessible at the point of
execution of the selected frame.

info catch Print a list of all the exception handlers that are
active in the current stack frame at the current point
of execution. To see other exception handlers, visit
the associated frame (using the up, down, or
frame commands); then type info catch. See
“Breakpoints and exceptions.”

MIPS machines and the function stack
MIPS-based computers use an unusual stack frame, which sometimes
requires GDB to search backward in the object code to find the
beginning of a function.

To improve response time — especially for embedded applications,
where GDB may be restricted to a slow serial line for this search —
you may want to limit the size of this search, using one of these
commands:

set heuristic-fence-post limit

Restrict GDB to examining at most limit bytes in its search for
the beginning of a function. A value of 0 (the default) means
there’s no limit. However, except for 0, the larger the limit the
more bytes heuristic-fence-post must search and
therefore the longer it takes to run.

show heuristic-fence-post

Display the current limit.

366 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining source files

These commands are available only when GDB is configured for
debugging programs on MIPS processors.

Examining source files
GDB can print parts of your program’s source, since the debugging
information recorded in the program tells GDB what source files were
used to build it. When your program stops, GDB spontaneously prints
the line where it stopped. Likewise, when you select a stack frame
(see “Selecting a frame”), GDB prints the line where execution in that
frame has stopped. You can print other portions of source files by
explicit command.

Printing source lines
To print lines from a source file, use the list (l) command. By
default, ten lines are printed. There are several ways to specify what
part of the file you want to print. Here are the forms of the list
command most commonly used:

list linenum Print lines centered around line number linenum in
the current source file.

list function Print lines centered around the beginning of
function function.

list Print more lines. If the last lines printed were
printed with a list command, this prints lines
following the last lines printed; however, if the last
line printed was a solitary line printed as part of
displaying a stack frame (see “Examining the
Stack”), this prints lines centered around that line.

list - Print lines just before the lines last printed.

By default, GDB prints ten source lines with any of these forms of the
list command. You can change this using set listsize:

May 31, 2004 Appendix: D � Using GDB 367

Examining source files  2004, QNX Software Systems Ltd.

set listsize count

Make the list command display count source lines (unless the
list argument explicitly specifies some other number).

show listsize

Display the number of lines that list prints.

Repeating a list command with Enter discards the argument, so it’s
equivalent to typing just list. This is more useful than listing the
same lines again. An exception is made for an argument of -; that
argument is preserved in repetition so that each repetition moves up in
the source file.

In general, the list command expects you to supply zero, one or two
linespecs. Linespecs specify source lines; there are several ways of
writing them but the effect is always to specify some source line.
Here’s a complete description of the possible arguments for list:

list linespec Print lines centered around the line specified by
linespec.

list first,last Print lines from first to last. Both arguments are
linespecs.

list ,last Print lines ending with last.

list first, Print lines starting with first.

list + Print lines just after the lines last printed.

list - Print lines just before the lines last printed.

list As described in the preceding table.

Here are the ways of specifying a single source line — all the kinds of
linespec:

number Specifies line number of the current source file. When a
list command has two linespecs, this refers to the
same source file as the first linespec.

368 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining source files

+offset Specifies the line offset lines after the last line printed.
When used as the second linespec in a list command
that has two, this specifies the line offset lines down
from the first linespec.

-offset Specifies the line offset lines before the last line printed.

filename:number

Specifies line number in the source file filename.

function Specifies the line that begins the body of the function
function. For example: in C, this is the line with the
open brace, }.

filename:function

Specifies the line of the open brace that begins the body
of function in the file filename. You need the filename
with a function name only to avoid ambiguity when
there are identically named functions in different source
files.

*address Specifies the line containing the program address
address. The address may be any expression.

Searching source files
The commands for searching through the current source file for a
regular expression are:

forward-search regexp
search regexp
fo regexp

Check each line, starting with the one following the last line
listed, for a match for regexp, listing the line found.

May 31, 2004 Appendix: D � Using GDB 369

Examining source files  2004, QNX Software Systems Ltd.

reverse-search regexp
rev regexp

Check each line, starting with the one before the last line listed
and going backward, for a match for regexp, listing the line
found.

Specifying source directories
Executable programs sometimes don’t record the directories of the
source files from which they were compiled, just the names. Even
when they do, the directories could be moved between the compilation
and your debugging session. GDB has a list of directories to search
for source files; this is called the source path. Each time GDB wants a
source file, it tries all the directories in the list, in the order they’re
present in the list, until it finds a file with the desired name.

The executable search path isn’t used for this purpose. Neither is the
current working directory, unless it happens to be in the source path.

�

If GDB can’t find a source file in the source path, and the object
program records a directory, GDB tries that directory too. If the
source path is empty, and there’s no record of the compilation
directory, GDB looks in the current directory as a last resort.

Whenever you reset or rearrange the source path, GDB clears out any
information it has cached about where source files are found and
where each line is in the file.

When you start GDB, its source path is empty. To add other
directories, use the directory command.

directory dirname ...
dir dirname ...

Add directory dirname to the front of the source
path. Several directory names may be given to this
command, separated by colons (:) or whitespace.
You may specify a directory that is already in the

370 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining source files

source path; this moves it forward, so GDB searches
it sooner.

You can use the string $cdir to refer to the
compilation directory (if one is recorded), and $cwd

to refer to the current working directory. Note that
$cwd isn’t the same as a period (.); the former tracks
the current working directory as it changes during
your GDB session, while the latter is immediately
expanded to the current directory at the time you add
an entry to the source path.

directory Reset the source path to empty again. This requires
confirmation.

show directories

Print the source path: show which directories it
contains.

If your source path is cluttered with directories that are no longer of
interest, GDB may sometimes cause confusion by finding the wrong
versions of source. You can correct the situation as follows:

1 Use directory with no argument to reset the source path to
empty.

2 Use directory with suitable arguments to reinstall the
directories you want in the source path. You can add all the
directories in one command.

Source and machine code
You can use the command info line to map source lines to
program addresses (and vice versa), and the command disassemble

to display a range of addresses as machine instructions. When run
under GNU Emacs mode, the info line command causes the arrow
to point to the line specified. Also, info line prints addresses in
symbolic form as well as hex.

May 31, 2004 Appendix: D � Using GDB 371

Examining source files  2004, QNX Software Systems Ltd.

info line linespec

Print the starting and ending addresses of the compiled code for
source line linespec. You can specify source lines in any of the
ways understood by the list command (see “Printing source
lines”).

For example, we can use info line to discover the location of the
object code for the first line of function m4 changequote:

(gdb) info line m4 changecom
Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.

We can also inquire (using *addr as the form for linespec) what
source line covers a particular address:

(gdb) info line *0x63ff
Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.

After info line, the default address for the x command is changed
to the starting address of the line, so that x/i is sufficient to begin
examining the machine code (see “Examining memory”). Also, this
address is saved as the value of the convenience variable $ (see
“Convenience variables”).

disassemble

This specialized command dumps a range of memory as
machine instructions. The default memory range is the function
surrounding the program counter of the selected frame. A
single argument to this command is a program counter value;
GDB dumps the function surrounding this value. Two
arguments specify a range of addresses (first inclusive, second
exclusive) to dump.

We can use disassemble to inspect the object code range shown in
the last info line example (the example shows SPARC machine
instructions):

372 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining source files

(gdb) disas 0x63e4 0x6404
Dump of assembler code from 0x63e4 to 0x6404:
0x63e4 <builtin init+5340>: ble 0x63f8 <builtin init+5360>
0x63e8 <builtin init+5344>: sethi %hi(0x4c00), %o0
0x63ec <builtin init+5348>: ld [%i1+4], %o0
0x63f0 <builtin init+5352>: b 0x63fc <builtin init+5364>
0x63f4 <builtin init+5356>: ld [%o0+4], %o0
0x63f8 <builtin init+5360>: or %o0, 0x1a4, %o0
0x63fc <builtin init+5364>: call 0x9288 <path search>
0x6400 <builtin init+5368>: nop
End of assembler dump.

set assembly-language instruction-set

This command selects the instruction set to use when
disassembling the program via the disassemble or x/i
commands. It’s useful for architectures that have more than one
native instruction set.

Currently it’s defined only for the Intel x86 family. You can set
instruction-set to either i386 or i8086. The default is i386.

Shared libraries
You can use the following commands when working with shared
libraries:

sharedlibrary [regexp]

Load shared object library symbols for files matching the given
regular expression, regexp. If regexp is omitted, GDB tries to
load symbols for all loaded shared libraries.

info sharedlibrary

Display the status of the loaded shared object libraries.

The following parameters apply to shared libraries:

set solib-search-path dir[:dir...]

Set the search path for loading shared library symbols files that
don’t have an absolute path. This path overrides the PATH and
LD LIBRARY PATH environment variables.

May 31, 2004 Appendix: D � Using GDB 373

Examining data  2004, QNX Software Systems Ltd.

The default value is:

${QNX TARGET}/${PROCESSOR}/lib:${QNX TARGET}/${PROCESSOR}/dll

set solib-absolute-prefix prefix

Set the prefix for loading absolute shared library symbol files.

set auto-solib-add value

Make the loading of shared library symbols automatic or
manual:

� If value is nonzero, symbols from all shared object libraries
are loaded automatically when the inferior process (i.e. the
one being debugged) begins execution, or when the dynamic
linker informs GDB that a new library has been loaded.

� If value is zero, symbols must be loaded manually with the
sharedlibrary command.

You can query the settings of these parameters with the show
solib-search-path, show solib-absolute-prefix, and
show auto-solib-add commands.

Examining data
The usual way to examine data in your program is with the print (p)
command or its synonym inspect. It evaluates and prints the value
of an expression of the language your program is written in.

print exp
print /f exp exp is an expression (in the source language). By

default, the value of exp is printed in a format
appropriate to its data type; you can choose a
different format by specifying /f , where f is a
letter specifying the format; see “Output formats.”

374 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining data

print

print /f If you omit exp, GDB displays the last value again
(from the value history; see “Value history”). This
lets you conveniently inspect the same value in an
alternative format.

A lower-level way of examining data is with the x command. It
examines data in memory at a specified address and prints it in a
specified format. See “Examining memory.”

If you’re interested in information about types, or about how the fields
of a structure or class are declared, use the ptype exp command
rather than print. See “Examining the symbol table.”

Expressions
The print command and many other GDB commands accept an
expression and compute its value. Any kind of constant, variable or
operator defined by the programming language you’re using is valid
in an expression in GDB. This includes conditional expressions,
function calls, casts and string constants. It unfortunately doesn’t
include symbols defined by preprocessor #define commands.

GDB supports array constants in expressions input by the user. The
syntax is {element, element...}. For example, you can use the
command print {1, 2, 3} to build up an array in memory that is
malloc’d in the target program.

Because C is so widespread, most of the expressions shown in
examples in this manual are in C. In this section, we discuss operators
that you can use in GDB expressions regardless of your programming
language.

Casts are supported in all languages, not just in C, because it’s useful
to cast a number into a pointer in order to examine a structure at that
address in memory.

GDB supports these operators, in addition to those common to
programming languages:

May 31, 2004 Appendix: D � Using GDB 375

Examining data  2004, QNX Software Systems Ltd.

@ Binary operator for treating parts of memory as
arrays. See “Artificial arrays”, for more information.

:: Lets you specify a variable in terms of the file or
function where it’s defined. See “Program variables.”

{type} addr Refers to an object of type type stored at address
addr in memory. The addr may be any expression
whose value is an integer or pointer (but parentheses
are required around binary operators, just as in a
cast). This construct is allowed regardless of what
kind of data is normally supposed to reside at addr.

Program variables
The most common kind of expression to use is the name of a variable
in your program.

Variables in expressions are understood in the selected stack frame
(see “Selecting a frame”); they must be either:

� global (or static)

Or

� visible according to the scope rules of the programming language
from the point of execution in that frame.

This means that in the function:

foo (a)
int a;

{
bar (a);
{

int b = test ();
bar (b);

}
}

you can examine and use the variable a whenever your program is
executing within the function foo(), but you can use or examine the

376 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining data

variable b only while your program is executing inside the block
where b is declared.

There’s an exception: you can refer to a variable or function whose
scope is a single source file even if the current execution point isn’t in
this file. But it’s possible to have more than one such variable or
function with the same name (in different source files). If that
happens, referring to that name has unpredictable effects. If you wish,
you can specify a static variable in a particular function or file, using
the colon-colon notation:

file::variable
function::variable

Here file or function is the name of the context for the static variable.
In the case of filenames, you can use quotes to make sure GDB parses
the filename as a single word. For example, to print a global value of
x defined in f2.c:

(gdb) p ’f2.c’::x

This use of :: is very rarely in conflict with the very similar use of
the same notation in C++. GDB also supports use of the C++ scope
resolution operator in GDB expressions.

May 31, 2004 Appendix: D � Using GDB 377

Examining data  2004, QNX Software Systems Ltd.

Occasionally, a local variable may appear to have the wrong value at
certain points in a function, such as just after entry to a new scope,
and just before exit.

You may see this problem when you’re stepping by machine
instructions. This is because, on most machines, it takes more than
one instruction to set up a stack frame (including local variable
definitions); if you’re stepping by machine instructions, variables may
appear to have the wrong values until the stack frame is completely
built. On exit, it usually also takes more than one machine instruction
to destroy a stack frame; after you begin stepping through that group
of instructions, local variable definitions may be gone.

�

Artificial arrays
It’s often useful to print out several successive objects of the same
type in memory; a section of an array, or an array of dynamically
determined size for which only a pointer exists in the program.

You can do this by referring to a contiguous span of memory as an
artificial array, using the binary operator @. The left operand of @
should be the first element of the desired array and be an individual
object. The right operand should be the desired length of the array.
The result is an array value whose elements are all of the type of the
left operand. The first element is actually the left operand; the second
element comes from bytes of memory immediately following those
that hold the first element, and so on. For example, if a program says:

int *array = (int *) malloc (len * sizeof (int));

you can print the contents of array with:

p *array@len

The left operand of @ must reside in memory. Array values made with
@ in this way behave just like other arrays in terms of subscripting,
and are coerced to pointers when used in expressions. Artificial arrays

378 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining data

most often appear in expressions via the value history (see “Value
history”), after printing one out.

Another way to create an artificial array is to use a cast. This
reinterprets a value as if it were an array. The value need not be in
memory:

(gdb) p/x (short[2])0x12345678
$1 = {0x1234, 0x5678}

As a convenience, if you leave the array length out — as in
(type[])value — gdb calculates the size to fill the value as
sizeof(value)/sizeof(type). For example:

(gdb) p/x (short[])0x12345678
$2 = {0x1234, 0x5678}

Sometimes the artificial array mechanism isn’t quite enough; in
moderately complex data structures, the elements of interest may not
actually be adjacent — for example, if you’re interested in the values
of pointers in an array. One useful workaround in this situation is to
use a convenience variable (see “Convenience variables”) as a counter
in an expression that prints the first interesting value, and then repeat
that expression via Enter. For instance, suppose you have an array
dtab of pointers to structures, and you’re interested in the values of a
field fv in each structure. Here’s an example of what you might type:

set $i = 0
p dtab[$i++]->fv
Enter
Enter
...

Output formats
By default, GDB prints a value according to its data type. Sometimes
this isn’t what you want. For example, you might want to print a
number in hex, or a pointer in decimal. Or you might want to view
data in memory at a certain address as a character string or as an

May 31, 2004 Appendix: D � Using GDB 379

Examining data  2004, QNX Software Systems Ltd.

instruction. To do these things, specify an output format when you
print a value.

The simplest use of output formats is to say how to print a value
already computed. This is done by starting the arguments of the
print command with a slash and a format letter. The format letters
supported are:

x Regard the bits of the value as an integer, and print the integer
in hexadecimal.

d Print as integer in signed decimal.

u Print as integer in unsigned decimal.

o Print as integer in octal.

t Print as integer in binary. The letter t stands for two. (The
letter b can’t be used because these format letters are also used
with the x command, where b stands for byte. See “Examining
memory.”)

a Print as an address, both absolute in hexadecimal and as an
offset from the nearest preceding symbol. You can use this
format used to discover where (in what function) an unknown
address is located:

(gdb) p/a 0x54320
$3 = 0x54320 < initialize vx+396>

c Regard as an integer and print it as a character constant.

f Regard the bits of the value as a floating point number and print
using typical floating point syntax.

For example, to print the program counter in hex (see “Registers”),
type:

p/x $pc

380 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining data

No space is required before the slash; this is because command names
in GDB can’t contain a slash.

�

To reprint the last value in the value history with a different format,
you can use the print command with just a format and no
expression. For example, p/x reprints the last value in hex.

Examining memory
You can use the command x (for “examine”) to examine memory in
any of several formats, independently of your program’s data types.

x/nfu addr
x addr
x Use the x command to examine memory.

The n, f , and u are all optional parameters that specify how much
memory to display and how to format it; addr is an expression giving
the address where you want to start displaying memory. If you use
defaults for nfu, you need not type the slash /. Several commands set
convenient defaults for addr.

n The repeat count is a decimal integer; the default is 1. It
specifies how much memory (counting by units u) to display.

f The display format is one of the formats used by print, s
(null-terminated string), or i (machine instruction). The
default is x (hexadecimal) initially. The default changes
each time you use either x or print.

u The unit size is any of:

� b — bytes.

� h — halfwords (two bytes).

� w — words (four bytes). This is the initial default.

� g — giant words (eight bytes).

May 31, 2004 Appendix: D � Using GDB 381

Examining data  2004, QNX Software Systems Ltd.

Each time you specify a unit size with x, that size becomes
the default unit the next time you use x. (For the s and i

formats, the unit size is ignored and isn’t normally written.)

addr The address where you want GDB to begin displaying
memory. The expression need not have a pointer value
(though it may); it’s always interpreted as an integer address
of a byte of memory. See “Expressions” for more
information on expressions. The default for addr is usually
just after the last address examined — but several other
commands also set the default address: info
breakpoints (to the address of the last breakpoint listed),
info line (to the starting address of a line), and print (if
you use it to display a value from memory).

For example, x/3uh 0x54320 is a request to display three halfwords
(h) of memory, formatted as unsigned decimal integers (u), starting at
address 0x54320. The x/4xw $sp command prints the four words
(w) of memory above the stack pointer (here, $sp; see “Registers”) in
hexadecimal (x).

Since the letters indicating unit sizes are all distinct from the letters
specifying output formats, you don’t have to remember whether unit
size or format comes first; either order works. The output
specifications 4xw and 4wx mean exactly the same thing. (However,
the count n must come first; wx4 doesn’t work.)

Even though the unit size u is ignored for the formats s and i, you
might still want to use a count n; for example, 3i specifies that you
want to see three machine instructions, including any operands. The
command disassemble gives an alternative way of inspecting
machine instructions; see “Source and machine code.”

All the defaults for the arguments to x are designed to make it easy to
continue scanning memory with minimal specifications each time you
use x. For example, after you’ve inspected three machine instructions
with x/3i addr, you can inspect the next seven with just x/7. If you
use Enter to repeat the x command, the repeat count n is used again;
the other arguments default as for successive uses of x.

382 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining data

The addresses and contents printed by the x command aren’t saved in
the value history because there’s often too much of them and they
would get in the way. Instead, GDB makes these values available for
subsequent use in expressions as values of the convenience variables
$ and $. After an x command, the last address examined is
available for use in expressions in the convenience variable $. The
contents of that address, as examined, are available in the convenience
variable $.

If the x command has a repeat count, the address and contents saved
are from the last memory unit printed; this isn’t the same as the last
address printed if several units were printed on the last line of output.

Automatic display
If you find that you want to print the value of an expression frequently
(to see how it changes), you might want to add it to the automatic
display list so that GDB prints its value each time your program stops.
Each expression added to the list is given a number to identify it; to
remove an expression from the list, you specify that number. The
automatic display looks like this:

2: foo = 38
3: bar[5] = (struct hack *) 0x3804

This display shows item numbers, expressions and their current
values. As with displays you request manually using x or print, you
can specify the output format you prefer; in fact, display decides
whether to use print or x depending on how elaborate your format
specification is — it uses x if you specify a unit size, or one of the two
formats (i and s) that are supported only by x; otherwise it uses
print.

display exp Add the expression exp to the list of expressions to
display each time your program stops. See
“Expressions.” The display command doesn’t
repeat if you press Enter again after using it.

May 31, 2004 Appendix: D � Using GDB 383

Examining data  2004, QNX Software Systems Ltd.

display/fmt exp

For fmt specifying only a display format and not a
size or count, add the expression exp to the
auto-display list but arrange to display it each time
in the specified format fmt. See “Output formats.”

display/fmt addr

For fmt i or s, or including a unit-size or a number
of units, add the expression addr as a memory
address to be examined each time your program
stops. Examining means in effect doing x/fmt
addr. See “Examining memory.”

For example, display/i $pc can be helpful, to see the machine
instruction about to be executed each time execution stops ($pc is a
common name for the program counter; see “Registers”).

undisplay dnums...
delete display dnums...

Remove item numbers dnums from the list of
expressions to display.

The undisplay command doesn’t repeat if you press
Enter after using it. (Otherwise you’d just get the error
No display number)

disable display dnums...

Disable the display of item numbers dnums. A disabled
display item isn’t printed automatically, but isn’t
forgotten; it may be enabled again later.

enable display dnums...

Enable the display of item numbers dnums. It becomes
effective once again in auto display of its expression,
until you specify otherwise.

display Display the current values of the expressions on the list,
just as is done when your program stops.

384 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining data

info display

Print the list of expressions previously set up to display
automatically, each one with its item number, but
without showing the values. This includes disabled
expressions, which are marked as such. It also includes
expressions that wouldn’t be displayed right now
because they refer to automatic variables not currently
available.

If a display expression refers to local variables, it doesn’t make sense
outside the lexical context for which it was set up. Such an expression
is disabled when execution enters a context where one of its variables
isn’t defined.

For example, if you give the command display last char while
inside a function with an argument last char, GDB displays this
argument while your program continues to stop inside that function.
When it stops where there’s no variable last char, the display is
disabled automatically. The next time your program stops where
last char is meaningful, you can enable the display expression once
again.

Print settings
GDB provides the following ways to control how arrays, structures,
and symbols are printed.

