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The Programmer’s Guide is intended for developers who are building
applications that will run under the QNX Neutrino Realtime

Operating System.

Depending on the nature of your application and target platform, you
may also need to refer to Building Embedded Systems.

This table may help you find what you need in the Programmer’s

Guide:

When you want to:

Goto:

Get started with a “Hello,
world!” program

Get an overview of the QNX
Neutrino process model and
scheduling methods

Create and terminate processes

Develop a device driver and/or
resource manager

Use native networking

Learn about ISRs in QNX
Neutrino

Analyze and detect problems
related to dynamic memory
management

Deal with non-x86 issues (e.g.
big-endian vs little-endian)

Compiling and Debugging

Programming Overview

Processes

Writing a Resource Manager

Transparent Distributed
Processing Using Qnet

Writing an Interrupt Handler

Heap Analysis: Making
Memory Errors a Thing of the
Past

Appendix A: Freedom from
Hardware and Platform
Dependencies

continued. . .
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When you want to: Goto:

Understand our makefile Appendix B: Conventions for
methodology Makefiles and Directories
Write programs for SMP Appendix C: Developing SMP
machines Systems

Learn how to use the GDB Appendix D: Using GDB
debugger

Get your software ready to Appendix E: Creating Packages
distribute

Find out about using memory Appendix F: ARM Memory
on ARM targets Management

Find out about advanced Qnet Appendix G: Advanced Qnet
topics Topics

This guide also contains a glossary of terms used in the QNX
Neutrino OS docs.

We assume that you’ve already installed QNX Neutrino and that
you’re familiar with its architecture. For a detailed overview, see the
System Architecture manual.

Note to Windows users

In the QNX documentation, we use a forward slash (/) as a delimiter
in all pathnames, including those pointing to Windows files.

We also generally follow POSIX/UNIX filesystem conventions.

Recommended reading

For the most part, the information that’s documented in the
Programmer’s Guide is specific to QNX. For more general
information, we recommend the following books:

Threads:
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e Butenhof, David R. 1997. Programming with POSIX Threads.
Reading, MA: Addison-Wesley Publishing Company. ISBN
0-201-63392-2.

TCP/IP programming (note that some of the advanced API features
mentioned in the following books might not be supported):

e Hunt, Craig. 2002. TCP/IP Network Administration. Sebastopol,
CA: O’Reilly & Associates. ISBN 0-596-00297-1.

e Stevens, W. Richard. 1997. Unix Network Programming:
Networking APIs: Sockets and XTI. Upper Saddle River, NJ:
Prentice-Hall PTR. ISBN 0-13-490012-X.

e Stevens, W. Richard. 1993. TCP/IP Hlustrated, Volume 1 The
Protocols. Reading, MA: Addison-Wesley Publishing Company.
ISBN 0-201-63346-9.

e Stevens, W. Richard. 1995. TCP/IP Hlustrated, Volume 2 The
Implementation. Reading, MA: Addison-Wesley Publishing
Company. ISBN 0-201-63354-X.
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The QNX Momentics development suite lets you install and work
with multiple versions of Neutrino. Whether you’re using the
command line or the IDE, you can choose which version of the OS to
build programs for.

Coexistence of 6.3.0 and 6.2.1 is supported only on Windows and
Solaris hosts.

When you install QNX Momentics, you get a set of configuration files
that indicate where you’ve install the software. The
QNX_CONFIGURATION environment variable stores the location
of the configuration files for the installed versions of Neutrino; on a
self-hosted Neutrino machine, the default is /etc/qgconfig.

If you’re using the command-line tools, use the geconfig utility to
configure your machine to use a specific version of Neutrino.

On Windows hosts, use gwincC£g, a graphical front end for gconfig.
You can launch it from the Start menu.

Here’s what gconfig does:

e If you run it without any options, gcon£ig lists the versions that
are installed on your machine.

e If you use the -e option, you can use qconfig to set up the
environment for building software for a specific version of the OS.
For example, if you’re using the Korn shell (ksh), you can
configure your machine like this:
eval ‘qconfig -n "QNX 6.3.0 Install" -ef

When you start the IDE, it uses your current gconfig choice as the
default version of the OS; if you haven’t chosen a version, the IDE
chooses an entry from the directory identified by
QNX_CONFIGURATION. If you want to override the IDE’s choice,

Chapter 1 ¢ Compiling and Debugging 3
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you can choose the appropriate build target. For details, see “\ersion
coexistence” in the Concepts chapter of the IDE User’s Guide.

Neutrino uses these environment variables to locate files on the host
machine:

QNX_HOST The location of host-specific files.

ONX_TARGET

The location of target backends on the host
machine.

The qeconfig utility sets these variables according to the version of
QNX Momentics that you specified.

Conforming to standards

4

The header files supplied with the C library provide the proper
declarations for the functions and for the number and types of
arguments used with them. Constant values used in conjunction with
the functions are also declared. The files can usually be included in
any order, although individual function descriptions show the
preferred order for specific headers.

When the -ansi option is used, gcc compiles strict ANSI code. Use
this option when you’re creating an application that must conform to
the ANSI standard. The effect on the inclusion of ANSI- and
POSIX-defined header files is that certain portions of the header files
are omitted:

e for ANSI header files, these are the portions that go beyond the
ANSI standard

e for POSIX header files, these are the portions that go beyond the
POSIX standard

You can then use the gec -D option to define feature-test macros to
select those portions that are omitted. Here are the most commonly
used feature-test macros:
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_POSIX_C_SOURCE=199506
Include those portions of the header files that relate to the
POSIX standard (IEEE Standard Portable Operating System
Interface for Computer Environments - POSIX 1003.1, 1996)
_FILE_OFFSET_BITS=64
Make the libraries use 64-bit file offsets.
_LARGEFILE64_SOURCE
Include declarations for the functions that support large files
(those whose names end with 64).
-QNX_SOURCE

Include everything defined in the header files. This is the
default.

Feature-test macros may be defined on the command line, or in the
source file before any header files are included. The latter is
illustrated in the following example, in which an ANSI- and
POSIX-conforming application is being developed.

#define _POSIX_C_SOURCE=199506

#include <limits.h>
#include <stdio.h>

#if defined (_QNX_SOURCE)
#include "non_POSIX_headerl.h"
#include "non_POSIX_header2.h"
#include "non_POSIX_header3.h"

#endif

The source code is then compiled using the -ansi option.

The following ANSI header files are affected by the
_POSIX_C_SOURCE feature test macro:

® <limits.h>
® <setjmp.h>

® <signal.h>

May 31, 2004 Chapter 1 « Compiling and Debugging 5
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6

® <stdio.h>

® <stdlib.h>

e <time.h>

The following ANSI and POSIX header files are affected by the
_QONX_SOURCE feature test macro:

Header file Type
<ctype.h> ANSI
<fentl.h> POSIX
<float.h> ANSI
<limits.h> ANSI
<math.h> ANSI
<process.h> extension to POSIX
<setjmp.h> ANSI
<signal.h> ANSI
<sys/stat.h> POSIX
<stdio.h> ANSI
<stdlib.h> ANSI
<string.h> ANSI
<termios.h> POSIX
<time.h> ANSI
<sys/types.h> POSIX
<unistd.h> POSIX
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Header files in include

Header files in include

The include directory includes the following subdirectories (in
addition to the usual sys):

arpa

hw

arm,
mips,

ppc,
sh,
x86

net
netinet

snmp

ARPA header files concerning the Internet, FTP and
TELNET.

Descriptions of various hardware devices.

CPU-specific header files. You typically don’t need to
include them directly — they’re included
automatically. There are some files that you might
want to look at:

e Filesending in *intr.h describe interrupt vector
numbers for use with InterruptAttach() and
InterruptAttachEvent().

e Files ending with *cpu.h describe the registers and
other information about the processor.

Network interface descriptions.
Header files concerning TCP/IP.

Descriptions for the Simple Network Management
Protocol (SNMP).

Self-hosted or cross-development

In the rest of this chapter, we’ll describe how to compile and debug a
QNX system. Your QNX system might be anything from a deeply
embedded turnkey system to a powerful multiprocessor server. You’ll
develop the code to implement your system using development tools

May 31, 2004
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running on the QNX platform itself or on any other supported
cross-development platform.

QNX supports both of these development types:
e self-hosted — you develop and debug on the same system

e cross-development — you develop on your host system, then
transfer and debug the executable on your target hardware.

This section describes the procedures for compiling and debugging
for both types.

A simple example

8

We’ll now go through the steps necessary to build a simple QNX
system that runs on a standard PC and prints out the text
“Hello, world!” — the classic first C program.

Let’s look at the spectrum of methods available to you to run your
executable:

If your environment is: Then you can:

Self-hosted Compile and link, then run on
host

Cross-development, network Compile and link, load over

filesystem link network filesystem, then run on
target

Cross-development, debugger Compile and link, use debugger

link as a “network filesystem” to
transfer executable over to
target, then run on target

Cross-development, rebuilding ~ Compile and link, rebuild entire
the image image, reboot target.

Which method you use depends on what’s available to you. All the
methods share the same initial step — write the code, then compile
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and link it for QNX on the platform that you wish to run the program
on.

You can choose how you wish to compile and link your programs:
you can use tools with a command-line interface (via the qce
command) or you can use an IDE (Integrated Development
Environment) with a graphical user interface (GUI) environment. Our
samples here illustrate the command-line method.

The “Hello, world!” program itself is very simple:

#include <stdio.h>
int

main (void)

{

printf ("Hello, world!\n");
return (0);

You compile it for PowerPC (big-endian) with the single line:

gcc -V gcc_ntoppcbe hello.c -o hello

This executes the C compiler with a special cross-compilation flag,
-V gcc_ntoppcbe, that tells the compiler to use the gec compiler,
QNX-specific includes, libraries, and options to create a PowerPC
(big-endian) executable using the GCC compiler.

To see a list of compilers and platforms supported, simply execute the
command:

gcc -V

If you’re using an IDE, refer to the documentation that came with the
IDE software for more information.

At this point, you should have an executable called hello.

Chapter 1 « Compiling and Debugging 9



Self-hosted or cross-development © 2004, QNX Software Systems Ltd.

Self-hosted

If you’re using a self-hosted development system, you’re done. You
don’t even have to use the -v cross-compilation flag (as was shown
above), because the gcc driver will default to the current platform.
You can now run hello from the command line:

hello

Cross-development with network filesystem

10

If you’re using a network filesystem, let’s assume you’ve already set
up the filesystem on both ends. For information on setting this up, see
the Sample Buildfiles appendix in Building Embedded Systems.

Using a network filesystem is the richest cross-development method
possible, because you have access to remotely mounted filesystems.
This is ideal for a number of reasons:

e Your embedded system requires only a network connection; no
disks (and disk controllers) are required.

e You can access all the shipped and custom-developed QNX
utilities — they don’t need to be present on your (limited)
embedded system.

e Multiple developers can share the same filesystem server.

For a network filesystem, you’ll need to ensure that the shell’s PATH
environment variable includes the path to your executable via the
network-mounted filesystem. At this point, you can just type the
name of the executable at the target’s command-line prompt (if you’re
running a shell on the target):

hello
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Cross-development with debugger

Once the debug agent is running, and you’ve established connectivity
between the host and the target, you can use the debugger to download
the executable to the target, and then run and interact with it.

Download/upload facility

When the debug agent is connected to the host debugger, you can
transfer files between the host and target systems. Note that this is a
general-purpose file transfer facility — it’s not limited to transferring
only executables to the target (although that’s what we’ll be
describing here).

In order for QNX to execute a program on the target, the program
must be available for loading from some type of filesystem. This
means that when you transfer executables to the target, you must
write them to a filesystem. Even if you don’t have a conventional
filesystem on your target, recall that there’s a writable “filesystem”
present under QNX — the /dev/shmem filesystem. This serves as a
convenient RAM-disk for downloading the executables to.

Cross-development, deeply embedded

If your system is deeply embedded and you have no connectivity to

the host system, or you wish to build a system “from scratch,” you’ll
have to perform the following steps (in addition to the common step
of creating the executable(s), as described above):

1 Build a QNX system image.
2 Transfer the system image to the target.
3 Boot the target.

Step 1. Build a QNX system image.

You use a buildfile to build a QNX system image that includes your
program. The buildfile contains a list of files (or modules) to be
included in the image, as well as information about the image. A
buildfile lets you execute commands, specify command arguments,
set environment variables, and so on. The buildfile will look like this:

May 31, 2004 Chapter 1 ¢ Compiling and Debugging 11



Self-hosted or cross-development © 2004, QNX Software Systems Ltd.

12

[virtual=ppcbe,elf] .bootstrap = {
startup-800fads
PATH=/proc/boot procnto-800

}

[+script] .script = {
devc-serppc800 -e -c20000000 -b9600 smcl &
reopen
hello

}

[type=1link] /dev/console=/dev/serl

[type=1link] /usr/lib/ldqnx.so.2=/proc/boot/libc.so
[perms=+r, +x]

libe.so

[data=copy]
[perms=+r, +x]
devc-serppc800
hello

The first part (the four lines starting with [virtual=ppcbe,elf]),
contains information about the kind of image we’re building.

The next part (the five lines starting with [+script]) is the startup
script that indicates what executables (and their command-line
parameters, if any) should be invoked.

The [type=1ink] lines set up symbolic links to specify the serial
port and shared library file we want to use.

The runtime linker is expected to be found in a file called
ldgnx.so. 2, but the runtime linker is currently contained within the
libe. so file, so we make a process manager symbolic link to it.

The [perms=+r, +x] lines assign permissions to the binaries that
follow — in this case, we’re setting them to be Readable and
Executable.

Then we include the C shared library, 1ibc. so.

Then the line [data=copy] specifies to the loader that the data
segment should be copied. This applies to all programs that follow the
[data=copy] attribute. The result is that we can run the executable
multiple times.
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Finally, the last part (the last two lines) is simply the list of files
indicating which files should be included as part of the image. For
more details on buildfile syntax, see the mki£s entry in the Utilities
Reference.

Our example buildfile indicates the following:

e A PowerPC 800 FADS board and ELF boot prefix code are being
used to boot.

e The image should contain devec-serppc800, the serial
communications manager for the PowerPC 80x family, as well as
hello (our test program).

e devc-serppc800 should be started in the background (specified
by the “&” character). It will use a clock rate of 20MHz, a baud
rate of 9600, and an smc1 device.

e Standard input, output, and error should be redirected to
/dev/serl (via the reopen command, which by default redirects
to /dev/console, Which we’ve linked to /dev/serl).

e Finally, our hello program should run.

Let’s assume that the above buildfile is called hel1o.bl1d. Using the
mkif£s utility, you could then build an image by typing:

mkifs hello.bld hello.ifs

Step 2: Transfer the system image to the target.

You now have to transfer the image hello. ifs to the target system.
If your target is a PC, the most universal method of booting is to make
a bootable floppy diskette.
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If you’re developing on a platform that has TCP/IP networking and
connectivity to your target, you may be able to boot your QNX target
system using a BOOTP server. For details, see the “BOOTP section”
in the Customizing IPL Programs chapter in Building Embedded
Systems.

If your development system is QNX, transfer your image to a floppy
by issuing this command:

dinit -f hello.ifs /dev/£fd0

If your development system is Windows NT or Windows 95/98,
transfer your image to a floppy by issuing this command:

dinit -f hello.ifs a:

Step 3: Boot the target.

Place the floppy diskette into your target system and reboot your
machine. The message “Hello, world!” should appear on your
screen.

Using libraries

When you’re developing code, you almost always make use of a
library — a collection of code modules that you or someone else has
already developed (and hopefully debugged). Under QNX, we have
three different ways of using libraries:

e static linking
e dynamic linking

e runtime loading
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Static linking

You can combine your modules with the modules from the library to
form a single executable that’s entirely self-contained. We call this
static linking. The word “static” implies that it’s not going to change
— all the required modules are already combined into one executable.

Dynamic linking

Rather than build a self-contained executable ahead of time, you can
take your modules and link them in such a way that the Process
Manager will link them to the library modules before your program
runs. We call this dynamic linking. The word “dynamic” here means
that the association between your program and the library modules
that it uses is done at load time, not at linktime (as was the case with
the static version).

Runtime loading

There’s a variation on the theme of dynamic linking called runtime
loading. In this case, the program decides while it’s actually running
that it wishes to load a particular function from a library.

Static and dynamic libraries

To support the two major kinds of linking described above, QNX has
two kinds of libraries: static and dynamic.

Static libraries

May 31, 2004

A static library is usually identified by a . a (for “archive”) suffix (e.g.
libe.a). The library contains the modules you want to include in
your program and is formatted as a collection of ELF object modules
that the linker can then extract (as required by your program) and bind
with your program at linktime.

This “binding” operation literally copies the object module from the
library and incorporates it into your “finished” executable. The major
advantage of this approach is that when the executable is created, it’s
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entirely self-sufficient — it doesn’t require any other object modules
to be present on the target system. This advantage is usually
outweighed by two principal disadvantages, however:

e Every executable created in this manner has its own private copy of
the library’s object modules, resulting in large executable sizes
(and possibly slower loading times, depending on the medium).

e You must relink the executable in order to upgrade the library
modules that it’s using.

Dynamic libraries

A dynamic library is usually identified by a . so (for “shared object”)
suffix (e.g. 1ibe.so). Like a static library, this kind of library also
contains the modules that you want to include in your program, but
these modules are not bound to your program at linktime. Instead,
your program is linked in such a way that the Process Manager causes
your program to be bound to the shared objects at load time.

The Process Manager performs this binding by looking at the program
to see if it references any shared objects (. so files). If it does, then
the Process Manager looks to see if those particular shared objects are
already present in memory. If they’re not, it loads them into memory.
Then the Process Manager patches your program to be able to use the
shared objects. Finally, the Process Manager starts your program.

Note that from your program’s perspective, it isn’t even aware that it’s
running with a shared object versus being statically linked — that
happened before the first line of your program ran!

The main advantage of dynamic linking is that the programs in the
system will reference only a particular set of objects — they don’t
contain them. As a result, programs are smaller. This also means that
you can upgrade the shared objects without relinking the programs.
This is especially handy when you don’t have access to the source
code for some of the programs.
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dlopen()

When a program decides at runtime that it wants to “augment” itself
with additional code, it will issue the dlopen() function call. This
function call tells the system that it should find the shared object
referenced by the dlopen() function and create a binding between the
program and the shared object. Again, if the shared object isn’t
present in memory already, the system will load it. The main
advantage of this approach is that the program can determine, at
runtime, which objects it needs to have access to.

Note that there’s no real difference between a library of shared
objects that you link against and a library of shared objects that you
load at runtime. Both modules are of the exact same format. The only
difference is in how they get used.

By convention, therefore, we place libraries that you link against
(whether statically or dynamically) into the 1ib directory, and shared
objects that you load at runtime into the 1ib/d11 (for “dynamically
loaded libraries™) directory.

Note that this is just a convention — there’s nothing stopping you
from linking against a shared object in the 1ib/d11 directory or from
using the dlopen() function call on a shared object in the 1ib
directory.

Platform-specific library locations

May 31, 2004

The development tools have been designed to work out of their
processor directories (x86, ppcbe, etc.). This means you can use the
same toolset for any target platform.

If you have development libraries for a certain platform, then put
them into the platform-specific library directory (e.g. /x86/1ib),
which is where the compiler tools will look.

You can use the -L option to gee to explicitly provide a library path.
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Linking your modules

By default, the toolchain links dynamically. We do this because of all
the benefits mentioned above.

If you want to link statically, then you should specify the -static
option to gqee, which will cause the link stage to look in the library
directory only for static libraries (identified by a . a extension).

For this release of QNX, you can’t use the floating point emulator
(fpemu. so) in statically linked executables.

Although we generally discourage linking statically, it does have this
advantage: in an environment with tight configuration management
and software QA, the very same executable can be regenerated at
linktime and known to be complete at runtime.

To link dynamically (the default), you don’t have to do anything.

To link statically and dynamically (some libraries linked one way,
other libraries linked the other way), the two keywords -Bstatic
and -Bdynamic are positional parameters that can be specified to
qce. All libraries specified after the particular -B option will be

linked in the specified manner. You can have multiple -B options:

gcc ... -Bdynamic 1libl 1ib2 -Bstatic 1ib3 1lib4 -Bdynamic 1ib5

This will cause libraries 1ib1, 1ib2, and 1ib5 to be dynamically
linked (i.e. will link against the files 1ib1.so, 1ib2.s0 and
1ib5.s0), and libraries 1ib3 and 1ib4 to be statically linked (i.e.
will link against the files 1ib3.a and 1ib4.a).

You may see the extension .1 appended to the name of the shared
object (e.g. 1ibe.so.1). Thisis a version number. Use the extension
.1 for your first revision, and increment the revision number if
required.

You may wish to use the above “mixed-mode” linking because some
of the libraries you’re using will be needed by only one executable or
because the libraries are small (less than 4K), in which case you’d be
wasting memory to use them as shared libraries. Note that shared
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libraries are typically mapped in 4K pages and will require at least
one page for the “text” section and possibly one page for the
“data” section.

When you specify -Bstatic 0Or -Bdynamic, all subsequent libraries
will be linked in the specified manner.

Creating shared objects

To create a shared object suitable for linking against:

1 Compile the source files for the library using the -shared
option to gce.

2 To create the library from the individual object modules, simply
combine them with the linker (this is done via the gec compiler
driver as well, also using the -shared command-line option).

Make sure that all objects and “static” libs that are pulled into a . so
are position-independent as well (i.e. also compiled with -shared).

If you make a shared library that has to static-link against an existing
library, you can’t static-link against the . a version (because those
libraries themselves aren’t compiled in a position-independent
manner). Instead, there’s a special version of the libraries that has a
capital “S” just before the .a extension. For example, instead of
linking against 1ibsocket.a, you’d link against 1ibsockets.a.
We recommend that you don’t static-link, but rather link against the
. so shared object version.

Specifying an internal name

When you’re building a shared object, you can specify the following
option to qgec:

"-W1l, -hname"
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(You might need the quotes to pass the option through to the linker
intact, depending on the shell.)

This option sets the internal name of the shared object to name instead
of to the object’s pathname, so you’d use name to access the object
when dynamically linking. You might find this useful when doing
cross-development (e.g. from a Windows NT system to a QNX
target).

Debugging

Now let’s look at the different options you have for debugging the
executable. Just as you have two basic ways of developing
(self-hosted and cross-development), you have similar options for
debugging.

Debugging in a self-hosted environment

The debugger can run on the same platform as the executable being
debugged:

Debugger —>» Debil —>» Executable
agent

Debugging in a self-hosted environment.
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In this case, the debugger starts the debug agent, and then establishes
its own communications channel to the debug agent.

Debugging in a cross-development environment

May 31, 2004

The debugger can run on one platform to debug executables on
another:

Communications
channel 1
L Y g L

Debugger < > Debug —>» Executable
agent

Debugging in a cross-development environment.

In a cross-development environment, the host and the target systems
must be connected via some form of communications channel.

The two components, the debugger and the debug agent, perform
different functions. The debugger is responsible for presenting a user
interface and for communicating over some communications channel
to the debug agent. The debug agent is responsible for controlling (via
the /proc filesystem) the process being debugged.

All debug information and source remains on the host system. This
combination of a small target agent and a full-featured host debugger
allows for full symbolic debugging, even in the memory-constrained
environments of small targets.
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In order to debug your programs with full source using the symbolic
debugger, you’ll need to tell the C compiler and linker to include
symbolic information in the object and executable files. For details,
see the gec docs in the Utilities Reference. Without this symbolic
information, the debugger can provide only assembly-language-level
debugging.

The GNU debugger (gdb)

The GNU debugger is a command-line program that provides a very
rich set of options. You’ll find a tutorial-style doc called “Using
GDB” as an appendix in this manual.

Starting gdb

The gdb command can be invoked using the following variants,
which correspond to your target platform:

For thistarget: Usethiscommand:

ARM ntoarm-gdb
Intel ntox86-gdb
MIPS ntomips-gdb
PowerPC ntoppc-gdb
SH4 ntosh-gdb

For more information, see the gdb entry in the Utilities Reference.

The process-level debug agent

When a breakpoint is encountered and the process-level debug agent
(pdebug) is in control, the process being debugged and all its threads
are stopped. All other processes continue to run and interrupts remain
enabled.
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To use the pdebug agent, you must set up pty support (via
devc-pty) On your target.