These settings are useful for debugging programs in any language:

set print address

set print address on

GDB prints memory addresses showing the location of stack
traces, structure values, pointer values, breakpoints, and so
forth, even when it also displays the contents of those
addresses. The default is on. For example, this is what a stack
frame display looks like with set print address on:

(gdb) f

May 31, 2004 Appendix: D � Using GDB 385

Examining data  2004, QNX Software Systems Ltd.

#0 set quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
at input.c:530

530 if (lquote != def lquote)

set print address off

Don’t print addresses when displaying their contents. For
example, this is the same stack frame displayed with set

print address off:

(gdb) set print addr off
(gdb) f
#0 set quotes (lq="<<", rq=">>") at input.c:530
530 if (lquote != def lquote)

You can use set print address off to eliminate all
machine-dependent displays from the GDB interface. For
example, with print address off, you should get the same
text for backtraces on all machines — whether or not they
involve pointer arguments.

show print address

Show whether or not addresses are to be printed.

When GDB prints a symbolic address, it normally prints the closest
earlier symbol plus an offset. If that symbol doesn’t uniquely identify
the address (for example, it’s a name whose scope is a single source
file), you may need to clarify. One way to do this is with info line,
for example info line *0x4537. Alternately, you can set GDB to
print the source file and line number when it prints a symbolic
address:

set print symbol-filename on

Tell GDB to print the source filename and line number of a
symbol in the symbolic form of an address.

set print symbol-filename off

Don’t print source filename and line number of a symbol. This
is the default.

386 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining data

show print symbol-filename

Show whether or not GDB prints the source filename and line
number of a symbol in the symbolic form of an address.

Another situation where it’s helpful to show symbol filenames and
line numbers is when disassembling code; GDB shows you the line
number and source file that correspond to each instruction.

Also, you may wish to see the symbolic form only if the address
being printed is reasonably close to the closest earlier symbol:

set print max-symbolic-offset max-offset

Tell GDB to display the symbolic form of an address only if the
offset between the closest earlier symbol and the address is less
than max-offset. The default is 0, which tells GDB to always
print the symbolic form of an address if any symbol precedes it.

show print max-symbolic-offset

Ask how large the maximum offset is that GDB prints in a
symbolic address.

If you have a pointer and you aren’t sure where it points, try set

print symbol-filename on. Then you can determine the name
and source file location of the variable where it points, using p/a
pointer. This interprets the address in symbolic form. For example,
here GDB shows that a variable ptt points at another variable t,
defined in hi2.c:

(gdb) set print symbol-filename on
(gdb) p/a ptt
$4 = 0xe008 <t in hi2.c>

May 31, 2004 Appendix: D � Using GDB 387

Examining data  2004, QNX Software Systems Ltd.

For pointers that point to a local variable, p/a doesn’t show the
symbol name and filename of the referent, even with the appropriate
set print options turned on.

�

Other settings control how different kinds of objects are printed:

set print array

set print array on

Pretty print arrays. This format is more convenient to read, but
uses more space. The default is off.

set print array off

Return to compressed format for arrays.

show print array

Show whether compressed or pretty format is selected for
displaying arrays.

set print elements number-of-elements

Set a limit on how many elements of an array GDB prints. If
GDB is printing a large array, it stops printing after it has
printed the number of elements set by the set print

elements command. This limit also applies to the display of
strings. Setting number-of-elements to zero means that the
printing is unlimited.

show print elements

Display the number of elements of a large array that GDB
prints. If the number is 0, the printing is unlimited.

set print null-stop

Cause GDB to stop printing the characters of an array when the
first NULL is encountered. This is useful when large arrays
actually contain only short strings.

388 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining data

set print pretty on

Cause GDB to print structures in an indented format with one
member per line, like this:

$1 = {
next = 0x0,
flags = {

sweet = 1,
sour = 1

},
meat = 0x54 "Pork"

}

set print pretty off

Cause GDB to print structures in a compact format, like this:

$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \
meat = 0x54 "Pork"}

This is the default format.

show print pretty

Show which format GDB is using to print structures.

set print sevenbit-strings on

Print using only seven-bit characters; if this option is set, GDB
displays any eight-bit characters (in strings or character values)
using the notation \nnn. This setting is best if you’re working
in English (ASCII) and you use the high-order bit of characters
as a marker or “meta” bit.

set print sevenbit-strings off

Print full eight-bit characters. This lets you use more
international character sets, and is the default.

show print sevenbit-strings

Show whether or not GDB is printing only seven-bit characters.

set print union on

Tell GDB to print unions that are contained in structures. This
is the default setting.

May 31, 2004 Appendix: D � Using GDB 389

Examining data  2004, QNX Software Systems Ltd.

set print union off

Tell GDB not to print unions that are contained in structures.

show print union

Ask GDB whether or not it prints unions that are contained in
structures. For example, given the declarations:

typedef enum {Tree, Bug} Species;
typedef enum {Big tree, Acorn, Seedling} Tree forms;
typedef enum {Caterpillar, Cocoon, Butterfly}

Bug forms;

struct thing {
Species it;
union {

Tree forms tree;
Bug forms bug;

} form;
};

struct thing foo = {Tree, {Acorn}};

with set print union on in effect, p foo prints:

$1 = {it = Tree, form = {tree = Acorn, bug = Cocoon}}

and with set print union off in effect, it prints:

$1 = {it = Tree, form = {...}}

These settings are of interest when debugging C++ programs:

set print demangle

set print demangle on

Print C++ names in their source form rather than in the encoded
(“mangled”) form passed to the assembler and linker for
type-safe linkage. The default is on.

show print demangle

Show whether C++ names are printed in mangled or demangled
form.

390 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining data

set print asm-demangle

set print asm-demangle on

Print C++ names in their source form rather than their mangled
form, even in assembler code printouts such as instruction
disassemblies. The default is off.

show print asm-demangle

Show whether C++ names in assembly listings are printed in
mangled or demangled form.

set demangle-style style

Choose among several encoding schemes used by different
compilers to represent C++ names. The choices for style are:

auto Allow GDB to choose a decoding style by inspecting
your program.

gnu Decode based on the GNU C++ compiler (g++)
encoding algorithm. This is the default.

lucid Decode based on the Lucid C++ compiler (lcc)
encoding algorithm.

arm Decode using the algorithm in the C++ Annotated
Reference Manual.

This setting alone isn’t sufficient to allow debugging
cfront-generated executables. GDB would require
further enhancement to permit that.

foo Show the list of formats.

show demangle-style

Display the encoding style currently in use for decoding C++
symbols.

set print object

set print object on

When displaying a pointer to an object, identify the actual
(derived) type of the object rather than the declared type, using
the virtual function table.

May 31, 2004 Appendix: D � Using GDB 391

Examining data  2004, QNX Software Systems Ltd.

set print object off

Display only the declared type of objects, without reference to
the virtual function table. This is the default setting.

show print object

Show whether actual, or declared, object types are displayed.

set print static-members

set print static-members on

Print static members when displaying a C++ object. The default
is on.

set print static-members off

Don’t print static members when displaying a C++ object.

show print static-members

Show whether C++ static members are printed, or not.

set print vtbl

set print vtbl on

Pretty print C++ virtual function tables. The default is off.

set print vtbl off

Don’t pretty print C++ virtual function tables.

show print vtbl

Show whether C++ virtual function tables are pretty printed, or
not.

Value history
Values printed by the print command are saved in the GDB value
history. This lets you refer to them in other expressions. Values are
kept until the symbol table is reread or discarded (for example with
the file or symbol-file commands). When the symbol table
changes, the value history is discarded, since the values may contain
pointers back to the types defined in the symbol table.

392 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining data

The values printed are given history numbers, which you can use to
refer to them. These are successive integers starting with 1. The
print command shows you the history number assigned to a value
by printing $num = before the value; here num is the history number.

To refer to any previous value, use $ followed by the value’s history
number. The way print labels its output is designed to remind you
of this. Just $ refers to the most recent value in the history, and $$

refers to the value before that. $$n refers to the nth value from the
end; $$2 is the value just prior to $$, $$1 is equivalent to $$, and
$$0 is equivalent to $.

For example, suppose you have just printed a pointer to a structure
and want to see the contents of the structure. It suffices to type:

p *$

If you have a chain of structures where the component next points to
the next one, you can print the contents of the next one with this:

p *$.next

You can print successive links in the chain by repeating this command
— which you can do by just typing Enter.

The history records values, not expressions. If the value of x is 4 and
you type these commands:

print x
set x=5

then the value recorded in the value history by the print command
remains 4 even though the value of x has changed.

�

show values

Print the last ten values in the value history, with their item
numbers. This is like p $$9 repeated ten times, except that
show values doesn’t change the history.

May 31, 2004 Appendix: D � Using GDB 393

Examining data  2004, QNX Software Systems Ltd.

show values n

Print ten history values centered on history item number n.

show values +

Print ten history values just after the values last printed. If no
more values are available, show values + produces no
display.

Pressing Enter to repeat show values n has exactly the same effect
as show values +.

Convenience variables
GDB provides convenience variables that you can use within GDB to
hold on to a value and refer to it later. These variables exist entirely
within GDB; they aren’t part of your program, and setting a
convenience variable has no direct effect on further execution of your
program. That’s why you can use them freely.

Convenience variables are prefixed with $. Any name preceded by $

can be used for a convenience variable, unless it’s one of the
predefined machine-specific register names (see “Registers”). Value
history references, in contrast, are numbers preceded by $. See “Value
history.”

You can save a value in a convenience variable with an assignment
expression, just as you’d set a variable in your program. For example:

set $foo = *object ptr

saves in $foo the value contained in the object pointed to by
object ptr.

Using a convenience variable for the first time creates it, but its value
is void until you assign a new value. You can alter the value with
another assignment at any time.

Convenience variables have no fixed types. You can assign to a
convenience variable any type of value, including structures and
arrays, even if that variable already has a value of a different type.

394 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining data

The convenience variable, when used as an expression, has the type of
its current value.

show convenience

Print a list of convenience variables used so far, and their
values. Abbreviated show con.

One of the ways to use a convenience variable is as a counter to be
incremented or a pointer to be advanced. For example, to print a field
from successive elements of an array of structures:

set $i = 0
print bar[$i++]->contents

Repeat that command by pressing Enter.

Some convenience variables are created automatically by GDB and
given values likely to be useful:

$ The variable $ is automatically set by the x
command to the last address examined (see
“Examining memory”). Other commands that
provide a default address for x to examine also set
$ to that address; these commands include info
line and info breakpoint. The type of $ is
void * except when set by the x command, in
which case it’s a pointer to the type of $.

$ The variable $ is automatically set by the x
command to the value found in the last address
examined. Its type is chosen to match the format in
which the data was printed.

$ exitcode The variable $ exitcode is automatically set to
the exit code when the program being debugged
terminates.

May 31, 2004 Appendix: D � Using GDB 395

Examining data  2004, QNX Software Systems Ltd.

Registers
You can refer to machine register contents, in expressions, as
variables with names starting with $. The names of registers are
different for each machine; use info registers to see the names
used on your machine.

info registers

Print the names and values of all registers except floating-point
registers (in the selected stack frame).

info all-registers

Print the names and values of all registers, including
floating-point registers.

info registers regname ...

Print the value of each specified register regname. As discussed
in detail below, register values are normally relative to the
selected stack frame. The regname may be any register name
valid on the machine you’re using, with or without the initial $.

GDB has four “standard” register names that are available (in
expressions) on most machines — whenever they don’t conflict with
an architecture’s canonical mnemonics for registers:

$pc Program counter.

$sp Stack pointer.

$fp A register that contains a pointer to the current stack frame.

$ps A register that contains the processor status.

For example, you could print the program counter in hex with:

p/x $pc

or print the instruction to be executed next with:

396 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining data

x/i $pc

or add four to the stack pointer with:

set $sp += 4

This is a way of removing one word from the stack, on machines
where stacks grow downward in memory (most machines, nowadays).
This assumes that the innermost stack frame is selected; setting $sp
isn’t allowed when other stack frames are selected. To pop entire
frames off the stack, regardless of machine architecture, use the Enter
key.

�

Whenever possible, these four standard register names are available
on your machine even though the machine has different canonical
mnemonics, so long as there’s no conflict. The info registers

command shows the canonical names.

GDB always considers the contents of an ordinary register as an
integer when the register is examined in this way. Some machines
have special registers that can hold nothing but floating point; these
registers are considered to have floating point values. There’s no way
to refer to the contents of an ordinary register as floating point value
(although you can print it as a floating point value with print/f

$regname).

Some registers have distinct “raw” and “virtual” data formats. This
means that the data format in which the register contents are saved by
the operating system isn’t the same one that your program normally
sees. For example, the registers of the 68881 floating point
coprocessor are always saved in “extended” (raw) format, but all C
programs expect to work with “double” (virtual) format. In such
cases, GDB normally works with the virtual format only (the format
that makes sense for your program), but the info registers

command prints the data in both formats.

Normally, register values are relative to the selected stack frame (see
“Selecting a frame”). This means that you get the value that the

May 31, 2004 Appendix: D � Using GDB 397

Examining the symbol table  2004, QNX Software Systems Ltd.

register would contain if all stack frames farther in were exited and
their saved registers restored. In order to see the true contents of
hardware registers, you must select the innermost frame (with frame
0).

However, GDB must deduce where registers are saved, from the
machine code generated by your compiler. If some registers aren’t
saved, or if GDB is unable to locate the saved registers, the selected
stack frame makes no difference.

Floating point hardware
Depending on the configuration, GDB may be able to give you more
information about the status of the floating point hardware.

info float Display hardware-dependent information about the
floating point unit. The exact contents and layout
vary depending on the floating point chip.
Currently, info float is supported on x86
machines.

Examining the symbol table
The commands described in this section allow you to inquire about
the symbols (names of variables, functions and types) defined in your
program. This information is inherent in the text of your program and
doesn’t change as your program executes. GDB finds it in your
program’s symbol table, in the file indicated when you started GDB
(see the description of the gdb utility).

Occasionally, you may need to refer to symbols that contain unusual
characters, which GDB ordinarily treats as word delimiters. The most
frequent case is in referring to static variables in other source files
(see “Program variables”). Filenames are recorded in object files as
debugging symbols, but GDB ordinarily parses a typical filename, like
foo.c, as the three words foo, ., and c. To allow GDB to recognize
foo.c as a single symbol, enclose it in single quotes. For example:

p ’foo.c’::x

398 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining the symbol table

looks up the value of x in the scope of the file foo.c.

info address symbol

Describe where the data for symbol is stored. For a
register variable, this says which register it’s kept in.
For a nonregister local variable, this prints the
stack-frame offset at which the variable is always
stored.

Note the contrast with print &symbol, which
doesn’t work at all for a register variable, and for a
stack local variable prints the exact address of the
current instantiation of the variable.

whatis exp Print the data type of expression exp. The exp
expression isn’t actually evaluated, and any
side-effecting operations (such as assignments or
function calls) inside it don’t take place. See
“Expressions.”

whatis Print the data type of $, the last value in the value
history.

ptype typename

Print a description of data type typename, which may
be the name of a type, or for C code it may have the
form:

� class class-name

� struct struct-tag

� union union-tag

� enum enum-tag

ptype exp
ptype Print a description of the type of expression exp. The

ptype command differs from whatis by printing a
detailed description, instead of just the name of the
type. For example, for this variable declaration:

May 31, 2004 Appendix: D � Using GDB 399

Examining the symbol table  2004, QNX Software Systems Ltd.

struct complex {double real; double imag;} v;

the two commands give this output:

(gdb) whatis v
type = struct complex
(gdb) ptype v
type = struct complex {

double real;
double imag;

}

As with whatis, using ptype without an argument
refers to the type of $, the last value in the value
history.

info types regexp
info types

Print a brief description of all types whose name
matches regexp (or all types in your program, if you
supply no argument). Each complete typename is
matched as though it were a complete line; thus, i
type value gives information on all types in your
program whose name includes the string value, but
i type ˆvalue$ gives information only on types
whose complete name is value.

This command differs from ptype in two ways:
first, like whatis, it doesn’t print a detailed
description; second, it lists all source files where a
type is defined.

info source

Show the name of the current source file — that is,
the source file for the function containing the current
point of execution — and the language it was written
in.

info sources

Print the names of all source files in your program
for which there is debugging information, organized

400 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Examining the symbol table

into two lists: files whose symbols have already been
read, and files whose symbols are read when needed.

info functions

Print the names and data types of all defined
functions.

info functions regexp

Print the names and data types of all defined
functions whose names contain a match for regular
expression regexp. Thus, info fun step finds all
functions whose names include step; info fun

ˆstep finds those whose names start with step.

info variables

Print the names and data types of all variables that
are declared outside of functions (i.e. excluding local
variables).

info variables regexp

Print the names and data types of all variables
(except for local variables) whose names contain a
match for regular expression regexp.

Some systems allow individual object files that make
up your program to be replaced without stopping and
restarting your program. If you’re running on one of
these systems, you can allow GDB to reload the
symbols for automatically relinked modules:

� set symbol-reloading on — replace
symbol definitions for the corresponding source
file when an object file with a particular name is
seen again.

� set symbol-reloading off — don’t replace
symbol definitions when reencountering object
files of the same name. This is the default state; if
you aren’t running on a system that permits
automatically relinking modules, you should

May 31, 2004 Appendix: D � Using GDB 401

Altering execution  2004, QNX Software Systems Ltd.

leave symbol-reloading off, since otherwise
GDB may discard symbols when linking large
programs, that may contain several modules
(from different directories or libraries) with the
same name.

� show symbol-reloading — show the current
on or off setting.

maint print symbols filename
maint print psymbols filename
maint print msymbols filename

Write a dump of debugging symbol data into the file
filename. These commands are used to debug the
GDB symbol-reading code. Only symbols with
debugging data are included.

� If you use maint print symbols, GDB
includes all the symbols for which it has already
collected full details: that is, filename reflects
symbols for only those files whose symbols GDB
has read. You can use the command info

sources to find out which files these are.

� If you use maint print psymbols instead, the
dump shows information about symbols that
GDB only knows partially — that is, symbols
defined in files that GDB has skimmed, but not
yet read completely.

� Finally, maint print msymbols dumps just
the minimal symbol information required for each
object file from which GDB has read some
symbols.

Altering execution
Once you think you’ve found an error in your program, you might
want to find out for certain whether correcting the apparent error
would lead to correct results in the rest of the run. You can find the

402 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Altering execution

answer by experimenting, using the GDB features for altering
execution of the program.

For example, you can store new values in variables or memory
locations, give your program a signal, restart it at a different address,
or even return prematurely from a function.

Assignment to variables
To alter the value of a variable, evaluate an assignment expression.
See “Expressions”. For example,

print x=4

stores the value 4 in the variable x and then prints the value of the
assignment expression (which is 4).

If you aren’t interested in seeing the value of the assignment, use the
set command instead of the print command. The set command is
really the same as print except that the expression’s value isn’t
printed and isn’t put in the value history (see “Value history”). The
expression is evaluated only for its effects.

If the beginning of the argument string of the set command appears
identical to a set subcommand, use the set variable command
instead of just set. This command is identical to set except for its
lack of subcommands. For example, if your program has a variable
width, you get an error if you try to set a new value with just set
width=13, because GDB has the command set width:

(gdb) whatis width
type = double
(gdb) p width
$4 = 13
(gdb) set width=47
Invalid syntax in expression.

The invalid expression, of course, is =47. In order to actually set the
program’s variable width, use:

(gdb) set var width=47

May 31, 2004 Appendix: D � Using GDB 403

Altering execution  2004, QNX Software Systems Ltd.

GDB allows more implicit conversions in assignments than C; you
can freely store an integer value into a pointer variable or vice versa,
and you can convert any structure to any other structure that is the
same length or shorter.

To store values into arbitrary places in memory, use the {...}
construct to generate a value of specified type at a specified address
(see “Expressions”). For example, {int}0x83040 refers to memory
location 0x83040 as an integer (which implies a certain size and
representation in memory), and:

set {int}0x83040 = 4

stores the value 4 in that memory location.

Continuing at a different address
Ordinarily, when you continue your program, you do so at the place
where it stopped, with the continue command. You can instead
continue at an address of your own choosing, with the following
commands:

jump linespec Resume execution at line linespec. Execution stops
again immediately if there’s a breakpoint there.
See “Printing source lines” for a description of the
different forms of linespec.

The jump command doesn’t change the current
stack frame, or the stack pointer, or the contents of
any memory location or any register other than the
program counter. If line linespec is in a different
function from the one currently executing, the
results may be bizarre if the two functions expect
different patterns of arguments or of local
variables. For this reason, the jump command
requests confirmation if the specified line isn’t in
the function currently executing. However, even
bizarre results are predictable if you’re well

404 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Altering execution

acquainted with the machine-language code of
your program.

jump *address Resume execution at the instruction at address.

You can get much the same effect as the jump command by storing a
new value in the register $pc. The difference is that this doesn’t start
your program running; it only changes the address of where it will run
when you continue. For example:

set $pc = 0x485

makes the next continue command or stepping command execute at
address 0x485, rather than at the address where your program
stopped. See “Continuing and stepping.”

The most common occasion to use the jump command is to back up
— perhaps with more breakpoints set — over a portion of a program
that has already executed, in order to examine its execution in more
detail.

Giving your program a signal
signal< signal

Resume execution where your program stopped, but
immediately give it the given signal. The signal can be the
name or number of a signal. For example, on many systems
signal 2 and signal SIGINT are both ways of sending an
interrupt signal.

Alternatively, if signal is zero, continue execution without
giving a signal. This is useful when your program stopped on
account of a signal and would ordinary see the signal when
resumed with the continue command; signal 0 causes it to
resume without a signal.

The signal command doesn’t repeat when you press Enter a
second time after executing the command.

May 31, 2004 Appendix: D � Using GDB 405

Altering execution  2004, QNX Software Systems Ltd.

Invoking the signal command isn’t the same as invoking the kill
utility from the shell. Sending a signal with kill causes GDB to
decide what to do with the signal depending on the signal handling
tables (see “Signals”). The signal command passes the signal
directly to your program.

Returning from a function
return

return expression

You can cancel the execution of a function call with the return
command. If you give an expression argument, its value is used
as the function’s return value.

When you use return, GDB discards the selected stack frame (and
all frames within it). You can think of this as making the discarded
frame return prematurely. If you wish to specify a value to be
returned, give that value as the argument to return.

This pops the selected stack frame (see “Selecting a frame”) and any
other frames inside it, leaving its caller as the innermost remaining
frame. That frame becomes selected. The specified value is stored in
the registers used for returning values of functions.