When the process’s threads are stopped and the debugger is in control,
you may examine the state of any thread within the process. You may
also “freeze” all or a subset of the stopped threads when you continue.
For more info on examining thread states, see your debugger docs.

The pdebug agent may either be included in the image and started in
the image startup script or started later from any available filesystem
that contains pdebug.

The pdebug command-line invocation specifies which device will be
used. (Note that for self-hosted debugging, pdebug is started
automatically by the host debugger.)

You can start pdebug in one of three ways, reflecting the nature of the
connection between the debugger and the debug agent:

e serial connection
e TCP/IP static port connection

e TCP/IP dynamic port connection

Serial connection

May 31, 2004

If the host and target systems are connected via a serial port, then the
debug agent (pdebug) should be started with the following command:

pdebug devicename [, baud]

This indicates the target’s communications channel (devicename) and
specifies the baud rate (baud).

For example, if the target has a /dev/ser2 connection to the host,
and we want the link to be 115,200 baud, we would specify:

pdebug /dev/ser2,115200
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/dev/ser?2

Serial (115200 baud) |

Running the process debug agent with a serial link at 115200 baud.

The QNX target requires a supported serial port. The target is
connected to the host using either a null-modem cable, which allows
two identical serial ports to be directly connected, or a
straight-through cable, depending on the particular serial port
provided on the target.

The null-modem cable crosses the Tx/RrRx data and handshaking lines.
In our PowerPC FADS example, you’d use a a straight-through cable.
Most computer stores stock both types of cables.

Tx Tx
Rx |« »| Rx
RTS RTS
TS [« >»| CT
Host CDTi D ~ g.“i Target
(DTE) DSR |« »| bk (DTE)
- »
CD <J L) CD
Gnd Gnd
RI —~ ~——RI

Null-modem cable

Null-modem cable pinout.

TCP/IP connection

If the host and the target are connected via some form of TCP/IP
connection, the debugger and agent can use that connection as well.
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TCP/IP
static port
connection
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Two types of TCP/IP communications are possible with the debugger
and agent: static port and dynamic port connections (see below).

The QNX target must have a supported Ethernet controller. Note that
since the debug agent requires the TCP/IP manager to be running on
the target, this requires more memory.

This need for extra memory is offset by the advantage of being able to
run multiple debuggers with multiple debug sessions over the single
network cable. In a networked development environment, developers
on different network hosts could independently debug programs on a
single common target.

TCP/IP .0

Developers' 0 o
stations 0- 00

Target

Several developers can debug a single target system.

For a static port connection, the debug agent is assigned a TCP/IP
port number and will listen for communications on that port only. For
example, the pdebug 1204 command specifies TCP/IP port 1204:
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TCP/IP
dynamic
port
connection

Port 1204

TCP/IP - 0

Running the process debug agent with a TCP/IP static port.

If you have multiple developers, each developer could be assigned a
specific TCP/IP port number above the reserved ports 0 to 1024.

For a dynamic port connection, the debug agent is started by inetd
and communicates via standard input/output. The inetd process
fetches the communications port from the configuration file (typically
/etc/services). The host process debug agent connects to the port
via inetd — the debug agent has no knowledge of the port.

The command to run the process debug agent in this case is simply as
follows (from the inetd.conf file):

pdebug -
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Sample boot
script for
dynamic

port
sessions
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TCP/IP .1
0- 0
0- 010
inetd
Port Port
1234
1234 Port
1234
pdebug pdebug pdebug

For a TCP/IP dynamic port connection, the inetd process will manage the
port.

Note that this method is also suitable for one or more developers.

The following boot script supports multiple sessions specifying the
same port. Although the port for each session on the pdebug side is
the same, inetd causes unique ports to be used on the debugger side.
This ensures a unique socket pair for each session.

Note that inetd should be included and started in your boot image.
The pdebug program should also be in your boot image (or available
from a mounted filesystem).

The config files could be built into your boot image (as in this sample
script) or linked in from a remote filesystem using the [type=1ink]
command:

[type=1link] /etc/services=/mount_point/services
[type=1link] /etc/inetd.conf=/mount_point/inetd.conf

Here’s the boot script:
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[virtual=x86,bios +compress] boot = {
startup-bios -N node428
PATH=/proc/boot:/bin:/apk/bin_nto:./ procnto

[+script] startup-script = {
# explicitly running in edited mode for the console link
devc-ser8250 -e -b1l15200 &
reopen
display_msg Welcome to QNX on a PC-compatible BIOS system
# tcp/ip with a NE2000 Ethernet adaptor
io-net -dne2000 -pttcpip if=ndi0:10.0.1.172 &
waitfor /dev/socket
inetd &
pipe &
# pdebug needs devc-pty and esh
devc-pty &
# NFS mount of the QNX filesystem
fs-nfs2 -r 10.89:/x86 /x86 -r 10.89:/home /home &
# CIFS mount of the NT filesystem
fs-cifs -b //QA:10.0.1.181:/QARoot /QAc apkleywegt 123 &
# NT Hyperterm needs this to interpret backspaces correctly
stty erase=08
reopen /dev/console
[+session] esh

[type=1link] /usr/lib/ldgnx.so.2=/proc/boot/libc.so
[type=1link] /lib=/x86/1ib

[type=1link] /tmp=/dev/shmem # tmp points to shared memory
[type=1link] /dev/console=/dev/ser2 # no local terminal
[type=1link] /bin=/x86/bin # executables in the path

[type=1link] /apk=/home/apkleywegt # home dir

[perms=+r, +x] <!-- # Boot images made under MS-Windows need -->
<!-- # to be reminded of permissions. -->

devn-ne2000.so

npm-tcpip.so

libec.so

fpemu.so

libsocket.so

[data=copyl] # All executables that can be restarted
# go below.

devc-ser8250

io-net

pipe

devc-pty

fs-nfs2
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A simple debug session

fs

-cifs

inetd
esh
stty
ping

1s

/etc/hosts = {

127.0.0.1 localhost
10.89 node89
10.222 node222
10.326 node326
10.0.1.181 QA node437
10.241 APP_ENG_1
}

/etc/services = {

ftp 21/tep
telnet 23/tcp
finger 79/tcp
pdebug 8000/tcp
}

/etc/inetd.conf = {
ftp stream
telnet stream
finger stream
pdebug stream

}

tcp
tcp
tcp
tcp

# Data files are created in the named

# directory.

nowait
nowait
nowait
nowait

A simple debug session

In this example, we’ll be debugging our “Hello, world!” program via
a TCP/IP link. We go through the following steps:

May 31, 2004

configuring the target

compiling for debugging

starting the debug session

getting help.
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root
root
root

/bin/fdtpd
/bin/telnetd
/bin
/bin/pdebug

fdtpd

telnetd
fingerd
pdebug -
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Configure the target

Let’s assume an x86 target using a basic TCP/IP configuration. The
following lines (from the example boot file at the end of this chapter)
show what’s needed to host the example session:

io-net -dne2000 -pttcpip if=ndi0:10.0.1.172 &
devc-pty &
[+session] pdebug 8000 &

The above specifies that the host IP address is 10.0.1.172 (or 10.428
for short). The pdebug program is configured to use port 8000.

Compile for debugging

We’ll be using the x86 compiler. Note the -g option, which enables
debugging information to be included:

$ gcc -V gcc_ntox86 -g -o hello hello.c

Start the debug session

30

For this simple example, the sources can be found in our working
directory. The gdb debugger provides its own shell; by default its
prompt is (gdb). The following commands would be used to start the
session. To reduce document clutter, we’ll run the debugger in quiet
mode:

# Working from the source directory:
(61) conl /home/allan/src >ntox86-gdb -quiet

# Specifying the target IP address and the port
# used by pdebug:

(gdb) target gnx 10.428:8000

Remote debugging using 10.428:8000

0x0 in ?? ()

Uploading the debug executable to the target:
(This can be a slow operation. If the executable
is large, you may prefer to build the executable
into your target image.)

#H 3 I W
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Get help

May 31, 2004

# Note that the file has to be in the target system’s namespace,
so we can get the executable via a network filesystem, ftp,
# or, if no filesystem is present, via the upload command.

£

(gdb) upload hello /tmp/hello

# Loading the symbolic debug information from the
current working directory:
# (In this case, "hello" must reside on the host system.)

£

(gdb) sym hello
Reading symbols from hello...done.

# Starting the program:
(gdb) run /tmp/hello
Starting program: /tmp/hello
Trying to find symbol file for ldgnx.so.2
Retrying dynamic interpreter in libec.so.1l

# Setting the breakpoint on main():
(gdb) break main
Breakpoint 1 at 0x80483ae: file hello.c, line 8.

# Allowing the program to continue to the breakpoint
# found at main():

(gdb) c

Continuing.

Breakpoint 1, main () at hello.c:8

8 setprio (0,9);

# Ready to start the debug session.
(gdb)

While in a debug session, any of the following commands could be
used as the next action for starting the actual debugging of the project:

n Next instruction
1 List the next set of instructions
help Get the help main menu

help data Get the help data menu
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help inspect
Get help for the inspect command

inspect y Inspect the contents of variable y
set y=3 Assign a value to variable y

bt Get a back trace.
Let’s see how to use some of these basic commands.

# list command:

(gdb) 1

3

4 main () {

5

6 int x,y,2z;

7

8 setprio (0,9);
9 printf ("Hi ya!\n");
10

11 x=3;

12 y=2;

# press <enter> repeat last command:
(gdb) <enter>

13 zZ=3%*2;

14

15 exit (0);
16

17 }

# break on line 11:
(gdb) break 11
Breakpoint 2 at 0x80483c7: file hello.c, line 11.

# continue until the first break point:
(gdb) c
Continuing.
Hi yal!

Breakpoint 2, main () at hello.c:11
11 x=3;

# Notice that the above command went past the

# printf statement at line 9. I/O from the
# printf statement is displayed on screen.
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# inspect variable y, using short form of the
# inspect command.

(gdb) ins y

$1 = -1338755812

# get some help on step and next commands:
(gdb) help s
Step program until it reaches a different source line.
Argument N means do this N times (or till program stops
for another reason).
(gdb) help n
Step program, proceeding through subroutine calls.
Like the "step" command as long as subroutine calls do not
happen; when they do, the call is treated as one instruction.
Argument N means do this N times (or till program stops
for another reason).

# go to the next line of execution:

(gdb) n

12 y=2;

(gdb) n

13 zZ=3%2;
(gdb) inspect z
$2 =1

(gdb) n

15 exit (0);
(gdb) inspe z

$3 =6

# continue program execution:
(gdb) continue
Continuing.

Program exited normally.

# quit the debugger session:
(gdb) quit
The program is running. Exit anyway? (y or n) y
(61) conl /home/allan/src >

Sample boot image
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[virtual=x86,bios +compress] boot = {
startup-bios -N node428
PATH=/proc/boot:./ procnto
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[+script] startup-script = {
# explicitly running in edited mode for the console link
devc-ser8250 -e -b1l15200 &
reopen
display_msg Welcome to QNX on a PC-compatible BIOS system
# tcp/ip with a NE2000 Ethernet adaptor
io-net -dne2000 -pttcpip if=ndi0:10.0.1.172 &
waitfor /dev/socket
pipe &
# pdebug needs devc-pty
devc-pty &
# starting pdebug twice on separate ports
[+session] pdebug 8000 &
}

[type=1link] /usr/lib/ldqnx.so.2=/proc/boot/libc.so
[type=1link] /lib=/x86/1ib

[type=1link] /tmp=/dev/shmem # tmp points to shared memory

[type=1link] /dev/console=/dev/ser2 # no local terminal

[perms=+r, +x] <!-- # Boot images made under MS-Windows need -->
<!-- # to be reminded of permissions. -->

devn-ne2000.so
npm-tcpip.so
libe.so
fpemu. so
libsocket.so

[data=copyl] # All executables that can be restarted
# go below.

devc-ser8250

io-net

pipe

devc-pty

pdebug

esh

ping

1s
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Process model

The QNX OS architecture consists of the small Neutrino microkernel
and some number of cooperating processes. These processes
communicate with each other via various forms of interprocess
communication (IPC). Message passing is the primary form of IPC in

QNX.
QNX 4
file CD-ROM
manager file
Flash
manager file

Process Lanassy
manager DOS file NFS file

manager manager

Neutrino
microkernel ¢ ¢
\4
@ Software bus

. Qnet
Photon : Fonl Application network
GUI : manager manager
manager "y
Graphics CIFS file
driver manager
Mqgueue
manager

The QNX OS architecture acts as a kind of “software bus” that lets you
dynamically plug in/out OS modules. This picture shows the graphics driver
sending a message to the font manager when it wants the bitmap for a font.
The font manager responds with the bitmap.

The Photon microGUI windowing system is also made up of a
number of cooperating processes: the GUI manager (Photon), a font
manager (phfontFa), the graphics driver manager (io-graphics),
and others. If the graphics driver needs to draw some text, it sends a
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message to the font manager asking for bitmaps in the desired font for
the text to be drawn in. The font manager responds with the requested
bitmaps, and the graphics driver then draws the bitmaps on the screen.

An application as a set of processes

This idea of using a set of cooperating processes isn’t limited to the
OS “system processes.” Your applications should be written in
exactly the same way. You might have some driver process that
gathers data from some hardware and then needs to pass that data on
to other processes, which then act on that data.

Let’s use the example of an application that’s monitoring the level of
water in a reservoir. Should the water level rise too high, then you’ll
want to alert an operator as well as open some flow-control valve.

In terms of hardware, you’ll have some water-level sensor tied to an
I/0 board in a computer. If the sensor detects some water, it will
cause the 1/0O board to generate an interrupt.

The software consists of a driver process that talks to the 1/0 board
and contains an interrupt handler to deal with the board’s interrupt.
You’ll also have a GUI process that will display an alarm window
when told to do so by the driver, and finally, another driver process
that will open/close the flow-control valve.

Why break this application into multiple processes? Why not have
everything done in one process? There are several reasons:

1 Each process lives in its own protected memory space. If there’s
a bug such that a pointer has a value that isn’t valid for the
process, then when the pointer is next used, the hardware will
generate a fault, which the kernel handles (the kernel will set
the SIGSEGV signal on the process).

This approach has two benefits. The first is that a stray pointer
won’t cause one process to overwrite the memory of another
process. The implications are that one process can go bad while
other processes keep running.
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The second benefit is that the fault will occur precisely when
the pointer is used, not when it’s overwriting some other
process’s memory. If a pointer were allowed to overwrite
another process’s memory, then the problem wouldn’t manifest
itself until later and would therefore be much harder to debug.

2 It’s very easy to add or remove processes from an application as
need be. This implies that applications can be made scalable —
adding new features is simply a matter of adding processes.

3 Processes can be started and stopped on the fly, which comes in
handy for dynamic upgrading or simply for stopping an
offending process.

4 Processing can be easily distributed across multiple processors
in a networked environment.

5 The code for a process is much simpler if it concentrates on
doing a single job. For example, a single process that acts as a
driver, a GUI front-end, and a data logger would be fairly
complex to build and maintain. This complexity would increase
the chances of a bug, and any such bug would likely affect all
the activities being done by the process.

6 Different programmers can work on different processes without
fear of overwriting each other’s work.

Processes and threads

Different operating systems often have different meanings for terms
such as “process,” “thread,” “task,” “program,” and so on.

Some definitions

In the QNX OS, we typically use only the terms process and thread.
An “application” typically means a collection of processes; the term
“program” is usually equivalent to “process.”

A thread is a single flow of execution or control. At the lowest level,
this equates to the program counter or instruction pointer register
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advancing through some machine instructions. Each thread has its
own current value for this register.

A process is a collection of one or more threads that share many
things. Threads within a process share at least the following:

e Vvariables that aren’t on the stack

e signal handlers (although you typically have one thread that
handles signals, and you block them in all the other threads)

e signal ignore mask
e channels
e connections.

Threads don’t share such things as stack, values for the various
registers, SMP thread-affinity mask, and a few other things.

Two threads residing in two different processes don’t share very
much. About the only thing they do share is the CPU. You can have
them share memory between them, but this takes a little setup (see
shm_open() in the Library Reference for an example).

When you run a process, you’re automatically running a thread. This
thread is called the “main” thread, since the first
programmer-provided function that runs in a C program is main().
The main thread can then create additional threads if need be.

Only a few things are special about the main thread. One is that if it
returns normally, the code it returns to calls exit(). Calling exit()
terminates the process, meaning that all threads in the process are
terminated. So when you return normally from the main thread, the
process is terminated. When other threads in the process return
normally, the code they return to calls pthread _exit(), which
terminates just that thread.

Another special thing about the main thread is that if it terminates in
such a manner that the process is still around (e.g. it calls
pthread_exit() and there are other threads in the process), then the
memory for the main thread’s stack is not freed up. This is because
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the command-line arguments are on that stack and other threads may
need them. If any other thread terminates, then that thread’s stack is
freed.

Priorities and scheduling

Although there’s a good discussion of priorities and scheduling
policies in the System Architecture manual (see “Thread scheduling”
in the chapter on the microkernel), it will help to go over that topic
here in the context of a programmer’s guide.

QNX provides a priority-driven preemptive architecture.
Priority-driven means that each thread can be given a priority and will
be able to access the CPU based on that priority. If a low-priority
thread and a high-priority thread both want to run, then the
high-priority thread will be the one that gets to run.

Preemptive means that if a low-priority thread is currently running
and then a high-priority thread suddenly wants to run, then the
high-priority thread will take over the CPU and run, thereby
preempting the low-priority thread.

Priority range

May 31, 2004

Each thread can have a scheduling priority ranging from 1 to 63 (the
highest priority), independent of the scheduling policy. The special
idle thread (in the process manager) has priority 0 and is always ready
to run. A thread inherits the priority of its parent thread by default.

A thread has both a real priority and an effective priority, and is
scheduled in accordance with its effective priority. The thread itself
can change both its real and effective priority together, but the
effective priority may change because of priority inheritance or the
scheduling policy. Normally, the effective priority is the same as the
real priority.

Interrupt handlers are of higher priority than any thread, but they’re
not scheduled in the same way as threads. If an interrupt occurs, then:
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Priority

Whatever thread was running loses the CPU handling the
interrupt (SMP issues).

The hardware runs the kernel.

The kernel calls the appropriate interrupt handler.

Priorities

(hardware interrupt handlers)

ST
A

0 F (idle)

Thread priorities range from 0 (lowest) to 63 (highest). Although interrupt
handlers aren’t scheduled in the same way as threads, they're considered to
be of a higher priority because an interrupt handler will preempt any running

thread.

BLOCKED and READY states

To fully understand how scheduling works, you must first understand
what it means when we say a thread is BLOCKED and when a thread
is in the READY state. You must also understand a particular data
structure in the kernel called the ready queue.

42
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A thread is BLOCKED if it doesn’t want the CPU, which might
happen for several reasons, such as:

e The thread is sleeping.
e The thread is waiting for a message from another thread.
e The thread is waiting on a mutex that some other thread owns.

When designing an application, you always try to arrange it so that if
any thread is waiting for something, make sure it isn’t spinning in a
loop using up the CPU. In general, try to avoid polling. If you do have
to poll, then you should try to sleep for some period between polls,
thereby giving lower-priority threads the CPU should they want it.

For each type of blocking there is a blocking state. We’ll discuss these
states briefly as they come up. Examples of some blocking states are
REPLY-blocked, RECEIVE-blocked, MUTEX-blocked,
INTERRUPT-blocked, and NANOSLEEP-blocked.

A thread is READY if it wants a CPU but something else currently
has it. If a thread currently has a CPU, then it’s actually in the
RUNNING state, but for simplicity we’ll just include it as one of the
READY threads. Simply put, a thread that’s either READY or
RUNNING isn’t blocked.

The ready queue

The ready queue is a simplified version of a kernel data structure
consisting of a queue with one entry per priority. Each entry in turn
consists of another queue of the threads that are READY at the
priority. Any threads that aren’t READY aren’t in any of the queues
— but they will be when they become READY.
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The ready queue for six threads (A-F) that are READY. All other threads
(G-Z) are BLOCKED. Thread A is currently running. Thread A, B, and C are
at the highest priority, so they’ll share the processor based on the running
thread’s scheduling algorithm.

The thread at the head of the highest-priority queue is the active
thread (i.e. actually in the RUNNING state). In diagrams depicting
the ready queue, the active thread is always shown in the left
uppermost area in the diagram.

Every thread is assigned a priority. The scheduler selects the next
thread to run by looking at the priority assigned to every thread in the
READY state (i.e. capable of using the CPU). The thread with the
highest priority that’s at the head of its priority’s queue is selected to
run. In the above diagram, thread A is at the head of priority 10’s
gueue, so thread A runs.
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Suspending a running thread

The execution of a running thread is temporarily suspended whenever
the microkernel is entered as the result of a kernel call, exception, or
hardware interrupt. A scheduling decision is made whenever the
execution state of any thread changes — it doesn’t matter which
processes the threads might reside within. Threads are scheduled
globally across all processes.

Normally, the execution of the suspended thread will resume, but the
scheduler will perform a context switch from one thread to another
whenever the running thread:

e is blocked
e is preempted

e VYields.

When the thread is blocked

The running thread will block when it must wait for some event to
occur (response to an IPC request, wait on a mutex, etc.). The blocked
thread is removed from the ready queue, and the highest-priority
ready thread that’s at the head of its priority’s queue is then allowed to
run. When the blocked thread is subsequently unblocked, it’s placed
on the end of the ready queue for its priority level.

When the thread is preempted

May 31, 2004

The running thread will be preempted when a higher-priority thread is
placed on the ready queue (it becomes READY as the result of its
block condition being resolved). The preempted thread remains at the
start of the ready queue for that priority, and the higher-priority thread
runs. When it’s time for a thread at that priority level to run again, that
thread resumes execution — a preempted thread will not lose its place
in the queue for its priority level.

Chapter 2 e Programming Overview 45



Scheduling algorithms © 2004, QNX Software Systems Ltd.

When the thread yields
The running thread voluntarily yields the processor (via sched yield())
and is placed on the end of the ready queue for that priority. The
highest-priority thread then runs (which may still be the thread that
just yielded).

Scheduling algorithms

To meet the needs of various applications, QNX provides these
scheduling algorithms:

e FIFO scheduling — SCHED_FIFO
e Round-robin scheduling — SCHED_RR

e Sporadic scheduling — SCHED_SPORADIC

Another scheduling algorithm (called “other” — SCHED_OTHER)
behaves in the same way as round-robin. We don’t recommend using
the “other” scheduling algorithm, because its behavior may change in
the future.

Each thread in the system may run using any method. Scheduling
methods are effective on a per-thread basis, not on a global basis for
all threads and processes on a node.

Remember that these scheduling algorithms apply only when two or
more threads that share the same priority are READY (i.e. the threads
are directly competing with each other). If a higher-priority thread
becomes READY, it immediately preempts all lower-priority threads.

In the following diagram, three threads of equal priority are READY.
If Thread A blocks, Thread B will run.
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Thread A blocks, Thread B runs.

Although a thread inherits its scheduling algorithm from its parent
thread, the thread can request to change the algorithm applied by the

kernel.

FIFO scheduling
In FIFO (SCHED FIFO) scheduling, a thread selected to run continues
executing until it:

e voluntarily relinquishes control (e.g. it blocks)

e is preempted by a higher-priority thread.
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FIFO scheduling. Thread A runs until it blocks.

Round-robin scheduling

In round-robin (SCHED_RR) scheduling, a thread selected to run
continues executing until it:

e voluntarily relinquishes control
e is preempted by a higher-priority thread

e consumes its timeslice.
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Round-robin scheduling. Thread A ran until it consumed its timeslice; the
next READY thread (Thread B) now runs.
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A timeslice is the unit of time assigned to every process. Once it
consumes its timeslice, a thread is put at the end of its queue in the
ready queue and the next READY thread at the same priority level is
given control.

A timeslice is calculated as:
4 x ticksize

If your processor is >40MHz, then the ticksize defaults to 1
millisecond; otherwise, it defaults to 10 milliseconds. So, the default
timeslice is either 4 milliseconds (the default for most CPUs) or 40
milliseconds (the default for slower hardware).

Apart from time-slicing, the round-robin scheduling method is
identical to FIFO scheduling.

Why threads?

May 31, 2004

Now that we know more about priorities, we can talk about why you
might want to use threads. We saw many good reasons for breaking
things up into separate processes, but what’s the purpose of a
multithreaded process?