The return command doesn’t resume execution; it leaves the
program stopped in the state that would exist if the function had just
returned. In contrast, the finish command (see “Continuing and
stepping”) resumes execution until the selected stack frame returns
naturally.

Calling program functions
call expr Evaluate the expression expr without displaying void

returned values.

You can use this variant of the print command if you want to
execute a function from your program, but without cluttering the
output with void returned values. If the result isn’t void, it’s printed
and saved in the value history.

406 Appendix: D � Using GDB May 31, 2004

 2004, QNX Software Systems Ltd. Altering execution

A user-controlled variable, call scratch address, specifies the location
of a scratch area to be used when GDB calls a function in the target.
This is necessary because the usual method of putting the scratch area
on the stack doesn’t work in systems that have separate instruction
and data spaces.

Patching programs
By default, GDB opens the file containing your program’s executable
code (or the core file) read-only. This prevents accidental alterations
to machine code; but it also prevents you from intentionally patching
your program’s binary.

If you’d like to be able to patch the binary, you can specify that
explicitly with the set write command. For example, you might
want to turn on internal debugging flags, or even to make emergency
repairs.

set write on

set write off

If you specify set write on, GDB opens
executable and core files for both reading and
writing; if you specify set write off (the
default), GDB opens them read-only.

If you’ve already loaded a file, you must load it
again (using the exec-file or core-file
command) after changing set write for your
new setting to take effect.

show write Display whether executable files and core files are
opened for writing as well as reading.

May 31, 2004 Appendix: D � Using GDB 407

Appendix E

Creating Packages

In this appendix. . .
QNX package manifests (QPM) 411
The packager utility 412
Preparing to package 414
Running packager 415
Warnings and error messages 420
Testing your package 422
Working with a package-generation (QPG) file 423
QPG structure 433
Generating a repository 448
Hey, nice package! 449

May 31, 2004 Appendix: E � Creating Packages 409

 2004, QNX Software Systems Ltd. QNX package manifests (QPM)

If you want to create packages that other users can install, the easiest
way is to use the packager utility. It leads you through the process,
and it prompts you for the required information. If you have a QNX
Package Manifest (qpm) file, you can speed up the process by having
packager use it for the default answers.

Packages keep all aspects of a product in one manageable file. A
package is similar to a .tgz file — it’s a compressed version of all of
the files that make up your product.

Packages, however, have additional elements beyond the standard
“tarball” you may have seen before. Packages also include a manifest,
and any support files used within the package, such as licenses,
scripts, or HTML web pages. Since all of this information is
packaged together, the QNX software installer can extract the
required information to install your product into the package
filesystem (which, by default, manages all software on your system).

This appendix describes the packager utility and how you can use it
to combine your own product into a set of packages that you can
either distribute or make available on a repository (a set of packages
at a particular URL location).

QNX package manifests (QPM)
The QNX package manifest (QPM) file describes all aspects of a
package, including:

� a list of the files within the package

� the locations where each of the files is to be installed

� a description of the package

� any requirements that the package has

� other packages that the package depends on (or those that conflict
with it)

� any scripts to be executed when someone installs or uninstalls the
package.

May 31, 2004 Appendix: E � Creating Packages 411

The packager utility  2004, QNX Software Systems Ltd.

You can use any standard ASCII text editor to edit the QPM file,
which follows XML formatting guidelines. However, we recommend
that you not edit the file by hand. Instead, you should make any
changes to the package as part of a repackaging procedure, using
packager. This not only ensures that the data is entered correctly, it
also updates other information automatically, such as the date that the
package was created, the release number, and the size of your
product. The packager also gathers and compresses your files into the
required structure.

The packager utility
The packager utility generates packages with all the necessary tags
to comply with both current and future versions of the QNX software
installer. You can also use packager to repackage existing packages
to reflect updates in the program or to create patches from a previous
package to a new one.

There are a lot of tags that make up a QPM file, so you should expect
a correspondingly large number of questions in order to make a
package that is accurate and detailed. The packager was designed as a
command-line utility so that after you’ve answered these questions
once, it’s easy to pass your previous package as a command-line
argument and bypass the questions next time.

If you look at the documentation for packager in the Neutrino
Utilities Reference, you’ll see that there are many options that you can
specify. Don’t let this daunt you — you can create a
package-generation (QPG) file that lets you automate the packaging
process, and then you’ll have to type only packager to build a
brand-new package at any time. For more information, see “Working
with a package-generation (QPG) file,” later in this appendix.

When packager asks you a question, it provides a default value in
parentheses, like this: (default). To use the default value, press Enter
without entering any text. Press Ctrl – B to go to the previous question
if you make a mistake.

412 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. The packager utility

The packager utility gives you detailed comments about each
question (by default). Once you’re used to the questions, you can pass
the -v1 (advanced mode) or -v2 (expert mode) option to reduce the
amount of information shown for each question.

The default packaging method that packager uses expects that you
pass it a directory as the only argument. This directory holds all of the
files that you would like to have packaged, laid out in a directory
structure that reflects the root (/) filesystem, when the files are
installed. Public software should all be installed under the /opt
directory. For example, if you type:

packager basedir/

then packager takes all files under basedir and puts them into your
package by creating a QPM file. This file lists all answers to the
questions, along with a list of the files under the basedir directory.

The packager also creates a QNX package file (QPK) which is a
tarred/gzipped archive of the manifest file (renamed MANIFEST),
and each of the files in the basedir directory. By default, packager
also creates a QNX repository file (QPR) which is itself a
tarred/gzipped archive of the QPM and QPK files. You can view the
contents of a QPK or a QPR file by typing tar -ztf filename.qpk.

When packager is sorting your files, it automatically detects any
executable files made to execute on a particular processor (host) and
creates a separate package to put these files into; packager also
automatically makes links between these processor-specific and
processor-independent packages. So, when packager is working,
you may see two QPM files and two QPK files created. The QPR file
is an archive of all four files. In fact, if you have files to be hosted on
other processors, a separate QPR file is created for each processor.

In addition, if you have executable files that generate files targeting
different processors or header (.h) files, packager starts to create
development packages with a -dev- qualifier in the file name.
There’s no limit to how many packages packager may create as it
works, although you can expect to see two for a standard package,
and perhaps six for an advanced one.

May 31, 2004 Appendix: E � Creating Packages 413

Preparing to package  2004, QNX Software Systems Ltd.

Preparing to package
Before you run packager, put your files into a directory structure
that reflects where they should appear when someone installs your
package. You can do this in a number of different ways:

� Create the directory structure and copy your files into the correct
locations.

Create an empty directory to hold your files, such as basedir or
myappdir. This directory then reflects your root filesystem (/).
Within that directory, create directories such as /opt or /usr.

If you create an /opt directory with a standard directory inside it (e.g.
/opt/bin), packager will later ask if you want to automatically
union /opt/bin to /usr/bin. You should answer yes.

Similarly, if you make a directory structure that’s uncommon (e.g.
/mydir), packager will tell you that you have an “Uncommon
Directory Path (/mydir),” indicating that you should move your
program to a standard location. In response, tell packager to exit,
and then correct your paths. Once the directory structure is in place,
copy each of your files (for this product) into their respective
locations within this basedir directory.

�

� Take an existing .tgz, .tar.gz, or .tar.F file and expand it
into a new directory.

Again, create an empty directory to hold your files, such as
basedir or myappdir, which then reflects your root filesystem
(/). Copy your compressed file into this directory. Decompress the
file or files, as required, to make the directory structure required
for your program. Once the files are in place, remove the
compressed file.

� Take an existing package and have packager unzip it into a given
directory.

As above, create an empty directory to hold your files. Run
packager with the -z option, followed by the name of the

414 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. Running packager

package (either a QPK or a QPR) and the base directory. For
example:
packager -z mypackage-1.0-x86-me.qpk basedir/

If you’re using a QPR file, all files within it are decompressed into
the base directory. If you’re using a QPK file, you may wish to
decompress a number of the files into the same directory. To do
this, just enter the first part of the QPK files that are common to all
desired QPK files in your current directory, as shown here:
packager -z mypackage-1.0- basedir/

The packager utility extracts the files from your package(s) and
places them into basedir as it would if they were installed on
your root filesystem (/).

Running packager
You’ll find that packager asks many questions. Here are some hints
for answering them:

� There’s no way to avoid the questions. While you may be tempted
to use answers from a previous manifest (using the -m option), we
strongly recommend that you answer the questions fully. This step
ensures that you have a well-formed package that works well.

� The packager won’t let you simply enter default values for
everything. Some questions require a response, especially those
that determine the uniqueness of your package (i.e. product
identifier and vendor identifier) and ensure that it doesn’t conflict
with anyone else’s package. If you don’t supply these values,
packager sounds the system bell.

� Check for warnings during the creation of your package — every
warning is important.

For example, you may be asked if you would like to union your
/opt directory to the /usr directory. Always answer
affirmatively. If you union the two directories, your software
appears as if it were in the /usr directory. As a result, public

May 31, 2004 Appendix: E � Creating Packages 415

Running packager  2004, QNX Software Systems Ltd.

software appears all in the same place /usr), but a system
administrator can manage it from a common location (/opt)
without fear of harming the operating system itself.

Here are some of the more important things that packager might ask
about your package:

Product identifier

The name used by other packages to reference your
package. It should be a short, simple identifier (no
more than 13 characters), and be made up only of
alphanumeric characters, dashes, and underscores.
Ideally it should be a single lowercase word that’s a
short form of your product name.

Vendor identifier

Your company’s name or your name. This helps
ensure that your packages don’t conflict with
anyone else’s (that may have identical product
identifiers). Together, the vendor identifier and
product identifier describe your product uniquely
within the QNX community.

Release version The version number of your product (e.g. 1.0,
2.3.4, 14.2A). If you’re porting software from
another source, you should use the software’s
original version number and simply change the
release-build number each time you remake the
software. If you do this, the version number
accurately reflects the source-program’s version.

Release build An integer that indicates the build number of your
package. You should increment this number by one
each time that you change your software, unless
you change the version number. You should reset
the release-build number to 1 whenever the version
changes.

416 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. Running packager

Package release An integer that indicates the release number of
your package. You should increment this number
by one each time you repackage your software,
even if you haven’t changed the software. You
should reset this number to 1 whenever the version
or build number changes.

Content topic The topic you select for your package from the list
supported by the QNX software installer. The
packager shows all available topics and lets you
select increasingly specific topics until you’ve fully
described the location where you want your
package to appear in your repository. The
packager lets you search by keyword to quickly
find an appropriate topic. The more specific you
are in choosing the topic, the more organized your
repository will be later, especially if the repository
includes many packages.

Product name The product’s name is obviously very important for
telling the user exactly what they’re about to
download/install. This is the name that appears in
the QNX software installer in the list of packages
in the repository, and should be a descriptive,
capitalized name such as Packager or QNX
Software Installer. The QNX software
installer automatically tacks for x86, or similar
qualifiers on the end when the package is
displayed, so you don’t have to enter processor or
version references in this field.

Product description long

This field defines the complete description that
appears in the QNX software installer when a user
clicks on your package in the list of available
packages. This field should consist of one or two
paragraphs describing your product and its main
features.

May 31, 2004 Appendix: E � Creating Packages 417

Running packager  2004, QNX Software Systems Ltd.

License URL To have a license show up when your software is
installed, you can specify the URL for the license
file as your response to this question. By entering a
file name that’s on your local hard drive, you
include a copy of the license file in your package
(QPR) without having to put the file into your base
directory structure. When you enter a local file in
response to this question, the file is copied into the
package.repdata directory that corresponds to
your package. The packager displays a message
stating that the file has been copied into the
package. After you answer this question, you
should confirm that this message is shown, or users
might not be able to install your package.

After packager has asked you the basic questions, it sorts your
software into the packages needed to properly install your product.
Once this sorting is complete, packager asks you another set of
questions.

Different questions apply to different packages. So for each package,
packager first displays the name of the package, and then asks
various questions, which can be divided into these main sections:
scripts, dependencies, and the QNX Photon launch menu.

Scripts
You can execute scripts at the following times during the life of a
package:

� Pre-install or Post-install — before or after the installation takes
place

� Pre-use or Post-use — before or after the activation of a package

� Pre-unuse or Post-unuse — before or after the deactivation of a
package

� Pre-uninstall or Post-uninstall — before or after the removal of a
package.

418 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. Running packager

As well as choosing when the script is to be executed, you may decide
to execute either your own script, or to simply run a program that’s
available on the filesystem.

You can’t execute a package’s files before you activate the package or
after you deactivate it.

�

Dependencies
Your package might need another package in order to operate
correctly. Such requirements are specified by entering dependencies.

The packager automatically inserts tags into your package that
describe any shared-object libraries that your package contains or
needs (packager runs objdump on all executable files in your
package to determine any libraries that they need).

The QNX software installer automatically turns any required shared
objects into dependencies that must be satisfied in order for your
package to be installed. So, you don’t need to add dependencies on
packages that provide shared objects that your product inherently
requires (e.g. if you’re packaging a QNX Photon microGUI
application, an automatic dependency on libph.so.2 is placed in
your package).

�

Also, packager automatically puts in dependencies between any
development packages that it generates, so you don’t need to add
dependencies between these packages either.

For any other situation where your package requires another
package’s presence, you can manually specify a dependency when
packager prompts you. To enter a dependency, simply enter the
name of any file on your local system that’s required for proper
operation of your package. The packager automatically determines
the package from which the file originated and adds the dependency
on that package into your new package.

May 31, 2004 Appendix: E � Creating Packages 419

Warnings and error messages  2004, QNX Software Systems Ltd.

Photon launch menu
You may specify any number of items to appear in QNX Photon’s
launch menu when this package is active. For each, answer the
questions as follows:

Launch menu position

The name to appear on the launch menu. This name
shouldn’t be longer than 25 characters.

Topic The hierarchy under which the entry is to appear. You can
enter any values here, but they must all be under the
Applications/ heading. You should stick to the standard
ones shown in the launch menu (i.e. Applications/Editors,
Applications/Utilities, Applications/Internet,
Applications/MultiMedia, Applications/Development, or
Applications/Games).

Execution command

The command to execute when the operator clicks on the
menu item. This must be a fully qualified command (e.g.
/usr/photon/bin/ped -r readme.txt).

Warnings and error messages
As packager works to create your packages, it displays many
messages, starting with a welcome message indicating the process
that is about to be undertaken. If packager detects any problems
with the command-line options that you’ve entered, it displays an
error message, followed by its standard usage message. If you see this
usage message, check above it for possible indications of what went
wrong. If no error is shown, confirm that the options that you entered
are valid. Here are some of the warnings and errors you may
encounter:

Warning: /usr/local should not be packaged using

this utility.

The /usr/local directory is considered to be a special

420 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. Warnings and error messages

directory that can contain files from a number of different
software packages. The packager utility is intended for a
single product that should install its files into /opt/bin,
/usr/share, or similar directories. You should copy the
required files into a different directory before packaging
commences.

Warning: There are files at the root, where only

directories should reside.

All of your files should be installed into the correct directory.
The packager detects if you have files destined to be installed at
the root directory (/), where only subdirectories should ever
appear (with the exception of system files). You should relocate
your files to appear within the correct subdirectories.

Warning: Uncommon directory paths have been

detected.

We recommend that you use a set of standard directories. Your
files should all appear within this directory structure. If this
message appears, you should relocate your files into one of the
following standard root directories: /boot, /dev, /etc, /opt,
/usr, or /var.

Error: This is a required field.

You must fully answer some of questions that packager asks;
you may not simply accept the default value (or no value) for
the question asked. The packager asks the question again until
you answer it properly.

Error: This value cannot exceed n characters.

There is a maximum length to this field that must not be
exceeded.

Error: QNX software can only be released by QNX

Software Systems Ltd.

If you try to answer questions as if you were packaging QNX
software, this message may appear. Answer with your own
company or personal information.

May 31, 2004 Appendix: E � Creating Packages 421

Testing your package  2004, QNX Software Systems Ltd.

Testing your package
Once you’ve created your package, try to install it using the QNX
software installer, by typing:

qnxinstall -u mypackage.qpr

or:

cl-installer -o mypackage.qpr

The QNX software installer shows your software as a new package
that’s ready to be installed. When you install it, no errors or warnings
should appear. You can then verify on the command line that your
files are actually installed in the locations you’ve specified.

If your package doesn’t show up in the QNX software installer, try
adding a -v (verbose) option to your command line. The installer
displays messages for any errors that it detects in the package. If your
package is shown as being installed already, you may have chosen the
same product identifier or vendor identifier as another package that’s
already installed.

If there appear to be missing files, or something simply doesn’t seem
to be correctly installed, you can check the manifest for the packages
you’ve installed. As long as you’re using the default user repository to
install your package, the files are located in /pkgs/repository.
Under that directory, find your vendor directory, then the package
identifier directory, and finally the version directory. For example, if
packager had its own package, it would be found at
/pkgs/repository/qnx/packager/core-1.1/.

Inside this directory, you’ll find a file called manifest. This is a
copy of the QPM file for this package and includes all
processor-independent information about the package. If you have
processor-specific components to your package, look for a
subdirectory with the same name as the processor (e.g. x86), which
contains another manifest for the processor-specific portion of your
package.

422 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. Working with a package-generation (QPG) file

CAUTION: If you choose to edit the manifest file, make sure that
you follow the XML formatting rules. If you change some values, you
might make your package unusable, to the point where the QNX
software installer won’t understand the package well enough even to
remove it! This information is for reference purposes only, and you
should remember that using the packager utility is the only correct
way to make your packages.

!

Working with a package-generation (QPG)
file
Learning to automate the packaging process means that future
changes to your software are easily reflected in a new package
without much effort. Here are the steps you’ll follow:

1 Generate your package.

2 Tell packager to generate a QPG (QNX Package Generation)
file from your package

3 Edit the QPG to point to your source files on disk.

4 Pass the QPG file to packager to regenerate your package.

5 Test the resulting package.

You can use the QPG file to provide the command-line options and
answers to packager’s questions automatically, without your
intervention. It’s also an XML-style document that you can edit using
any standard ASCII text editor (but we don’t recommend this). You
can generate an initial QPG file by typing:

packager -m mypackage.qpr -x basedir

This command generates a file called package.qpg that contains the
manifest values in your package, and a reference to each of the files
inside your package. The basedir that you specify should be the

May 31, 2004 Appendix: E � Creating Packages 423

Working with a package-generation (QPG) file  2004, QNX Software Systems Ltd.

directory that you created in your initial packaging session, where
your files reside.

If you do a use packager command, you may notice that
packager accepts either a basedir or a qpg file as its final argument.
If you don’t specify a basedir on the command line when you start
packager, you can specify a QPG file name for packager to use. If
you don’t specify one, packager looks for a package.qpg file by
default. This lets you simply type packager on the command line,
and packager rebuilds your package according to the options in the
local package.qpg file.

A QPG file has these main sections:

� command-line options

� ownership/editor of the package

� other QPG files to merge as if they were part of the same QPG

� a list of manifest values for packager to use as answers to its
questions

� a list of files to be packaged, along with their installation locations.

For more information about the options in a QPG file, see “QPG
structure,” below.

Here’s a sample QPG file that shows all the elements that might
appear in your final generation file:

<QPG:Generation>
<QPG:Options>

<QPG:User unattended="yes" verbosity="1" listfiles="yes"/>

<QPG:Release number="+"/>
<QPG:Defaults type="qnx package" file="my package-1.0-x86-qnx.qpr"/>

<QPG:FileSorting strip="yes"/>

<QPG:Package targets="combine" union="terminate"/>
<QPG:Repository generate="yes"/>

</QPG:Options>

<QPG:Responsible>

<QPG:EmailAddress>joe blow@home.com</QPG:EmailAddress>
<QPG:Company>My Company Inc.</QPG:Company>

<QPG:Department>Research and Development</QPG:Department>

</QPG:Responsible>

<QPG:Merge file="common/exclusions.qpg"/>

424 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. Working with a package-generation (QPG) file

<QPG:Values>

<QPG:Files>

<QPG:Add file="CVS" handling="exclude"/>
<QPG:Add file="src/gcc ntox86/pkg-installer" permissions="u+s" install="/opt/photon/bin/"/>

<QPG:Add type="tree" file="config/" install="/"/>

<QPG:Add file="/usr/lib/libsocks.so" install="/usr/test/libsocks.so.1" proc="arm"/>
<QPG:Add type="file" file="/usr/lib/libsocks.a" install="/usr/test/" target="arm"/>

<QPG:Add file="/usr/test/libsocks.so" install="/usr/test/" filetype="symlink" linkto="libsocks.so.1"/>
</QPG:Files>

<QPG:PackageFilter>
<QPM:PackageManifest>

<QPM:PackageDescription>

<QPM:PackageType>Application</QPM:PackageType>
<QPM:PackageReleaseUrgency>Low</QPM:PackageReleaseUrgency>

<QPM:PackageReleaseNotes/>

<QPM:PackageRepository/>
<QPM:PackageReleaseNumber/>

</QPM:PackageDescription>

<QPM:ProductDescription>

<QPM:ProductName>Tast</QPM:ProductName>

<QPM:ProductIdentifier>tast</QPM:ProductIdentifier>
<QPM:ProductEmail>support@home.com</QPM:ProductEmail>

<QPM:VendorName>My Company Inc.</QPM:VendorName>
<QPM:VendorInstallName>myco</QPM:VendorInstallName>

<QPM:VendorURL>www.home.com</QPM:VendorURL>

<QPM:VendorEmbedURL/>
<QPM:VendorEmail>support@home.com</QPM:VendorEmail>

<QPM:AuthorName>Joe Blow</QPM:AuthorName>

<QPM:AuthorURL/>
<QPM:AuthorEmbedURL/>

<QPM:AuthorEmail/>

<QPM:ProductIconSmall/>
<QPM:ProductIconLarge/>

<QPM:ProductHomeURL/>

<QPM:ProductDescriptionEmbedURL/>
<QPM:ProductDescriptionURL/>

</QPM:ProductDescription>

<QPM:ReleaseDescription>

<QPM:ReleaseDate>2001/03/01</QPM:ReleaseDate>
<QPM:ReleaseVersion>1.0</QPM:ReleaseVersion>

<QPM:ReleaseUrgency>Medium</QPM:ReleaseUrgency>

<QPM:ReleaseStability>Stable</QPM:ReleaseStability>
<QPM:ReleaseNoteMinor>Initial public release</QPM:ReleaseNoteMinor>

<QPM:ReleaseNoteMajor>This initial public release of Tast coincides

with the deadlines set forth in the company prospectus.</QPM:ReleaseNoteMajor>
<QPM:CountryExclude/>

</QPM:ReleaseDescription>

<QPM:ContentDescription>

<QPM:ContentTopic>Software Development/Build Tools/Packaging</QPM:ContentTopic>

<QPM:ContentKeyword>tast,sample</QPM:ContentKeyword>
<QPM:DisplayEnvironment>Console</QPM:DisplayEnvironment>

<QPM:TargetAudience>Developer</QPM:TargetAudience>

</QPM:ContentDescription>

<QPM:ProductInstallationDependencies>

May 31, 2004 Appendix: E � Creating Packages 425

Working with a package-generation (QPG) file  2004, QNX Software Systems Ltd.