Let’s take the example of a driver. A driver typically has two
obligations: one is to talk to the hardware and the other is to talk to
other processes. Generally, talking to the hardware is more
time-critical than talking to other processes. When an interrupt comes
in from the hardware, it needs to be serviced in a relatively small
window of time — the driver shouldn’t be busy at that moment
talking to another process.

One way of fixing this problem is to choose a way of talking to other
processes where this situation simply won’t arise (e.g. don’t send
messages to another process such that you have to wait for
acknowledgment, don’t do any time-consuming processing on behalf
of other processes, etc.).

Another way is to use two threads: a higher-priority thread that deals
with the hardware and a lower-priority thread that talks to other
processes. The lower-priority thread can be talking away to other
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processes without affecting the time-critical job at all, because when
the interrupt occurs, the higher-priority thread will preempt the
lower-priority thread and then handle the interrupt.

Although this approach does add the complication of controlling
access to any common data structures between the two threads, QNX
provides synchronization tools such as mutexes (mutual exclusion
locks), which can ensure exclusive access to any data shared between
threads.

Summary

The modular architecture is apparent throughout the entire system:
the QNX OS itself consists of a set of cooperating processes, as does
an application. And each individual process can comprise several
cooperating threads. What “keeps everything together” is the
priority-based preemptive scheduling in the QNX OS, which ensures
that time-critical tasks are dealt with by the right thread or process at
the right time.
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Starting

As we stated in the Overview chapter, the QNX OS architecture
consists of a small Neutrino microkernel and some number of
cooperating processes. We also pointed out that your applications
should be written the same way — as a set of cooperating processes.

In this chapter, we’ll see how to start processes (also known as
creating processes) from code, how to terminate them, and how to
detect their termination when it happens.

processes — two methods

In embedded applications, there are two typical approaches to starting
your processes at boot time. One approach is to run a shell script that
contains the command lines for running the processes. There are
some useful utilities such as exec, on, and nice for controlling how
those processes are started.

The other approach is to have a starter process run at boot time. This
starter process then starts up all your other processes. This approach
has the advantage of giving you more control over how processes are
started, whereas the script approach is easier for you (or anyone) to
modify quickly.

Process creation

May 31, 2004

The process manager component of proento is responsible for
process creation. If a process wants to create another process, it
makes a call to one of the process-creation functions, which then
effectively sends a message to the process manager.

Here are the process-creation functions:
e exec*() family of functions

o fork()

forkpty()

popen()

spawn()
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spawn*() family of functions

system()
o Vfork()

For details on each of these functions, see their entries in the Library
Reference. Here we’ll mention some of the things common to many
of them.

Concurrency

54

Three possibilities can happen to the creator during process creation:

1 The child process is created and runs concurrently with the
parent. In this case, as soon as process creation is successful,
the process manager replies to the parent, and the child is made
READY. If it’s the parent’s turn to run, then the first thing it
does is return from the process-creation function. This may not
be the case if the child process was created at a higher priority
than the parent (in which case the child will run before the
parent gets to run again).

This is how fork(), forkpty(), popen(), and spawn() work. This
is also how the spawn*() family of functions work when the
mode is passed as P NOWAIT or P_.NOWAITO.

2 The child replaces the parent. In fact, they’re not really parent
and child, because the image of the given process simply
replaces that of the caller. Many things will change, but those
things that uniquely identify a process (such as the process I1D)
will remain the same. This is typically referred to as “execing,”
since usually the exec*() functions are used.

Many things will remain the same (including the process ID,
parent process ID, and file descriptors) with the exception of
file descriptors that had the FD_CLOEXEC flag set using fcntl().
See the exec*() functions for more on what will and will not be
the same across the exec.
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The Login command serves as a good example of execing.
Once the login is successful, the login command execs into a
shell.

Functions you can use for this type of process creation are the
exec*() and spawn*() families of functions, with mode passed
as P_.OVERLAY.

3 The parent waits until the child terminates. This can be done by
passing the mode as P_.WAIT for the spawn*() family of
functions.

Note that what is going on underneath the covers in this case is
that spawn() is called as in the first possibility above. Then,
after it returns, waitpid() is called in order to wait for the child
to terminate. This means that you can use any of the functions
mentioned in our first possibility above to achieve the same
thing if you follow them by a call to one of the wait*()
functions (e.g. wait() or waitpid()).

Using fork() and forkpty()

As of this writing, you can’t use fork() and forkpty() in a process that
has threads. The fork() and forkpty() functions will simply return -1
and errno will contain ENOSYS.

Many programmers coming from the Unix world are familiar with the
technique of using a call to fork() followed by a call to one of the
exec*() functions in order to create a process that’s different from the
caller. In QNX, you can usually achieve the same thing in a single call
to one of the spawn*() functions.

Inheriting file descriptors

May 31, 2004

The documentation in the Library Reference for each function
describes in detail what the child inherits from the parent. One thing
that we should talk about here, however, is file-descriptor inheritance.

With many of the process-creation functions, the child inherits the file
descriptors of the parent. For example, if the parent had file descriptor
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5 in use for a particular file when the parent creates the child, the child
will also have file descriptor 5 in use for that same file. The child’s
file descriptor will have been duped from the parent’s. This means
that at the filesystem manager level, the parent and child have the
same open control block (OCB) for the file, so if the child seeks to
some position in the file, then that changes the parent’s seek position
as well. It also means that the child can do awrite (5, buf,
nbytes) without having previously called open().

If you don’t want the child to inherit a particular file descriptor, then
you can use fentl() to prevent it. Note that this won’t prevent
inheritance of a file descriptor during a fork(). The call to fcntl()
would be:

fcntl (f£d, F_SETFD, FD_CLOEXEC) ;

If you want the parent to set up exactly which files will be open for
the child, then you can use the fd_count and fd_map parameters with
spawn(). Note that in this case, only the file descriptors you specify
will be inherited. This is especially useful for redirecting the child’s
standard input (file descriptor 0), standard output (file descriptor 1),
and standard error (file descriptor 2) to places where the parent wants
them to go.

Alternatively this file descriptor inheritance can also be done through
use of fork(), one or more calls to dup(), dup2() and close(), and then
exec*(). The call to fork() creates a child that inherits all the of the
parent’s file descriptors. dup(), dup2() and close() are then used by the
child to rearrange its file descriptors. Lastly, exec*() is called to
replace the child with the process to be created. Though more
complicated, this method of setting up file descriptors is portable
whereas the spawn() method is not.

Process termination

A process can terminate in one of two basic ways:

e normally (e.g. the process terminates itself)
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e abnormally (e.g. the process terminates as the result of a signal’s
being set).

Normal process termination

A process can terminate itself by having any thread in the process call
exit(). Returning from the main thread (i.e. main()) will also terminate
the process, because the code that’s returned to calls exit(). This isn’t
true of threads other than the main thread. Returning normally from
one of them causes pthread exit() to be called, which terminates only
that thread. Of course, if that thread is the last one in the process, then
the process is terminated.

The value passed to exit() or returned from main() is called the exit
status.

Abnormal process termination

May 31, 2004

A process can be terminated abnormally for a number of reasons.
Ultimately, all of these reasons will result in a signal’s being set on
the process. A signal is something that can interrupt the flow of your
threads at any time. The default action for most signals is to terminate
the process.

Note that what causes a particular signal to be generated is sometimes
processor-dependent.

Here are some of the reasons that a process might be terminated
abnormally:

e Ifany thread in the process tries to use a pointer that doesn’t
contain a valid virtual address for the process, then the hardware
will generate a fault and the kernel will handle the fault by setting
the SIGSEGV signal on the process. By default, this will terminate
the process.

¢ A floating-point exception will cause the kernel to set the SIGFPE
signal on the process. The default is to terminate the process.
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e If you create a shared memory object and then map in more than
the size of the object, when you try to write past the size of the
object you’ll be hit with SIGBUS. In this case, the virtual address
used is valid (since the mapping succeeded), but the memory
cannot be accessed.

To get the kernel to display some diagnostics whenever a process
terminates abnormally, configure proento with multiple -v options.
If the process has fd 2 open, then the diagnostics are displayed using
(stderr); otherwise; you can specify where the diagnostics get
displayed by using the -D option to your startup. For example, the -b
as used in this buildfile excerpt will cause the output to go to a serial
port:

[virtual=x86,bios +compress] .bootstrap = {
startup-bios -D 8250..115200
procnto -vvvv

You can also have the current state of a terminated process written to
a file so that you can later bring up the debugger and examine just
what happened. This type of examination is called postmortem
debugging. This happens only if the process is terminated due to one
of these signals:

Signal Description

SIGABRT Program-called abort function

SIGBUS Parity error

SIGEMT  EMT instruction

SIGFPE Floating-point error or division by zero
SIGILL Illegal instruction executed

SIGQUIT  Quit

SIGSEGV  Segmentation violation

continued. ..
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Signal Description

SIGSYS Bad argument to a system call
SIGTRAP  Trace trap (not reset when caught)
SIGXCPU  Exceeded the CPU limit
SIGXFSZ  Exceeded the file size limit

The process that dumps the state to a file when the process terminates
is called dumper, which must be running when the abnormal
termination occurs. This is extremely useful, because embedded
systems may run unassisted for days or even years before a crash
occurs, making it impossible to reproduce the actual circumstances
leading up to the crash.

Affect of parent termination

In some OSes, if a parent process dies, then all of its child processes
die too. This is not the case in QNX.

Detecting process termination
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In an embedded application, it’s often important to detect if any
process terminates prematurely and, if so, to handle it. Handling it
may involve something as simple as restarting the process or as
complex as:

1 Notifying other processes that they should put their systems
into a safe state.

2 Resetting the hardware.

This is complicated by the fact that some QNX processes call
procmgr_daemon(). Processes that call this function are referred to as
daemons. The procmgr_daemon() function:

e detaches the caller from the controlling terminal

e putsitinsession 1
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e optionally, closes all file descriptors except stdin, stdout, and stderr
e optionally, redirects stdin, stdout, stderr to /dev/null.

As a result of the above, their termination is hard to detect.

Another scenario is where a server process wants to know if any of its
clients disappear so that it can clean up any resources it had set aside
on their behalf.

Let’s look at various ways of detecting process termination.

Using the QNX High Availability Toolkit (HAT)

The High Availability Toolkit (HAT) provides components not only
for detecting when processes terminate, but also for recovering from
that termination.

The main component is a process called the High Availability
Manager (HAM) that acts as a “smart watchdog”. Your processes talk
to the HAM using the HAM API. With this API you basically set up
conditions that the HAM should watch for and take actions when
these conditions occur. So the HAM can be told to detect when a
process terminates and to automatically restart the process. It will
even detect the termination of daemon processes.

In fact, the High Availability Manager can restart a number of
processes, wait between restarts for a process to be ready, and notify
the process that this is happening.

The HAM also does heartbeating. Processes can periodically notify
the HAM that they are still functioning correctly. If a process
specified amount of time goes by between these notifications then the
HAM can take some action.

The above are just a sample of what is possible with the HAT.

Detecting termination from a starter process

60

If you’ve created a set of processes using a starter process as
discussed at the beginning of this section, then all those processes are
children of the starter process, with the exception of those that have
called procmgr_daemon(). If all you want to do is detect that one of
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those children has terminated, then a loop that blocks on wait() or
sigwaitinfo() will suffice. Note that when a child process calls
procmgr_daemon(), both wait() and sigwaitinfo() behave as if the
child process died, although the child is still running.

The wait() function will block, waiting until any of the caller’s child
processes terminate. There’s also waitpid(), which lets you wait for a
specific child process, wait3(), and wait4(). Lastly, there is waitid(),
which is the lower level of all the wait*() functions and returns the
most information.

The wait*() functions won’t always help, however. If a child process
was created using one of the spawn*() family of functions with the
mode passed as P_.NOWAITO, then the wait*() functions won’t be
notified of its termination!

What if the child process terminates, but the parent hasn’t yet called
wait*()? This would be the case if one child had already terminated,
so wait*() returned, but then before the parent got back to the wait*(),
a second child terminates. In that case, some information would have
to be stored away about the second child for when the parent does get
around to its wait*().

This is in fact the case. The second child’s memory will have been
freed up, its files will have been closed, and in general the child’s
resources will have been cleaned up with the exception of a few bytes
of memory in the process manager that contain the child’s exit status
or other reason that it had terminated and its process ID. When the
second child is in this state, it’s referred to as a zombie. The child will
remain a zombie until the parent either terminates or finds out about
the child’s termination (e.g. the parent calls wait*()).

What this means is that if a child has terminated and the parent is still
alive but doesn’t yet know about the terminated child (e.g. hasn’t
called wait*()), then the zombie will be hanging around. If the parent
will never care, then you may as well not have the child become a
zombie. To prevent the child from becoming a zombie when it
terminates, create the child process using one of the spawn*() family
of functions and pass P NOWAITO for the mode.
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The following sample illustrates the use of wait() for waiting for child
processes to terminate.

Sample parent process using wait()

/*
*
*
*
*
*
*

*/

waitchild.c

This is an example of a parent process that creates some child
processes and then waits for them to terminate. The waiting is
done using wait(). When a child process terminates, the

wait () function returns.

#include <spawn.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

main(int argc, char **argv)

{

char *args[] = { "child", NULL };
int i, status;
pid_t pid;

struct inheritance inherit;

// create 3 child processes
for (i = 0; i < 3; i++) {
inherit.flags = 0;

if ((pid = spawn("child", 0, NULL, &inherit, args, environ)) == -1)
perror ("spawn () failed");
else
printf ("spawned child, pid = %d\n", pid);
}
while (1) {
if ((pid = wait(&status)) == -1) {
perror ("wait () failed (no more child processes?)");

exit (EXIT_FAILURE) ;

}

printf ("a child terminated, pid = %d\n", pid);

if (WIFEXITED (status)) {
printf("child terminated normally, exit status = %d\n",
WEXITSTATUS (status));
} else if (WIFSIGNALED (status)) {
printf ("child terminated abnormally by signal = %X\n",
WTERMSIG (status));
} // else see documentation for wait() for more macros

The following is a simple child process to try out with the above
parent.
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#include <stdio.h>
#include <unistd.h>

main(int argec, char **argv)

{
printf ("pausing, terminate me somehow\n");
pause () ;

The sigwaitinfo() function will block, waiting until any signals that
the caller tells it to wait for are set on the caller. If a child process
terminates, then the SIGCHLD signal is set on the parent. So all the
parent has to do is request that sigwaitinfo() return when SIGCHLD
arrives.

Sample parent process using sigwaitinfo()
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The following sample illustrates the use of sigwaitinfo() for waiting
for child processes to terminate.

/*

* sigwaitchild.c

*

* This is an example of a parent process that creates some child
* processes and then waits for them to terminate. The waiting is
* done using sigwaitinfo(). When a child process terminates, the
* SIGCHLD signal is set on the parent. sigwaitinfo() will return
* when the signal arrives.

*/

#include <errno.h>
#include <spawn.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/neutrino.h>

void

signal_handler (int signo)

{
// do nothing

}

main(int argc, char **argv)

{
char *args[] = { "child", NULL };
int i;
pid_t pid;
sigset_t mask;
siginfo_t info;

struct inheritance inherit;
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struct sigaction action;

// mask out the SIGCHLD signal so that it will not interrupt us,
// (side note: the child inherits the parents mask)

sigemptyset (&mask) ;

sigaddset (&mask, SIGCHLD) ;

sigprocmask (SIG_BLOCK, &mask, NULL);

// by default, SIGCHLD is set to be ignored so unless we happen
// to be blocked on sigwaitinfo() at the time that SIGCHLD

// is set on us we will not get it. To fix this, we simply

// register a signal handler. Since we’ve masked the signal

// above, it will not affect us. At the same time we will make
// it a queued signal so that if more than one are set on us,
// sigwaitinfo() will get them all.

action.sa_handler = signal_handler;

sigemptyset (&action.sa_mask) ;

action.sa_flags = SA_SIGINFO; // make it a queued signal
sigaction (SIGCHLD, &action, NULL);

// create 3 child processes
for (i = 0; i < 3; i++) {
inherit.flags = 0;

if ((pid = spawn("child", 0, NULL, &inherit, args, environ)) == -1)
perror ("spawn() failed");
else
printf ("spawned child, pid = %d\n", pid);
}
while (1) {
if (sigwaitinfo(&mask, &info) == -1) {
perror ("sigwaitinfo() failed");
continue;
}
switch (info.si_signo) {
case SIGCHLD:
// info.si_pid is pid of terminated process, it is not POSIX
printf("a child terminated, pid = %d\n", info.si_pid);
break;
default:
// should not get here since we only asked for SIGCHLD
}
}

Detecting dumped processes

As mentioned above, you can run dumper SO that when a process
dies, dumper writes the state of the process to a file.

You can also write your own dumper-type process to run instead of, or
as well as, dumper. This way the terminating process doesn’t have to
be a child of yours.
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To do this, write a resource manager that registers the name,
/proc/dumper With type _FTYPE_DUMPER. When a process dies
due to one of the appropriate signals, the process manager will open
/proc/dumper and write the pid of the process that died — then it’ll
wait until you reply to the write with success and then it’ll finish
terminating the process.

It’s possible that more than one process will have /proc/dumper
registered at the same time, however, the process manager notifies
only the process that’s at the beginning of its list for that name.
Undoubtedly, you want both your resource manager and dumper to
handle this termination. To do this, request the process manager to put
you, instead of dumper, at the beginning of the /proc/dumper list
by passing -RESMGR_FLAG_BEFORE to resmgr_attach(). You must
also open /proc/dumper SO that you can communicate with dumper
if it’s running. Whenever your io_write handler is called, write the pid
to dumper and do your own handling. Of course this works only
when dumper is run before your resource manager; otherwise, your
open of /proc/dumper won’t work.

The following is a sample process that demonstrates the above:

~
*

dumphandler.c

due to any of the following signals:

SIGABRT
SIGBUS
SIGEMT
SIGFPE
SIGILL
SIGQUIT
SIGSEGV
SIGSYS
SIGTRAP
SIGXCPU
SIGXFSZ

* %k ok Ok ok ok 0k *k ok ok X F ¥ * * * ¥ * * * *

and then it will finish terminating the process.
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Note that while it is possible
/proc/dumper registered at the
only notify the one that is at
But we want both us and dumper

resmgr_attach()) .
with dumper if it is running.
we write the pid to dumper and

will not work.

SNk ok R R Ok Ok Ok X X F Ok Ok X *

*

<errno.h>
<stdio.h>
<stdlib.h>
<fcentl.h>
<string.h>
<unistd.h>
<sys/iofunc.h>
<sys/dispatch.h>
<sys/neutrino.h>
<sys/procfs.h>
<sys/stat.h>

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

int io_write (resmgr_context_t *ctp,

static int dumper_£4;

resmgr_connect_funcs_t

resmgr_io_funcs_t io_funcs;

dispatch_t *dpp;
resmgr_attr_t rattr;
dispatch_context_t *ctp;
iofunc_attr_t ioattr;
char *progname = "dumphandler";

main(int argc, char **argv)

{

for more than one process to have
same time the process manager will
the beginning of its list for that name.
to handle this termination. To do

this we make sure that we get notified instead of dumper by

asking the process manager to put us at the beginning of its list

for /proc/dumper (done by passing _RESMGR_FLAG_BEFORE to

We also open /proc/dumper so that we can communicate
Whenever our io_write handler is called,

do our own handling. Of course this

will only work if dumper is run before we are or else our open

io_write_t *msg, RESMGR_OCB_T *ocb) ;

connect_funcs;

/* find dumper so that we can pass any pids on to it */

dumper_£fd =
dpp = dispatch_create();

memset (&rattr, O,

rattr.msg_max_size = 2048;
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iofunc_func_init (_RESMGR_CONNECT_NFUNCS, &connect_funcs,
_RESMGR_IO_NFUNCS, &io_funcs);
io_funcs.write = io_write;

iofunc-attr_init (&iocattr, S_IFNAM | 0600, NULL, NULL);

resmgr_attach(dpp, &rattr, "/proc/dumper", _FTYPE_DUMPER,
_RESMGR_FLAG_BEFORE, &connect_funcs, &io_funcs, &ioattr);

ctp = dispatch_context_alloc (dpp) ;

while (1) {
if ((ctp = dispatch_block(ctp)) == NULL) {
fprintf (stderr, "%s: dispatch_block failed: %s\n",
progname, strerror (errno)) ;

exit(1);
}
dispatch_handler (ctp) ;
}
}
struct dinfo_s {
procfs_debuginfo info;
char pathbuffer [PATH MAX]; /* 1lst byte is info.path[0] */
}:
int
display-process_info(pid_t pid)
{
char buf [PATH_MAX + 1];
int fd, status;
struct dinfo_s dinfo;
procfs_greg reg;

printf ("%$s: process %d died\n", progname, pid);
sprintf (buf, "/proc/%d/as", pid);

if ((£fd = open(buf, O_RDONLY|O_NONBLOCK)) == -1)
return errno;

status = devctl (fd, DCMD_PROC_MAPDEBUG_BASE, &dinfo, sizeof(dinfo), NULL);
if (status != EOK) {

close (£fd);
return status;

printf ("%s: name is %s\n", progname, dinfo.info.path);
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/*
* for getting other type of information see sys/procfs.h, sys/debug.h
* and sys/dcmd_proc.h
*/

close(£d);
return EOK;

}
int
io_write(resmgr_context_t *ctp, io_write_t *msg, RESMGR_OCB_T *ocb)
{
char *pstr;
int status;
if ((status = iofunc_write_verify(ctp, msg, ocb, NULL)) != EOK)
return status;
if (msg->i.xtype & _IO_XTYPE_MASK != _IO_XTYPE_NONE)
return ENOSYS;
if (ctp->msg_max_size < msg->i.nbytes + 1)
return ENOSPC; /* not all the message could fit in the message buffer */
pstr = (char *) (&msg->i) + sizeof (msg->i);
pstr[msg->i.nbytes] = ’\0’;
if (dumper_£fd != -1) {
/* pass it on to dumper so it can handle it too */
if (write(dumper_fd, pstr, strlen(pstr)) == -1) {
close (dumper_£4) ;
dumper_£fd = -1; /* something wrong, no sense in doing it again later */
}
}
if ((status = display_process_info(atoi(pstr))) == -1)
return status;
_IO_SET_WRITE_NBYTES (ctp, msg->i.nbytes);
return EOK;
}
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Detecting the termination of daemons

What would happen if you’ve created some processes that
subsequently made themselves daemons (i.e. called
procmgr_daemon())? As we mentioned above, the wait*() functions
and sigwaitinfo() won’t help.

For these you can give the kernel an event, such as one containing a
pulse, and have the kernel deliver that pulse to you whenever a
daemon terminates. This request for notification is done by calling
procmgr_event notify() with PROCMGR _EVENT DAEMON DEATH in
flags.

See the documentation for procmgr_event_notify() for an example that
uses this function.

Detecting client termination
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The last scenario is where a server process wants to be notified of any
clients that terminate so that it can clean up any resources that it had
set aside for them.

This is very easy to do if the server process is written as a resource
manager, because the resource manager’s io_close dup() and
io_close ocb() handlers, as well as the ocb free() function, will be
called if a client is terminated for any reason.

Chapter 3 o Processes 69






Chapter 4
Writing a Resource Manager

In this chapter. ..

What is a resource manager? 73

Components of a resource manager 83
Simple device resource manager examples 87
Data carrying structures 97

Handling the _IO_READ message 107
Handling the IO_.WRITE message 116
Methods of returning and replying 119
Handling other read/write details 125
Attribute handling 129

Combine messages 131

Extending Data Control Structures (DCS) 139
Handling devctl() messages 142

Handling ionotify() and select() 149

Handling private messages and pulses 160
Handling open(), dup(), and close() messages 163
Handling client unblocking due to signals or timeouts 164
Handling interrupts 166

Multi-threaded resource managers 169
Filesystem resource managers 175

Message types 183

Resource manager data structures 184

May 31, 2004 Chapter 4 o Writing a Resource Manager 71






© 2004, QNX Software Systems Ltd. What is a resource manager?

What is a resource manager?

(IS
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This chapter assumes that you’re familiar with message passing. If
you’re not, see the Neutrino Microkernel chapter in the System
Architecture book as well as the MsgSend(), MsgReceivev(), and
MsgReply() series of calls in the Library Reference.

A resource manager is a user-level server program that accepts
messages from other programs and, optionally, communicates with
hardware. It’s a process that registers a pathname prefix in the
pathname space (e.g. /dev/ser1), and when registered, other
processes can open that name using the standard C library open()
function, and then read() from, and write() to, the resulting file
descriptor. When this happens, the resource manager receives an open
request, followed by read and write requests.

A resource manager isn’t restricted to handling just open(), read(),
and write() calls — it can support any functions that are based on a
file descriptor or file pointer, as well as other forms of IPC.

In QNX Neutrino, resource managers are responsible for presenting
an interface to various types of devices. In other operating systems,
the managing of actual hardware devices (e.g. serial ports, parallel
ports, network cards, and disk drives) or virtual devices (e.g.
/dev/null, a network filesystem, and pseudo-ttys), is associated
with device drivers. But unlike device drivers, the Neutrino resource
managers execute as processes separate from the kernel.

A resource manager looks just like any other user-level program.

Adding resource managers in QNX Neutrino won’t affect any other
part of the OS — the drivers are developed and debugged like any
other application. And since the resource managers are in their own
protected address space, a bug in a device driver won’t cause the
entire OS to shut down.

If you’ve written device drivers in most UNIX variants, you’re used to
being restricted in what you can do within a device driver; but since a
device driver in QNX Neutrino is just a regular process, you aren’t
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restricted in what you can do (except for the restrictions that exist
inside an ISR).

= For an attach, a resource manager must be run as root.

A few examples...

A serial port may be managed by a resource manager called
devc-ser8250, although the actual resource may be called
/dev/ser1l in the pathname space. When a process requests serial
port services, it does so by opening a serial port (in this case
/dev/serl).

fd = open("/dev/serl", O_RDWR);

for (packet = 0; packet < npackets; packet++)
write (£d, packets[packet], PACKET_SIZE) ;

close(fd) ;

Because resource managers execute as processes, their use isn’t
restricted to device drivers — any server can be written as a resource
manager. For example, a server that’s given DVD files to display in a
GUI interface wouldn’t be classified as a driver, yet it could be written
as a resource manager. It can register the name /dev/dvd and as a
result, clients can do the following:

fd = open("/dev/dvd", O_WRONLY) ;
while (data = get_dvd_data(handle, &nbytes)) {
bytes_written = write(fd, data, nbytes);
if (bytes_written != nbytes) {
perror ("Error writing the DVD data");
}
}

close(£fd) ;

Why write a resource manager?

Here are a few reasons why you’d want to write a resource manager:

e The APl is POSIX.
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The API for communicating with the resource manager is for the
most part, POSIX. All C programmers are familiar with the open(),
read(), and write() functions. Training costs are minimized, and so
is the need to document the interface to your server.

You can reduce the number of interface types.

If you have many server processes, writing each server as a
resource manager keeps the number of different interfaces that
clients need to use to a minimum.

An example of this is if you have a team of programmers building
your overall application, and each programmer is writing one or
more servers for that application. These programmers may work
directly for your company, or they may belong to partner
companies who are developing add-on hardware for your modular
platform.

If the servers are resource managers, then the interface to all of
those servers is the POSIX functions: open(), read(), write(), and
whatever else makes sense. For control-type messages that don’t
fit into a read/write model, there’s devctl() (although devctl() isn’t
POSIX).

Command-line utilities can communicate with resource managers.

Since the API for communicating with a resource manager is the
POSIX set of functions, and since standard POSIX utilities use this
API, the utilities can be used for communicating with the resource
managers.

For instance, the tiny TCP/IP protocol module contains
resource-manager code that registers the name /proc/ipstats.
If you open this name and read from it, the resource manager code
responds with a body of text that describes the statistics for IP.

The cat utility takes the name of a file and opens the file, reads
from it, and displays whatever it reads to standard output (typically
the screen). As a result, you can type:

cat /proc/ipstats
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The resource manager code in the TCP/IP protocol module
responds with text such as:

Ttcpip Sep 5 2000 08:56:16

verbosity level 0

ip checksum errors: 0
udp checksum errors: 0
tcp checksum errors: 0

packets sent: 82
packets received: 82

lo0 : addr 127.0.0.1 netmask 255.0.0.0 up

DST: 127.0.0.0 NETMASK: 255.0.0.0 GATEWAY: 1lo0

TCP 127.0.0.1.1227 > 127.0.0.1.6000 ESTABLISHED snd 0 rcv
TCP 127.0.0.1.6000 > 127.0.0.1.1227 ESTABLISHED snd 0 rcv
TCP 0.0.0.0.6000 LISTEN

You could also use command-line utilities for a robot-arm driver.
The driver could register the name, /dev/robot/arm/angle,
and any writes to this device are interpreted as the angle to set the
robot arm to. To test the driver from the command line, you’d type:

echo 87 >/dev/robot/arm/angle

The echo utility opens /dev/robot/arm/angle and writes the
string (“87”) to it. The driver handles the write by setting the robot
arm to 87 degrees. Note that this was accomplished without
writing a special tester program.

Another example would be names such as
/dev/robot/registers/rl, r2, ... Reading from these names
returns the contents of the corresponding registers; writing to these
names set the corresponding registers to the given values.

Even if all of your other IPC is done via some non-POSIX AP, it’s
still worth having one thread written as a resource manager for
responding to reads and writes for doing things as shown above.
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Under the covers

Despite the fact that you’ll be using a resource manager API that
hides many details from you, it’s still important to understand what’s
going on under the covers. For example, your resource manager is a
server that contains a MsgReceive() loop, and clients send you
messages using MsgSend*(). This means that you must reply either to
your clients in a timely fashion, or leave your clients blocked but save
the rcvid for use in a later reply.

To help you understand, we’ll discuss the events that occur under the
covers for both the client and the resource manager.

Under the client’s covers

May 31, 2004

When a client calls a function that requires pathname resolution (e.g.
open(), rename(), stat(), or unlink()), the function subsequently sends
messages to both the process and the resource managers to obtain a
file descriptor. Once the file descriptor is obtained, the client can use it
to send messages directly to the device associated with the pathname.

In the following, the file descriptor is obtained and then the client
writes directly to the device:

/*

* In this stage, the client talks

* to the process manager and the resource manager.
*/

fd = open("/dev/serl", O_RDWR);

/*
* In this stage, the client talks directly to the
* resource manager.
*/
for (packet = 0; packet < npackets; packet++)
write (fd, packets[packet], PACKET_SIZE);
close(£fd) ;

For the above example, here’s the description of what happened
behind the scenes. We’ll assume that a serial port is managed by a
resource manager called devc-ser8250, that’s been registered with
the pathname prefix /dev/serl:

Chapter 4 o Writing a Resource Manager 77



What is a resource manager? © 2004, QNX Software Systems Ltd.

Device

Client

7

Process Resource
manager manager

Under-the-cover communication between the client, the process manager,
and the resource manager.

1 The client’s library sends a “query” message. The open() in the
client’s library sends a message to the process manager asking
it to look up a name (e.g. /dev/serl).

2 The process manager indicates who’s responsible and it returns
the nd, pid, chid, and handle that are associated with the
pathname prefix.

Here'swhat went on behind the scenes...

When the devec-ser8250 resource manager registered its
name (/dev/ser1) in the namespace, it called the process
manager. The process manager is responsible for maintaining
information about pathname prefixes. During registration, it
adds an entry to its table that looks similar to this:

0, 47167, 1, 0, 0, /dev/serl

The table entries represent:

e Node descriptor (nd)
e Process ID of the resource manager (pid)
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e Channel ID that the resource manager receives messages
with (chid)

e Handle (handle)
e Open type (open type)
e Pathname prefix (name).

A resource manager is uniquely identified by a node descriptor,
process 1D, and a channel I1D. The process manager’s table
entry associates the resource manager with a name, a handle (to
distinguish multiple names when a resource manager registers
more than one name), and an open type.

When the client’s library issued the query call in step 1, the
process manager looked through all of its tables for any
registered pathname prefixes that match the name. Previously,
had another resource manager registered the name /, more than
one match would be found. So, in this case, both / and
/dev/serl match. The process manager will reply to the
open() with the list of matched servers or resource managers.
The servers are queried in turn about their handling of the path,
with the longest match being asked first.

3 The client’s library sends a “connect” message to the resource
manager. To do so, it must create a connection to the resource
manager’s channel:
fd = ConnectAttach(nd, pid, chid, 0, 0);

The file descriptor that’s returned by ConnectAttach() is also a
connection ID and is used for sending messages directly to the
resource manager. In this case, it’s used to send a connect
message (10 CONNECT defined in <sys/iomsg.h>)
containing the handle to the resource manager requesting that it
open /dev/serl.
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Typically, only functions such as open() call ConnectAttach() with an
index argument of 0. Most of the time, you should OR
_NTO_SIDE_CHANNEL into this argument, so that the connection is
made via a side channel, resulting in a connection ID that’s greater
than any valid file descriptor.

When the resource manager gets the connect message, it
performs validation using the access modes specified in the
open() call (i.e. are you trying to write to a read-only device?,
etc.)

4 The resource manager generally responds with a pass (and
open() returns with the file descriptor) or fail (the next server is
queried).

5 When the file descriptor is obtained, the client can use it to send
messages directly to the device associated with the pathname.

In the sample code, it looks as if the client opens and writes
directly to the device. In fact, the write() call sends an
_IO_WRITE message to the resource manager requesting that the
given data be written, and the resource manager responds that it
either wrote some of all of the data, or that the write failed.

Eventually, the client calls close(), which sends an 10_CLOSE _DUP
message to the resource manager. The resource manager handles this
by doing some cleanup.

Under the resource manager’s covers

The resource manager is a server that uses the QNX Neutrino
send/receive/reply messaging protocol to receive and reply to
messages. The following is pseudo-code for a resource manager:

initialize the resource manager
register the name with the process manager
DO forever
receive a message
SWITCH on the type of message
CASE _IO_CONNECT:
call io_open handler
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ENDCASE
CASE _IO_READ:
call io_read handler
ENDCASE
CASE _IO_WRITE:
call io_write handler

ENDCASE
/* etc. handle all other messages */
/* that may occur, performing */
. /* processing as appropriate */
ENDSWITCH

ENDDO

Many of the details in the above pseudo-code are hidden from you by
a resource manager library that you’ll use. For example, you won’t
actually call a MsgReceive*() function — you’ll call a library
function, such as resmgr_block() or dispatch_block(), that does it for
you. If you’re writing a single-threaded resource manager, you might
provide a message handling loop, but if you’re writing a
multi-threaded resource manager, the loop is hidden from you.

You don’t need to know the format of all the possible messages, and
you don’t have to handle them all. Instead, you register “handler
functions,” and when a message of the appropriate type arrives, the
library calls your handler. For example, suppose you want a client to
get data from you using read() — you’ll write a handler that’s called
whenever an _IO_READ message is received. Since your handler
handles 10 READ messages, we’ll call it an “io_read handler.”

The resource manager library:

1 Receives the message.

2 Examines the message to verify that it’s an 10 READ message.
3 Calls your io_read handler.

However, it’s still your responsibility to reply to the 10 READ
message. You can do that from within your io_read handler, or later
on when data arrives (possibly as the result of an interrupt from some
data-generating hardware).
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The library does default handling for any messages that you don’t
want to handle. After all, most resource managers don’t care about
presenting proper POSIX filesystems to the clients. When writing
them, you want to concentrate on the code for talking to the device
you’re controlling. You don’t want to spend a lot of time worrying
about the code for presenting a proper POSIX filesystem to the client.

The types of resource managers

In considering how much work you want to do yourself in order to
present a proper POSIX filesystem to the client, you can break
resource managers into two types:

e Device resource managers
e Filesystem resource managers

Device resource managers

Device resource managers create only single-file entries in the
filesystem, each of which is registered with the process manager.
Each name usually represents a single device. These resource
managers typically rely on the resource-manager library to do most of
the work in presenting a POSIX device to the user.

For example, a serial port driver registers names such as /dev/serl
and /dev/ser2. When the user does 1s -1 /dev, the library does
the necessary handling to respond to the resulting 10 _STAT messages
with the proper information. The person who writes the serial port
driver is able to concentrate instead on the details of managing the
serial port hardware.

Filesystem resource managers

Filesystem resource managers register a mountpoint with the process
manager. A mountpoint is the portion of the path that’s registered
with the process manager. The remaining parts of the path are
managed by the filesystem resource manager. For example, when a
filesystem resource manager attaches a mountpoint at /mount, and
the path /mount/home/thomasf iS examined:
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/mount/ Identifies the mountpoint that’s managed by the
process manager.
home/thomasf

Identifies the remaining part that’s to be managed by
the filesystem resource manager.

Examples of using filesystem resource managers are:

o flash filesystem drivers (although a flash driver toolkit is available
that takes care of these details)

e a tar filesystem process that presents the contents of a tar file as
a filesystem that the user can cd into and 1s from

e a mailbox-management process that registers the name
/mailboxes and manages individual mailboxes that look like
directories, and files that contain the actual messages.

Components of aresource Mmanager

A resource manager is composed of some of the following layers:

iofunc layer (the top layer)

resmgr layer

dispatch layer

thread pool layer (the bottom layer)

iofunc layer

May 31, 2004

This top layer consists of a set of functions that take care of most of
the POSIX filesystem details for you — they provide a
POSIX-personality. If you’re writing a device resource manager,
you’ll want to use this layer so that you don’t have to worry too much
about the details involved in presenting a POSIX filesystem to the
world.
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This layer consists of default handlers that the resource manager
library uses if you don’t provide a handler. For example, if you don’t
provide an io_open handler, iofunc_open_default() is called.

It also contains helper functions that the default handlers call. If you
override the default handlers with your own, you can still call these
helper functions. For example, if you provide your own io_read
handler, you can call iofunc read verify() at the start of it to make sure
that the client has access to the resource.

The names of the functions and structures for this layer have the form
iofunc_*. The header file is <sys/iofunc.h>. For more
information, see the Library Reference.

resmgr layer

This layer manages most of the resource manager library details. It:
e examines incoming messages
e calls the appropriate handler to process a message.

If you don’t use this layer, then you’ll have to parse the messages
yourself. Most resource managers use this layer.

The names of the functions and structures for this layer have the form
resmgr_*. The header file is <sys/resmgr.h>. For more
information, see the Library Reference.
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You can use the resmgr layer to handle _IO_* messages.

dispatch layer

This layer acts as a single blocking point for a number of different
types of things. With this layer, you can handle:

_10_* messages
It uses the resmgr layer for this.

select Processes that do TCP/IP often call select() to block while
waiting for packets to arrive, or for there to be room for
writing more data. With the dispatch layer, you register a
handler function that’s called when a packet arrives. The
functions for this are the select *() functions.
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pulses As with the other layers, you register a handler function
that’s called when a specific pulse arrives. The functions
for this are the pulse_*() functions.

other messages

You can give the dispatch layer a range of message types
that you make up, and a handler. So if a message arrives
and the first few bytes of the message contain a type in the
given range, the dispatch layer calls your handler. The
functions for this are the message_*() functions.

IPC messages

v
Blocking function

@@Qj@

Y

Handler function

| 3| Resource Connect / Open function

manager handlers

—>»{io_open | | y|Unlink function

io _unlink e

io_rename »| Rename function
Message

handler I/0 handlers

loop —>»|io read »| Read function
io write e
[ Write function

layer

Select handler I
Pulse handler I
Message handler I

You can use the dispatch layer to handle _10_* messages, select, pulses, and
other messages.
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The following describes the manner in which messages are handled
via the dispatch layer (or more precisely, through dispatch_handler()).
Depending on the blocking type, the handler may call the message *()
subsystem. A search is made, based on the message type or pulse
code, for a matching function that was attached using
message_attach() or pulse_attach(). If a match is found, the attached
function is called.

If the message type is in the range handled by the resource manager
(I/0 messages) and pathnames were attached using resmgr attach(),
the resource manager subsystem is called and handles the resource
manager message.

If a pulse is received, it may be dispatched to the resource manager
subsystem if it’s one of the codes handled by a resource manager
(UNBLOCK and DISCONNECT pulses). If a select_attach() is done
and the pulse matches the one used by select, then the select
subsystem is called and dispatches that event.

If a message is received and no matching handler is found for that
message type, MsgError(ENOSYS) is returned to unblock the sender.

thread pool layer

This layer allows you to have a single- or multi-threaded resource
manager. This means that one thread can be handling a write() while
another thread handles a read().

You provide the blocking function for the threads to use as well as the
handler function that’s to be called when the blocking function
returns. Most often, you give it the dispatch layer’s functions.
However, you can also give it the resmgr layer’s functions or your
own.

You can use this layer independently of the resource manager layer.

Simple device resource manager examples

The following are two complete but simple device resource manager
examples:

May 31, 2004 Chapter 4 o Writing a Resource Manager 87



Simple device resource manager examples © 2004, QNX Software Systems Ltd.

e single-threaded device resource manager

e multi-threaded device resource manager

As you read through this chapter, you’ll encounter many code
snippets. Most of these code snippets have been written so that they
can be combined with either of these simple resource managers.

Both of these simple device resource managers model their
functionality after that provided by /dev/nul1l:

an open() always works
e read() returns zero bytes (indicating EOF)
e awrite() of any size “works” (with the data being discarded)

e lots of other POSIX functions work (e.g. chown(), chmod(),
Iseek(), etc.).

Single-threaded device resource manager example

Here’s the complete code for a simple single-threaded device resource
manager:

#include <errno.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>

static resmgr_connect_funcs_t connect_funcs;
static resmgr_io_funcs_t io_funcs;
static iofunc_attr_t attr;

main (int argc, char **argv)

{
/* declare variables we’ll be using */
resmgr-attr_t resmgr-attr;
dispatch_t *dpp;
dispatch_context_t *ctp;
int id;
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/* initialize dispatch interface */

if ((dpp = dispatch_create()) == NULL) {
fprintf (stderr, "%s: Unable to allocate dispatch handle.\n",
argv[0]);

return EXIT_FAILURE;

/* initialize resource manager attributes */
memset (&resmgr-attr, 0, sizeof resmgr_attr);
resmgr_attr.nparts_max = 1;
resmgr-attr.msg-max_size = 2048;

/* initialize functions for handling messages */
iofunc_func_init (_RESMGR_CONNECT_NFUNCS, &connect_funcs,
_RESMGR_IO_NFUNCS, &io_funcs);

/* initialize attribute structure used by the device */
iofunc_attr_init (&attr, S_IFNAM | 0666, 0, 0);

/* attach our device name */

id = resmgr_attach(dpp, /* dispatch handle */
&resmgr_attr, /* resource manager attrs */
"/dev/sample", /* device name */
_FTYPE_ANY, /* open type */
0, /* flags */
&connect_funcs, /* connect routines */
&io_funcs, /* I/0 routines */
&attr) ; /* handle */

if(id == -1) {

fprintf (stderr, "%s: Unable to attach name.\n", argv[0]);
return EXIT_FAILURE;

}

/* allocate a context structure */
ctp = dispatch_context_alloc (dpp) ;

/* start the resource manager message loop */
while (1) {
if ((ctp = dispatch_block(ctp)) == NULL) {
fprintf (stderr, "block error\n");
return EXIT_FAILURE;

}

dispatch_handler (ctp) ;
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= Include <sys/dispatch.h> after <sys/iofunc.h> to avoid

warnings about redefining the members of some functions.

Let’s examine the example code step-by-step.

Initialize the dispatch interface

/* initialize dispatch interface */

if ((dpp = dispatch_create()) == NULL) {
fprintf (stderr, "%s: Unable to allocate dispatch handle.\n",
argv[0]);

return EXIT_FAILURE;

We need to set up a mechanism so that clients can send messages to
the resource manager. This is done via the dispatch_create() function
which creates and returns the dispatch structure. This structure
contains the channel ID. Note that the channel ID isn’t actually
created until you attach something, as in resmgr attach(),
message_attach(), and pulse_attach().

The dispatch structure (of type dispatch_t) is opaque; you can’t
access its contents directly. Use message _connect() to create a
connection using this hidden channel ID.

Initialize the resource manager attributes

/* initialize resource manager attributes */
memset (&resmgr_attr, 0, sizeof resmgr_attr);
resmgr_attr.nparts_max = 1;
resmgr-attr.msg-max_size = 2048;

The resource manager attribute structure is used to configure:

e how many IOV structures are available for server replies
(nparts_max)

e the minimum receive buffer size (msg_max _size).
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For more information, see resmgr _attach() in the Library Reference.

Initialize functions used to handle messages

/* initialize functions for handling messages */
iofunc_func_init (_RESMGR_CONNECT_NFUNCS, &connect_funcs,
_RESMGR_IO_NFUNCS, &io_funcs);

Here we supply two tables that specify which function to call when a
particular message arrives:

e connect functions table
e |/O functions table

Instead of filling in these tables manually, we call iofunc func_init() to
place the iofunc_*_default() handler functions into the appropriate
spots.

Initialize the attribute structure used by the device

/* initialize attribute structure used by the device */
iofunc_attr_init (&attr, S_IFNAM | 0666, 0, 0);

The attribute structure contains information about our particular
device associated with the name /dev/sample. It contains at least
the following information:

e permissions and type of device
e owner and group ID

Effectively, this is a per-name data structure. Later on, we’ll see how
you could extend the structure to include your own per-device
information.

Put a name into the namespace
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/* attach our device name */

id = resmgr_attach(dpp, /* dispatch handle */
&resmgr_attr, /* resource manager attrs */
"/dev/sample", /* device name */
_FTYPE_ANY, /* open type */
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0, /* flags */
&connect_funcs, /* connect routines */
&io_funcs, /* I/0 routines */
&attr) ; /* handle */

if(id == -1) {
fprintf (stderr, "%s: Unable to attach name.\n", argv[0]);
return EXIT_FAILURE;

Before a resource manager can receive messages from other
programs, it needs to inform the other programs (via the process
manager) that it’s the one responsible for a particular pathname prefix.
This is done via pathname registration. When registered, other
processes can find and connect to this process using the registered
name.

In this example, a serial port may be managed by a resource manager
called deve-xxx, but the actual resource is registered as
/dev/sample in the pathname space. Therefore, when a program
requests serial port services, it opens the /dev/sample serial port.

We’ll look at the parameters in turn, skipping the ones we’ve already
discussed.

device name Name associated with our device (i.e.
/dev/sample).

open type Specifies the constant value of FTYPE ANY. This
tells the process manager that our resource manager
will accept any type of open request — we’re not
limiting the kinds of connections we’re going to be
handling.

Some resource managers legitimately limit the types
of open requests they handle. For instance, the
POSIX message queue resource manager only
accepts open messages of type FTYPE MQUEUE.

flags Controls the process manager’s pathname resolution
behavior. By specifying a value of zero, we’ll only
accept requests for the name “/dev/sample”.
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Allocate the context structure

/* allocate a context structure */
ctp = dispatch_context_alloc (dpp) ;

The context structure contains a buffer where messages will be

received. The size of the buffer was set when we initialized the

resource manager attribute structure. The context structure also
contains a buffer of IOVs that the library can use for replying to
messages. The number of IOVs was set when we initialized the
resource manager attribute structure.

For more information, see dispatch context alloc() in the Library
Reference.

Start the resource manager message loop
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/* start the resource manager message loop */
while (1) {
if ((ctp = dispatch_block(ctp)) == NULL) {
fprintf (stderr, "block error\n");
return EXIT_FAILURE;

}

dispatch_handler (ctp);

Once the resource manager establishes its name, it receives messages
when any client program tries to perform an operation (e.g. open(),
read(), write()) on that name.

In our example, once /dev/sample is registered, and a client
program executes:

fd = open ("/dev/sample", O_RDONLY) ;

the client’s C library constructs an IO_CONNECT message which it
sends to our resource manager. Our resource manager receives the
message within the dispatch_block() function. We then call
dispatch_handler() which decodes the message and calls the
appropriate handler function based on the connect and 1/0 function
tables that we passed in previously. After dispatch_handler() returns,
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we go back to the dispatch_block() function to wait for another

message.
At some later time, when the client program executes:

read (fd, buf, BUFSIZ);

the client’s C library constructs an _I0_READ message, which is then
sent directly to our resource manager, and the decoding cycle repeats.