<QPM:ProductRequirements>No extra requirements.</QPM:ProductRequirements>
</QPM:ProductInstallationDependencies>

</QPM:PackageManifest>
</QPG:PackageFilter>

<QPG:PackageFilter type="core" component="none">
<QPM:FileManifest>

<QPM:Launch name="QNX Software Systems" xmlmultiple="true">
<QPM:String name="Topic" value="Applications/Development"/>

<QPM:String name="Command" value="/usr/photon/bin/voyager -u http://www.qnx.com"/>

</QPM:Launch>
</QPM:FileManifest>

</QPG:PackageFilter>

</QPG:Values>

</QPG:Generation>

Edit the QPG file carefully since it must follow the XML format,
where each opening tag has a corresponding closing tag, and spelling
mistakes aren’t tolerated.

�

The list of files, <QPG:Files>, is the most advanced (and flexible)
part of the QPG file. Here, you can list the files to package from your
hard disk (in any location), the location where they should appear
once the package is installed, the types of files they are, any special
handling for the files, and any files that should be excluded from your
package. The packager utility automatically determines each of
these values, if they aren’t specified, as long as you provide the source
file name (with the file attribute) and the install location (the
install attribute).

The <QPG:PackageFilter> section is where you place manifest
tags that you would like to appear in the final package manifest(s).
The easiest way to fill in this section is to let packager create the
QPG for you (-x option). However, when you’re trying to add a
special feature of some kind, e.g. launch-menu items, you can edit
this section to include all the tags you need.

The packager determines some manifest tags each time that you run
it. so specifying those values has no effect in the generated packages.
An empty tag has the effect of suppressing the question for that tag
when you run packager in attended mode.

426 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. Working with a package-generation (QPG) file

Symbolic links
To create a symbolic link, add another <QPG:Add> line like this to
your QPG file:

<QPG:Add file="sym link name" install="/opt/bin/"
filetype="symlink" linkto="file/to/link/to"/>

When packager detects the filetype="symlink" attribute, it
recognizes this as a request to put a symbolic link into one of your
packages. It automatically searches the other files being packaged,
looking for the file that the symbolic link points to. When packager
finds the file, it places the symbolic link into the same package as the
file.

For example, to add a file, libmine.so, from your hard drive, but
install it as a different file, libmine.so.1, and then create a
symbolic link from libmine.so to libmine.so.1, specify these
tags:

<QPG:Add file="src/lib/libmine.so" install="/opt/lib/libmine.so.1"/>
<QPG:Add file="libmine.so" install="/opt/lib/" filetype="symlink"

linkto="libmine.so.1"/>

Working with components
Components are optional parts of a master product. Parts of your
software can be installed with or without other components. For
example, think of the set of Photon packages, which consists of a core
package, a drivers component, a games component, and other
components. With a single session of packager, you can generate a
product and all of its components.

You can make any file that you’re packaging a part of a component,
by adding component="component name" to the <QPG:Add> line:

<QPG:Add file="bin/my game" install="opt/bin/" component="games"/>

When packager finds such a line, it puts the file into a new package
that has a <QPM:PackageModel> tag of games, with the same

May 31, 2004 Appendix: E � Creating Packages 427

Working with a package-generation (QPG) file  2004, QNX Software Systems Ltd.

product identifier as your core package. This new package is
independent of the other portions of your product, but its installation
location will be alongside the rest of the product it’s derived from. For
example:

/pkgs/base/qnx/ph/core-2.0.2/
/pkgs/base/qnx/ph/games-2.0.2/
/pkgs/base/qnx/ph/drivers-2.0.2/

Note that packager uses components automatically when it detects
that you’re attempting to package development files. Let’s say you’re
packaging some header (*.h) files. When packager detects these
files, it automatically creates a component for your package called
dev. This development package contains all of the files that are part
of the software-development process. Only executable files and
configuration files actually go into the core product itself.

Forcing files into certain packages
If you don’t want to create a development (dev) package for your
software, or if packager puts a file into a package that you didn’t
want it to, it’s possible to force packager to handle files differently.
To do this, make further specifications on the <QPG:Add> line to tell
packager exactly how to handle the file. For more information, see
the description of the <QPG:Add> in “QPG structure,” later in this
appendix.

Here are some examples that show common ways to redirect files:

� The packager uses the ELF header information, along with the file
extension, to determine what type of file you’re packaging. You
can override this and force a change to the file type, by setting the
filetype attribute. For instance, set filetype="exe" to force
a file to be considered executable, and to appear in a
processor-specific package that corresponds to a
proc="processor" attribute, like this:
<QPG:Add file="src/include/readme.txt" filetype="exe" proc="x86"

install="/opt/share/"/>

428 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. Working with a package-generation (QPG) file

� The packager automatically strips your executable files so that
unnecessary debug information isn’t left in your packaged files.
This behavior is sometimes undesirable, so you can turn it off. To
change this for the entire session, specify this tag in the
<QPG:Options> section:
<QPG:FileSorting strip="no"/>

You can specify that a particular file not be stripped when
packaged, as shown here:
<QPG:Add file="src/bin/my program" install="/opt/bin/" strip="no"/>

� The packager attempts to keep your file’s ownership, group, and
permissions identical to the original file’s settings. To override this
behavior, or to apply specific settings to a file, use the
permissions, user, and group attributes, as required:
<QPG:Add file="src/bin/my program" install="/opt/bin/" permissions="x+s"/>

Merging other QPG files
By adding a <QPG:Merge> entry into your QPG file, you can
simplify a complicated product into a number of easy-to-manage
QPG files. Note that packager reads the <QPG:Options> block
only from the primary QPG file; packager ignores a merged QPG
file’s option block.

For example, your package.qpg file might show:

<QPG:Merge file="author.qpg"/>
<QPG:Merge file="drivers.qpg"/>
<QPG:Merge file="/home/common/license.qpg"/>

Here’s a sample license.qpg you can use to add a license to your
package:

<QPG:Generation>
<QPG:Values>
<QPG:PackageFilter>
<QPM:PackageManifest>
<QPM:ReleaseDescription>
<QPM:ReleaseCopyright>Public Domain License</QPM:ReleaseCopyright>

May 31, 2004 Appendix: E � Creating Packages 429

Working with a package-generation (QPG) file  2004, QNX Software Systems Ltd.

<QPM:ReleaseCopyrightURL>rep://LicenseUrl/license.txt</QPM:ReleaseCopyrightURL>
</QPM:ReleaseDescription>

<QPM:LicenseUrl>repdata://LicenseUrl/license.txt</QPM:LicenseUrl>
</QPM:PackageManifest>

</QPG:PackageFilter>

<QPG:Files>
<QPG:Add file="/location/of/your/license.txt"

install="LicenseUrl/license.txt" handling="repdata"/>
</QPG:Files>
</QPG:Values>

</QPG:Generation>

If you want to use this file, add the <QPG:Merge> line to your main
QPG file and be sure to remove the manifest tags that are referenced
in the license.qpg file (i.e. <QPM:ReleaseCopyright>,
<QPM:ReleaseCopyrightURL>, and <QPM:LicenseURL>) from
your main QPG file.

When merging, you may want to apply a set of file attributes to an
entire QPG file. For instance, you might change the destination
component for the files referenced within the QPG. To do this, use a
<QPG:MergeFilter> block with the desired attributes around any
number of <QPG:Merge> commands:

<QPG:MergeFilter component="games">
<QPG:Merge file="src/games/photon games.qpg"/>
<QPG:Merge file="src/games/xphoton games.qpg"/>

</QPG:MergeFilter>

SLIB packages
The packager automatically detects any shared-object libraries
(*.so files) that you’re packaging and inserts a corresponding
<QPM:ContainsLibrary> tag into the manifest of a package that
contains such a library:

<QPM:ContainsLibrary>libmine.so.1</QPM:ContainsLibrary>

430 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. Working with a package-generation (QPG) file

Similarly, if any files you’re packaging require a shared object library
in order to operate correctly (and you aren’t packaging such a library
alongside the files), then packager automatically adds a
corresponding <QPM:RequiresLibrary> tag into the manifest of
the package that contains such a requirement. This becomes an
automatic dependency when the package is installed.

If the required library isn’t available, the QNX software installer
searches all installed software to try to find another package that
contains the required library. If such a package isn’t installed, the
QNX software installer searches all known repositories for a package
that contains the corresponding <QPM:ProvidesLibrary> tag. To
avoid downloading a large package that happens to contain the library
you require, and perhaps a lot of unnecessary files as well, the QNX
software installer tries to find a small package that contains only a set
of libraries. Such a package is called a SLIB package.

When you’re packaging your files and a shared object library is
detected, the library is copied into the package you’re making, as well
as into a SLIB package. This SLIB package has a similar name to
your package; the only difference is that the component name has
slib- added to it. The SLIB package is made available alongside
your product (in the same repository), but it doesn’t show up in the
installer as a new package. It’s there only for dependency resolution,
in case someone installs a package that requires one of your libraries,
but doesn’t already have your product installed.

For example, if you’re packaging a QNX Photon microGUI
application, your application already requires phlib.so.1 internally,
and packager puts these requirements into your package. The great
advantage of SLIB packages is that you don’t have a separate
dependency that QNX Photon be installed, since this happens
automatically when your package is installed.

Regenerating a package
Each time you generate a package, you must change its version
number, its build number, or its release number. By doing so, you
ensure that the QNX software installer will uninstall any previous

May 31, 2004 Appendix: E � Creating Packages 431

Working with a package-generation (QPG) file  2004, QNX Software Systems Ltd.

versions of the program and will recognize your package as being a
newer version than the one already installed.

You can change the version number for your software at any time,
usually to indicate that its features have changed, or that a new
architecture is in place. You can set the version number in the QPG
file under the <QPM:ReleaseVersion> tag. You must use this
format:

major[.minor[.sub]][letter]

For example: 1.0, 1.0A, 2.13.0, 2.13.1A, 7.15.433B

If you’re keeping the same version, you can change the build number
(an integer) to indicate that the software has been rebuilt, perhaps
after you’ve fixed bugs or made minor changes. You can set the build
number in your QPG using the <QPM:ReleaseBuild> tag, however,
this fixes the build number and forces you to change the QPG each
time you execute packager. A better method is to set an option in
the <QPG:Generation> block. Add the <QPG:Build> tag and
either set the build number to + (auto-increment), or to date (use
today’s date in the form, yyyymmddhh). You can also set the build
number from the command line by using the -b option.

If you’re keeping the same version and build number, you can change
the release number to indicate that the software hasn’t been modified
and that you’re simply repackaging the software. The packager
automatically increases the release number (an integer) each time you
run packager, although it resets the release number to 1 whenever
the build number changes.

You can also set the release number in your QPG using the
<QPM:PackageReleaseNumber> tag. However, this also fixes the
release number and forces you to change the QPG each time that you
run packager. You can disable auto-incrementation by setting the
block. Add the tag and set the release number to - (don’t
auto-increment). You can also disable auto-incrementation from the
command line, by using the -i option.

432 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. QPG structure

QPG structure
You can use QPG files to tell the packager utility how to generate
packages, so that you don’t need to have direct intervention when
building packages; this permits automated packaging as needed. The
main advantage is that files don’t need to appear in a directory
structure that matches the installation directory structure — this is a
significant advantage over the packager utility’s default operation,
and lets you keep your development setup without having to copy the
files to another part of your filesystem.

The basic structure of sections in a QPG file is as follows:

<QPG:Generation>
<QPG:Options>
</QPG:Options>

<QPG:Responsible>
</QPG:Responsible>

<QPG:Owner>
</QPG:Owner>

<QPG:MergeFilter>
</QPG:MergeFilter>
...

<QPG:Merge>
</QPG:Merge>
...

<QPG:Generate>
</QPG:Generate>
...

<QPG:Values>
<QPG:PackageFilter>
</QPG:PackageFilter>
...

<QPG:Files>
<QPG:Add>
</QPG:Add>
...

May 31, 2004 Appendix: E � Creating Packages 433

QPG structure  2004, QNX Software Systems Ltd.

<QPG:File>
</QPG:File>
...

</QPG:Files>
</QPG:Values>

</QPG:Generation>

Any QPG file can reference other QPG files (using the <QPG:Merge>
specifier). Thus, your main QPG can reference a number of smaller
(easier to manage) QPG files. Merging QPG files lets you add to the
list of files to be packaged (see <QPG:Files>), and define the
manifest settings that will be used for all generated packages (see
<QPG:PackageFilter>).

The <QPG:Options> section (command-line adjustments) isn’t
merged — packager uses only the primary QPG file’s
<QPG:Options> section.

�

For example, you might have one QPG file that sets up a product’s
license settings and adds the license.txt file to the package.

Use a <QPG:Add> entry for each file that you want to include in the
package. Wildcards are allowed, or you can add an entire directory or
directory tree.

Note the following:

� When you add a personal script to a package by putting the script
block into a QPG file, you must give the location of the script
explicitly, which isn’t possible because you can’t know in advance
the exact directory path of the package — it could change (for
example, because of the build number).

To fix this, refer to the script as pkg://script1. The packager
replaces the pkg:// with rep://path/to/the/package/ each time
that you build the package. You can use the pkg:// qualifier in
any part of the manifest; right before the manifest is written, the
packager replaces the qualifier with the actual value.

434 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. QPG structure

� Similarly, when adding a license to a package by putting the
<LicenseUrl> tag into a QPG file, you must give the location of
the license explicitly, which might not be possible because you
don’t know the exact filename of the QPR file — it could change
(for example, because of the build number).

To fix this, refer to the license as
repdata://LicenseUrl/license.txt. The packager
replaces the repdata:// with rep://package.repdata/ each time
that you build the package. You can use the repdata:// qualifier
used in any part of the manifest; right before the manifest is
written, the packager replaces the qualifier with the actual value.

<QPG:Generation>
This is the top-level tag for a QPG file. This tag can include the
following tags:

� <QPG:Options>

� <QPG:Responsible>

� <QPG:Owner>

� <QPG:MergeFilter>

� <QPG:Merge>

� <QPG:Generate>

� <QPG:Values>

<QPG:Options>
The options that you put in this section specify the command-line
options to be used when you run packager. Options that you actually
specify on the command-line override any options entered in the QPG
file (unless you specify the -y option). Options are used in the
original (first) QPG file only; merged QPG files’ options are ignored.

<QPG:User> This tag controls how much help packager gives
you. The attributes include:

May 31, 2004 Appendix: E � Creating Packages 435

QPG structure  2004, QNX Software Systems Ltd.

� verbosity=0 (normal), 1 (advanced), 2
(expert)

� unattended=yes (accept defaults only), no
(ask for non-QPR-specified elements)

� listfiles=yes (show each file to be
packaged), no (show only the number of files to
be packaged).

<QPG:Defaults>

Where to find the default answers for packager’s
questions. The attributes include:

� type=value, where value is one of:

- qnx package — based on a
QPM/QPK/QPR file

- none — don’t use a default file.

� file=filename (which file to use)

<QPG:Source> Where to find the source files. The only attribute is:

� basedir=directory — which directory is the
base directory.

If you don’t specify this entry, and you don’t
specify the base directory on the command line,
then packager doesn’t do a directory scan; only
files in QPGs are packaged.

<QPG:Release>

Specifications for the release number. The
attributes include:

� number=+ (autoincrement), - (don’t
autoincrement)

� date=today (set the release date to today),
default (use the date found in the previous
QPM/QRM). This option matters only if you
don’t specify the <ReleaseDate> tag(s)
explicitly in the QPG file.

436 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. QPG structure

<QPG:Build> Specification for the build number:

� number=+ (autoincrement), - (don’t
autoincrement), n (use this number), date (use
today’s date, in the form yyyymmddhh).

<QPG:FileSorting>

Options to use when sorting:

� strip=yes|no (strip files when sorting)

� ownership=standard (change the ownership
where possible), override (don’t change the
ownership)

� dir=directory (which directory to sort into and
not clean up), none (don’t sort into a specific
directory)

<QPG:Package>

Options for the package as a whole:

� targets=combine (combine targets into one
package), standard (separate target packages)

� filter=pattern (pattern must match the
product identifier for the package to be actually
filled with files. This is for package testing
purposes only.)

� compatible=default (use the package
version in the manifest), version (desired version
— e.g. 1.01 — to appear in the manifests.

� union=terminate (union the root-level
directories only), deep (union entries are as
deep as possible), default (same as deep)

<QPG:Repository>

Options for the repository:

� generate=yes (create QPR files), no (create
QPK/QPM files only)

May 31, 2004 Appendix: E � Creating Packages 437

QPG structure  2004, QNX Software Systems Ltd.

� index=yes (create an index file of the final
directory), no (don’t create an index file)

� content=yes (create a content.tgz file), no
(don’t creat a content file)

� qrm=yes (create a repository.qrm file), no
(don’t create repository.qrm)

<QPG:FinalDir>

The attributes include:

� dir=directory (the directory to put the final
QPM/QPK/QPR files into), none (use the
current working directory only to sort the final
files)

<QPG:Cleanup>

Options for cleaning up:

� manifest=clean (remove the manifests),
keep (keep the manifests).

<QPG:Responsible>
This section specifies the company/department/employee who is
responsible for the files referenced in this QPG. You can have as
many occurrences of the following tags as you need, and you can omit
any that you don’t need:

� <QPG:EmailAddress> — the email address of the person or
group that the packer should contact, if necessary, regarding this
file.

� <QPG:Company>

� <QPG:Department>

� <QPG:Group>

� <QPG:Team>

� <QPG:Employee>

438 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. QPG structure

<QPG:Owner>
This tag supports this attribute:

� file=filename — the location of the owner’s QPG file that
contains only a <QPG:Responsible> section.

<QPG:MergeFilter>
You can define any number of attributes, which will be applied to all
<QPG:Add> and <QPG:PackageFilter> entries within any merged
QPG files within this block. For example, <QPG:MergeFilter
component="drivers"> sets all subsequently merged QPG files
within this block to have component="drivers" if the component
attribute isn’t already set.

This section can also appear within another <QPG:MergeFilter>
block, if necessary (i.e. nesting is valid).

If a <QPG:Add> or <QPG:PackageFilter> tag has an
inherit="no" attribute, then no attributes are inherited from any of
its ancestor <QPG:MergeFilter> tags.

<QPG:Merge>
<QPG:Merge> entries specify another QPG file to include as if it
were part of this QPG file. You can use any number of these tags to
build a package from any number of small QPG files/programs.

This tag supports this attribute:

� file=filename — the location of another QPG file to merge.

<QPG:Generate>
Optionally, a QPG file can specify that another package must be built
as a result of building the current package. Another instance of the
packager utility is started, and you can specify whether or not the
current instance should wait for the second instance to finish. This is
useful when you’re generating dependent packages.

The attributes include:

May 31, 2004 Appendix: E � Creating Packages 439

QPG structure  2004, QNX Software Systems Ltd.

� dir=directory — what to use for the current working directory for
the new instance of packager.

� wait=yes — wait until packager is complete before continuing
(the default), or no to continue immediately.

<QPG:Values>
This block defines all the manifest values and files that you want to
include in the package. Use <QPG:PackageFilter> to direct
certain values into particular manifests. Files can have the same
direction.

<QPG:PackageFilter> (multiple entries)

When you use a <QPG:PackageFilter>, you can specify any or all
of the following attributes, which must all match in order to be
merged into a particular package’s manifest:

� type=value, where value is one of:

- core — only for packages with no parent

- all — for all generated packages

- ignore — the parentage doesn’t matter (the default)

- child — only for packages with a parent — processor-specific
packages.

� proc=value, where value is one of:

- any — any processor-specific package

- none — any CPU-independent package

- ignore — the processor is irrelevant (the default)

- name — the processor name.

� target=value, where value is one of:

- any — any target-specified package

- none — any package where the target isn’t specified

- ignore — the target is irrelevant (the default)

440 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. QPG structure

- name — the target name.

� component=value, where value is one of:

- any — any component type-specific package

- none — any package where the component type isn’t specified

- ignore — the component type is irrelevant (the default)

- name — the component type itself.

The following sections correlate directly to the MANIFEST tags, and
the tags used must match exactly.

Entries that you specify in this section explicitly cause an attended
session of packager not to ask the questions that correspond to those
entries.

�

� xmlmultiple=true — if this attribute is present on any tag in
this section, the added block is added to existing blocks of the
same name, instead of overwriting the previous block, which is
what’s normally done. This is required on tags that can have
multiple entries, such as <QPM:Dependency>, <QPM:Script>,
<QPM:Launch>, and <QPM:File>.

<QPG:Files>

Use this section to specify the files and/or directories to include in the
package you’re generating. To get files into a package, you can
specify a base directory on packager’s command line, specify a
<QPG:Source> tag in the <QPG:Options> section, or add any
number of the following tags.

You can also use this section to exclude particular files from being
packaged, or have them inserted into the QPK or QPR only (without
being in the manifest).

May 31, 2004 Appendix: E � Creating Packages 441

QPG structure  2004, QNX Software Systems Ltd.

Use this tag to add files to the package. Use a type attribute to<QPG:Add>
(multiple
entries)

specify what you’re adding, and a file attribute to specify the
file/directory to add. The values that you enter here are applied to all
files added (pattern-matched). However, if a .pinfo file is also
present, its values override the values specified here.

For example, to add a license file to the repository directory, use the
following:

<QPG:Add file="./license.txt" install="LicenseUrl/" handling="repdata"/>

The corresponding <LicenseUrl> tag could be:

rep://packager-1.1-qnx.repdata/LicenseUrl/license.txt

A <QPG:Add> tag can enclose any number of <QPG:Rule> tags. For
more information about rules (an advanced feature), see the
description of the <QPG:Rule> tag later in this appendix.

The attributes for <QPG:Add> include:

� type=value, where value is one of:

- file — add the following files (the default)

- dir — add all of the files under the following directory

- tree — add all files in the following directory and its
subdirectories.

� file=pattern — the pattern to match the source file(s) to include
in the package. If the type attribute is dir or tree, then this
attribute holds the directory name.

The file attribute is the only one that you have to have for each
<QPG:Add> entry.

�

� pinfo=pattern — the explicit filename of the .pinfo file, or the
location of the .pinfo file, relative to the source file.

If the pattern is $, the resulting filename is used, with .pinfo
appended onto it (replacing its extension if there is one).

442 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. QPG structure

� install=directory — the directory to install the file in, which
must end in a slash (/), or the exact filename to use when the
source file is installed, overriding the default packager location.
This attribute is optional — if you don’t include it, the installation
location is determined by the file type, or it’s gathered from a
.pinfo file.

� license=license — the license to apply to the specified file(s).
This license is added to whatever licenses you specify in the
.pinfo file.

� permissions=value — the chmod arguments to apply, or
default if you don’t want to change the permissions.

� user=value — the chown arguments to apply, or default if you
don’t want to change the ownership.

� group=value — the chgrp arguments to apply, or default if
you don’t want to change the group.

� stacksize=value — the stack size to use for this program (in
bytes), which is applied using ldrel -S, or default if you don’t
want to change the stack size.

� description=value — a textual description of the purpose of the
file(s), or default.

� name=text — the name of the file(s).

� filter=value — the exact settings to use for the specified proc,
target, or component.

� proc=value, where value is one of:

- any — any processor-specific package

- none — any CPU-independent package

- ignore — the processor is irrelevant

- name — the processor name

- default — packager determines the host processor.

May 31, 2004 Appendix: E � Creating Packages 443

QPG structure  2004, QNX Software Systems Ltd.

� target=value, where value is one of:

- any — any target-specified package

- none — any package where the target isn’t specified

- ignore — the target is irrelevant

- name — the target name

- default — packager determines the target processor.

� component=value, where value is one of:

- any — any component type-specific package

- none — any package where the component type isn’t specified

- ignore — the component type is irrelevant

- name — the component type itself

- default — packager determines the component type.

� handling=value, where value is one of:

- repdata — the file is a repository data file that’s to be copied
into the repository but not packaged

- pkgdata — the file is package data to be copied into the
required QPK files, but not included in the manifests

- script — same as pkgdata

- exclude — don’t package the file

- copy — add the specified file, even if it’s already listed, with a
different install location

- default — none of the above.

For example, to add a script (in a QPG file), specify:
<QPG:Add handling="script" file="script filename" install="/"/>

If it’s a processor-dependent script, specify:
<QPG:Add handling="script" file="script filename"

install="/" proc="x86" filter="exact"/>

444 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. QPG structure

� filetype=value, the type of the file, where value is one of:

- dir — directory

- doc — documentation

- exe — an ELF executable

- obj — a relocatable object for linking

- so — a shared object for linking and executing

- dll — a shared object for executing

- script — a shell script

- symlink — a symbolic link

- default — let packager determine the filetype.

� linkto=path — the alternative location to which the symbolic
link points (valid only if the filetype is symlink). To properly
insert a symbolic link into the list of files, specify:
<QPG:Add file="symbolic link name"

install="install directory/" filetype="symlink"
linkto="file/to/link/to"/>

or specify default to remove the linkto attribute.

� slib="slib-component" — forces a symbolic link into both the
expected package and the specified SLIB-component package.

� ar=value, where value is one of:

- yes — the file is an archive

- no — force it not to be an archive

- default — let packager determine whether or not the file is
an archive.

� gzip=value, where value is one of:

- yes — the file is gzip’ed

- no — force it not to be gzip’ed

- default — let packager determine whether or not the file is
gzip’ed.

May 31, 2004 Appendix: E � Creating Packages 445

QPG structure  2004, QNX Software Systems Ltd.

� pkg=value, where value is one of:

- yes — the file is only for packages

- no — force it not to be just for packages

- default — let packager determine whether or not the file is
only for packages.

� qpr=value, where value is one of:

- yes — the file should only be in a QPR

- no — let the file go anywhere

- default — let packager determine whether or not the file
should only be in the QPR.

� qpg=name — the source QPG this entry was generated from.

� strip=value, where value is one of:

- no — don’t strip this file, regardless of the overall settings

- yes — strip this file, regardless of the overall settings.

The packager utility creates these entries dynamically. Don’t add
<QPG:File>

(multiple
entries)

this section by hand; use <QPG:Add> tags instead — they allow
pattern-matching (see above).

When you use a <QPG:Add> tag to add a file, the tag can enclose any
<QPG:Rule> number of <QPG:Rule> commands. As packager sorts the files, it

checks them against each rule, in the order that the rules are specified.
The file may match more than one rule.

If you specify multiple rules in exactly the same way, they’re merged
into one entry. To prevent this behavior, add an
xmlmultiple="true" attribute to each rule that might conflict with
another.

�

When a rule is matched, the rule’s attributes are copied into the file’s
attributes, thus redirecting it, renaming it, and so on. The following
attributes aren’t copied, because they’re part of the rule itself:

446 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. QPG structure

� label=string — a label to use with a skip attribute, as described
below.

� match=action — what to do if this rule is matched, where action
is one of:

- "stop" — stop processing the rules if this rule is matched.

- "skip" — skip to another rule if this rule is matched; use a
skip attribute to specify which rule to jump to, as described
below.

- "exclude" — stop processing the rules and remove this file
from the list of files to be packaged if this rule is matched.

� skip="value" — which rule to skip to if this rule is matched,
where value is one of:

- a number — skip the given number of rules. For example,
skip="3" skips the next 3 rules.

- a string — jump to the first rule in this block that has a label
whose value matches the string, if any. For example,
skip="main" goes to a rule with a label="main" attribute.

� search="type" — what to search for, where type is one of:

- pattern — (default) use the value of the argument attribute
as an fnmatch() pattern to compare to the source filename. If the
pattern matches, apply the rule.

- path — use the value of the argument attribute as an
fnmatch() pattern to compare to the full path of the source file,
treating / as a special delimiter. If the pattern matches, apply
the rule.

- symlink — match a symbolic link.

� argument=pattern — the pattern to be matched. For example,
argument="*/include/*.h".

You can use the $(PROCESSOR) macro to match any processor.
For example, /$(PROCESSOR)/usr/bin/ph*. The
$(PROCESSOR) can also be specified in any of the attributes on

May 31, 2004 Appendix: E � Creating Packages 447

Generating a repository  2004, QNX Software Systems Ltd.

this Rule line, and the matching processor will be inserted. For
example:

- <QPG:Rule search="pattern"

argument="/$(PROCESSOR)/usr/bin/*"

proc="$(PROCESSOR)"/>

- <QPG:Rule argument="*/doc/*" component="docs"

install="/usr/doc/"/>

Generating a repository
You can also use packager to generate a repository (a location
holding any number of packages) and make it available to anyone
who can access that repository. To do this, place all of your desired
QPM and QPK files into the repository directory. (If you’re working
with QPR files, decompress them using tar -zxf my package.qpr).
Change directory into this repository and type packager -r.

The packager asks you a number of questions related to your
repository, which you should answer fully. The description is the first
thing a user sees after clicking on your repository, so it should be as
detailed and accurate as possible.

As it generates your repository, packager creates the following files:

index A list of the files in the repository.

content.tgz

An archive of all of the QPM files in the repository, which
have been stripped of the file listing section (for faster
downloading), including all support files such as licenses,
scripts, and web pages.

repository.qrm

A repository manifest file with details about the number of
packages in the repository, a website, icons, and a
description of the repository.

448 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. Hey, nice package!

Whenever you change the packages that appear in your repository, or
when any packages are changed, you should again run packager -r

in this directory. Once you’ve answered the questions, you won’t have
to answer them again, so you may wish to subsequently run the
packager unattended and in expert mode, by typing packager
-ruv2.

Hey, nice package!
There are many shortcuts that people take that make their packages
reasonable and usable, but not necessarily complete. This section
describes some tips and suggestions on how to make your packages
better, along with some hints on how to modify your QPG to simplify
package creation even further.

Product names and descriptions
What’s the most obvious part of a package? It to be the things that
users see when the package is presented to them: the product name
and description.

The product name must be short, descriptive, and unique, so that no
one will confuse your product with someone else’s. Although we
recommend that the product identifier be all in lowercase, for the
product name, you should use an initial uppercase letter followed by
lowercase, except where the product actually has explicit
capitalization in its name (e.g. cURL).

Don’t put references to a processor or the version in the product
name.

�

For example, here’s a correctly presented product name:

<QPM:ProductName>Python<QPM:ProductName>

The product description is where you have to be most careful and
succinct — the old saying is true: first impressions are important.
Here are some suggestions:

May 31, 2004 Appendix: E � Creating Packages 449

Hey, nice package!  2004, QNX Software Systems Ltd.

� Use proper sentence structure. Here’s where your writing skills are
tested and presented to the world. If you have spelling or
grammatical mistakes in your description, people might figure that
you have bugs in your code as well!

� Don’t use short forms or acronyms. It’s easy for someone who
knows about a product to use acronyms for things that they use
every day. But not everyone knows everything about your product;
don’t assume that they understand all of your short forms.

For example, you may be tempted to describe your product as the
“C/C++ IDE for all your needs,” but “C/C++ Integrated
Debugger/Editor with an advanced feature set for developers” is
better.

� Use a significant amount of information. Remember that the only
reason someone is looking at the description is that they want to
understand what your package is. If you’re generating a
description for Samba, for example, don’t put something like
“SMB server” — that’s no help at all to someone who doesn’t
know what Samba is. Instead try:

Samba is an Open Source/Free Software suite that
provides seamless file and print services to SMB/CIFS
clients. You can use Samba to access your QNX files
from within your Windows environment.

More is better when it comes to describing your product to
potential users.

Reducing the number of packages created
After you’ve used packager, the first thing you might want to check
is the list of packages that it created.

Quite often, packager creates more packages than you need for a
simple product. For instance, if you have .h or .a files, packager
creates separate Development packages to house these files, which are
obviously for development purposes only. This is a useful feature, but
if the product that you’re packaging is inherently a development

450 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. Hey, nice package!

utility, separating the files into development and nondevelopment
packages adds extra complexity that isn’t needed.

The question you have to ask yourself is whether you want the user to
be able to install just the executable portion, or to install just the
development portion, without the other packages. If the answer is yes,
then packager has done all the work for you. However, if there’s no
need for users to have this granularity, you should tell packager not
to create separate development packages at all; the files will be
merged into the other packages automatically. To achieve this, you
can do one of these things:

� Run packager with the -D option on the command line.

Or:

� Edit your QPG file so that development packages are never created.
Do this by adding dev="no" to the <QPG:FileSorting> line in
your <QPG:Options> block, like this:
<QPG:Generation>

<QPG:Options>
<QPG:FileSorting dev="no"/>

<//QPG:Options>
<//QPG:Generation>

The generated packages will no longer have the dev- portion of
their names.

Generating patches
A patch lets you release just the changes to a product instead of
releasing a whole new version of it. You can tell packager to
generate packages that contain only the files that have changed since
the last full product release.

The patched packages are usually significantly smaller, so the user
needs less disk space to keep both versions installed at once; to
reinstate the original version, you need only deactivate — not remove
— the patch. There are, however, some prerequisites to generating a
patch:

� At least one file must have changed.

May 31, 2004 Appendix: E � Creating Packages 451

Hey, nice package!  2004, QNX Software Systems Ltd.

� At least one file must have remained unchanged.

To generate a patch, you need to have a QPP file. The QPP file
indicates to packager where it can find your previously released
product’s QPR or QPK files, the version of the previously released
product, and the date on which the product was released. You can
generate a sample QPP file by typing packager -j4. The resulting
file looks like this:

<QPP:Patches>
<QPP:Release productid="pid" vendorid="vid">

<QPP:File>mypackage-1.0.qpr</QPP:File>
<QPP:Location>/home/package/directory/</QPP:Location>
<QPP:Date>yyyymmddhh</QPP:Date>
<QPP:Version>1.0</QPP:Version>
<QPP:PatchIdentifier>patchA</QPP:PatchIdentifier>
<QPP:Responsible>Guy Responsible</QPP:Responsible>
<QPP:Email>gresponsible@home.com</QPP:Email>
<QPP:Notes>Notes regarding this release</QPP:Notes>

</QPP:Release>
</QPP:Patches>

Once you have the QPP file, modify it to match your product
information:

� Set the productid to the ProductIdentifier of the core
package for your product, and set the vendorid to the
VendorInstallName of your product.

� Set the <QPP:Location> field to the name of the directory that
contains all of your QPK or QPR files that are related to this patch.

� Add a <QPP:File> entry for each QPK/QPR that’s related to this
patch. This is perhaps the most time-consuming part of making
your QPP, because some products have many packages, but
unfortunately, this step is unavoidable. Just use the filename, not
the full path, because <QPP:Location> already specifies the
directory.

� Set <QPP:Date> to the date, in the form yyyymmddhh, that you
released the original product.

452 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. Hey, nice package!

� The <QPP:Version> indicates the version number of your
original product (e.g. 1.0). Remember that your patch must have a
<QPM:ReleaseVersion> that differs from this version number
in order for the patch to be installed correctly.

� <QPP:PatchIdentifier> is a short identifier to be appended to
your package where it might conflict with the unpatched version of
your product (e.g. patchA).

� The Responsible, Email, and Notes fields are for your own
use, and you can remove them if you want to.

You can add any number of <QPP:Release> blocks, so you can use
a single QPP to patch any number of products or in any number of
packaging sessions. Each <QPP:Release> block must have a unique
combination of productid and vendorid.

�

Once you’ve set up the QPP file properly, use the -h option to
packager (along with whatever other arguments you would normally
pass to the utility to generate an unpatched package), with your QPP
file in order to indicate to packager that you’re potentially
generating a patch. For example:

packager -h my.qpp my.qpg

Remember that in my.qpg you must be generating a patch that’s a
different version from what you’re patching. You usually set the
<QPM:ReleaseVersion> to your original version, with an appended
uppercase A, B, C, etc. (without any spaces) to make your new
release version (e.g. the first patch to 5.7 would be 5.7A).

While packager works, it displays some messages related to
patching:

Analyzing package

The packager displays this message for each original QPK that
it’s uncompressing into a temporary directory, where it then
performs a file-by-file comparison with the new files. While this

May 31, 2004 Appendix: E � Creating Packages 453

Hey, nice package!  2004, QNX Software Systems Ltd.

process is slower than regular packaging, it’s time that’s well
spent on your machine rather than your users’, because they’ll
have smaller packages to download and install.

[file has changed]

This is shown for each file that the packager determines is
different from the original file.

A total of X files will be packaged as part of

this patch.

The number of files that have been modified or added since the
original release.

Warning: ’elfdiff’ utility not available.

Packager’s patch comparison will be a full

comparison of all files using the ’cmp’ utility

instead.

The elfdiff utility wasn’t found on your system. This utility
compares the ELF headers of executables so that the
comparison process is faster, as compared to byte-by-byte
comparison of files, but elfdiff isn’t included in all versions
of QNX.

Error: patch file not found

You have to pass the QPP filename along with the -h option.

No patch was required. Package not generated.

Either no files have changed since your original release, or no
files have remained the same since your original release.
Remember that at least one file, but not all files, must have
changed for patching to proceed.

454 Appendix: E � Creating Packages May 31, 2004

 2004, QNX Software Systems Ltd. Hey, nice package!

Packages that had no changes between the original and the patch
aren’t generated. The generated packages have automatic
dependencies on the original packages that you’ve patched, so the
user needs only select your patch in order to gain a working product.

�

May 31, 2004 Appendix: E � Creating Packages 455

Appendix F

ARM Memory Management

In this appendix. . .
ARM-specific restrictions and issues 459
ARM-specific features 463

May 31, 2004 Appendix: F � ARM Memory Management 457

 2004, QNX Software Systems Ltd. ARM-specific restrictions and issues

This appendix describes various features and restrictions related to the
QNX implementation on ARM/Xscale processors:

� restrictions and issues that don’t apply to other processor ports,
and may need to be taken into consideration when porting code to
ARM/Xscale targets.

� ARM-specific features that you can use to work around some of
the restrictions imposed by the QNX ARM implementation.

For an overview of how Neutrino manages memory, see the
introduction to the Finding Memory Errors chapter of the IDE User’s
Guide.

ARM-specific restrictions and issues
This section describes the major restrictions and issues raised by the
QNX implementation on ARM/Xscale:

� behavior of NTO TCTL IO

� implications of the ARM/Xscale cache architecture

NTO TCTL IO behavior
Device drivers in QNX use ThreadCtl() with the NTO TCTL IO flag
to obtain I/O privity. This mechanism allows direct access to I/O ports
and the ability to control processor interrupt masking.

On ARM platforms, all I/O access is memory-mapped, so this flag is
used primarily to allow manipulation of the processor interrupt mask.

Normal user processes execute in the processor’s User mode, and the
processor silently ignores any attempts to manipulate the interrupt
mask in the CPSR register (i.e. they don’t cause any protection
violation, and simply have no effect on the mask).

The NTO TCTL IO flag makes the calling thread execute in the
processor’s System mode. This is a privileged mode that differs only
from the Supervisor mode in its use of banked registers.

May 31, 2004 Appendix: F � ARM Memory Management 459

ARM-specific restrictions and issues  2004, QNX Software Systems Ltd.

This means that such privileged user processes execute with all the
access permission of kernel code:

� They can directly access kernel memory:

- They fault if they attempt to write to read-only memory.

- They don’t fault if they write to writable mappings. This
includes kernel data and also the mappings for page tables.

� They can circumvent the regular permission control for user
mappings:

- They don’t fault if they write to read-only user memory.

The major consequence of this is that buggy programs using
NTO TCTL IO can corrupt kernel memory.

Implications of the ARM Cache Architecture
All currently supported ARM/Xscale processors implement a virtually
indexed cache. This has a number of software-visible consequences:

� Whenever any virtual-to-physical address translations are changed,
the cache must be flushed, because the contents of the cache no
longer identify the same physical memory. This would typically
have to be performed:

- when memory is unmapped (to prevent stale cache data)

- during a context switch (since all translations have now
changed).

The QNX implementation does perform this flushing when
memory is unmapped, but it avoids the context-switch penalty by
using the “Fast Context Switch Extension” implemented by some
ARM MMUs. This is described below.

� Shared memory accessed via different virtual addresses may need
to be made uncached, because the cache would contain different
entries for each virtual address range. If any of these mappings are
writable, it causes a coherency problem because modifications

460 Appendix: F � ARM Memory Management May 31, 2004

 2004, QNX Software Systems Ltd. ARM-specific restrictions and issues

made through one mapping aren’t visible through the cache entries
for other mappings.

� Memory accessed by external bus masters (e.g. DMA) may need
to be made uncached:

- If the DMA writes to memory, it will be more up to date than a
cache entry that maps that memory. CPU access would get stale
data from the cache.

- If the DMA reads from memory, it may be stale if there is a
cache entry that maps that memory. DMA access would get
stale data from memory.

An alternative to making such memory uncached is to modify all
drivers that perform DMA access to explicitly synchronize
memory when necessary:

- before a DMA read from memory: clean and invalidate cache
entries

- after a DMA write to memory: invalidate cache entries.

As mentioned, QNX uses the MMU Fast Context Switch Extension
(FCSE) to avoid cache-flushing during context switches. Since the
cost of this cache-flushing can be significant (potentially many
thousands of cycles), this is crucial to a microkernel system like QNX
because context switches are much more frequent than in a monolithic
(e.g. UNIX-like) OS:

� Message passing involves context switching between sender and
receiver.

� Interrupt handling involves context switching to the driver address
space.

The FCSE implementation works by splitting the 4G virtual address
space into a number of 32M slots. Each address space appears to have
a virtual address space range of 0 - 32M, but the MMU transparently
remaps this to a a “real” virtual address by putting the slot index into
the top 7 bits of the virtual address.

May 31, 2004 Appendix: F � ARM Memory Management 461

ARM-specific restrictions and issues  2004, QNX Software Systems Ltd.

For example, consider two processes: process 1 has slot index 1;
process 2 has slot index 2. Each process appears to have an address
space 0 - 32M, and their code uses those addresses for execution,
loads and stores.

In reality, the virtual addresses seen by the MMU (cache and TLB)
are:

� Process 1: 0x00000000-0x01FFFFFF is mapped to
0x02000000-0x03FFFFFF.

� Process2: 0x00000000-0x01FFFFFF is mapped to
0x04000000-0x07FFFFFF.

This mechanism imposes a number of restrictions:

� Each process address space is limited to 32M in size. This space
contains all the code, data, heap, thread stacks and shared objects
mapped by the process.

� The FCSE remapping uses the top 7 bits of the address space,
which means there can be at most 128 slots. In practice, some of
the 4G virtual space is required for the kernel, so the real number
is lower.

The current limit is 63 slots:

- Slot 0 is never used.

- Slots 64-127 (0x80000000-0xFFFFFFFF) are used by the
kernel and the ARM-specific shm ctl() support described below.

Since each process typically has its own address space, this
imposes a hard limit of at most 63 different processes.

� Because the MMU transparently remaps each process’s virtual
address, shared memory objects must be mapped uncached, since
they’re always mapped at different virtual addresses.

Strictly speaking, this is required only if at least one writable
mapping exists, but the current VM implementation doesn’t track
this, and unconditionally makes all mappings uncached.

462 Appendix: F � ARM Memory Management May 31, 2004

 2004, QNX Software Systems Ltd. ARM-specific features

The consequence of this is that performance of memory accesses
to shared memory object mappings will be bound by the uncached
memory performance of the system.

ARM-specific features
This section describes the ARM-specific behavior of certain
operations that are provided via a processor-independent interface:

� shm ctl() operations for defining special memory object properties.

shm ctl() behavior
The QNX implementation on ARM uses various shm ctl() flags to
provide some workarounds for the restrictions imposed by the MMU
FCSE implementation, to provide a “global” address space above
0x80000000 that lets processes map objects that wouldn’t otherwise
fit into the (private) 32M process-address space.