Multi-threaded device resource manager example

94

Chapter 4 e Writing a Resource Manager

Here’s the complete code for a simple multi-threaded device resource

manager:

#include <errno.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>

/*

* define THREAD_POOL_PARAM.T such that we can avoid a compiler
* warning when we use the dispatch_*() functions below

*/

#define THREAD_POOL_PARAM.T dispatch_context_t

#include <sys/iofunc.h>
#include <sys/dispatch.h>

static resmgr_connect_funcs_t connect_funcs;
static resmgr_io_funcs_t io_funcs;
static iofunc_attr_t attr;

main(int argc, char **argv)

{
/* declare variables we’ll be using */
thread_pool_attr._t pool_attr;

resmgr_attr_t resmgr_attr;
dispatch_t *dpp;
thread_pool_t *tpp;
dispatch_context_t *ctp;

int id;

/* initialize dispatch interface */

if ((dpp = dispatch_create()) == NULL) {
fprintf (stderr, "%s: Unable to allocate dispatch handle.\n",
argv[0]);
return EXIT_FAILURE;
}

/* initialize resource manager attributes */
memset (&resmgr_attr, 0, sizeof resmgr_attr);
resmgr_attr.nparts_max = 1;
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resmgr-attr.msg-max._size = 2048;
/* initialize functions for handling messages */
iofunc_func_init (_RESMGR_CONNECT_NFUNCS, &connect_funcs,

_RESMGR_IO_NFUNCS, &io_funcs);

/* initialize attribute structure used by the device */
iofunc_attr_init(&attr, S_IFNAM | 0666, 0, 0);

/* attach our device name */

id = resmgr_attach(dpp, /* dispatch handle */
&resmgr_attr, /* resource manager attrs */
"/dev/sample", /* device name */
_FTYPE_ANY, /* open type */
0, /* flags */
&connect_funcs, /* connect routines */
&io_funcs, /* I/0 routines */
&attr) ; /* handle */

if (id == -1) {

fprintf (stderr, "%s: Unable to attach name.\n", argv[0]);
return EXIT_FAILURE;

}

/* initialize thread pool attributes */

memset (&pool_attr, 0, sizeof pool_attr);
pool_attr.handle = dpp;

pool_attr.context_alloc = dispatch_context_alloc;
pool_attr.block_func = dispatch_block;
pool_attr.handler_func = dispatch_handler;
pool_attr.context_free = dispatch_context_free;
pool_attr.lo_water = 2;

pool_attr.hi_water = 4;

pool_attr.increment = 1;

pool_attr.maximum = 50;

/* allocate a thread pool handle */
if ((tpp = thread_pool_create(&pool_attr,
POOL_FLAG_EXIT_SELF)) == NULL) {
fprintf (stderr, "%s: Unable to initialize thread pool.\n",
argv[0]);
return EXIT_FAILURE;

}

/* start the threads, will not return */
thread_pool_start (tpp) ;

Most of the code is the same as in the single-threaded example so we
will cover only those parts that not are described above. Also, we’ll
go into more detail on multi-threaded resource managers later in this
chapter, so we’ll keep the details here to a minimum.

For this code sample, the threads are using the dispatch_*() functions
(i.e. the dispatch layer) for their blocking loops.
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Define THREAD POOL PARAM_T

/*

* define THREAD_POOL_PARAM_T such that we can avoid a compiler
* warning when we use the dispatch_*() functions below

*/

#define THREAD_POOL_PARAM_T dispatch_context_t

#include <sys/iofunc.h>
#include <sys/dispatch.h>

The THREAD_POOL_PARAM_T manifest tells the compiler what type
of parameter is passed between the various blocking/handling
functions that the threads will be using. This parameter should be the
context structure used for passing context information between the
functions. By default it is defined as a resmgr _context _t but since
this sample is using the dispatch layer, we need it to be a
dispatch_context_t. We define it prior to doing the includes
above since the header files refer to it.

Initialize thread pool attributes

/* initialize thread pool attributes */

memset (&pool_attr, 0, sizeof pool_attr);
pool_attr.handle = dpp;

pool_attr.context_alloc = dispatch_context_alloc;
pool_attr.block_func = dispatch_block;
pool_attr.handler_func = dispatch_handler;
pool_attr.context_free = dispatch_context_free;
pool_attr.lo_water = 2;

pool_attr.hi_water = 4;

pool_attr.increment = 1;

pool_attr.maximum = 50;

The thread pool attributes tell the threads which functions to use for
their blocking loop and control how many threads should be in
existence at any time. We go into more detail on these attributes when
we talk about multi-threaded resource managers in more detail later in
this chapter.
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Allocate a thread pool handle

/* allocate a thread pool handle */
if ((tpp = thread_pool_create(&pool_attr,
POOL_FLAG_EXIT_SELF)) == NULL) {
fprintf (stderr, "%s: Unable to initialize thread pool.\n",
argv([0]);
return EXIT_FAILURE;

The thread pool handle is used to control the thread pool. Amongst
other things, it contains the given attributes and flags. The
thread_pool_create() function allocates and fills in this handle.

Start the threads

/* start the threads, will not return */
thread_pool_start (tpp) ;

The thread_pool start() function starts up the thread pool. Each newly
created thread allocates a context structure of the type defined by
THREAD_POOL_PARAM_T using the context_alloc function we gave
above in the attribute structure. They’ll then block on the block func
and when the block_func returns, they’ll call the handler func, both of
which were also given through the attributes structure. Each thread
essentially does the same thing that the single-threaded resource
manager above does for its message loop. THREAD POOL PARAM T

From this point on, your resource manager is ready to handle
messages. Since we gave the POOL_FLAG_EXIT_SELF flag to
thread_pool_create(), once the threads have been started up,
pthread_exit() will be called and this calling thread will exit.

Data carrying structures

The resource manager library defines several key structures for
carrying data:

e Open Control Block (OCB) structure contains per-open data.

e attribute structure contains per-name data.
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e mount structure contains per-mountpoint data. (A device resource
manager typically won’t have a mount structure.)

This picture may help explain their interrelationships:

Per open Per name  Per mountpoint
Client OCB A Attribute
> structure for

/dev/time/hour

Process
A —> —
—>
OCB B

Process 3
B

rgsmgr Mount
e OCB C structure
> (optional)
e
P"O(C:ess Attribute describing
structure for /dev/time
/dev/time/min

Resource manager process

Multiple clients with multiple OCBs, all linked to one mount structure.

The Open Control Block (OCB) structure

The Open Control Block (OCB) maintains the state information about
a particular session involving a client and a resource manager. It’s
created during open handling and exists until a close is performed.

This structure is used by the iofunc layer helper functions. (Later on,
we’ll show you how to extend this to include your own data).

The OCB structure contains at least the following:

typedef struct _iofunc_ocb {
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IOFUNC_ATTR_T *attr;

int32_t ioflag;
off_t offset;
uintlé6_t sflag;
uintlé_t flags;

} iofunc_ocb_t;

where the values represent:

attr

ioflag

offset

sflag

flags

A pointer to the attribute structure (see below).

Contains the mode (e.g. reading, writing, blocking) that
the resource was opened with. This information is
inherited from the io_connect _t structure that’s
available in the message passed to the open handler.

User-modifiable. Defines the read/write offset into the
resource (e.g. our current Iseek() position within a file).

Defines the sharing mode. This information is inherited
from the io_connect_t structure that’s available in the
message passed to the open handler.

User-modifiable. When the IOFUNC_OCB _PRIVILEGED
bit is set, a privileged process (i.e. root) performed the
open(). Additionally, you can use flags in the range
IOFUNC_OCB_FLAGS_PRIVATE (See <sys/iofunc.h>)
for your own purposes.

The attribute structure

May 31, 2004

The iofunc_attr_t structure defines the characteristics of the
device that you’re supplying the resource manager for. This is used in
conjunction with the OCB structure.

The attribute structure contains at least the following:

typedef struct _iofunc_attr {

IOFUNC_MOUNT_T *mount;
uint32_t flags;
int32_t lock_tid;
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uintlé_t
uintlé_t
uintlé_t
uintlé_t
uintlé_t
uintlé_t

lock_count;
count;
rcount;
wcount;
rlocks;
wlocks;

struct _iofunc_mmap_list *mmap_list;
struct _iofunc_lock_list *lock_list;

void
uint32_t
off_t
ino_t
uid_t
gid-t
time_t
time_t
time_t
mode_t
nlink_t
dev_t

*list;
list_size;
nbytes;
inode;
uid;
gid;
mtime;
atime;
ctime;
mode;
nlink;
rdev;

} iofunc_attr_t;

where the values represent:

*mount

flags

A pointer to the mount structure.

The bit-mapped flags member contains the following

flags:

IOFUNC_ATTR_ATIME

The access time is no longer valid. Typically

set on a read from the resource.
IOFUNC_ATTR_CTIME

The change of status time is no longer valid.

Typically set on a file info change.

IOFUNC_ATTR_DIRTY_NLINK

The number of links has changed.

IOFUNC_ATTR_DIRTY_MODE

The mode has changed.
IOFUNC_ATTR_DIRTY_OWNER

The uid or the gid has changed.
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IOFUNC_ATTR_DIRTY_RDEV

The rdev member has changed, e.g. mknod().
IOFUNC_ATTR_DIRTY_SIZE

The size has changed.
IOFUNC_ATTR_DIRTY_TIME

One or more of mtime, atime, or ctime has
changed.

IOFUNC_ATTR_.MTIME

The modification time is no longer valid.
Typically set on a write to the resource.

Since your resource manager uses these flags, you
can tell right away which fields of the attribute
structure have been modified by the various
iofunc-layer helper routines. That way, if you need to
write the entries to some medium, you can write just
those that have changed. The user-defined area for
flags is IOFUNC_ATTR PRIVATE (see
<sys/iofunc.h>).

For details on updating your attribute structure, see
the section on “Updating the time for reads and
writes” below.

lock_tid and lock_count

May 31, 2004

To support multiple threads in your resource
manager, you’ll need to lock the attribute structure so
that only one thread at a time is allowed to change it.
The resource manager layer automatically locks the
attribute (using iofunc_attr lock()) for you when
certain handler functions are called (i.e. 10 *). The
lock_tid member holds the thread ID; the lock_count
member holds the number of times the thread has
locked the attribute structure. (For more information,
see the iofunc_attr_lock() and iofunc_attr _unlock()
functions in the Library Reference.)
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count, rcount, wcount, rlocks and wlocks

Several counters are stored in the attribute structure
and are incremented/decremented by some of the
iofunc layer helper functions. Both the functionality
and the actual contents of the message received from
the client determine which specific members are
affected.

Thiscounter: tracksthe number of:

count OCBs using this attribute in any
manner. When this count goes to
zero, it means that no one is using
this attribute.

rcount OCBs using this attribute for reading.

wcount OCBs using this attribute for writing.

rlocks read locks currently registered on the
attribute.

wlocks write locks currently registered on

the attribute.

These counts aren’t exclusive. For example, if an
OCB has specified that the resource is opened for
reading and writing, then count, rcount, and wcount
will all be incremented. (See the iofunc attr init(),
iofunc_lock _default(), iofunc_lock(),

iofunc_ocb attach(), and iofunc_och detach()
functions.)

mmap_list and lock_list

To manage their particular functionality on the
resource, the mmap_list member is used by the
iofunc_mmap() and iofunc_mmap_default() functions;
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list
list_size

nbytes

inode

uid and gid

the lock_list member is used by the
iofunc_lock_default() function. Generally, you
shouldn’t need to modify or examine these members.

Reserved for future use.
Size of reserved area; reserved for future use.

User-modifiable. The number of bytes in the
resource. For a file, this would contain the file’s size.
For special devices (e.g. /dev/null) that don’t
support Iseek() or have a radically different
interpretation for Iseek(), this field isn’t used
(because you wouldn’t use any of the helper
functions, but would supply your own instead.) In
these cases, we recommend that you set this field to
zero, unless there’s a meaningful interpretation that
you care to put to it.

This is a mountpoint-specific inode that must be
unique per mountpoint. You can specify your own
value, or 0 to have the process manager fill it in for
you. For filesystem type of applications, this may
correspond to some on-disk structure. In any case,
the interpretation of this field is up to you.

The user ID and group ID of the owner of this
resource. These fields are updated automatically by
the chown() helper functions (e.g.
iofunc_chown_default()) and are referenced in
conjunction with the mode member for
access-granting purposes by the open() help
functions (e.g. iofunc_open default()).

mtime, atime, and ctime

May 31, 2004

The three POSIX time members:

e mtime — modification time (write() updates this).
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e atime — access time (read() updates this).

e ctime — change of status time (write(), chmod()
and chown() update this).

One or more of the three time members may be invalidated as a result
of calling an iofunc-layer function. This is to avoid having each and
every 1/0 message handler go to the kernel and request the current
time of day, just to fill in the attribute structure’s time member(s).

POSIX states that these times must be valid when the
fstat() is performed, but they don’t have to reflect the
actual time that the associated change occurred.
Also, the times must change between fstat()
invocations if the associated change occurred
between fstat() invocations. If the associated change
never occurred between fstat() invocations, then the
time returned should be the same as returned last
time. Furthermore, if the associated change occurred
multiple times between fstat() invocations, then the
time need only be different from the previously
returned time.

There’s a helper function that fills the members with
the correct time; you may wish to call it in the
appropriate handlers to keep the time up-to-date on
the device — see the iofunc_time_update() function.

mode Contains the resource’s mode (e.g. type,
permissions). Valid modes may be selected from the
S_* series of constants in <sys/stat.h>.

nlink User-modifiable. Number of links to this particular
name. For names that represent a directory, this value
must be greater than 2.

rdev Contains the device number for a character special
device and the rdev number for a named special
device.
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The mount structure

May 31, 2004

The members of the mount structure, specifically the conf and flags
members, modify the behavior of some of the iofunc layer functions.
This optional structure contains at least the following:

typedef struct _iofunc_mount {

uint32_t flags;
uint32_t conf;
dev_t dev;
int32_t blocksize;
iofunc_funcs_t *funcs;

} iofunc_mount_t;

The variables are:

flags

conf

Contains one relevant bit (manifest constant
IOFUNC_MOUNT_32BIT), which indicates that the
offsets used by this resource manager are 32-bit (as
opposed to the extended 64-bit offsets). The
user-modifiable mount flags are defined as

IOFUNC_MOUNT_FLAGS_PRIVATE (see
<sys/iofunc.h>).

Contains several bits:

IOFUNC_PC_CHOWN_RESTRICTED

Causes the default handler for the I0_CHOWN

message to behave in a manner defined by

POSIX as “chown-restricted”.
IOFUNC_PC_NO_TRUNC

Has no effect on the iofunc layer libraries, but is
returned by the iofunc layer’s default
_IO_PATHCONF handler.

IOFUNC_PC_SYNC._IO

If not set, causes the default iofunc layer
_I0_OPEN handler to fail if the client specified
any one of O_DSYNC, O_RSYNC, or O_SYNC.
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dev

blocksize

funcs

IOFUNC_PC_LINK_DIR

Controls whether or not root is allowed to link
and unlink directories.

Note that the options mentioned above for the conf
member are returned by the iofunc layer
_IO_PATHCONF default handler.

Contains the device number for the filesystem. This
number is returned to the client’s stat() function in the
struct stat St_dev member.

Contains the block size of the device. On filesystem
types of resource managers, this indicates the native
blocksize of the disk, e.g. 512 bytes.

Contains the following structure:

struct _iofunc_funcs {
unsigned nfuncs;
IOFUNC_OCB_T *(*ocb_calloc) (resmgr_context_t *ctp,
IOFUNC_ATTR_T *attr);
void (*ocb_free) (IOFUNC_OCB_T *ocb);

}i

where

nfuncs Indicates the number of functions present in
the structure; it should be filled with the
manifest constant IOFUNC _NFUNCS.
ocb_calloc() and ocb_free()

Allows you to override the OCBs on a
per-mountpoint basis. (See the section titled
“Extending the OCB and attribute structures.”)
If these members are NULL, then the default
library versions are used. You must specify
either both or neither of these functions —
they operate as a matched pair.
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Handling the IO_READ message

May 31, 2004

The io_read handler is responsible for returning data bytes to the
client after receiving an _IO_READ message. Examples of functions
that send this message are read(), readdir(), fread(), and fgetc(). Let’s
start by looking at the format of the message itself:

struct _io_read {

uintl6_t type;
uintlé_t combine_len;
int32_t nbytes;
uint32_t xtype;
}:
typedef union {
struct _io_read i;
/* unsigned char datal[nbytes]; */

/* nbytes is returned with MsgReply */
} io_read_t;

As with all resource manager messages, we’ve defined union that
contains the input (coming into the resource manager) structure and a
reply or output (going back to the client) structure. The io read()
function is prototyped with an argument of io_read_t *msg —
that’s the pointer to the union containing the message.

Since this is a read(), the type member has the value IO_READ. The
items of interest in the input structure are:

combine len This field has meaning for a combine message — see
the “Combine messages” section in this chapter.
nbytes How many bytes the client is expecting.

Xtype A per-message override, if your resource manager
supports it. Even if your resource manager doesn’t
support it, you should still examine this member.
More on the xtype later (see the section “xtype”).

We’ll create an io_read() function that will serve as our handler that
actually returns some data (the fixed string "Hello, world\n").
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We’ll use the OCB to keep track of our position within the buffer that
we’re returning to the client.

When we get the _IO_READ message, the nbytes member tells us
exactly how many bytes the client wants to read. Suppose that the
client issues:

read (f£d, buf, 4096);

In this case, it’s a simple matter to return our entire "Hello,
world\n" string in the output buffer and tell the client that we’re
returning 13 bytes, i.e. the size of the string.

However, consider the case where the client is performing the
following:

while (read (fd, &character, 1) != EOF) {
printf ("Got a character \"%c\"\n", character);
}

Granted, this isn’t a terribly efficient way for the client to perform
reads! In this case, we would get msg->i.nbytes set to 1 (the size
of the buffer that the client wants to get). We can’t simply return the
entire string all at once to the client — we have to hand it out one
character at a time. This is where the OCB’s offset member comes
into play.

Sample code for handling _IO_READ messages

Here’s a complete io_read() function that correctly handles these
cases:

#include <errno.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int io_read (resmgr_context_t *ctp, io_read_t *msg, RESMGR_OCB_T *ocb);
static char *buffer = "Hello world\n";

static resmgr_connect_funcs_t connect_funcs;
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static resmgr_io_funcs_t io_funcs;
static iofunc_attr_t attr;

main(int argc, char **argv)

{

/* declare variables we’ll be using */

resmgr-attr_t resmgr-attr;
dispatch_t *dpp;
dispatch_context_t *ctp;

int id;

/* initialize dispatch interface */

if ((dpp = dispatch_create()) == NULL) {
fprintf (stderr, "%s: Unable to allocate dispatch handle.\n",
argv[0]);

return EXIT_FAILURE;

/* initialize resource manager attributes */
memset (&resmgr_attr, 0, sizeof resmgr_attr);
resmgr_attr.nparts_max = 1;
resmgr_attr.msg_max_size = 2048;

/* initialize functions for handling messages */
iofunc_func_init (_RESMGR_CONNECT_NFUNCS, &connect_funcs,

—RESMGR_IO_NFUNCS, &io-_funcs);
io_funcs.read = io_read;

/* initialize attribute structure used by the device */
iofunc_attr_init (&attr, S_IFNAM | 0666, 0, 0);
attr.nbytes = strlen(buffer)+l;

/* attach our device name */
if ((id = resmgr_attach(dpp, &resmgr_attr, "/dev/sample", _FTYPE_ANY, O,
&connect_funcs, &io_funcs, &attr)) == -1) {
fprintf (stderr, "%s: Unable to attach name.\n", argv[0]);
return EXIT_FAILURE;

/* allocate a context structure */
ctp = dispatch_context_alloc (dpp) ;

/* start the resource manager message loop */
while (1) {
if ((ctp = dispatch_block(ctp)) == NULL) {
fprintf (stderr, "block error\n");
return EXIT_FAILURE;

}

dispatch_handler (ctp) ;

int
io_read (resmgr_context_t *ctp, io_read_t *msg, RESMGR_OCB_T *ocb)

{

int nleft;
int nbytes;
int nparts;
int status;
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if ((status = iofunc_read_verify (ctp, msg, ocb, NULL)) != EOK)
return (status);

if ((msg->i.xtype & _IO_XTYPE_MASK) != _IO_XTYPE_NONE)
return (ENOSYS);

* On all reads (first and subsequent), calculate
* how many bytes we can return to the client,

* Dbased upon the number of bytes available (nleft)
* and the client’s buffer size

nleft = ocb->attr->nbytes - ocb->offset;
nbytes = min (msg->i.nbytes, nleft);

if (nbytes > 0) {
/* set up the return data IOV */
SETIOV (ctp->iov, buffer + ocb->offset, nbytes):

/* set up the number of bytes (returned by client’s read()) */
-IO_SET_READ_NBYTES (ctp, nbytes);

/*
* advance the offset by the number of bytes
* returned to the client.

*/
ocb->offset += nbytes;

nparts = 1;
} else {
/*
* they’ve asked for zero bytes or they’ve already previously
* read everything

*/
_IO_SET_READ_NBYTES (ctp, 0);

nparts = 0;

/* mark the access time as invalid (we just accessed it) */

if (msg->i.nbytes > 0)
ocb->attr->flags |= IOFUNC_ATTR_-ATIME;

return (_RESMGR_NPARTS (nparts));

The ocb maintains our context for us by storing the offset field, which
gives us the position within the buffer, and by having a pointer to the
attribute structure attr, which tells us how big the buffer actually is
via its nbytes member.
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Of course, we had to give the resource manager library the address of
our io_read() handler function so that it knew to call it. So the code in
main() where we had called iofunc_func_init() became:

/* initialize functions for handling messages */
iofunc_func_init (_RESMGR_CONNECT_NFUNCS, &connect_funcs,

—RESMGR_IO_NFUNCS, &io-_funcs);
io_funcs.read = io_read;

We also needed to add the following to the area above main():

#include <errno.h>
#include <unistd.h>

int io_read (resmgr_context_t *ctp, io_read_t *msg, RESMGR_OCB_T *ocb);

static char *buffer = "Hello world\n";"

Where did the attribute structure’s nbytes member get filled in? In
main(), just after we did the iofunc_attr_init(). We modified main()
slightly:

After this line:

iofunc_attr_init (&attr, S_IFNAM | 0666, 0, 0);

We added this one:

attr.nbytes = strlen (buffer)+1l;

At this point, if you were to run the resource manager (our simple
resource manager used the name /dev/sample), You could do:

# cat /dev/sample
Hello, world

The return line (_RESMGR_NPARTS (nparts) ) tells the resource
manager library to:

e reply to the client for us

e reply with nparts IOVs.
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Where does it get the IOV array? It’s using ctp->iov. That’s why
we first used the SETIOV() macro to make ctp->iov point to the
data to reply with.

If we had no data, as would be the case of a read of zero bytes, then
we’d do a return (_RESMGR_NPARTS (0) ). But read() returns with
the number of bytes successfully read. Where did we give it this
information? That’s what the 10 SET READ NBYTES() macro was
for. It takes the nbytes that we give it and stores it in the context
structure (ctp). Then when we return to the library, the library takes
this nbytes and passes it as the second parameter to the MsgReplyv().
The second parameter tells the kernel what the MsgSend() should
return. And since the read() function is calling MsgSend(), that’s
where it finds out how many bytes were read.

We also update the access time for this device in the read handler. For
details on updating the access time, see the section on “Updating the
time for reads and writes” below.

Ways of adding functionality to the resource manager

You can add functionality to the resource manager you’re writing in
these fundamental ways:

e Use the default functions encapsulated within your own.
e Use the helper functions within your own.
e Write the entire function yourself.

The first two are almost identical, because the default functions really
don’t do that much by themselves — they rely on the POSIX helper
functions. The third approach has advantages and disadvantages.

Using the default functions

Since the default functions (e.g. iofunc_open default()) can be
installed in the jJump table directly, there’s no reason you couldn’t
embed them within your own functions.