The following flags supplied to shm ctl() create a shared memory
object that you can subsequently mmap() with special properties:

� You can use SHMCTL PHYS to create an object that maps a
physical address range that’s greater than 32M. A process that
maps such an object gets a (unique) mapping of the object in the
“global address space.”

� You can use SHMCTL GLOBAL to create an object whose “global
address space” mapping is the same for all processes. This address
is allocated when the object is first mapped, and subsequent maps
receive the virtual address allocated by the first mapping.

Since all mappings of these objects share the same virtual address,
there are a number of artifacts caused by mmap():

- If PROT WRITE is specified, the mappings are made writable.
This means all processes that have mapped now have writable
access even if they initially mapped it PROT READ only.

- If PROT READ only is specified, the mappings aren’t changed.
If this is the first mmap(), the mappings are made read-only,
otherwise the mappings are unchanged.

May 31, 2004 Appendix: F � ARM Memory Management 463

ARM-specific features  2004, QNX Software Systems Ltd.

- If PROT NOCACHE isn’t specified, the mappings are allowed to
be cacheable since all processes share the same virtual address,
and hence no cache aliases will exist.

� SHMCTL LOWERPROT causes a mmap() of the object to have
user-accessible mappings. By default, system-level mappings are
created, which allow access only by threads that used
NTO TCTL IO.

Specifying this flag allows any process in the system to access the
object, because the virtual address is visible to all processes.

To create these special mappings:

1 Create and initialize the object:
fd = shm open(name, ...)
shm ctl(fd, ...)

Note that you must be root to use shm ctl().

2 Map the object:
fd = shm open(name, ...)
mmap(..., fd, ...)

Any process that can use shm open() on the object can map it,
not just the process that created the object.

The following table summarizes the effect of the various
combinations of flags passed to shm ctl():

Flags Object type Effect of mmap()

SHMCTL ANON Anonymous memory (not
contiguous)

Mapped into normal
process address space.
PROT NOCACHE is
forced.

continued. . .

464 Appendix: F � ARM Memory Management May 31, 2004

 2004, QNX Software Systems Ltd. ARM-specific features

Flags Object type Effect of mmap()

SHMCTL ANON |
SHMCTL PHYS

Anonymous memory
(physically contiguous)

Mapped into normal
process address space.
PROT NOCACHE is
forced.

SHMCTL ANON |
SHMCTL GLOBAL

Anonymous memory (not
contiguous)

Mapped into global
address space.
PROT NOCACHE isn’t
forced. All processes
receive the same
mapping.

SHMCTL ANON |
SHMCTL GLOBAL |
SHMCTL PHYS

Anonymous memory (not
contiguous)

Mapped into global
address space.
PROT NOCACHE isn’t
forced. All processes
receive the same
mapping.

SHMCTL PHYS Physical memory range Mapped into global
address space.
PROT NOCACHE is
forced. Processes receive
unique mappings.

SHMCTL PHYS |
SHMCTL GLOBAL

Physical memory range Mapped into global
address space.
PROT NOCACHE isn’t
forced. All processes
receive the same
mapping.

Note that by default, mmap() creates privileged access mappings, so
the caller must have NTO TCTL IO privilege to access them.

Flags may specify SHMCTL LOWERPROT to create user-accessible
mappings. However, this allows any process to access these mappings
if they’re in the global address space.

May 31, 2004 Appendix: F � ARM Memory Management 465

Appendix G

Advanced Qnet Topics

In this appendix. . .
Low-level discussion on Qnet principles 469
Details of Qnet data communication 470
Node descriptors 472
Booting over the network 475
What doesn’t work ... 481

May 31, 2004 Appendix: G � Advanced Qnet Topics 467

 2004, QNX Software Systems Ltd. Low-level discussion on Qnet principles

Low-level discussion on Qnet principles
The Qnet protocol extends interprocess communication (IPC)
transparently over a network of microkernels. This is done by taking
advantage of the Neutrino’s message-passing paradigm. Message
passing is the central theme of Neutrino that manages a group of
cooperating processes by routing messages. This enhances the
efficiency of all transactions among all processes throughout the
system.

As we found out in the “How does it work?” section of the
Transparent Distributed Processing Using Qnet chapter, many POSIX
and other function calls are built on this message passing. For
example, the write() function is built on the MsgSendv() function. In
this section, you’ll find several things, e.g. how Qnet works at the
message passing level; how node names are resolved to node
numbers, and how that number is used to create a connection to a
remote node.

In order to understand how message passing works, consider two
processes that wish to communicate with each other: a client process
and a server process. First we consider a single-node case, where both
client and server reside in the same machine. In this case, the client
simply creates a connection (via ConnectAttach()) to the server, and
then sends a message (perhaps via MsgSend()).

The Qnet protocol extends this message passing over to a network.
For example, consider the case of a simple network with two
machines: one contains the client process, the other contains the
server process. The code required for client-server communication is
identical (it uses same API) to the code in the single-node case. The
client creates a connection to the server and sends the server a
message. The only difference in the network case is that the client
specifies a different node descriptor for the ConnectAttach() function
call in order to indicate the server’s node. See the diagram below to
understand how message passing works.

May 31, 2004 Appendix: G � Advanced Qnet Topics 469

Details of Qnet data communication  2004, QNX Software Systems Ltd.

Server Client

MsgDeliverEvent()

MsgReply()

MsgSend()

Each node in the network is assigned a unique name that becomes its
identifier. This is what we call a node descriptor. This name is the
only visible means to determine whether the OS is running as a
network or as a standalone operating system.

�

Details of Qnet data communication
As mentioned before, Qnet relies on the message passing paradigm of
Neutrino. Before any message pass, however, the application (e.g. the
client) must establish a connection to the server using the low-level
ConnectAttach() function call:

ConnectAttach(nd, pid, chid, index, flags);

In the above call, nd is the node descriptor that identifies each node
uniquely. The node descriptor is the only visible means to determine
whether the Neutrino is running as a network or as a standalone
operating system. If nd is zero, you’re specifying a local server
process, and you’ll get local message passing from the client to the
server, carried out by the local kernel as shown below:

Client Kernel Server

MsgSend() MsgReceive()

When you specify a nonzero value for nd, the application
transparently passes message to a server on another machine, and
connects to a server on another machine. This way, Qnet not only

470 Appendix: G � Advanced Qnet Topics May 31, 2004

 2004, QNX Software Systems Ltd. Details of Qnet data communication

builds a network of trusted machines, it lets all these machines share
their resources with little overhead.

Client Kernel

Server

MsgSend()

MsgReceive()

Kernel

Network-card
driver

Network-card
driver

Qnet

Qnet

io-net

io-net

Client machine

Server machine

Network media

The advantage of this approach lies in using the same API. The key
design features are:

� The kernel puts the user data directly into (and out of) the network
card’s buffers - there’s no copying of the payload.

May 31, 2004 Appendix: G � Advanced Qnet Topics 471

Node descriptors  2004, QNX Software Systems Ltd.

� There are no context switches as the packet travels from (and to)
the kernel from the network card.

These features maximize performance for large payloads and
minimize turnaround time for small packets.

Node descriptors
The <sys/netmgr.h> header file

The <sys/netmgr.h> header defines the ND LOCAL NODE macro
as zero. You can use it any time that you’re dealing with node
descriptors to make it obvious that you’re talking about the local node.

As discussed, node descriptors represent machines, but they also
include Quality of Service information. If you want to see if two node
descriptors refer to the same machine, you can’t just arithmetically
compare the descriptors for equality; use the ND NODE CMP()
macro instead:

� If the return value from the macro is zero, the descriptors refer to
the same node.

� If the value is less than 0, the first node is “less than” the second.

� If the value is greater than 0, the first node is “greater than” the
second.

This is similar to the way that strcmp() and memcmp() work. It’s done
this way in case you want to do any sorting that’s based on node
descriptors.

The <sys/netmgr.h> header file also defines the following
networking functions:

� netmgr strtond()

� netmgr ndtostr()

� netmgr remote nd()

472 Appendix: G � Advanced Qnet Topics May 31, 2004

 2004, QNX Software Systems Ltd. Node descriptors

netmgr strtond()

int netmgr strtond(const char *nodename, char **endstr);

This function converts the string pointed at by nodename into a node
descriptor, which it returns. If there’s an error, netmgr strtond()
returns -1 and sets errno. If the endstr parameter is non-NULL,
netmgr strtond() sets *endstr to point at the first character beyond the
end of the node name. This function accepts all three forms of node
name — simple, directory, and FQNN (Fully Qualified NodeName).
FQNN identifies a Neutrino node using a unique name on a network.
The FQNN consists of the nodename and the node domain.

netmgr ndtostr()

int netmgr ndtostr(unsigned flags,
int nd,
char *buf,
size t maxbuf);

This function converts the given node descriptor into a string and
stores it in the memory pointed to by buf . The size of the buffer is
given by maxbuf . The function returns the actual length of the node
name (even if the function had to truncate the name to get it to fit into
the space specified by maxbuf), or -1 if an error occurs (errno is set).

The flags parameter controls the conversion process, indicating which
pieces of the string are to be output. The following bits are defined:

ND2S DIR SHOW,
ND2S DIR HIDE

Show or hide the network directory portion of the string. If you
don’t set either of these bits, the string includes the network
directory portion if the node isn’t in the default network
directory.

May 31, 2004 Appendix: G � Advanced Qnet Topics 473

Node descriptors  2004, QNX Software Systems Ltd.

ND2S QOS SHOW,
ND2S QOS HIDE

Show or hide the quality of service portion of the string. If you
don’t specify either of these bits, the string includes the quality
of service portion if it isn’t the default QoS for the node.

ND2S NAME SHOW,
ND2S NAME HIDE

Show or hide the node name portion of the string. If you don’t
specify either of these bits, the string includes the name if the
node descriptor doesn’t represent the local node.

ND2S DOMAIN SHOW,
ND2S DOMAIN HIDE

Show or hide the node domain portion of the string. If you
don’t specify either of these bits, and a network directory
portion is included in the string, the node domain is included if
it isn’t the default for the output network directory. If you don’t
specify either of these bits, and the network directory portion
isn’t included in the string, the node domain is included if the
domain isn’t in the default network directory.

By combining the above bits in various combinations, all sorts of
interesting information can be extracted, for example:

ND2S NAME SHOW

A name that’s useful for display purposes.

ND2S DIR HIDE | ND2S NAME SHOW | ND2S DOMAIN SHOW
A name that you can pass to another node and know that it’s
referring to the same machine (i.e. the FQNN).

ND2S DIR SHOW | ND2S NAME HIDE | ND2S DOMAIN HIDE
with ND LOCAL NODE

The default network directory.

ND2S DIR HIDE | NDS2 QOS SHOW | ND2S NAME HIDE |
ND2S DOMAIN HIDE with ND LOCAL NODE

The default Quality of Service for the node.

474 Appendix: G � Advanced Qnet Topics May 31, 2004

 2004, QNX Software Systems Ltd. Booting over the network

netmgr remote nd()

int netmgr remote nd(int remote nd, int local nd);

This function takes the local nd node descriptor (which is relative to
this node) and returns a new node descriptor that refers to the same
machine, but is valid only for the node identified by remote nd. The
function can return -1 in some cases (e.g. if the remote nd machine
can’t talk to the local nd machine).

Booting over the network
Overview

Unleash the power of Qnet to boot your computer (i.e. client) over the
network! You can do it when your machine doesn’t have a local disk
or large flash. In order to do this, you first need the GRUB executable.
GRUB is the generic boot loader that runs at computer startup and is
responsible for loading the OS into memory and starting to execute it.

During booting, you need to load the GRUB executable into the
memory of your machine, by using:

� a GRUB floppy or CD (i.e. local copy of GRUB)

Or:

� Network card boot ROM (e.g. PXE, bootp downloads GRUB from
server).

QNX doesn’t ship GRUB. To get GRUB:

1 Go to www.gnu.org/software/grub website.

2 Download the GRUB executable.

3 Create a floppy or CD with GRUB on it, or put the GRUB
binary on the server for downloading by a network boot ROM.

Here’s what the PXE boot ROM does to download the OS image:

� The network card of your computer broadcasts a DHCP request

May 31, 2004 Appendix: G � Advanced Qnet Topics 475

Booting over the network  2004, QNX Software Systems Ltd.

� The DHCP server responds with the relevant information, such as
IP address, netmask, location of the pxegrub server, and the menu
file

� The network card then sends a TFTP request to the pxegrub
server to transfer the OS image to the client.

Here’s an example to show the different steps to boot your client
using PXE boot ROM:

Creating directory and setting up configuration files
Create a new directory on your DHCP server machine called
/tftpboot and run make install. Copy the pxegrub executable
image from /opt/share/grub/i386-pc to the /tftpboot
directory.

Modify the /etc/dhcpd.conf file to allow the network machine to
download the pxegrub image and configuration menu, as follows:

dhcpd.conf

#
Sample configuration file for PXE dhcpd

#

subnet 192.168.0.0 netmask 255.255.255.0 {

range 192.168.0.2 192.168.0.250;

option broadcast-address 192.168.0.255;
option domain-name-servers 192.168.0.1;

}

Hosts which require special configuration options can be listed in

host statements. If no address is specified, the address will be

allocated dynamically (if possible), but the host-specific information
will still come from the host declaration.

host testpxe {

hardware ethernet 00:E0:29:88:0D:D3; # MAC address of system to boot

fixed-address 192.168.0.3; # This line is optional
option option-150 "(nd)/tftpboot/menu.1st"; # Tell grub to use Menu file

filename "/tftpboot/pxegrub"; # Location of PXE grub image

}
End dhcpd.conf

476 Appendix: G � Advanced Qnet Topics May 31, 2004

 2004, QNX Software Systems Ltd. Booting over the network

If you’re using an ISC 3 DHCP server, you may have to add a
definition of code 150 at the top of the dhcpd.conf file as follows:

option pxe-menu code 150 = text;

Then instead of using option option-150, use:

option pxe-menu "(nd)/tftpboot/menu.1st";)

�

Here’s an example of the menu.1st file:

menu.1st start

default 0 # default OS image

to load

timeout 3 # seconds to pause
before loading default image

title QNX Bios image # text displayed in menu

kernel (nd)/tftpboot/bios.ifs # OS image
title QNX ftp image # text for second OS image

kernel (nd)/tftpboot/ftp.ifs # 2nd OS image (optional)

menu.1st end

Building an OS image
In this section, there is a functional buildfile that you can use to create
an OS image that can be loaded by GRUB without a hard disk or any
local storage.

Create the image by typing the following:

$ mkifs -vvv build.txt build.img
$ cp build.img /tftpboot

Here is the buildfile:

May 31, 2004 Appendix: G � Advanced Qnet Topics 477

Booting over the network  2004, QNX Software Systems Ltd.

In a real buildfile, you can’t use a backslash (n) to break a long line
into shorter pieces, but we’ve done that here, just to make the buildfile
easier to read.

�

[virtual=x86,elf +compress] boot = {

startup-bios

PATH=/proc/boot:/bin:/usr/bin:/sbin:/usr/sbin: \

/usr/local/bin:/usr/local/sbin \
LD LIBRARY PATH=/proc/boot: \

/lib:/usr/lib:/lib/dll procnto

}

[+script] startup-script = {
procmgr symlink ../../proc/boot/libc.so.2 /usr/lib/ldqnx.so.2

#
do magic required to set up pnp and pci bios on x86

#

display msg Do the BIOS magic ...
seedres

pci-bios

waitfor /dev/pci

#

A really good idea is to set hostname and domain
before qnet is started

#

setconf CS HOSTNAME aboyd
setconf CS DOMAIN ott.qnx.com

#

If you do not set the hostname to something

unique before qnet is started, qnet will try
to create and set the hostname to a hopefully

unique string constructed from the ethernet

address, which will look like EAc07f5e
which will probably work, but is pretty ugly.

#

#

start io-net, network driver and qnet

#
NB to help debugging, add verbose=1 after -pqnet below

#

display msg Starting io-net and speedo driver and qnet ...
io-net -dspeedo -pqnet

display msg Waiting for ethernet driver to initialize ...

waitfor /dev/io-net/en0 60

display msg Waiting for Qnet to initialize ...

waitfor /net 60

#

Now that we can fetch executables from the remote server

478 Appendix: G � Advanced Qnet Topics May 31, 2004

 2004, QNX Software Systems Ltd. Booting over the network

we can run devc-con and ksh, which we do not include in
the image, to keep the size down

#

In our example, the server we are booting from
has the hostname qpkg and the SAME domain: ott.qnx.com

#

We clean out any old bogus connections to the qpkg server
if we have recently rebooted quickly, by fetching a trival

executable which works nicely as a sacrifical lamb
#

/net/qpkg/bin/true

#

now print out some interesting techie-type information

#
display msg hostname:

getconf CS HOSTNAME

display msg domain:
getconf CS DOMAIN

display msg uname -a:

uname -a

#

create some text consoles
#

display msg .
display msg Starting 3 text consoles which you can flip

display msg between by holding ctrl atl + OR ctrl alt -

display msg .
devc-con -n3

waitfor /dev/con1

#

start up some command line shells on the text consoles

#
reopen /dev/con1

[+session] TERM=qansi HOME=/ PATH=/bin:/usr/bin:\

/usr/local/bin:/sbin:/usr/sbin:/usr/local/sbin:\
/proc/boot ksh &

reopen /dev/con2
[+session] TERM=qansi HOME=/ PATH=/bin:/usr/bin:\

/usr/local/bin:/sbin:/usr/sbin:\
/usr/local/sbin:/proc/boot ksh &

reopen /dev/con3
[+session] TERM=qansi HOME=/ PATH=/bin:\

/usr/bin:/usr/local/bin:/sbin:/usr/sbin:\

/usr/local/sbin:/proc/boot ksh &

#

startup script ends here
#

}

#

Lets create some links in the virtual file system so that

applications are fooled into thinking there’s a local hard disk
#

May 31, 2004 Appendix: G � Advanced Qnet Topics 479

Booting over the network  2004, QNX Software Systems Ltd.

#
Make /tmp point to the shared memory area

#

[type=link] /tmp=/dev/shmem

#

Redirect console (error) messages to con1
#

[type=link] /dev/console=/dev/con1

#

Now for the diskless qnet magic. In this example, we are booting
using a server which has the hostname qpkg. Since we do not have

a hard disk, we will create links to point to the servers disk

#
[type=link] /bin=/net/qpkg/bin

[type=link] /boot=/net/qpkg/boot

[type=link] /etc=/net/qpkg/etc
[type=link] /home=/net/qpkg/home

[type=link] /lib=/net/qpkg/lib

[type=link] /opt=/net/qpkg/opt
[type=link] /pkgs=/net/qpkg/pkgs

[type=link] /root=/net/qpkg/root

[type=link] /sbin=/net/qpkg/sbin
[type=link] /usr=/net/qpkg/usr

[type=link] /var=/net/qpkg/var
[type=link] /x86=/

#
these are essential shared libraries which must be in the

image for us to start io-net, the ethernet driver and qnet

#
libc.so

devn-speedo.so

npm-qnet.so

#

copy code and data for all following executables
which will be located in /proc/boot in the image

#

[data=copy]

seedres
pci-bios

setconf

io-net
waitfor

uncomment this for debugging
getconf

480 Appendix: G � Advanced Qnet Topics May 31, 2004

 2004, QNX Software Systems Ltd. What doesn’t work ...

Booting the client
With your DHCP server running, boot the client machine using the
PXE ROM. The client machine attempts to obtain an IP address from
the DHCP server and load pxegrub. If successful, it should display a
menu of available images to load. Select your option for the OS
image. If you don’t select any available option, the BIOS image is
loaded after 3 seconds. You can also use the arrow keys to select the
downloaded OS image.

If all goes well, you should now be running your OS image.

Troubleshooting
If the boot is unsuccessful, troubleshoot as follows:

Make sure your:

� DHCP server is running and is configured correctly

� TFTP isn’t commented out of the /etc/inetd.conf file

� all users can read pxegrub and the OS image

� inetd is running.

What doesn’t work ...
� Qnet’s functionality is limited when applications create a

shared-memory region. That only works when the applications run
on the same machine.

� Server calls such as MsgReply(), MsgError(), MsgWrite(),
MsgRead(), and MsgDeliverEvents() behave differently for local
and network cases. In the local case, these calls are non blocking,
whereas in the network case, these calls block. In the non blocking
scenario, a lower priority thread won’t run; in the network case, a
lower priority thread can run.

� The mq isn’t working.

May 31, 2004 Appendix: G � Advanced Qnet Topics 481

What doesn’t work ...  2004, QNX Software Systems Ltd.

� Cross-endian doesn’t work. Qnet doesn’t support communication
between a big-endian machine and a little-endian machine.
However, it works between machines of different processor types
(e.g. MIPS, PPC) that are of same endian. For cross-endian
development, use NFS.

� The ConnectAttach() function appears to succeed the first time,
even if the remote node is unoperational or is turned off. In this
case, it should report a failure, but it doesn’t. For efficiency,
ConnectAttach() is paired up with MsgSend(), which in turn
reports the error. For the first transmission, packets from both
ConnectAttach() and MsgSend() are transmitted together.

� Qnet isn’t appropriate for broadcast or multicast applications.
Since you’re sending messages on specific channels that target
specific applications, you can’t send messages to more than one
node or manager at the same time.

482 Appendix: G � Advanced Qnet Topics May 31, 2004

Glossary

May 31, 2004 Glossary 483

 2004, QNX Software Systems Ltd.

A20 gate

On x86-based systems, a hardware component that forces the A20
address line on the bus to zero, regardless of the actual setting of the
A20 address line on the processor. This component is in place to
support legacy systems, but the QNX Neutrino OS doesn’t require
any such hardware. Note that some processors, such as the 386EX,
have the A20 gate hardware built right into the processor itself — our
IPL will disable the A20 gate as soon as possible after startup.

adaptive

Scheduling algorithm whereby a thread’s priority is decayed by 1. See
also FIFO, round robin, and sporadic.

atomic

Of or relating to atoms. :-)

In operating systems, this refers to the requirement that an operation,
or sequence of operations, be considered indivisible. For example, a
thread may need to move a file position to a given location and read
data. These operations must be performed in an atomic manner;
otherwise, another thread could preempt the original thread and move
the file position to a different location, thus causing the original thread
to read data from the second thread’s position.

attributes structure

Structure containing information used on a per-resource basis (as
opposed to the OCB, which is used on a per-open basis).