Here’s an example of how you would do that with your own io_open()
handler:
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main (int argc, char **argv)

/* install all of the default functions */
iofunc_func_init (_RESMGR_CONNECT_NFUNCS, &connect_funcs,
_RESMGR_IO_NFUNCS, &io_funcs);
/* take over the open function */
connect_funcs.open = io_open;
int

io_open (resmgr_context_t *ctp, io_open_t *msg,
RESMGR_HANDLE_T *handle, void *extra)

}

return (iofunc_open_default (ctp, msg, handle, extra));

Obviously, this is just an incremental step that lets you gain control in
your io_open() when the message arrives from the client. You may
wish to do something before or after the default function does its
thing:

/* example of doing something before */
extern int accepting_opens_now;
int

io_open (resmgr_context_t *ctp, io_open_t *msg,
RESMGR_HANDLE_T *handle, void *extra)

{
if (laccepting_opens._now) {
return (EBUSY);
}
/*
* at this point, we’re okay to let the open happen,
* g0 let the default function do the "work".
*/
return (iofunc_open_default (ctp, msg, handle, extra));
}
Or:

/* example of doing something after */
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int
io_open (resmgr_context_t *ctp, io_open_t *msg,
RESMGR_HANDLE_T *handle, void *extra)

{
int sts;
/*
* have the default function do the checking
* and the work for us
*/
sts = iofunc_open_default (ctp, msg, handle, extra);
/*
* 1if the default function says it’s okay to let the open happen,
* we want to log the request
*/
if (sts == EOK) {
log_open_request (ctp, msg);
}
return (sts);
}

It goes without saying that you can do something before and after the
standard default POSIX handler.

The principal advantage of this approach is that you can add to the
functionality of the standard default POSIX handlers with very little
effort.

Using the helper functions

The default functions make use of helper functions — these functions
can’t be placed directly into the connect or 1/0 jump tables, but they
do perform the bulk of the work.

Here’s the source for the two functions iofunc_chmod _default() and
iofunc _stat_default():

int

iofunc_chmod_default (resmgr_context_t *ctp, io_chmod_t *msg,
iofunc_ocb_t *ocb)
{

}

return (iofunc_chmod (ctp, msg, ocb, ocb -&gt; attr));
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int
iofunc_stat_default (resmgr_context_t *ctp, io_stat_t *msg,
iofunc_ocb_t *ocb)

{

iofunc_time_update (ocb -&gt; attr);

iofunc_stat (ocb -&gt; attr, &amp; msg -&gt; o);

return (_RESMGR_PTR (ctp, &amp; msg -&gt; o, sizeof (msg -&gt; o)));
}

Notice how the iofunc_chmod() handler performs all the work for the
iofunc_chmod_default() default handler. This is typical for the simple
functions.

The more interesting case is the iofunc_stat_default() default handler,
which calls two helper routines. First it calls iofunc time update() to
ensure that all of the time fields (atime, ctime and mtime) are up to
date. Then it calls iofunc_stat(), which builds the reply. Finally, the
default function builds a pointer in the ctp structure and returns it.

The most complicated handling is done by the iofunc_open _default()

handler:

int

iofunc_open_default (resmgr_context_t *ctp, io_open_t *msg,
iofunc_attr_t *attr, void *extra)

{

int status;
iofunc_attr_lock (attr);

if ((status = iofunc_open (ctp, msg, attr, 0, 0)) != EOK) {
iofunc_attr_unlock (attr);
return (status);

}

if ((status = iofunc_ocb_attach (ctp, msg, 0, attr, 0))
1= EOK) {
iofunc_attr_unlock (attr);
return (status);

}

iofunc_attr_unlock (attr);
return (EOK) ;

This handler calls four helper functions:
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1 It calls iofunc_attr_lock() to lock the attribute structure so that it
has exclusive access to it (it’s going to be updating things like
the counters, so we need to make sure no one else is doing that
at the same time).

2 It then calls the helper function iofunc_open(), which does the
actual verification of the permissions.

3 Next it calls iofunc_ocb _attach() to bind an OCB to this request,
so that it will get automatically passed to all of the 1/O
functions later.

4 Finally, it calls iofunc_attr _unlock() to release the lock on the
attribute structure.

Writing the entire function yourself

Sometimes a default function will be of no help for your particular
resource manager. For example, iofunc_read_default() and
iofunc_write_default() functions implement /dev/null — they do all
the work of returning 0 bytes (EOF) or swallowing all the message
bytes (respectively).

You’ll want to do something in those handlers (unless your resource
manager doesn’t support the IO_READ or _IO_WRITE messages).

Note that even in such cases, there are still helper functions you can
use: iofunc_read_verify() and iofunc_write _verify().

Handling the IO WRITE message

The io_write handler is responsible for writing data bytes to the media
after receiving a client’s _IO_WRITE message. Examples of functions
that send this message are write() and fflush(). Here’s the message:

struct _io_write {

uintl6_t type;

uintlé_t combine_len;
int32_t nbytes;

uint32_t xtype;

/* unsigned char datal[nbytes]l; */
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typedef union {

struct _io_write i;

/* nbytes is returned with MsgReply */
} io_write_t;

As with the io_read_t, we have a union of an input and an output
message, with the output message being empty (the number of bytes
actually written is returned by the resource manager library directly to
the client’s MsgSend()).

The data being written by the client almost always follows the header
message stored in struct —_io_write. The exception is if the write
was done using pwrite() or pwrite64(). More on this when we discuss
the xtype member.

To access the data, we recommend that you reread it into your own
buffer. Let’s say you had a buffer called inbuf that was “big enough”
to hold all the data you expected to read from the client (if it isn’t big
enough, you’ll have to read the data piecemeal).

Sample code for handling _IO_.WRITE messages

May 31, 2004

The following is a code snippet that can be added to one of the simple
resource manager examples. It prints out whatever it’s given (making
the assumption that it’s given only character text):

int

io_write (resmgr_context_t *ctp, io_write_t *msg, RESMGR_OCB_T *ocb)

{

int status;

char *buf;

if ((status = iofunc_write_verify(ctp, msg, ocb, NULL)) != EOK)
return (status);

if ((msg->i.xtype & _IO_XTYPE_MASK) != _IO_XTYPE_NONE)
return (ENOSYS) ;

/* set up the number of bytes (returned by client’s write()) */

_IO_SET_WRITE_NBYTES (ctp, msg->i.nbytes);
buf = (char *) malloc(msg->i.nbytes + 1);
if (buf == NULL)

return (ENOMEM) ;

/*
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* reread the data from the sender’s message buffer.
* We’re not assuming that all of the data fit into the
* resource manager library’s receive buffer.

*/
resmgr_msgread (ctp, buf, msg->i.nbytes, sizeof (msg->i));
buf [msg->i.nbytes] = ’\0’; /* just in case the text is not NULL terminated */
printf ("Received %d bytes = ‘%s’\n", msg -> i.nbytes, buf);
free (buf) ;

if (msg->i.nbytes > 0)
ocb->attr->flags ‘= IOFUNC_ATTR_MTIME IOFUNC_ATTR_CTIME;

return (_RESMGR_NPARTS (0));

Of course, we’ll have to give the resource manager library the address
of our io_write handler so that it’ll know to call it. In the code for
main() where we called iofunc_func_init(), we’ll add a line to register
our io_write handler:

/* initialize functions for handling messages */

iofunc_func_init (_RESMGR_CONNECT_NFUNCS, &connect_funcs,

_RESMGR_IO_NFUNCS, &io_funcs);
io_funcs.write = io_write;

You may also need to add the following prototype:

int io_write (resmgr_context_t *ctp, io_write_t *msg, RESMGR_OCB_T *ocb);

At this point, if you were to run the resource manager (our simple
resource manager used the name /dev/sample), you could write to
it by doing echo Hello > /dev/sample as follows:

# echo Hello > /dev/sample
Received 6 bytes = ‘Hello’

Notice how we passed the last argument to resmgr_msgread() (the
offset argument) as the size of the input message buffer. This
effectively skips over the header and gets to the data component.

If the buffer you supplied wasn’t big enough to contain the entire
message from the client (e.g. you had a 4K buffer and the client
wanted to write 1 megabyte), you’d have to read the buffer in stages,
using a for loop, advancing the offset passed to resmgr_msgread() by
the amount read each time.
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Unlike the io_read handler sample, this time we didn’t do anything
with ocb->o0ffset. In this case there’s no reason to. The
ocb->offset Would make more sense if we were managing things
that had advancing positions such as a file position.

The reply is simpler than with the io_read handler, since a write() call
doesn’t expect any data back. Instead, it just wants to know if the
write succeeded and if so, how many bytes were written. To tell it how
many bytes were written we used the _IO_SET WRITE_NBYTES()
macro. It takes the nbytes that we give it and stores it in the context
structure (ctp). Then when we return to the library, the library takes
this nbytes and passes it as the second parameter to the MsgReplyv().
The second parameter tells the kernel what the MsgSend() should
return. And since the write() function is calling MsgSend(), that’s
where it finds out how many bytes were written.

Since we’re writing to the device, we should also update the
modification, and potentially, the creation time. For details on
updating the modification and change of file status times, see the
section on “Updating the time for reads and writes” below.

Methods of returning and replying

You can return to the resource manager library from your handler
functions in various ways. This is complicated by the fact that the
resource manager library can reply for you if you want it to, but you
must tell it to do so and put the information that it’ll use in all the
right places.

In this section, we’ll discuss the following ways of returning to the
resource manager library:

e Returning with an error

e Returning using an IOV array that points to your data
e Returning with a single buffer containing data

e Returning success but with no data

e Getting the resource manager library to do the reply
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e Performing the reply in the server

e Returning and telling the library to do the default action

Returning with an error

To reply to the client such that the function the client is calling (e.g.
read()) will return with an error, you simply return with an
appropriate errno value (from <errno.h>).

return (ENOMEM) ;

You may occasionally see another form in use (historical and
deprecated) that works out to exactly the same thing:

return (_RESMGR_ERRNO (ENOMEM) ) ;

In the case of a read(), both of the above cause the read to return -1
with errno set to ENOMEM.

Returning using an IOV array that points to your data

Sometimes you’ll want to reply with a header followed by one of N
buffers, where the buffer used will differ each time you reply. To do
this, you can set up an 10V array whose elements point to the header
and to a buffer.

The context structure already has an IOV array. If you want the
resource manager library to do your reply for you, then you must use
this array. But the array must contain enough elements for your needs.
To ensure that this is the case, you’d set the nparts_max member of
the resmgr_attr_t Structure that you passed to resmgr _attach()
when you registered your name in the pathname space.

The following example assumes that the variable i contains the offset
into the array of buffers of the desired buffer to reply with. The 2 in
_RESMGR_NPARTS (2) tells the library how many elements in
ctp->iov to reply with.

my_header_t header;
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a_buffer_t buffers|[N];

SETIOV (&ctp->iov[0], &header, sizeof (header));
SETIOV (&ctp->iov[1l], &buffers[i], sizeof (buffersl[il));
return (_RESMGR_NPARTS(2));

Returning with a single buffer containing data

An example of this would be replying to a read() where all the data
existed in a single buffer. You’ll typically see this done in two ways:

return (_RESMGR_PTR(ctp, buffer, nbytes)):;

And:

SETIOV (ctp->iov, buffer, nbytes);
return (_RESMGR_NPARTS (1)) ;

The first method, using the RESMGR_PTR() macro, is just a
convenience for the second method where a single 1OV is returned.

Returning success but with no data
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This can be done in a few ways. The most simple would be:

return (EOK) ;

But you’ll often see:

return (_RESMGR_NPARTS(0));

Note that in neither case are you causing the MsgSend() to return with
a 0. The value that the MsgSend() returns is the value passed to the
_10_SET_READ NBYTES(), 10 SET WRITE _NBYTES(), and other
similar macros. These two were used in the read and write samples
above.
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Getting the resource manager library to do the reply

In this case, you give the client the data and get the resource manager
library to do the reply for you. However, the reply data won’t be valid
by that time. For example, if the reply data was in a buffer that you
wanted to free before returning, you could use the following:

resmgr_msgwrite (ctp, buffer, nbytes, 0);
free (buffer);
return (EOK) ;

The resmgr_msgwrite() copies the contents of buffer into the client’s
reply buffer immediately. Note that a reply is still required in order to
unblock the client so it can examine the data. Next we free the buffer.
Finally, we return to the resource manager library such that it does a
reply with zero-length data. Since the reply is of zero length, it
doesn’t overwrite the data already written into the client’s reply
buffer. When the client returns from its send call, the data is there
waiting for it.

Performing the reply in the server

In all of the previous examples, it’s the resource manager library that
calls MsgReply*() or MsgError() to unblock the client. In some cases,
you may not want the library to reply for you. For instance, you might
have already done the reply yourself, or you’ll reply later. In either
case, you’d return as follows:

return (_RESMGR_NOREPLY) ;

Leaving the client blocked, replying later

An example of a resource manager that would reply to clients later is
a pipe resource manager. If the client is doing a read of your pipe but
you have no data for the client, then you have a choice:

e You can reply back with an error (EAGAIN).
Or:
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e You can leave the client blocked and later, when your write handler
function is called, you can reply to the client with the new data.

Another example might be if the client wants you to write out to some
device but doesn’t want to get a reply until the data has been fully
written out. Here are the sequence of events that might follow:

1 Your resource manager does some 1/O out to the hardware to
tell it that data is available.

2 The hardware generates an interrupt when it’s ready for a
packet of data.

3 You handle the interrupt by writing data out to the hardware.

4 Many interrupts may occur before all the data is written — only
then would you reply to the client.

The first issue, though, is whether the client wants to be left blocked.
If the client doesn’t want to be left blocked, then it opens with the
O_NONBLOCK flag:

fd = open("/dev/sample", O_RDWR | O_NONBLOCK) ;

The default is to allow you to block it.

One of the first things done in the read and write samples above was
to call some POSIX verification functions: iofunc_read verify() and
iofunc_write_verify(). If we pass the address of an int as the last
parameter, then on return the functions will stuff that int with zero if
the client doesn’t want to be blocked (O_NONBLOCK flag was set) or
with nonzero if the client wants to be blocked.

int nonblock;

if ((status = iofunc_read_verify (ctp, msg, ocb, &nonblock)) != EOK)
return (status);

int nonblock;

if ((status = iofunc_write_verify (ctp, msg, ocb, &nonblock)) != EOK)
return (status);
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When it then comes time to decide if we should reply with an error or
reply later, we do:

if (nomblock) {
/* client doesn’t want to be blocked */
return (EAGAIN) ;
} else {
/*
* The client is willing to be blocked.
* Save at least the ctp-&gt;rcvid so that you can
* reply to it later.
*/

return (_RESMGR_NOREPLY) ;

The question remains: How do you do the reply yourself? The only
detail to be aware of is that the rcvid to reply to is ctp->revid. If
you’re replying later, then you’d save ctp->revid and use the saved
value in your reply.

MsgReply (saved_rcvid, 0, buffer, nbytes);

Or:

iov_t iovI[2];
SETIOV (&iov[0], &header, sizeof (header));

SETIOV (&iov[1l], &buffers[i], sizeof (buffers[i]));
MsgReplyv (saved_rcvid, 0, iov, 2);

Note that you can fill up the client’s reply buffer as data becomes
available by using resmgr_msgwrite() and resmgr_msgwritev(). Just
remember to do the MsgReply*() at some time to unblock the client.

Returning and telling the library to do the default action

The default action in most cases is for the library to cause the client’s
function to fail with ENOSYS:

return (_RESMGR_DEFAULT) ;
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Handling other read/write details

Topics in this session include:
e Handling the xtype member
e Handling pread*() and pwrite*()

e Handling readcond().

Handling the xtype member

May 31, 2004

The io_read, io write, and io_openfd message structures contain a
member called xtype. From struct _io_read:

struct _io_read {

uint32_t xtype;

Basically, the xtype contains extended type information that can be
used to adjust the behavior of a standard 1/O function. Most resource
managers care about only a few values:

_IO_XTYPE_NONE
No extended type information is being provided.

_I0_XTYPE_OFFSET

If clients are calling pread(), pread64(), pwrite(), or pwrite64(),
then they don’t want you to use the offset in the OCB. Instead,
they’re providing a one-shot offset. That offset follows the
struct _io_read Or struct _io_write headers that
reside at the beginning of the message buffers.

For example:
struct myread_offset {

struct _io_read read;
struct _xtype_offset offset;
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Some resource managers can be sure that their clients will never
call pread*() or pwrite*(). (For example, a resource manager
that’s controlling a robot arm probably wouldn’t care.) In this
case, you can treat this type of message as an error.

_IO_XTYPE_READCOND

If a client is calling readcond(), they want to impose timing and
return buffer size constraints on the read. Those constraints
follow the struct _io_read Or struct _io_write
headers at the beginning of the message buffers. For example:

struct myreadcond {
struct _io_read read;
struct _xtype_readcond cond;

As with _IO_XTYPE_OFFSET, if your resource manager isn’t
prepared to handle readcond(), you can treat this type of
message as an error.

If you're not expecting extended types (xtype)

The following code sample demonstrates how to handle the case
where you’re not expecting any extended types. In this case, if you
get a message that contains an xtype, you should reply with ENOSYS.
The example can be used in either an io_read or io_write handler.

int
io_read (resmgr_context_t *ctp, io_read_t *msg, RESMGR_OCB_T *ocb)
{
int status;
if ((status = iofunc_read_verify(ctp, msg, ocb, NULL)) != EOK) {
return (_RESMGR_ERRNO (status)) ;
}
/* No special xtypes */
if ((msg->i.xtype & _IO_XTYPE_MASK) != _IO_XTYPE_NONE)
return (_RESMGR_ERRNO (ENOSYS)) ;
}
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Handling pread*() and pwrite*()

Here are code examples that demonstrate how to handle an 10 READ
or _IO_WRITE message when a client calls:

e pread*()
e pwrite*().
Sample code for handling IO_READ messages in pread*()
The following sample code demonstrates how to handle 10 READ for

the case where the client calls one of the pread*() functions.

/* we are defining io_pread_t here to make the code below simple */
typedef struct {

struct _io_read read;

struct _xtype_offset offset;
} io_pread-_t;

int
io_read (resmgr_context_t *ctp, io_read_t *msg, RESMGR_OCB_T *ocb)
{
off64_t offset; /* where to read from */
int status;
if ((status = iofunc_read_verify(ctp, msg, ocb, NULL)) != EOK) {
return (_RESMGR_ERRNO (status)) ;
}
switch(msg->i.xtype & _IO_XTYPE_MASK) {
case _IO_XTYPE_NONE:
offset = ocb->offset;
break;
case _IO_XTYPE_OFFSET:
/*
* jo_pread_t is defined above
* client is doing a one-shot read to this offset by calling
* one of the pread*() functions
*/
offset = ((io_pread_-t *) msg)->offset.offset;
break;
default:
return (_RESMGR_ERRNO (ENOSYS) ) ;
}
}
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Sample code for handling IO WRITE messages in pwrite*()

The following sample code demonstrates how to handle 10 WRITE
for the case where the client calls one of the pwrite*() functions. Keep
in mind that the struct _xtype_offset information follows the
struct _io_write inthe sender’s message buffer. This means that
the data to be written follows the struct _xtype_offset
information (instead of the normal case where it follows the struct
—io_write). S0, you must take this into account when doing the
resmgr_msgread() call in order to get the data from the sender’s
message buffer.

/* we are defining io_pwrite_t here to make the code below simple */
typedef struct {

struct _io_write write;

struct _xtype_offset offset;
} io_pwrite_t;

int

io_write (resmgr_context_t *ctp, io_write_t *msg, RESMGR_OCB_T *ocb)
off64_t offset; /* where to write */
int status;
size_t skip; /* offset into msg to where the data resides */
if ((status = iofunc_write_verify(ctp, msg, ocb, NULL)) != EOK) {

return (_RESMGR_ERRNO (status)) ;

}

switch(msg->i.xtype & _IO_XTYPE_MASK) {
case _IO_XTYPE_NONE:
offset = ocb->offset;
skip = sizeof (io_write_t);
break;
case _IO_XTYPE_OFFSET:
/*
* jo_pwrite_t is defined above
* client is doing a one-shot write to this offset by
* calling one of the pwrite*() functions
*/
offset = ((io_pwrite_t *) msg)->offset.offset;
skip = sizeof (io_pwrite_t);
break;
default:
return (_RESMGR_ERRNO (ENOSYS) ) ;
}
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/*
* get the data from the sender’s message buffer,
* skipping all possible header information
*/

resmgr_msgreadv (ctp, iovs, niovs, skip);

Handling readcond()

The same type of operation that was done to handle the
pread()/ 10 XTYPE OFFSET case can be used for handling the client’s
readcond() call:

typedef struct {
struct _io_read read;
struct _xtype_readcond cond;
} io_readcond._t

Then:

struct _xtype_readcond *cond
CASE _IO_XTYPE_READCOND:

cond = ((io_readcond_t *)msg) ->cond
break;

Then your manager has to properly interpret and deal with the
arguments to readcond(). For more information, see the Library
Reference.

Attribute handling
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Updating the time for reads and writes

In the read sample above we did:

if (msg->i.nbytes > 0)
ocb->attr->flags |= IOFUNC_ATTR_ATIME;

According to POSIX, if the read succeeds and the reader had asked
for more than zero bytes, then the access time must be marked for
update. But POSIX doesn’t say that it must be updated right away. If
you’re doing many reads, you may not want to read the time from the
kernel for every read. In the code above, we mark the time only as
needing to be updated. When the next _IO_STAT or _I0O_CLOSE_OCB
message is processed, the resource manager library will see that the
time needs to be updated and will get it from the kernel then. This of
course has the disadvantage that the time is not the time of the read.

Similarly for the write sample above, we did:

if (msg->i.nbytes > 0)
ocb->attr->flags ‘= IOFUNC_ATTR_MTIME | IOFUNC_ATTR_CTIME;

so the same thing will happen.

If you do want to have the times represent the read or write times,
then after setting the flags you need only call the iofunc_time _update()
helper function. So the read lines become:

if (msg->i.nbytes > 0) {

ocb->attr->flags |= IOFUNC_ATTR_ATIME;
iofunc_time_update (ocb->attr);

}

and the write lines become:

if (msg->i.nbytes > 0) {
ocb->attr->flags ‘: IOFUNC_ATTR_MTIME | IOFUNC_ATTR_CTIME;
iofunc_time_update (ocb->attr) ;

}

You should call iofunc_time update() before you flush out any cached
attributes. As a result of changing the time fields, the attribute
structure will have the IOFUNC_ATTR_DIRTY _TIME bit set in the flags
field, indicating that this field of the attribute must be updated when
the attribute is flushed from the cache.
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Combine messages

In this section:
e Where combine messages are used

e The library’s combine-message handling

Where combine messages are used

In order to conserve network bandwidth and to provide support for
atomic operations, combine messages are supported. A combine
message is constructed by the client’s C library and consists of a
number of 1/0 and/or connect messages packaged together into one.
Let’s see how they’re used.

Atomic operations
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Consider a case where two threads are executing the following code,
trying to read from the same file descriptor:

a_thread ()

{

char buf [BUFSIZ];

lseek (fd, position, SEEK_SET) ;
read (fd, buf, BUFSIZ);

The first thread performs the Iseek() and then gets preempted by the
second thread. When the first thread resumes executing, its offset into
the file will be at the end of where the second thread read from, not
the position that it had Iseek()’d to.

This can be solved in one of three ways:

e The two threads can use a mutex to ensure that only one thread at a
time is using the file descriptor.

e Each thread can open the file itself, thus generating a unique file
descriptor that won’t be affected by any other threads.
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Using a
mutex

Per-thread
files

The
readblock()
function

e The threads can use the readblock() function, which performs an
atomic Iseek() and read().

Let’s look at these three methods.

In the first approach, if the two threads use a mutex between
themselves, the following issue arises: every read(), Iseek(), and
write() operation must use the mutex.

If this practice isn’t enforced, then you still have the exact same
problem. For example, suppose one thread that’s obeying the
convention locks the mutex and does the Iseek(), thinking that it’s
protected. However, another thread (that’s not obeying the
convention) can preempt it and move the offset to somewhere else.
When the first thread resumes, we again encounter the problem where
the offset is at a different (unexpected) location. Generally, using a
mutex will be successful only in very tightly managed projects, where
a code review will ensure that each and every thread’s file functions
obey the convention.

The second approach — of using different file descriptors — is a
good general-purpose solution, unless you explicitly wanted the file
descriptor to be shared.

In order for the readblock() function to be able to effect an atomic
seek/read operation, it must ensure that the requests it sends to the
resource manager will all be processed at the same time. This is done
by combining the I0_LSEEK and _IO_READ messages into one
message. Thus, when the base layer performs the MsgReceive(), it
will receive the entire readblock() request in one atomic message.

Bandwidth considerations

Another place where combine messages are useful is in the stat()
function, which can be implemented by calling open(), fstat(), and
close() in sequence.

Rather than generate three separate messages (one for each of the
functions), the C library combines them into one contiguous message.
This boosts performance, especially over a networked connection, and
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also simplifies the resource manager, because it’s not forced to have a
connect function to handle stat().

The library’s combine-message handling
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The resource manager library handles combine messages by
presenting each component of the message to the appropriate handler
routines. For example, if we get a combine message that has an
_I0_LSEEK and _IO_READ in it (e.g. readblock()), the library will call
our io_Iseek() and io_read() functions for us in turn.

But let’s see what happens in the resource manager when it’s handling
these messages. With multiple threads, both of the client’s threads
may very well have sent in their “atomic” combine messages. Two
threads in the resource manager will now attempt to service those two
messages. We again run into the same synchronization problem as we
originally had on the client end — one thread can be part way through
processing the message and can then be preempted by the other
thread.

The solution? The resource manager library provides callouts to lock
the OCB while processing any message (except _1I0_CLOSE and
_I0O_UNBLOCK — we’ll return to these). As an example, when
processing the readblock() combine message, the resource manager
library performs callouts in this order:

1 lock_ocb handler
2 _IO_LSEEK message handler
3 _IO_READ message handler

4 unlock_ocb handler

Therefore, in our scenario, the two threads within the resource
manager would be mutually exclusive to each other by virtue of the
lock — the first thread to acquire the lock would completely process
the combine message, unlock the lock, and then the second thread
would perform its processing.
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Let’s examine several of the issues that are associated with handling
combine messages:

e Component responses

e Component data access

e Locking and unlocking the attribute structure
e \arious styles of connect messages

e |0 CONNECT COMBINE CLOSE

e _|O_CONNECT_COMBINE

Component responses

134

As we’ve seen, a combine message really consists of a number of
“regular” resource manager messages combined into one large
contiguous message. The resource manager library handles each
component in the combine message separately by extracting the
individual components and then out calling to the handlers you’ve
specified in the connect and 1/O function tables, as appropriate, for
each component.

This generally doesn’t present any new wrinkles for the message
handlers themselves, except in one case. Consider the readblock()
combine message:

Client call: readblock()
Message(s): 10 LSEEK , 10 READ
Callouts: io_lock_och()

i0_lseek()

io_read()

io_unlock_och()

Ordinarily, after processing the _I0O_LSEEK message, your handler
would return the current position within the file. However, the next
message (the _IO_READ) also returns data. By convention, only the
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last data-returning message within a combine message will actually
return data. The intermediate messages are allowed to return only a
pass/fail indication.

The impact of this is that the _IO_LSEEK message handler has to be
aware of whether or not it’s being invoked as part of combine
message handling. If it is, it should only return either an EOK
(indicating that the Iseek() operation succeeded) or an error indication
to indicate some form of failure.

But if the _IO_LSEEK handler isn’t being invoked as part of combine
message handling, it should return the EOK and the new offset (or, in
case of error, an error indication only).

Here’s a sample of the code for the default iofunc-layer Iseek()
handler:

int

iofunc_lseek_default (resmgr_context_t *ctp,
io_lseek_t *msg,
iofunc_ocb_t *ocb)

* performs the lseek processing here
* may "early-out" on error conditions

*/

/* decision re: combine messages done here */
if (msg -> i.combine_len & _IO_COMBINE_FLAG) {
return (EOK) ;

msg -> o = offset;
return (_RESMGR_PTR (ctp, &msg -> o, sizeof (msg -> 0)));

The relevant decision is made in this statement:

if (msg -> i.combine_len & _IO_COMBINE_FLAG)

If the _IO_COMBINE_FLAG bit is set in the combine_len member, this
indicates that the message is being processed as part of a combine
message.
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When the resource manager library is processing the individual
components of the combine message, it looks at the error return from
the individual message handlers. If a handler returns anything other
than EOK, then processing of further combine message components is
aborted. The error that was returned from the failing component’s
handler is returned to the client.

Component data access

The second issue associated with handling combine messages is how
to access the data area for subsequent message components.

For example, the writeblock() combine message format has an Iseek()
message first, followed by the write() message. This means that the
data associated with the write() request is further in the received
message buffer than would be the case for just a simple IO_WRITE

message:
Client call: writeblock()
Message(s): 10 LSEEK, 10 WRITE , data
Callouts: io_lock_och()
i0_lseek()
io_write()

io_unlock_och()

This issue is easy to work around. There’s a resource manager library
function called resmgr_msgread() that knows how to get the data
corresponding to the correct message component. Therefore, in the
io_write handler, if you used resmgr_msgread() instead of MsgRead(),
this would be transparent to you.

Resource managers should always use resmgr_msg*() cover
functions.

For reference, here’s the source for resmgr_msgread():

int resmgr_msgread( resmgr_context_t *ctp,
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void *msg,
int nbytes,
int offset)

return MsgRead (ctp->rcvid, msg, nbytes, ctp->offset + offset);

As you can see, resmgr_msgread() simply calls MsgRead() with the
offset of the component message from the beginning of the combine
message buffer. For completeness, there’s also a resmgr_msgwrite()
that works in an identical manner to MsgWrite(), except that it
dereferences the passed ctp to obtain the rcvid.

Locking and unlocking the attribute structure

May 31, 2004

As mentioned above, another facet of the operation of the readblock()
function from the client’s perspective is that it’s atomic. In order to
process the requests for a particular OCB in an atomic manner, we
must lock and unlock the attribute structure pointed to by the OCB,
thus ensuring that only one resource manager thread has access to the
OCB at a time.

The resource manager library provides two callouts for doing this:
e lock och
e unlock_ocb

These are members of the 1/O functions structure. The handlers that
you provide for those callouts should lock and unlock the attribute
structure pointed to by the OCB by calling iofunc attr lock() and
iofunc_attr unlock(). Therefore, if you’re locking the attribute
structure, there’s a possibility that the lock_ocb callout will block for a
period of time. This is normal and expected behavior. Note also that
the attributes structure is automatically locked for you when your 1/0
function is called.
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Connect message types

Let’s take a look at the general case for the io_open handler — it
doesn’t always correspond to the client’s open() call!

For example, consider the stat() and access() client function calls.

_IO_CONNECT_COMBINE_CLOSE

For a stat() client call, we essentially perform the sequence
open()/fstat()/close(). Note that if we actually did that, three messages
would be required. For performance reasons, we implement the stat()
function as one single combine message:

Client call: stat()
Message(s): _IO_CONNECT COMBINE CLOSE, 10 STAT

Callouts: io_open()
io_lock_och()
io_stat()
io_unlock och()
io_close()

The _IO_.CONNECT_COMBINE_CLOSE message causes the io_open
handler to be called. It then implicitly (at the end of processing for the
combine message) causes the io_close ocb handler to be called.

_IO_CONNECT_COMBINE

For the access() function, the client’s C library will open a connection
to the resource manager and perform a stat() call. Then, based on the
results of the stat() call, the client’s C library access() may perform an
optional devctl() to get more information. In any event, because
access() opened the device, it must also call close() to close it:

Client call: access()

Message(s): _IO_CONNECT_COMBINE , _I0_STAT
_IO_DEVCTL (optional)
_10_CLOSE
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Callouts: io_open()
io_lock_och()
io_stat()
io_unlock_och()
io_lock_och() (optional)
i0_devctl() (optional)
io_unlock_och() (optional)
io_close()

Notice how the access() function opened the pathname/device — it
sent it an _IO_CONNECT_COMBINE message along with the _IO_STAT
message. This creates an OCB (when the io_open handler is called),
locks the associated attribute structure (via io dock_och()), performs
the stat (io_stat()), and then unlocks the attributes structure
(io_unlock_och()). Note that we don’t implicitly close the OCB — this
is left for a later, explicit, message. Contrast this handling with that of
the plain stat() above.

Extending Data Control Structures (DCS)

This section contains:
e Extending the OCB and attribute structures

e Extending the mount structures

Extending the OCB and attribute structures
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In our /dev/sample example, we had a static buffer associated with
the entire resource. Sometimes you may want to keep a pointer to a
buffer associated with the resource, rather than in a global area. To
maintain the pointer with the resource, we would have to store it in
the attribute structure. Since the attribute structure doesn’t have any
spare fields, we would have to extend it to contain that pointer.

Sometimes you may want to add extra entries to the standard
iofunc *() OCB (iofunc_ocb_t).

Let’s see how we can extend both of these structures. The basic
strategy used is to encapsulate the existing attributes and OCB
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structures within a newly defined superstructure that also contains our
extensions. Here’s the code (see the text following the listing for
comments):

/* Define our overrides before including <sys/iofunc.h> */
struct device;

#define IOFUNC_ATTR_T struct device /* see note 1 */
struct ocb;
#define IOFUNC_OCB_T struct ocb /* see note 1 */

#include <sys/iofunc.h>
#include <sys/dispatch.h>

struct ocb { /* see note 2 */
iofunc_ocb_t hdr; /* see note 4; must always be first */
struct ocb *next;
struct ocb **prev; /* see note 3 */
}i
struct device { /* see note 2 */
iofunc_attr_t attr; /* must always be first */
struct ocb *list; /* waiting for write */
3

/* Prototypes, needed since we refer to them a few lines down */

struct ocb *ocb_calloc (resmgr_context_t *ctp, struct device *device);
void ocb_free (struct ocb *ocb);

iofunc_funcs_t ocb_funcs = { /* our ocb allocating & freeing functions */
~IOFUNC_NFUNCS,
ocb_calloc,
ocb_free

}:
/* The mount structure. We have only one, so we statically declare it */
iofunc_mount_t mountpoint = { 0, 0, 0, 0, &ocb_funcs };

/* One struct device per attached name (there’s only one name in this
example) */

struct device deviceattr;
main ()

{

/*
* deviceattr will indirectly contain the addresses
* of the OCB allocating and freeing functions

*/

deviceattr.attr.mount = &mountpoint;
resmgr_attach (..., &deviceattr);
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/*

* ocb_calloc

*

* The purpose of this is to give us a place to allocate our own OCB.
* It is called as a result of the open being done

* (e.g. iofunc_open_default causes it to be called). We

* registered it through the mount structure.

*/

IOFUNC_OCB._T
ocb_calloc (resmgr_context_t *ctp, IOFUNC_ATTR_T *device)

{
struct ocb *ocb;
if (!(ocb = calloc (1, sizeof (*ocb)))) {
return 0;
}
/* see note 3 */
ocb -> prev = &device -> list;
if (ocb -> next = device -> list) {
device -> list -> prev = &ocb -> next;
}
device -> list = ocb;
return (ocb);
}
/*
* ocb_free
*
* The purpose of this is to give us a place to free our OCB.
* It is called as a result of the close being done
* (e.g. iofunc_close_ocb_default causes it to be called). We
* registered it through the mount structure.
*/
void
ocb_free (IOFUNC_OCB-T *ocb)
{
/* see note 3 */
if (*ocb -> prev = ocb -> next) {
ocb -> next -> prev = ocb -> prev;
}
free (ocb);
}

Here are the notes for the above code:

1 We place the definitions for our enhanced structures before
including the standard 1/O functions header file. Because the
standard 1/O functions header file checks to see if the two
manifest constants are already defined, this allows a convenient
way for us to semantically override the structures.

2 Define our new enhanced data structures, being sure to place
the encapsulated members first.
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3 The ocb_calloc() and ocb_free() sample functions shown here
cause the newly allocated OCBs to be maintained in a linked
list. Note the use of dual indirection on the struct ocb
**prev; member.

4 You must always place the iofunc structure that you’re
overriding as the first member of the new extended structure.
This lets the common library work properly in the default cases.

Extending the mount structure

You can also extend the iofunc_mount_t Structure in the same
manner as the attribute and OCB structures. In this case, you’d define:

#define IOFUNC_MOUNT_T struct newmount

then declare the new structure:

struct newmount {
iofunc_mount_t mount;
int ourflag;

Handling devctl() messages

The devctl() function is a general-purpose mechanism for
communicating with a resource manager. Clients can send data to,
receive data from, or both send and receive data from a resource
manager. The format of the client devctl() call is:

devctl ( int fd,
int dcmd,
void * data,
size_t nbytes,
int * return_info) ;

The following values (described in detail in the devctl()
documentation in the Library Reference) map directly to the
_IO_DEVCTL message itself:
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struct _io_devectl {
uintlé6_t
uintl6_t
int32_t
int32_t
int32_t

/* char

}:

struct _io_devctl_reply {
uint32_t
int32_t
int32_t
int32_t
/* char

Yo

typedef union {
struct _io_devctl
struct _io_devctl_reply
} io_devetl_t;

type;
combine_len;
dcmd;

nbytes;

Zero;
data[nbytes]; */

zero;
ret_val;

nbytes;

zZero2;
data[nbytes]; */

i;

As with most resource manager messages, we’ve defined a union
that contains the input structure (coming into the resource manager),
and a reply or output structure (going back to the client). The
io_devctl resource manager handler is prototyped with the argument:

io_devctl_t *msg

which is the pointer to the union containing the message.

The type member has the value _IO_DEVCTL.

The combine_len field has meaning for a combine message; see the
“Combine messages” section in this chapter.

The nbytes value is the nbytes that’s passed to the devctl() function.
The value contains the size of the data to be sent to the device driver,
or the maximum size of the data to be received from the device driver.

The most interesting item of the input structure is the demd. that’s
passed to the devctl() function. This command is formed using the

macros defined in <devetl.h>:

#define _POSIX_DEVDIR_NONE 0
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#define _POSIX_DEVDIR_TO 0x80000000
#define _POSIX_DEVDIR_FROM 0x40000000
#define __DIOF (class, cmd, data) ((sizeof (data)<<16) + ((class)<<8) + (cmd) + _POSIX_DEVDIR_FROM)
#define __DIOT(class, cmd, data) ((sizeof (data)<<16) + ((class)<<8) + (cmd) + _POSIX_DEVDIR_TO)
#define __DIOTF(class, cmd, data) ((sizeof(data)<<1l6) + ((class)<<8) + (cmd) + _POSIX_DEVDIR_TOFROM)
#define __DION(class, cmd) (((class)<<8) + (cmd) + _POSIX_DEVDIR_NONE)

It’s important to understand how these macros pack data to create a
command. An 8-bit class (defined in <devetl.h>) is combined with
an 8-bit subtype that’s manager-specific, and put together in the lower
16 bits of the integer.

The upper 16 bits contain the direction (TO, FROM) as well as a hint
about the size of the data structure being passed. This size is only a
hint put in to uniquely identify messages that may use the same class
and code but pass different data structures.

In the following example, a cmd is generated to indicate that the client
is sending data to the server (TO), but not receiving anything in
return. The only bits that the library or the resource manager layer
look at are the TO and FROM bits to determine which arguments are
to be passed to MsgSend().

struct _my_devctl_-msg {

}

#define MYDCMD __DIOT(_DCMD_MISC, 0x54, struct _my_devctl_msg)

" The size of the structure that’s passed as the last field to the _DIO*
macros must be less than 2714 == 16K. Anything larger than this
interferes with the upper two directional bits.

The data directly follows this message structure, as indicated by the
/* char datalnbytes] */commentinthe _io_devctl
structure.
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Sample code for handling _IO_.DEVCTL messages
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You can add the following code samples to either of the examples
provided in the “Simple device resource manager examples” section.
Both of those code samples provided the name /dev/sample. With
the changes indicated below, the client can use devctl() to set and
retrieve a global value (an integer in this case) that’s maintained in the
resource manager.

The first addition defines what the devctl() commands are going to be.
This is generally put in a common or shared header file:

typedef union _my_devctl_msg {
int tx; //Filled by client on send
int rx; //Filled by server on reply
} data_t

#define MY_CMD_CODE 1

#define MY_DEVCTL_GETVAL __DIOF(_DCMD_MISC, MY_CMD_CODE + 0, int)

#define MY_DEVCTL_SETVAL __DIOT(_DCMD_MISC, MY_CMD_CODE + 1, int)

#define MY_DEVCTL_SETGET __DIOTF (_DCMD_MISC, MY_CMD_CODE + 2, union _my_devctl_msg)

In the above code, we defined three commands that the client can use:

MY _DEVCTL_SETVAL
Sets the server global to the integer the client provides.

MY _DEVCTL_GETVAL

Gets the server global and puts that value into the client’s
buffer.

MY _DEVCTL SETGET

Sets the server global to the integer the client provides and
returns the previous value of the server global in the client’s
buffer.

Add this code to the main() function:

io_funcs.devctl = io_devectl; /* For handling _IO_DEVCTL, sent by devctl() */

And the following code gets added before the main() function:
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int handle_devctl (resmgr_context_t *ctp, io_devctl_t *msg, RESMGR_OCB_T *ocb);

int global_integer = 0;

Now, you need to include the new handler function to handle the
_IO_DEVCTL message:

int io_devctl(resmgr_context_t *ctp, io_devctl_t *msg, RESMGR_OCB_T *ocb) {

int nbytes, status, previous;
union {
data_t data;
int data32;
// ... other devctl types you can receive

} *rx_data;

/*

Let common code handle DCMD_ALL_* cases.

You can do this before or after you intercept devctl’s depending

on your intentions. Here we aren’t using any pre-defined values

so let the system ones be handled first.

*/

if ((status = iofunc-_devctl_default(ctp, msg, ocb)) != _RESMGR_DEFAULT) {
return(status) ;

}

status = nbytes = 0;

/*

Note this assumes that you can fit the entire data portion of
the devctl into one message. 1In reality you should probably
perform a MsgReadv() once you know the type of message you
have received to suck all of the data in rather than assuming
it all fits in the message. We have set in our main routine
that we’ll accept a total message size of up to 2k so we
don’t worry about it in this example where we deal with ints.
*/

rx_data = _DEVCTL_DATA (msg->i);

/*
Three examples of devctl operations.
SET: Setting a value (int) in the server
GET: Getting a value (int) from the server
SETGET: Setting a new value and returning with the previous value
*/
switch (msg->i.demd) {
case MY _DEVCTL_SETVAL:
global_integer = rx_data->data32;
nbytes = 0;
break;

case MY_DEVCTL_GETVAL:
rx_data->data32 = global_integer;
nbytes = sizeof (rx_data->data32);
break;

case MY_DEVCTL_SETGET:

previous = global_integer;
global_integer = rx_data->data.tx;
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rx_data->data.rx = previous; //Overwrites tx data
nbytes = sizeof (rx_data->data.rx);
break;

default:
return (ENOSYS) ;

}

/* Clear the return message ... note we saved our data _after_ this */
memset (&émsg->o0, 0, sizeof (msg->0));

/*

If you wanted to pass something different to the return
field of the devctl() you could do it through this member.
*/

msg->o.ret_val = status;

/* Indicate the number of bytes and return the message */
msg->o.nbytes = nbytes;
return (_RESMGR_PTR (ctp, &msg->o0, sizeof (msg->0) + nbytes));

When working with devctl() handler code, you should be familiar
with the following:

e The default devctl() handler is called before we begin to service

our messages. This allows normal system messages to be
processed. If the message isn’t handled by the default handler, then
it returns RESMGR DEFAULT to indicate that the message might
be a custom message. This means that we should check the
incoming command against commands that our resource manager
understands.

The data to be passed follows directly after the io_devetl _t
structure. You can get a pointer to this location by using the
_DEVCTL_DATA (msg->i) macro defined in <devectl.h>. The
argument to this macro must be the input message structure — if
it’s the union message structure or a pointer to the input message
structure, the pointer won’t point to the right location.

For your convenience, we’ve defined a union of all of the messages
that this server can receive. However, this won’t work with large
data messages. In this case, you’d use resmgr_msgread() to read
the message from the client. Our messages are never larger than
sizeof ( int) and this comfortably fits into the minimum
receive buffer size.
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e The last argument to the devctl() function is a pointer to an integer.
If this pointer is provided, then the integer is filled with the value
stored in the msg->o0.ret_val reply message. Thisisa
convenient way for a resource manager to return simple status
information without affecting the core devctl() operation. It’s not
used in this example.

e The data being returned to the client is placed at the end of the
reply message. This is the same mechanism used for the input data
so we can use the _-DEVCTL_DATA() function to get a pointer to
this location. With large replies that wouldn’t necessarily fit into
the server’s receive buffer, you should use one of the reply
mechanisms described in the “Methods of returning and replying”
section. Again, in this example, we’re only returning an integer
that fits into the receive buffer without any problem.

If you add the following handler code, a client should be able to open
/dev/sample and subsequently set and retrieve the global integer
value:

int main(int arge, char **argv) {
int fd, ret, val;
data_t data;

if ((fd = open("/dev/sample", O_RDONLY)) == -1) {
return (1) ;

}

/* Find out what the value is set to initially */

val = -1;

ret = devctl(fd, MY_DEVCTL_GETVAL, &val, sizeof(val), NULL);
printf ("GET returned %d w/ server value %d \n", ret, val);

/* Set the value to something else */

val = 25;

ret = devctl(fd, MY_DEVCTL_SETVAL, &val, sizeof(val), NULL);
printf ("SET returned %d \n", ret);

/* Verify we actually did set the value */

val = -1;
ret = devctl(fd, MY_DEVCTL_GETVAL, &val, sizeof(val), NULL);
printf ("GET returned %d w/ server value %d == 25? \n", ret, val);

/* Now do a set/get combination */

memset (&data, 0, sizeof (data));

data.tx = 50;

ret = devctl(fd, MY_DEVCTL_SETGET, &data, sizeof(data), NULL);

printf ("SETGET returned with %d w/ server value %d == 25?\n", ret, data.rx);

/* Check set/get worked */
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val = -1;
ret = devctl (fd, MY_DEVCTL_GETVAL, &val, sizeof(val), NULL);
printf ("GET returned %d w/ server value %d == 50? \n", ret, val);

return(0) ;

Handling ionotify() and select()

A client uses ionotify() and select() to ask a resource manager about
the status of certain conditions (e.g. whether input data is available).
The conditions may or may not have been met. The resource manager
can be asked to:

e check the status of the conditions immediately, and return if any
have been met

e deliver an event later on when a condition is met (this is referred to
as arming the resource manager).

The select() function differs from ionotify() in that most of the work is
done in the library. For example, the client code would be unaware
that any event is involved, nor would it be aware of the blocking
function that waits for the event. This is all hidden in the library code
for select().

However, from a resource manager’s point of view, there’s no
difference between ionotify() and select(); they’re handled with the
same code.

For more information on the ionotify() and select() functions, see the
Library Reference.
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Currently, the API for notification handling from your resource
manager doesn’t support multithreaded client processes very well.
Problems may arise when a thread in a client process requests
notification and other threads in the same client process are also
dealing with the resource manager. This is not a problem when the
threads are from different processes.

Since ionotify() and select() require the resource manager to do the
same work, they both send the _IO_NOTIFY message to the resource
manager. The io_notify handler is responsible for handling this
message. Let’s start by looking at the format of the message itself:

struct _io_notify {

uintl6_t type;
uintlé_t combine_len;
int32_t action;
int32_t flags;
struct sigevent event;
}i
struct _io_notify_reply {
uint32_t flags;
}i
typedef union {
struct _io_notify i;
struct _io_notify_reply o;

} io_notify._t;

As with all resource manager messages, we’ve defined a union that
contains the input structure (coming into the resource manager), and a
reply or output structure (going back to the client). The io_notify
handler is prototyped with the argument:

io_notify_t *msg

which is the pointer to the union containing the message.

The items in the input structure are:

o type
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e combine_len
e action

o flags

e event.

The type member has the value _IO_NOTIFY.

The combine_len field has meaning for a combine message; see the
“Combine messages” section in this chapter.

The action member is used by the iofunc_notify() helper function to
tell it whether it should:

e just check for conditions now
e check for conditions now, and if none are met, arm them
e justarm for transitions.

Since iofunc_notify() looks at this, you don’t have to worry about it.

The flags member contains the conditions that the client is interested
in and can be any mixture of the following:

_NOTIFY_COND_INPUT

This condition is met when there are one or more units of input
data available (i.e. clients can now issue reads). The number of
units defaults to 1, but you can change it. The definition of a
unit is up to you: for a character device such as a serial port, it
would be a character; for a POSIX message queue, it would be a
message. Each resource manager selects an appropriate object.

NOTIFY_COND_OUTPUT

This condition is met when there’s room in the output buffer for
one or more units of data (i.e. clients can now issue writes). The
number of units defaults to 1, but you can change it. The
definition of a unit is up to you — some resource managers may
default to an empty output buffer while others may choose some
percentage of the buffer empty.
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NOTIFY_COND_OBAND

The condition is met when one or more units of out-of-band
data are available. The number of units defaults to 1, but you
can change it. The definition of out-of-band data is specific to
the resource manager.