This structure is also known as a handle. The structure definition is
fixed (iofunc attr t), but may be extended. See also mount
structure.

bank-switched

A term indicating that a certain memory component (usually the
device holding an image) isn’t entirely addressable by the processor.
In this case, a hardware component manifests a small portion (or
“window”) of the device onto the processor’s address bus. Special

May 31, 2004 Glossary 485

 2004, QNX Software Systems Ltd.

commands have to be issued to the hardware to move the window to
different locations in the device. See also linearly mapped.

base layer calls

Convenient set of library calls for writing resource managers. These
calls all start with resmgr *(). Note that while some base layer calls
are unavoidable (e.g. resmgr pathname attach()), we recommend that
you use the POSIX layer calls where possible.

BIOS/ROM Monitor extension signature

A certain sequence of bytes indicating to the BIOS or ROM Monitor
that the device is to be considered an “extension” to the BIOS or
ROM Monitor — control is to be transferred to the device by the
BIOS or ROM Monitor, with the expectation that the device will
perform additional initializations.

On the x86 architecture, the two bytes 0x55 and 0xAA must be present
(in that order) as the first two bytes in the device, with control being
transferred to offset 0x0003.

block-integral

The requirement that data be transferred such that individual structure
components are transferred in their entirety — no partial structure
component transfers are allowed.

In a resource manager, directory data must be returned to a client as
block-integral data. This means that only complete struct dirent

structures can be returned — it’s inappropriate to return partial
structures, assuming that the next IO READ request will “pick up”
where the previous one left off.

bootable

An image can be either bootable or nonbootable. A bootable image is
one that contains the startup code that the IPL can transfer control to.

486 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

bootfile

The part of an OS image that runs the startup code and the Neutrino
microkernel.

budget

In sporadic scheduling, the amount of time a thread is permitted to
execute at its normal priority before being dropped to its low priority.

buildfile

A text file containing instructions for mkifs specifying the contents
and other details of an image, or for mkefs specifying the contents
and other details of an embedded filesystem image.

canonical mode

Also called edited mode or “cooked” mode. In this mode the
character device library performs line-editing operations on each
received character. Only when a line is “completely entered” —
typically when a carriage return (CR) is received — will the line of
data be made available to application processes. Contrast raw mode.

channel

A kernel object used with message passing.

In QNX Neutrino, message passing is directed towards a connection
(made to a channel); threads can receive messages from channels. A
thread that wishes to receive messages creates a channel (using
ChannelCreate()), and then receives messages from that channel
(using MsgReceive()). Another thread that wishes to send a message
to the first thread must make a connection to that channel by
“attaching” to the channel (using ConnectAttach()) and then sending
data (using MsgSend()).

CIFS

Common Internet File System (aka SMB) — a protocol that allows a
client workstation to perform transparent file access over a network to
a Windows 95/98/NT server. Client file access calls are converted to

May 31, 2004 Glossary 487

 2004, QNX Software Systems Ltd.

CIFS protocol requests and are sent to the server over the network.
The server receives the request, performs the actual filesystem
operation, and sends a response back to the client.

CIS

Card Information Structure — a data block that maintains information
about flash configuration. The CIS description includes the types of
memory devices in the regions, the physical geometry of these
devices, and the partitions located on the flash.

combine message

A resource manager message that consists of two or more messages.
The messages are constructed as combine messages by the client’s C
library (e.g. stat(), readblock()), and then handled as individual
messages by the resource manager.

The purpose of combine messages is to conserve network bandwidth
and/or to provide support for atomic operations. See also connect
message and I/O message.

connect message

In a resource manager, a message issued by the client to perform an
operation based on a pathname (e.g. an io open message).
Depending on the type of connect message sent, a context block (see
OCB) may be associated with the request and will be passed to
subsequent I/O messages. See also combine message and I/O
message.

connection

A kernel object used with message passing.

Connections are created by client threads to “connect” to the channels
made available by servers. Once connections are established, clients
can MsgSendv() messages over them. If a number of threads in a
process all attach to the same channel, then the one connection is
shared among all the threads. Channels and connections are identified
within a process by a small integer.

488 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

The key thing to note is that connections and file descriptors (FD) are
one and the same object. See also channel and FD.

context

Information retained between invocations of functionality.

When using a resource manager, the client sets up an association or
context within the resource manager by issuing an open() call and
getting back a file descriptor. The resource manager is responsible for
storing the information required by the context (see OCB). When the
client issues further file-descriptor based messages, the resource
manager uses the OCB to determine the context for interpretation of
the client’s messages.

cooked mode

See canonical mode.

core dump

A file describing the state of a process that terminated abnormally.

critical section

A code passage that must be executed “serially” (i.e. by only one
thread at a time). The simplest from of critical section enforcement is
via a mutex.

deadlock

A condition in which one or more threads are unable to continue due
to resource contention. A common form of deadlock can occur when
one thread sends a message to another, while the other thread sends a
message to the first. Both threads are now waiting for each other to
reply to the message. Deadlock can be avoided by good design
practices or massive kludges — we recommend the good design
approach.

May 31, 2004 Glossary 489

 2004, QNX Software Systems Ltd.

device driver

A process that allows the OS and application programs to make use of
the underlying hardware in a generic way (e.g. a disk drive, a network
interface). Unlike OSs that require device drivers to be tightly bound
into the OS itself, device drivers for QNX Neutrino are standard
processes that can be started and stopped dynamically. As a result,
adding device drivers doesn’t affect any other part of the OS —
drivers can be developed and debugged like any other application.
Also, device drivers are in their own protected address space, so a bug
in a device driver won’t cause the entire OS to shut down.

DNS

Domain Name Service — an Internet protocol used to convert ASCII
domain names into IP addresses. In QNX native networking, dns is
one of Qnet’s builtin resolvers.

dynamic bootfile

An OS image built on the fly. Contrast static bootfile.

dynamic linking

The process whereby you link your modules in such a way that the
Process Manager will link them to the library modules before your
program runs. The word “dynamic” here means that the association
between your program and the library modules that it uses is done at
load time, not at linktime. Contrast static linking. See also runtime
loading.

edge-sensitive

One of two ways in which a PIC (Programmable Interrupt Controller)
can be programmed to respond to interrupts. In edge-sensitive mode,
the interrupt is “noticed” upon a transition to/from the rising/falling
edge of a pulse. Contrast level-sensitive.

490 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

edited mode

See canonical mode.

EOI

End Of Interrupt — a command that the OS sends to the PIC after
processing all Interrupt Service Routines (ISR) for that particular
interrupt source so that the PIC can reset the processor’s In Service
Register. See also PIC and ISR.

EPROM

Erasable Programmable Read-Only Memory — a memory
technology that allows the device to be programmed (typically with
higher-than-operating voltages, e.g. 12V), with the characteristic that
any bit (or bits) may be individually programmed from a 1 state to a 0
state. To change a bit from a 0 state into a 1 state can only be
accomplished by erasing the entire device, setting all of the bits to a 1
state. Erasing is accomplished by shining an ultraviolet light through
the erase window of the device for a fixed period of time (typically
10-20 minutes). The device is further characterized by having a
limited number of erase cycles (typically 10e5 - 10e6). Contrast flash
and RAM.

event

A notification scheme used to inform a thread that a particular
condition has occurred. Events can be signals or pulses in the general
case; they can also be unblocking events or interrupt events in the
case of kernel timeouts and interrupt service routines. An event is
delivered by a thread, a timer, the kernel, or an interrupt service
routine when appropriate to the requestor of the event.

FD

File Descriptor — a client must open a file descriptor to a resource
manager via the open() function call. The file descriptor then serves
as a handle for the client to use in subsequent messages. Note that a
file descriptor is the exact same object as a connection ID (coid,
returned by ConnectAttach()).

May 31, 2004 Glossary 491

 2004, QNX Software Systems Ltd.

FIFO

First In First Out — a scheduling algorithm whereby a thread is able
to consume CPU at its priority level without bounds. See also
adaptive, round robin, and sporadic.

flash memory

A memory technology similar in characteristics to EPROM memory,
with the exception that erasing is performed electrically instead of via
ultraviolet light, and, depending upon the organization of the flash
memory device, erasing may be accomplished in blocks (typically
64k bytes at a time) instead of the entire device. Contrast EPROM
and RAM.

FQNN

Fully Qualified NodeName — a unique name that identifies a QNX
Neutrino node on a network. The FQNN consists of the nodename
plus the node domain tacked together.

garbage collection

Aka space reclamation, the process whereby a filesystem manager
recovers the space occupied by deleted files and directories.

HA

High Availability — in telecommunications and other industries, HA
describes a system’s ability to remain up and running without
interruption for extended periods of time.

handle

A pointer that the resource manager base library binds to the
pathname registered via resmgr attach(). This handle is typically used
to associate some kind of per-device information. Note that if you use
the iofunc *() POSIX layer calls, you must use a particular type of
handle — in this case called an attributes structure.

492 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

image

In the context of embedded QNX Neutrino systems, an “image” can
mean either a structure that contains files (i.e. an OS image) or a
structure that can be used in a read-only, read/write, or
read/write/reclaim FFS-2-compatible filesystem (i.e. a flash
filesystem image).

interrupt

An event (usually caused by hardware) that interrupts whatever the
processor was doing and asks it do something else. The hardware will
generate an interrupt whenever it has reached some state where
software intervention is required.

interrupt handler

See ISR.

interrupt latency

The amount of elapsed time between the generation of a hardware
interrupt and the first instruction executed by the relevant interrupt
service routine. Also designated as “Til”. Contrast scheduling
latency.

interrupt service routine

See ISR.

interrupt service thread

A thread that is responsible for performing thread-level servicing of
an interrupt.

Since an ISR can call only a very limited number of functions, and
since the amount of time spent in an ISR should be kept to a
minimum, generally the bulk of the interrupt servicing work should
be done by a thread. The thread attaches the interrupt (via
InterruptAttach() or InterruptAttachEvent()) and then blocks (via
InterruptWait()), waiting for the ISR to tell it to do something (by
returning an event of type SIGEV INTR). To aid in minimizing

May 31, 2004 Glossary 493

 2004, QNX Software Systems Ltd.

scheduling latency, the interrupt service thread should raise its
priority appropriately.

I/O message

A message that relies on an existing binding between the client and
the resource manager. For example, an IO READ message depends
on the client’s having previously established an association (or
context) with the resource manager by issuing an open() and getting
back a file descriptor. See also connect message, context, combine
message, and message.

I/O privity

A particular privilege, that, if enabled for a given thread, allows the
thread to perform I/O instructions (such as the x86 assembler in and
out instructions). By default, I/O privity is disabled, because a
program with it enabled can wreak havoc on a system. To enable I/O
privity, the thread must be running as root, and call ThreadCtl().

IPC

Interprocess Communication — the ability for two processes (or
threads) to communicate. QNX Neutrino offers several forms of IPC,
most notably native messaging (synchronous, client/server
relationship), POSIX message queues and pipes (asynchronous), as
well as signals.

IPL

Initial Program Loader — the software component that either takes
control at the processor’s reset vector (e.g. location 0xFFFFFFF0 on
the x86), or is a BIOS extension. This component is responsible for
setting up the machine into a usable state, such that the startup
program can then perform further initializations. The IPL is written in
assembler and C. See also BIOS extension signature and startup
code.

494 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

IRQ

Interrupt Request — a hardware request line asserted by a peripheral
to indicate that it requires servicing by software. The IRQ is handled
by the PIC, which then interrupts the processor, usually causing the
processor to execute an Interrupt Service Routine (ISR).

ISR

Interrupt Service Routine — a routine responsible for servicing
hardware (e.g. reading and/or writing some device ports), for
updating some data structures shared between the ISR and the
thread(s) running in the application, and for signalling the thread that
some kind of event has occurred.

kernel

See microkernel.

level-sensitive

One of two ways in which a PIC (Programmable Interrupt Controller)
can be programmed to respond to interrupts. If the PIC is operating in
level-sensitive mode, the IRQ is considered active whenever the
corresponding hardware line is active. Contrast edge-sensitive.

linearly mapped

A term indicating that a certain memory component is entirely
addressable by the processor. Contrast bank-switched.

message

A parcel of bytes passed from one process to another. The OS
attaches no special meaning to the content of a message — the data in
a message has meaning for the sender of the message and for its
receiver, but for no one else.

Message passing not only allows processes to pass data to each other,
but also provides a means of synchronizing the execution of several
processes. As they send, receive, and reply to messages, processes

May 31, 2004 Glossary 495

 2004, QNX Software Systems Ltd.

undergo various “changes of state” that affect when, and for how
long, they may run.

microkernel

A part of the operating system that provides the minimal services
used by a team of optional cooperating processes, which in turn
provide the higher-level OS functionality. The microkernel itself lacks
filesystems and many other services normally expected of an OS;
those services are provided by optional processes.

mount structure

An optional, well-defined data structure (of type iofunc mount t)
within an iofunc *() structure, which contains information used on a
per-mountpoint basis (generally used only for filesystem resource
managers). See also attributes structure and OCB.

mountpoint

The location in the pathname space where a resource manager has
“registered” itself. For example, the serial port resource manager
registers mountpoints for each serial device (/dev/ser1,
/dev/ser2, etc.), and a CD-ROM filesystem may register a single
mountpoint of /cdrom.

mutex

Mutual exclusion lock, a simple synchronization service used to
ensure exclusive access to data shared between threads. It is typically
acquired (pthread mutex lock()) and released
(pthread mutex unlock()) around the code that accesses the shared
data (usually a critical section). See also critical section.

name resolution

In a QNX Neutrino network, the process by which the Qnet network
manager converts an FQNN to a list of destination addresses that the
transport layer knows how to get to.

496 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

name resolver

Program code that attempts to convert an FQNN to a destination
address.

NDP

Node Discovery Protocol — proprietary QNX Software Systems
protocol for broadcasting name resolution requests on a QNX
Neutrino LAN.

network directory

A directory in the pathname space that’s implemented by the Qnet
network manager.

Neutrino

Name of an OS developed by QNX Software Systems.

NFS

Network FileSystem — a TCP/IP application that lets you graft
remote filesystems (or portions of them) onto your local namespace.
Directories on the remote systems appear as part of your local
filesystem and all the utilities you use for listing and managing files
(e.g. ls, cp, mv) operate on the remote files exactly as they do on
your local files.

NMI

Nonmaskable Interrupt — an interrupt that can’t be masked by the
processor. We don’t recommend using an NMI!

Node Discovery Protocol

See NDP.

node domain

A character string that the Qnet network manager tacks onto the
nodename to form an FQNN.

May 31, 2004 Glossary 497

 2004, QNX Software Systems Ltd.

nodename

A unique name consisting of a character string that identifies a node
on a network.

nonbootable

A nonbootable OS image is usually provided for larger embedded
systems or for small embedded systems where a separate,
configuration-dependent setup may be required. Think of it as a
second “filesystem” that has some additional files on it. Since it’s
nonbootable, it typically won’t contain the OS, startup file, etc.
Contrast bootable.

OCB

Open Control Block (or Open Context Block) — a block of data
established by a resource manager during its handling of the client’s
open() function. This context block is bound by the resource manager
to this particular request, and is then automatically passed to all
subsequent I/O functions generated by the client on the file descriptor
returned by the client’s open().

package filesystem

A virtual filesystem manager that presents a customized view of a set
of files and directories to a client. The “real” files are present on some
medium; the package filesystem presents a virtual view of selected
files to the client.

pathname prefix

See mountpoint.

pathname space mapping

The process whereby the Process Manager maintains an association
between resource managers and entries in the pathname space.

498 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

persistent

When applied to storage media, the ability for the medium to retain
information across a power-cycle. For example, a hard disk is a
persistent storage medium, whereas a ramdisk is not, because the data
is lost when power is lost.

Photon microGUI

The proprietary graphical user interface built by QNX Software
Systems.

PIC

Programmable Interrupt Controller — hardware component that
handles IRQs. See also edge-sensitive, level-sensitive, and ISR.

PID

Process ID. Also often pid (e.g. as an argument in a function call).

POSIX

An IEEE/ISO standard. The term is an acronym (of sorts) for Portable
Operating System Interface — the “X” alludes to “UNIX”, on which
the interface is based.

POSIX layer calls

Convenient set of library calls for writing resource managers. The
POSIX layer calls can handle even more of the common-case
messages and functions than the base layer calls. These calls are
identified by the iofunc *() prefix. In order to use these (and we
strongly recommend that you do), you must also use the well-defined
POSIX-layer attributes (iofunc attr t), OCB (iofunc ocb t),
and (optionally) mount (iofunc mount t) structures.

preemption

The act of suspending the execution of one thread and starting (or
resuming) another. The suspended thread is said to have been
“preempted” by the new thread. Whenever a lower-priority thread is

May 31, 2004 Glossary 499

 2004, QNX Software Systems Ltd.

actively consuming the CPU, and a higher-priority thread becomes
READY, the lower-priority thread is immediately preempted by the
higher-priority thread.

prefix tree

The internal representation used by the Process Manager to store the
pathname table.

priority inheritance

The characteristic of a thread that causes its priority to be raised or
lowered to that of the thread that sent it a message. Also used with
mutexes. Priority inheritance is a method used to prevent priority
inversion.

priority inversion

A condition that can occur when a low-priority thread consumes CPU
at a higher priority than it should. This can be caused by not
supporting priority inheritance, such that when the lower-priority
thread sends a message to a higher-priority thread, the higher-priority
thread consumes CPU on behalf of the lower-priority thread. This is
solved by having the higher-priority thread inherit the priority of the
thread on whose behalf it’s working.

process

A nonschedulable entity, which defines the address space and a few
data areas. A process must have at least one thread running in it —
this thread is then called the first thread.

process group

A collection of processes that permits the signalling of related
processes. Each process in the system is a member of a process group
identified by a process group ID. A newly created process joins the
process group of its creator.

500 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

process group ID

The unique identifier representing a process group during its lifetime.
A process group ID is a positive integer. The system may reuse a
process group ID after the process group dies.

process group leader

A process whose ID is the same as its process group ID.

process ID (PID)

The unique identifier representing a process. A PID is a positive
integer. The system may reuse a process ID after the process dies,
provided no existing process group has the same ID. Only the Process
Manager can have a process ID of 1.

pty

Pseudo-TTY — a character-based device that has two “ends”: a
master end and a slave end. Data written to the master end shows up
on the slave end, and vice versa. These devices are typically used to
interface between a program that expects a character device and
another program that wishes to use that device (e.g. the shell and the
telnet daemon process, used for logging in to a system over the
Internet).

pulses

In addition to the synchronous Send/Receive/Reply services, QNX
Neutrino also supports fixed-size, nonblocking messages known as
pulses. These carry a small payload (four bytes of data plus a single
byte code). A pulse is also one form of event that can be returned
from an ISR or a timer. See MsgDeliverEvent() for more information.

Qnet

The native network manager in QNX Neutrino.

May 31, 2004 Glossary 501

 2004, QNX Software Systems Ltd.

QoS

Quality of Service — a policy (e.g. loadbalance) used to connect
nodes in a network in order to ensure highly dependable transmission.
QoS is an issue that often arises in high-availability (HA) networks as
well as realtime control systems.

RAM

Random Access Memory — a memory technology characterized by
the ability to read and write any location in the device without
limitation. Contrast flash and EPROM.

raw mode

In raw input mode, the character device library performs no editing on
received characters. This reduces the processing done on each
character to a minimum and provides the highest performance
interface for reading data. Also, raw mode is used with devices that
typically generate binary data — you don’t want any translations of
the raw binary stream between the device and the application.
Contrast canonical mode.

replenishment

In sporadic scheduling, the period of time during which a thread is
allowed to consume its execution budget.

reset vector

The address at which the processor begins executing instructions after
the processor’s reset line has been activated. On the x86, for example,
this is the address 0xFFFFFFF0.

resource manager

A user-level server program that accepts messages from other
programs and, optionally, communicates with hardware. QNX
Neutrino resource managers are responsible for presenting an
interface to various types of devices, whether actual (e.g. serial ports,
parallel ports, network cards, disk drives) or virtual (e.g. /dev/null,
a network filesystem, and pseudo-ttys).

502 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

In other operating systems, this functionality is traditionally
associated with device drivers. But unlike device drivers, QNX
Neutrino resource managers don’t require any special arrangements
with the kernel. In fact, a resource manager looks just like any other
user-level program. See also device driver.

RMA

Rate Monotonic Analysis — a set of methods used to specify,
analyze, and predict the timing behavior of realtime systems.

round robin

Scheduling algorithm whereby a thread is given a certain period of
time to run. Should the thread consume CPU for the entire period of
its timeslice, the thread will be placed at the end of the ready queue
for its priority, and the next available thread will be made READY. If
a thread is the only thread READY at its priority level, it will be able
to consume CPU again immediately. See also adaptive, FIFO, and
sporadic.

runtime loading

The process whereby a program decides while it’s actually running
that it wishes to load a particular function from a library. Contrast
static linking.

scheduling latency

The amount of time that elapses between the point when one thread
makes another thread READY and when the other thread actually gets
some CPU time. Note that this latency is almost always at the control
of the system designer.

Also designated as “Tsl”. Contrast interrupt latency.

session

A collection of process groups established for job control purposes.
Each process group is a member of a session. A process belongs to
the session that its process group belongs to. A newly created process

May 31, 2004 Glossary 503

 2004, QNX Software Systems Ltd.

joins the session of its creator. A process can alter its session
membership via setsid(). A session can contain multiple process
groups.

session leader

A process whose death causes all processes within its process group
to receive a SIGHUP signal.

software interrupts

Similar to a hardware interrupt (see interrupt), except that the source
of the interrupt is software.

sporadic

Scheduling algorithm whereby a thread’s priority can oscillate
dynamically between a “foreground” or normal priority and a
“background” or low priority. A thread is given an execution budget
of time to be consumed within a certain replenishment period. See
also adaptive, FIFO, and round robin.

startup code

The software component that gains control after the IPL code has
performed the minimum necessary amount of initialization. After
gathering information about the system, the startup code transfers
control to the OS.

static bootfile

An image created at one time and then transmitted whenever a node
boots. Contrast dynamic bootfile.

static linking

The process whereby you combine your modules with the modules
from the library to form a single executable that’s entirely
self-contained. The word “static” implies that it’s not going to change
— all the required modules are already combined into one.

504 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

system page area

An area in the kernel that is filled by the startup code and contains
information about the system (number of bytes of memory, location
of serial ports, etc.) This is also called the SYSPAGE area.

thread

The schedulable entity under QNX Neutrino. A thread is a flow of
execution; it exists within the context of a process.

timer

A kernel object used in conjunction with time-based functions. A
timer is created via timer create() and armed via timer settime(). A
timer can then deliver an event, either periodically or on a one-shot
basis.

timeslice

A period of time assigned to a round-robin or adaptive scheduled
thread. This period of time is small (on the order of tens of
milliseconds); the actual value shouldn’t be relied upon by any
program (it’s considered bad design).

May 31, 2004 Glossary 505

Index

!

resmgr attr t structure 184
<ctype.h> 6
<fcntl.h> 6
<float.h> 6
<limits.h> 5, 6
<math.h> 6
<process.h> 6
<setjmp.h> 5, 6
<signal.h> 5, 6
<stdio.h> 6
<stdlib.h> 6
<string.h> 6
<sys.types.h> 6
<sys/stat.h> 6, 104
<termios.h> 6
<time.h> 6
<unistd.h> 6
“Hello, world!” program 8

A

access() 138, 139

ARM memory management 459
ASFLAGS macro 297
ASVFLAG * macro 297
attribute structure

extending to contain pointer to
resource 139

in resource managers 99

B

big-endian 268
BLOCKED state 42
blocking states 43
build-cfg 304
build-hooks 304

configure opts 305
hook pinfo() 304, 307
hook postconfigure() 304, 306
hook postmake() 304, 307
hook preconfigure() 304, 305
hook premake() 304, 307
make CC 305
make cmds 305
make opts 305

May 31, 2004 Index 507

Index  2004, QNX Software Systems Ltd.

SYSNAME 304
TARGET SYSNAME 305

buildfile 11

C

cache, ARM 460
CCFLAGS macro 297
CCVFLAG * macro 297
ChannelCreate() 164, 166
channels, side 80
CHECKFORCE macro 285
chmod() 88, 103
chown() 88, 103
close() 132, 138, 163, 164
coexistence of OS versions 3
combine messages 131–139
common.mk file 287
configure 303
configure opts 305
connect functions table

in resource managers 91
connect message 183
ConnectAttach()

side channels 80
counters

in attribute structure of resource
managers 102

CP HOST macro 293
CPU macro 294
CPU ROOT macro 294
cross-development 8

deeply embedded 11
network filesystem 10
with debugger 11

D

debug agent 21
pdebug 23
process-level 22

debugger See also gdb
:: 376
@ 375, 378
(comment) 322
$cdir 371
$cwd 331, 371
{...} 376, 404
address 399
all-registers 396
args 330, 331, 366
assembly-language 373
assertions 347
attach 333
auto-solib-add 374
awatch 343
backtrace 362
break 337, 338, 348, 359
breakpoints 342
breakpoints

bugs, working around 351
command list 350
conditions 347
defined 337
deleting 345
disabling 346
enabling 346
exceptions 344
hardware-assisted 340
ignore count 349
listing 341
menus 351
one-stop 340

508 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

regular expression 340
setting 338
threads 359

call 330, 406
call scratch address 406
catch 344, 366
clear 345
commands 350
commands

abbreviating 321, 322
blank line 322
comments 322
completion 322
initialization file 321
repeating 322
syntax 321

compiling for debugging 328
complete 326
condition 348
confirm 334
continue 330, 333, 349–352
continuing 352
convenience 395
convenience variables 379,

394
$ 341, 372, 382, 395
$ 382, 395
$ exitcode 395
$bpnum 338
printing 395

copying 327
core-file 407
data

array constants 375
artificial arrays 378
automatic display 383
casting 375, 379

demangling names 390
examining 374
examining memory 381
expressions 375
floating-point hardware 398
output formats 379
print settings 385
program variables 376
registers 396
static members 392
value history 392
virtual function tables 392

delete 345
demangle-style 391
detach 334
directories 371
directory 370
directory

compilation 371
current working 371

disable display 384
disassemble 371, 382
display 383–385
down 364
down-silently 364
echo 350
enable display 384
environment 330, 332
exceptions 344
exec-file 407
execution

altering 402
calling a function 406
continuing at a different

address 404
patching programs 407

May 31, 2004 Index 509

Index  2004, QNX Software Systems Ltd.

returning from a
function 406

signalling your program 405
fg 352
file 333
finish 354, 406
float 398
forward-search 369
frame 362, 363, 365
functions 401
handle 357, 358
hbreak 340
help 324
heuristic-fence-post 366
ignore 349
info 326, 341
inspect 374
jump 353, 404
kill command 334
kill utility 405
libraries, shared 373
line 371, 386
list 364, 367
listsize 367, 368
locals 366
maint info 342
maint print 402
memory, examining 381
msymbols 402
next 354
nexti 356
output 350
path 331
paths 332
pipes, problems with 330
print 330, 374, 380, 392, 403
print address 385, 386

print array 388
print asm-demangle 391
print demangle 390
print elements 388
print

max-symbolic-offset 387
print null-stop 388
print object 391, 392
print pretty 388, 389
print

sevenbit-strings 389
print

static-members 392
print

symbol-filename 386,
387

print union 389, 390
print vtbl 392
printf 350
process

connecting to 333
detaching from 334
killing 334
multiple 336

program 337
program

arguments 330
environment 330, 331
exit code 395
killing 334
multithreaded 334
path 331
reloading 334
set qnxinheritenv 331
standard input and

output 332
psymbols 402

510 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

ptype 375, 399
QNX extensions 321
qnxinheritenv 331
qnxremotecwd 329
qnxtimeout 329
rbreak 340
registers 396
registers 396
return 353, 406
reverse-search 369
run 329, 330, 333
rwatch 343
search 369
search path 332
select-frame 362
set 326, 403
set variable 403
shared libraries 373
sharedlibrary 373
show 326, 327
signal 405
signals 357
signals 357, 405
silent 350, 351
solib-absolute-prefix 374
solib-search-path 373,

374
source 400
source files

directories 370
examining 367
line numbers 387
machine code 371
printing lines 367
searching 369

sources 400
stack 363

stack frames
about 361
backtraces 362
MIPS 366
printing information 365
return, when using 406
selecting 362, 363

stack, examining 360
step 350, 353
stepi 354, 356
stepping 352
symbol table, examining 398
symbol-reloading 401, 402
symbols 402
target qnx 328
tbreak 340, 347
thbreak 340
thread 334, 335
thread apply 334, 336
threads 334, 335
threads 359

applying command to 334,
336

current 335
information 334
switching among 334, 335

types 400
undisplay 384
until 347, 355
up 364
up-silently 364
value history 400
values 393
variables 401
variables, assigning to 403
version 327
version number 327

May 31, 2004 Index 511

Index  2004, QNX Software Systems Ltd.

warranty 327
watch 343, 348
watchpoints

command list 350
conditions 348
defined 337
listing 341
setting 343
threads 343

whatis 399
where 363
working directory 331
write 407
x 375, 381

debugging 20
cross-development 21
self-hosted 20
symbolic 21
via TCP/IP link 25

DEFFILE macro 296
devctl() 138, 186
devices

/dev/null 91
/dev/shmem 11

dispatch 90
dispatch t 90
dispatch create() 90
dup() 163, 164
dynamic

library 16
linking 15
port link via TCP/IP 26

E

EAGAIN 123
EARLY DIRS macro 284
edge-sensitive interrupts 227
End of Interrupt (EOI) 229
ENOSYS 87, 124, 126, 186
environment variables

LD LIBRARY PATH 373
PATH 373
PROCESSOR 373
QNX CONFIGURATION 3
QNX HOST 4
QNX TARGET 4
SHELL 330

EOF 116
EOK 135
exceptions, floating-point 57
EXCLUDE OBJS macro 296
execing 54
exit status 57
exit() 40
EXTRA INCVPATH macro 296
EXTRA LIBVPATH macro 296
EXTRA OBJS macro 297
EXTRA SRCVPATH macro 296

F

Fast Context Switch Extension
(FCSE) 460

FCSE (Fast Context Switch
Extension) 460

fgetc() 107
FIFO (scheduling method) 47
FILE OFFSET BITS 5

512 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

files
.1 extension 18
.a suffix 15
.so suffix 16
/usr/include/ 283
/usr/include/mk/ 283
common.mk 287
debugger initialization 321
host-specific 4
inetd.conf 26
large, support for 5
Makefile 281
Makefile.dnm 284
offsets, 64-bit 5
qconf-qrelease.mk 291
qconfig.mk 291
qrules.mk 294
qtargets.mk 298
recurse.mk 283
target-specific 4

filesystem
/proc 21
builtin via /dev/shmem 11

find malloc ptr() 256
floating-point exceptions 57
FQNN ((Fully Qualified Node

Name) 474
fread() 107
fstat() 104, 132, 138
FTYPE ANY 92
FTYPE MQUEUE 92

Fully Qualified Node Name
(FQNN) 474

G

gcc

compiling for debugging 328
GNU configure 303
GNUmakefile 303

H

helper functions
in resource managers 114

hook pinfo() 304, 307
hook postconfigure() 304, 306
hook postmake() 304, 307
hook preconfigure() 304, 305
hook premake() 304, 307
host-specific files, location of 4

I

I/O
functions table in resource

managers 91
message 183
ports 459
privity 459

INCVPATH macro 296
initialization, debugger

commands 321
INSTALLDIR macro 298
interprocess communication

See also IPC
interrupt handler 38, 41

will preempt any thread 42

May 31, 2004 Index 513

Index  2004, QNX Software Systems Ltd.

Interrupt Request (IRQ)
defined 225

Interrupt Service Routine See ISR
InterruptAttach() 167, 225, 232
InterruptAttachEvent() 167, 225,

232
InterruptDetach() 225
InterruptLock() 232
Interruptmask() 231
interrupts

defined 225
edge-triggered 228
latency 237
level-sensitive 228, 229
sharing 237

interrupts, masking 459
InterruptUnlock() 232
InterruptUnmask()

must be called same number of
times as InterruptMask()
231

InterruptWait() 167, 169
io read structure 107
IO CHOWN 105
IO CLOSE 133, 138, 164

io close() 138, 139
IO CLOSE DUP 80
IO CLOSE OCB 130, 164
IO COMBINE FLAG 135
IO CONNECT 79, 94, 164, 165,

179, 183
IO CONNECT message 80, 178
IO CONNECT COMBINE 138, 139
IO CONNECT COMBINE CLOSE 138
IO DEVCTL 138, 142, 143, 145,

146, 186
io devctl() 139

IO DUP 164
iofunc attr t 99
iofunc mount t

extending 142
IOFUNC ATTR ATIME 100
IOFUNC ATTR CTIME 100
IOFUNC ATTR DIRTY MODE 100
IOFUNC ATTR DIRTY MTIME 101
IOFUNC ATTR DIRTY NLINK 100
IOFUNC ATTR DIRTY OWNER 100
IOFUNC ATTR DIRTY RDEV 101
IOFUNC ATTR DIRTY SIZE 101
IOFUNC ATTR DIRTY TIME 101,

130
iofunc attr init() 102
iofunc attr lock() 101, 115, 137
IOFUNC ATTR PRIVATE 101
iofunc attr unlock() 101, 116, 137
iofunc check access() 180
iofunc chmod() 115
iofunc chmod default() 114, 115
iofunc chown default() 103
iofunc func init() 91
iofunc lock() 102
iofunc lock default() 102, 103
iofunc mmap() 103
iofunc mmap default() 103
IOFUNC MOUNT 32BIT 105
IOFUNC MOUNT FLAGS PRIVATE 105
IOFUNC NFUNCS 106

iofunc ocb attach() 102, 116
iofunc ocb calloc() 140
iofunc ocb detach() 102
iofunc ocb free() 140
IOFUNC OCB PRIVILEGED 99
iofunc open() 116

514 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

iofunc open default() 103, 112,
115

IOFUNC PC CHOWN RESTRICTED 105
IOFUNC PC LINK DIR 106
IOFUNC PC NO TRUNC 105
IOFUNC PC SYNC IO 105
iofunc read default() 116
iofunc read verify() 116
iofunc stat() 115
iofunc stat default() 114, 115
iofunc time update() 104
iofunc write default() 116
iofunc write verify() 116
io lock ocb() 136, 138, 139
IO LSEEK 133–136, 181
IO LSEEK message 132–134, 181

io lseek() 136
IO MSG 186
IO NOTIFY 155

io notify() 150
IO OPEN 105, 165, 178

io open handler 80
io open() 107, 112, 113, 138, 139,

165, 179
IO PATHCONF 105, 106
IO READ 133–135, 181

io read handler 80, 81, 84, 107, 181
IO READ message 80, 81, 94, 107,

108, 116, 127, 132–134,
178, 180–182, 184

io read() 108, 176
IO STAT 82, 130, 138, 139

io stat() 138, 139
IO UNBLOCK 133, 165

io unlock ocb() 136, 138, 139
IOV 181
IO WRITE 80, 136

io write handler 80
IO WRITE message 80, 116, 127

io write() 116, 117, 136, 176
IO XTYPE NONE 125
IO XTYPE OFFSET 125, 126, 129

IPC (interprocess
communication) 37

ISR
coupling data structure

with 233
defined 225
environment 236
functions safe to use

within 230
preemption considerations 232
pseudo-code example 234
responsibilities of 229
returning SIGEV INTR 234
returning SIGEV PULSE 233
returning SIGEV SIGNAL 233
rules of acquisition 226
signalling a thread 232

L

large-file support 5
LARGEFILE64 SOURCE 5

LATE DIRS macro 284
LDFLAGS macro 297
LD LIBRARY PATH 373
ldqnx.so.2 12
LDVFLAG * macro 297
level-sensitive interrupts 227
library

dynamic 16

May 31, 2004 Index 515

Index  2004, QNX Software Systems Ltd.

resource manager 133
static 15

LIBS macro 297
LIBVPATH macro 296
linker, runtime 12
linking

dynamic 15
static 15

LINKS macro 298
LIST macro 285, 301
little-endian 268
LN HOST macro 293
lseek() 88, 99, 103, 131, 132, 135,

136

M

make CC 305
make cmds 305
Makefile

ASFLAGS macro 297
ASVFLAG * macro 297
CCFLAGS macro 297
CCVFLAG * macro 297
CHECKFORCE macro 285
CP HOST macro 293
CPU level 287
CPU macro 294
CPU ROOT macro 294
DEFFILE macro 296
EARLY DIRS macro 284
EXCLUDE OBJS macro 296
EXTRA INCVPATH macro 296
EXTRA LIBVPATH macro 296
EXTRA OBJS macro 297

EXTRA SRCVPATH macro 296
INCVPATH macro 296
INSTALLDIR macro 298
LATE DIRS macro 284
LDFLAGS macro 297
LDVFLAG * macro 297
LIBS macro 297
LIBVPATH macro 296
LINKS macro 298
LIST macro 285, 301
LN HOST macro 293
MAKEFILE macro 285
NAME macro 295
OPTIMIZE TYPE macro 297
OS level 286
OS macro 295
OS ROOT macro 295
PINFO macro 299
POST BUILD macro 299
POST CINSTALL macro 299
POST CLEAN macro 298
POST HINSTALL macro 299
POST ICLEAN macro 299
POST INSTALL macro 299
POST TARGET macro 298
PRE BUILD macro 299
PRE CINSTALL macro 299
PRE CLEAN macro 298
PRE HINSTALL macro 299
PRE ICLEAN macro 299
PRE INSTALL macro 299
PRE TARGET macro 298
PRODUCT macro 295
PRODUCT ROOT macro 295
project level 286
PROJECT macro 295
PROJECT ROOT macro 295

516 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

PWD HOST macro 293
qconf-qrelease.mk include

file 291
QCONFIG macro 291
qconfig.mk include file 291
qconfig.mk macros 292
qrules.mk include file 294
qtargets.mk include file 298
RM HOST macro 293
section level 286
SECTION macro 295
SECTION ROOT macro 295
SO VERSION macro 299
SRCS macro 296
SRCVPATH macro 295
TOUCH HOST macro 293
USEFILE macro 298
variant level 287
VARIANT LIST macro 294
VFLAG * macro 297

MAKEFILE macro 285
Makefile.dnm file 284
make opts 305
malloc dump unreferenced() 259
mallopt() 251
memory

ARM/Xscale processors 459
mapping 463

MIPS 276, 277
mkifs 13
mknod() 101
mmap() 463
mount structure

extending 142
in resource managers 105

mptr() 257
MsgDeliverEvent() 163

MsgRead() 136
MsgReceive() 160, 163, 165, 166,

169, 173
MsgReply() 165, 166
MsgSend() 117, 164–166
MsgSendPulse() 163
MsgWrite() 137
mutex 43, 50, 132
MY DEVCTL GETVAL 145
MY DEVCTL SETGET 145
MY DEVCTL SETVAL 145

N

NAME macro 295
ntoarm-gdb 22
ntomips-gdb 22
ntoppc-nto-gdb 22
ntosh-gdb 22
NTO SIDE CHANNEL 80
NTO TCTL IO 459, 464
ntox86-gdb 22

O

OCB
adding entries to standard

iofunc *() OCB 139
in resource managers 97

O DSYNC 105
offsets, 64-bit 5
O NONBLOCK 123
open() 88, 93, 97, 99, 132, 138,

163, 164, 183, 184

May 31, 2004 Index 517

Index  2004, QNX Software Systems Ltd.

OPTIMIZE TYPE macro 297
O RSYNC 105
OS macro 295
OS versions, coexistence of 3
OS ROOT macro 295
O SYNC 105

P

package file (QPK) 413
package manifest file (QPM) 411
package-generation file (QPG) 423
packager 411
packages, creating 411
PATH 373
pathname

can be taken over by resource
manager 177

prefix 177
pathname delimiter

in QNX docs xx
must be forward slash (/) in

scripts xx
pdebug

for serial links 23
Photon 38

launch menu 420
PIC 227
PINFO 299, 307
polling 43
POOL FLAG EXIT SELF 97, 174
POOL FLAG USE SELF 174
ports 459
POSIX C SOURCE 5

POST BUILD macro 299

POST CINSTALL macro 299
POST CLEAN macro 298
POST HINSTALL macro 299
POST ICLEAN macro 299
POST INSTALL macro 299
postmortem debugging 58
POST TARGET macro 298
PPC 276
PPS 277
PRE BUILD macro 299
PRE CINSTALL macro 299
PRE CLEAN macro 298
PRE HINSTALL macro 299
PRE ICLEAN macro 299
PRE INSTALL macro 299
PRE TARGET macro 298
priorities 41
priority

effective 41
range 41
real 41

privity, I/O 459
process

defined 40
multithreaded, purpose of 49

processes
can be started/stopped

dynamically 39
reasons for breaking application

into multiple 38
starting via shell script 53

PROCESSOR 373
procnto-smp 311
PRODUCT macro 295
PRODUCT ROOT macro 295
Programmable Interrupt Controller

See PIC

518 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

PROJECT macro 295
PROJECT ROOT macro 295
PROT NOCACHE 464
PROT READ 463
PROT WRITE 463
pthread exit() 40
pulse attach() 160, 163
pulses

and library 160
associating with a handler 160
interrupt handlers 233
why used by resource

managers 160
PWD HOST 293

Q

qcc

-ansi 4
compiling for debugging 328

qconfig 3
QNX package file (QPK) 413
QNX package manifest file

(QPM) 411
QNX package-generation file

(QPG) 423
QNX repository file (QPR) 413
QNX CONFIGURATION 3
QNX HOST 4
QNX SOURCE 5, 6

QNX TARGET 4
QPG 423
QPK 413
QPM 411
QPR 413

QWinCfg 3

R

read() 81, 88, 93, 103, 107, 132,
164, 184

readblock() 132–134, 137
readcond() 129
readdir() 107, 182
ready queue 42, 43
READY state 42
recurse.mk file 283
REPLY-blocked 165
repositories, generating 448
repository file (QPR) 413
resmgr attach() 140, 175–178
RESMGR FLAG ATTACH OTHERFUNC

185
RESMGR FLAG DIR message 178

resmgr msgread() 118, 136
resmgr msgwrite() 137
resmgr open bind() 165
resource manager

architecture 83
attribute structure 99

counters 102
time members 104

connect functions table 91
connect messages 183
dispatch 90
helper functions 114
how filesystem type differs from

device type 178
I/O functions table 91
I/O messages 183

May 31, 2004 Index 519

Index  2004, QNX Software Systems Ltd.

messages in 183, 185, 186
mount structure 105
sample code 88
threads in 101, 172

RM HOST macro 293
round-robin scheduling 48
runtime linker 12
runtime loading 15

S

SCHED FIFO 46, 47
SCHED OTHER 46
SCHED RR 46, 48
SCHED SPORADIC 46
scheduling 41
scheduling algorithms 46
sched yield() 46
script

shell See shell script
SECTION macro 295
SECTION ROOT macro 295
self-hosted development 8
shared objects

building 289
version number 299

SHELL 330
shell script, starting processes

via 53
shm ctl() 463
SHMCTL ANON 464
SHMCTL GLOBAL 463, 464
SHMCTL LOWERPROT 464, 465
SHMCTL PHYS 463, 464
shm open() 464

side channels 80
SIGEV INTR 166, 169
SIGFPE 57
signals

debugger 357, 405
default action 57
interrupt handlers 233
postmortem debugging 58
resource managers 164
threads 40

SIGSEGV 57
SLIB packages 430
SMP

building an image for 311
interrupts and 232
sample buildfile for 311

software bus 37
software, packaging 411
SO VERSION macro 299
SRCS macro 296
SRCVPATH macro 295
starter process 53, 61
stat() 132, 133, 138, 182
static

library 15
linking 15
port link via TCP/IP 25

strtok() 180
Supervisor mode 459
SYSNAME 304
System mode 459

T

target-specific files, location of 4

520 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

TARGET SYSNAME 305
TCP/IP

debugging and 25
dynamic port link 26
static port link 25

ThreadCtl() 459
THREAD POOL PARAM T 96
threads

“main” 40
defined 40
resource managers 87, 94
stacks 462
system mode, executing in 459
using to handle interrupts 235

time members
in attribute structure of resource

managers 104
timeslice

defined 49
TOUCH HOST macro 293

U

unblocking 164
USEFILE macro 298
User mode 459

V

VARIANT LIST macro 294
VFLAG * macro 297

W

write() 88, 93, 103, 132, 136
writeblock() 136

X

x86
accessing data objects via any

address 269
distinct address spaces 267

Xscale memory management 459

May 31, 2004 Index 521