The event member is what the resource manager delivers once a
condition is met.

A resource manager needs to keep a list of clients that want to be
notified as conditions are met, along with the events to use to do the
notifying. When a condition is met, the resource manager must
traverse the list to look for clients that are interested in that condition,
and then deliver the appropriate event. As well, if a client closes its
file descriptor, then any notification entries for that client must be
removed from the list.

To make all this easier, the following structure and helper functions
are provided for you to use in a resource manager:

iofunc_notify_t structure

Contains the three notification lists, one for each
possible condition. Each is a list of the clients to
be notified for that condition.

iofunc_notify() ~ Adds or removes notification entries; also polls for
conditions. Call this function inside of your
io_notify handler function.

iofunc_notify_trigger()

Sends notifications to queued clients. Call this
function when one or more conditions have been
met.

iofunc_notify_remove()

Removes notification entries from the list. Call this
function when the client closes its file descriptor.
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Sample code for handling _IO_NOTIFY messages
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You can add the following code samples to either of the examples
provided in the “Simple device resource manager examples” section.
Both of those code samples provided the name /dev/sample. With
the changes indicated below, clients can use writes to send it data,
which it’ll store as discrete messages. Other clients can use either
ionotify() or select() to request notification when that data arrives.
When clients receive notification, they can issue reads to get the data.

You’ll need to replace this code that’s located above the main()
function:

#include <sys/iofunc.h>
#include <sys/dispatch.h>

static resmgr_connect_funcs_t connect_funcs;
static resmgr_io_funcs_t io_funcs;
static iofunc_attr_t attr;

with the following:

struct device_attr_s;
#define IOFUNC_ATTR-T struct device_attr_s

#include <sys/iofunc.h>
#include <sys/dispatch.h>

/*
* define structure and variables for storing the data that is received.
* When clients write data to us, we store it here. When clients do
* reads, we get the data from here. Result ... a simple message queue.
*/
typedef struct item_s {
struct item_s *next;
char *data;
} item_t;

/* the extended attributes structure */
typedef struct device_attr_s {
iofunc_attr_t attr;

iofunc_notify_t notify[3]; /* notification list used by iofunc_notify*() */
item_t *firstitem; /* the queue of items */
int nitems; /* number of items in the queue */

} device_attr_t;

/* We only have one device; device_attr is its attribute structure */
static device_attr_t device_attr;

int io_read(resmgr_context_t *ctp, io_read_t *msg, RESMGR_OCB_T *ocb);

int io_write(resmgr_context_t *ctp, io_write_t *msg, RESMGR_OCB_T *ocb);
int io_notify(resmgr_context_t *ctp, io_notify_t *msg, RESMGR_OCB_T *ocb);
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int io_close_ocb(resmgr_context_t *ctp, void *reserved, RESMGR_OCB_T *ocb);

static resmgr_connect_funcs_t connect_funcs;
static resmgr_io_funcs_-t io_funcs;

We need a place to keep data that’s specific to our device. A good
place for this is in an attribute structure that we can associate with the
name we registered: /dev/sample. S0, in the code above, we
defined device_attr_t and TOFUNC_ATTR_T for this purpose. We
talk more about this type of device-specific attribute structure in the
section, “Extending Data Control Structures (DCS).”

We need two types of device-specific data:

e an array of three notification lists — one for each possible
condition that a client can ask to be notified about. In
device_attr_t, we called this notify.

e aqueue to keep the data that gets written to us, and that we use to
reply to a client. For this, we defined i tem_t; it’s a type that
contains data for a single item, as well as a pointer to the next
item_t. In device_attr_t We use firstitem (points to the first
item in the queue), and nitems (number of items).

Note that we removed the definition of attr, since we use device_attr
instead.

Of course, we have to give the resource manager library the address of
our handlers so that it’ll know to call them. In the code for main()
where we called iofunc_func_init(), we’ll add the following code to
register our handlers:

/* initialize functions for handling messages */
iofunc_func_init (_RESMGR_CONNECT_NFUNCS, &connect_funcs,
—RESMGR_IO_NFUNCS, &io_funcs);

io_funcs.notify = io_notify; /* for handling _IO_NOTIFY, sent as
a result of client calls to ionotify()
and select() */

io_funcs.write = io_write;

io_funcs.read = io_read;

io_funcs.close_ocb = io_close_ocb;

And, since we’re using device_attr in place of attr, we need to change
the code wherever we use it in main(). So, you’ll need to replace this
code:
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/* initialize attribute structure used by the device */
iofunc_attr_init(&attr, S_IFNAM | 0666, 0, 0);

/* attach our device name */

id = resmgr_attach(dpp, /* dispatch handle */
&resmgr_attr, /* resource manager attrs */
"/dev/sample", /* device name */
_FTYPE_ANY, /* open type */
0, /* flags */
&connect_funcs, /* connect routines */
&io_funcs, /* I/0 routines */
&attr) ; /* handle */

with the following:

/* initialize attribute structure used by the device */
iofunc_attr_init (&device_attr.attr, S_IFNAM | 0666, 0, 0);
IOFUNC_NOTIFY_INIT (device_attr.notify);
device_attr.firstitem = NULL;

device_attr.nitems = 0;

/* attach our device name */

id = resmgr_attach(dpp, /* dispatch handle */
&resmgr_attr, /* resource manager attrs */
"/dev/sample", /* device name */
_FTYPE_ANY, /* open type */
0, /* flags */
&connect_funcs, /* connect routines */
&io_funcs, /* I/0 routines */
&device_attr); /* handle */

Note that we set up our device-specific data in device attr. And, in the
call to resmgr attach(), we passed &device_attr (instead of
&attr) for the handle parameter.

Now, you need to include the new handler function to handle the
_IO_NOTIFY message:

int

io_notify(resmgr_context_t *ctp, io_notify_t *msg, RESMGR_OCB_T *ocb)

{

device_attr_t *dattr = (device_attr_t *) ocb->attr;

int trig;

/*

* ’trig’ will tell iofunc_notify() which conditions are currently

* satisfied. ‘dattr->nitems’ is the number of messages in our list of

* stored messages.

*/

trig = _NOTIFY_COND_OUTPUT; /* clients can always give us data */
if (dattr->nitems > 0)

trig |= _NOTIFY_COND_INPUT; /* we have some data available */
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/*
* jofunc_notify() will do any necessary handling, including adding
* the client to the notification list is need be.

*/

return (iofunc_notify(ctp, msg, dattr->notify, trig, NULL, NULL));

}

As stated above, our io_notify handler will be called when a client
calls ionotify() or select(). In our handler, we’re expected to remember
who those clients are, and what conditions they want to be notified
about. We should also be able to respond immediately with conditions
that are already true. The iofunc_notify() helper function makes this
easy.

The first thing we do is to figure out which of the conditions we
handle have currently been met. In this example, we’re always able to
accept writes, so in the code above we set the
_NOTIFY_COND_OUTPUT bit in trig. We also check nitems to see if
we have data and set the NOTIFY COND_INPUT if we do.

We then call iofunc_notify(), passing it the message that was received
(msg), the notification lists (notify), and which conditions have been
met (trig). If one of the conditions that the client is asking about has
been met, and the client wants us to poll for the condition before
arming, then iofunc_notify() will return with a value that indicates
what condition has been met and the condition will not be armed.
Otherwise, the condition will be armed. In either case, we’ll return
from the handler with the return value from iofunc _notify().

Earlier, when we talked about the three possible conditions, we
mentioned that if you specify _NOTIFY_COND_INPUT, the client is
notified when there’s one or more units of input data available and
that the number of units is up to you. We said a similar thing about
_NOTIFY_COND_OUTPUT and NOTIFY_COND_OBAND. In the code
above, we let the number of units for all these default to 1. If you want
to use something different, then you must declare an array such as:

int notifycounts([3] = { 10, 2, 1 };

This sets the units for: _NOTIFY_COND_INPUT to 10;
_NOTIFY_COND_OUTPUT to 2; and _NOTIFY_COND_OBAND to 1. We
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would pass notifycounts to iofunc_notify() as the second to last
parameter.

Then, as data arrives, we notify whichever clients have asked for
notification. In this sample, data arrives through clients sending us
_IO_WRITE messages and we handle it using an io_write handler.

int
io_write(resmgr_context_t *ctp, io_write_t *msg, RESMGR_OCB_T *ocb)
{

device_attr_t *dattr = (device_attr_t *) ocb->attr;

int i;

char *p;

int status;

char *buf;

item_t *newitem;

if ((status = iofunc_write_verify(ctp, msg, ocb, NULL)) != EOK)

return (status);
if ((msg->i.xtype & _IO_XTYPE_MASK) != _IO_XTYPE_NONE)

return (ENOSYS);
if (msg->i.nbytes > 0) {

/* Get and store the data */

if ((newitem = malloc(sizeof(item_t))) == NULL)
return (errno);
if ((newitem->data = malloc(msg->i.nbytes+l)) == NULL) {

free (newitem) ;

return (errno);
/* reread the data from the sender’s message buffer */
resmgr-msgread (ctp, newitem->data, msg->i.nbytes, sizeof (msg->i));
newitem->datal[msg->i.nbytes] = NULL;

if (dattr->firstitem)

newitem->next = dattr->firstitem;
else

newitem->next = NULL;
dattr->firstitem = newitem;
dattr->nitems++;

/*
* notify clients who may have asked to be notified when there
* is data
*/
if (IOFUNC_NOTIFY_INPUT_CHECK (dattr->notify, dattr->nitems, 0))
iofunc_notify_trigger (dattr->notify, dattr->nitems, IOFUNC_NOTIFY_INPUT) ;
}
/* set up the number of bytes (returned by client’s write()) */

~-IO_SET_WRITE_NBYTES (ctp, msg->i.nbytes);

if (msg->i.nbytes > 0)
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ocb->attr->attr.flags ‘ = IOFUNC_ATTR_MTIME IOFUNC_ATTR_CTIME;

return (_RESMGR_NPARTS(0));

The important part of the above io write handler is the code within the
following section:

if (msg->i.nbytes > 0) {
}

Here we first allocate space for the incoming data, and then use
resmgr _msgread() to copy the data from the client’s send buffer into
the allocated space. Then, we add the data to our queue.

Next, we pass the number of input units that are available to
IOFUNC_NOTIFY_INPUT_CHECK() to see if there are enough units
to notify clients about. This is checked against the notifycounts that
we mentioned above when talking about the io _notify handler. If there
are enough units available then we call iofunc notify trigger() telling
it that nitems of data are available (IOFUNC NOTIFY INPUT means
input is available). The iofunc_notify _trigger() function checks the
lists of clients asking for notification (notify) and notifies any that
asked about data being available.

Any client that gets notified will then perform a read to get the data.
In our sample, we handle this with the following io_read handler:
int

io_read(resmgr_context_t *ctp, io_read_t *msg, RESMGR_OCB_T *ocb)

{

device_attr_t *dattr = (device_attr_t *) ocb->attr;
int status;
if ((status = iofunc_read_verify(ctp, msg, ocb, NULL)) != EOK)

return (status);

if ((msg->i.xtype & _IO_XTYPE_MASK) != _IO_XTYPE_NONE)
return (ENOSYS);

if (dattr->firstitem) {
int nbytes;
item_t *item, *prev;

/* get last item */
item = dattr->firstitem;
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prev = NULL;

while (item->next != NULL) {
prev = item;
item = item->next;

}

/*

* figure out number of bytes to give, write the data to the

* client’s reply buffer, even if we have more bytes than they
* are asking for, we remove the item from our list

*/

nbytes = min (strlen (item->data), msg->i.nbytes);

/* set up the number of bytes (returned by client’s read()) */
_IO_SET_READ_NBYTES (ctp, nbytes);

/*

* write the bytes to the client’s reply buffer now since we
* are about to free the data

*/

resmgr_msgwrite (ctp, item->data, nbytes, 0);

/* remove the data from the queue */
if (prev)
prev->next = item->next;
else
dattr->firstitem = NULL;
free(item->data);
free(item);
dattr->nitems--;
} else {
/* the read() will return with 0 bytes */
_~IO_SET_READ_NBYTES (ctp, 0);

/* mark the access time as invalid (we just accessed it) */

if (msg->i.nbytes > 0)
ocb->attr->attr.flags \: IOFUNC_ATTR_ATIME;

return (EOK);

The important part of the above io_read handler is the code within this
section:

if (firstitem) {

}

We first walk through the queue looking for the oldest item. Then we
use resmgr_msgwrite() to write the data to the client’s reply buffer.
We do this now because the next step is to free the memory that we’re
using to store that data. We also remove the item from our queue.
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Lastly, if a client closes their file descriptor, we must remove them
from our list of clients. This is done using a io_close ocb handler:
int

io_close_ocb(resmgr_context_t *ctp, void *reserved, RESMGR_OCB_T *ocb)

{

device_attr_t *dattr = (device_attr_t *) ocb->attr;

/*
* a client has closed their file descriptor or has terminated.
* Remove them from the notification list.

*/
iofunc_notify_remove(ctp, dattr->notify);

return (iofunc_close_ocb_default(ctp, reserved, ocb));

In the io_close_ocb handler, we called iofunc notify remove() and
passed it ctp (contains the information that identifies the client) and
notify (contains the list of clients) to remove the client from the lists.

Handling private messages and pulses

160

A resource manager may need to receive and handle pulses, perhaps
because an interrupt handler has returned a pulse or some other thread
or process has sent a pulse.

The main issue with pulses is that they have to be received as a
message — this means that a thread has to explicitly perform a
MsgReceive() in order to get the pulse. But unless this pulse is sent to
a different channel than the one that the resource manager is using for
its main messaging interface, it will be received by the library.
Therefore, we need to see how a resource manager can associate a
pulse code with a handler routine and communicate that information
to the library.

The pulse_attach() function can be used to associate a pulse code with
a handler function. Therefore, when the dispatch layer receives a
pulse, it will look up the pulse code and see which associated handler
to call to handle the pulse message.

You may also want to define your own private message range to
communicate with your resource manager. Note that the range 0x0 to
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0x1FF is reserved for the OS. To attach a range, you use the
message_attach() function.

In this example, we create the same resource manager, but this time
we also attach to a private message range and attach a pulse, which is
then used as a timer event.

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>

#define THREAD_POOL_PARAM._T dispatch_context_t
#include <sys/iofunc.h>
#include <sys/dispatch.h>

static resmgr_connect_funcs_t connect_func;
static resmgr_io_funcs_-t io_func;
static iofunc_attr_t attr;

int

timer_tick (message_context_t *ctp, int code, unsigned flags, void *handle) {

union sigval value = ctp->msg->pulse.value;
/*
* Do some useful work on every timer firing
*
*/
printf ("received timer event, value %d\n", value.sival_int);
return 0;
int

message_handler (message_context_t *ctp, int code, unsigned flags, void *handle) {
printf ("received private message, type %d\n", code);
return 0;

}

int
main(int argc, char **argv) {

thread_pool_attr_t pool_attr;
resmgr-attr_t resmgr-attr;
struct sigevent event;

struct _itimer itime;

dispatch_t *dpp;
thread_pool_t *tpp;
resmgr_context_t *ctp;

int timer_id;

int id;

if ((dpp = dispatch_create()) == NULL) {

fprintf (stderr, "%s: Unable to allocate dispatch handle.\n",argv[0]);
return EXIT_FAILURE;

}

memset (&pool_attr, 0, sizeof pool_attr);
pool_attr.handle = dpp;
/* We are doing resmgr and pulse-type attaches.
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If you’'re going to use custom messages or pulses with

the message_attach() or pulse_attach() functionms,

then you MUST use the dispatch functions

(i.e. dispatch_block(), dispatch_handler(), ...),

NOT the resmgr functions (resmgr_block(), resmgr_handler()).
/
pool_attr.context_alloc = dispatch_context_alloc;
pool_attr.block_func = dispatch_block;
pool_attr.handler_func = dispatch_handler;
pool_attr.context_free = dispatch_context_free;
pool_attr.lo_water = 2
pool_attr.hi_water = 4;
pool_attr.increment = 1;
pool_attr.maximum = 50;

EIEE T T )

i

if ((tpp = thread_pool_create (&pool_attr, POOL_FLAG_EXIT_SELF)) == NULL) {
fprintf (stderr, "%s: Unable to initialize thread pool.\n",argv[0]);
return EXIT_FAILURE;

iofunc_func_init (_RESMGR_CONNECT_NFUNCS, &connect_func, _RESMGR_IO_NFUNCS,
&io_func) ;
iofunc_attr_init(sattr, S_IFNAM | 0666, 0, 0);

memset (&resmgr_attr, 0, sizeof resmgr_attr);
resmgr_attr.nparts_max = 1;
resmgr_attr.msg_max_size = 2048;

if ((id = resmgr_attach(dpp, &resmgr_attr, "/dev/sample", _FTYPE_ANY, O,
&connect_func, &io_func, &attr)) == -1) {
fprintf (stderr, "%s: Unable to attach name.\n", argv[0]);
return EXIT_FAILURE;

/* We want to handle our own private messages, of type 0x5000 to Ox5fff */

if (message_attach(dpp, NULL, 0x5000, Ox5fff, &message_handler, NULL) == -1) {
fprintf (stderr, "Unable to attach to private message range.\n");
return EXIT_FAILURE;

/* Initialize an event structure, and attach a pulse to it */
if ((event.sigev_code = pulse_attach(dpp, MSG_FLAG_ALLOC_PULSE, 0, &timer_tick,
NULL)) == -1) {
fprintf (stderr, "Unable to attach timer pulse.\n");
return EXIT_FAILURE;

/* Connect to our channel */

if ((event.sigev_coid = message_connect (dpp, MSG_FLAG_SIDE_CHANNEL)) == -1) {
fprintf (stderr, "Unable to attach to channel.\n");
return EXIT_FAILURE;

event.sigev_notify = SIGEV_PULSE;

event.sigev_priority = -1;

/* We could create several timers and use different sigev values for each */
event.sigev_value.sival_int = 0;

if ((timer_id = TimerCreate (CLOCK_REALTIME, &event)) == -1) {;
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fprintf (stderr, "Unable to attach channel and connection.\n");
return EXIT_FAILURE;

}

/* And now setup our timer to fire every second */
itime.nsec = 1000000000;

itime.interval_nsec = 1000000000;

TimerSettime (timer_id, 0, &itime, NULL);

/* Never returns */
thread_pool_start (tpp) ;

We can either define our own pulse code (e.g. #define
OurPulseCode 57), Or we can ask the pulse_attach() function to
dynamically generate one for us (and return the pulse code value as
the return code from pulse _attach()) by specifying the pulse code as
_RESMGR_PULSE_ALLOC.

See the pulse_attach(), MsgSendPulse(), MsgDeliverEvent(), and
MsgReceive() functions in the Library Reference for more
information on receiving and generating pulses.

Handling open(), dup(), and close()
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mesSages

The resource manager library provides another convenient service for
us: it knows how to handle dup() messages.

Suppose that the client executed code that eventually ended up
performing:

fd = open ("/dev/sample", O_RDONLY) ;

f£d2 dup (£d);

£d3 dup (£d);

close (£d3);
close (£d42);

close (£fd):
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Our resource manager would get an _IO_CONNECT message for the
first open(), followed by two _I0_DUP messages for the two dup()
calls. Then, when the client executed the close() calls, we would get
three 10_CLOSE messages.

Since the dup() functions generate duplicates of the file descriptors,
we don’t want to allocate new OCBs for each one. And since we’re
not allocating new OCBs for each dup(), we don’t want to release the
memory in each _IO_CLOSE message when the _IO_CLOSE messages
arrive! If we did that, the first close would wipe out the OCB.

The resource manager library knows how to manage this for us; it
keeps count of the number of _IO_DUP and _I0_CLOSE messages sent
by the client. Only on the last _IO_CLOSE message will the library
synthesize a call to our 10_CLOSE_OCB handler.

Most users of the library will want to have the default functions
manage the _10_DUP and _IO_CLOSE messages; you’ll most likely
never override the default actions.

Handling client unblocking due to signals or

164

timeouts

Another convenient service that the resource manager library does for
us is unblocking.

When a client issues a request (e.g. read()), this translates (via the
client’s C library) into a MsgSend() to our resource manager. The
MsgSend() is a blocking call. If the client receives a signal during the
time that the MsgSend() is outstanding, our resource manager needs to
have some indication of this so that it can abort the request.

Because the library set the NTO_CHF_UNBLOCK flag when it called
ChannelCreate(), we’ll receive a pulse whenever the client tries to
unblock from a MsgSend() that we have MsgReceive()’d.

As an aside, recall that in the QNX Neutrino messaging model the
client can be in one of two states as a result of calling MsgSend(). If
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the server hasn’t yet received the message (via the server’s
MsgReceive()), the client is in a SEND-blocked state — the client is
waiting for the server to receive the message. When the server has
actually received the message, the client transits to a REPLY-blocked
state — the client is now waiting for the server to reply to the message

(via MsgReply()).

When this happens and the pulse is generated, the resource manager
library handles the pulse message and synthesizes an _IO_UNBLOCK
message.

Looking through the resmgr_io_funcs_t and the

resmgr _connect_funcs_t Structures (see the Library Reference),
you’ll notice that there are actually two unblock message handlers:
one in the 1/0 functions structure and one in the connect functions
structure.

Why two? Because we may get an abort in one of two places. We can
get the abort pulse right after the client has sent the 10 OPEN
message (but before we’ve replied to it), or we can get the abort
during an 1/0O message.

Once we’ve performed the handling of the JO_CONNECT message,
the 1/0 functions’ unblock member will be used to service an unblock
pulse. Therefore, if you’re supplying your own io_open handler, be
sure to set up all relevant fields in the OCB before you call
resmgr_open bind(); otherwise, your 1/0 functions’ version of the
unblock handler may get called with invalid data in the OCB. (Note
that this issue of abort pulses “during” message processing arises only
if there are multiple threads running in your resource manager. If
there’s only one thread, then the messages will be serialized by the
library’s MsgReceive() function.)

The effect of this is that if the client is SEND-blocked, the server
doesn’t need to know that the client is aborting the request, because
the server hasn’t yet received it.

Only in the case where the server has received the request and is
performing processing on that request does the server need to know
that the client now wishes to abort.
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For more information on these states and their interactions, see the
MsgSend(), MsgReceive(), MsgReply(), and ChannelCreate()
functions in the Library Reference; see also the chapter on
Interprocess Communication in the System Architecture book.

If you’re overriding the default unblock handler, you should always
call the default handler to process any generic unblocking cases first.
For example:

if ((status = iofunc_unblock._default(...)) != _RESMGR_DEFAULT) {
return status;

}

/* Do your own thing to look for a client to unblock */

This ensures that any client waiting on a resource manager lists (such
as an advisory lock list) will be unblocked if possible.

Handling interrupts

Resource managers that manage an actual hardware resource will
likely need to handle interrupts generated by the hardware. For a
detailed discussion on strategies for interrupt handlers, see the chapter
on Writing an Interrupt Handler in this book.

How do interrupt handlers relate to resource managers? When a
significant event happens within the interrupt handler, the handler
needs to inform a thread in the resource manager. This is usually done
via a pulse (discussed in the “Handling private messages and pulses”
section), but it can also be done with the SIGEV_INTR event
notification type. Let’s look at this in more detail.

When the resource manager starts up, it transfers control to
thread_pool_start(). This function may or may not return, depending
on the flags passed to thread_pool_create() (if you don’t pass any
flags, the function returns after the thread pool is created). This means
that if you’re going to set up an interrupt handler, you should do so
before starting the thread pool, or use one of the strategies we
discussed above (such as starting a thread for your entire resource
manager).
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However, if you’re going to use the SIGEV_INTR event notification
type, there’s a catch — the thread that attaches the interrupt (via
InterruptAttach() or InterruptAttachEvent()) must be the same thread
that calls InterruptWait().

Sample code for handling interrupts

May 31, 2004

Here’s an example that includes relevant portions of the interrupt
service routine and the handling thread:

#define INTNUM O

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>
#include <sys/neutrino.h>

static resmgr_connect_funcs_t connect_funcs;

static resmgr_io_funcs_t io_funcs;
static iofunc-attr_t attr;
void *

interrupt_thread (void * data)

struct sigevent event;
int id;

/* £ill in "event" structure */
memset (&event, 0, sizeof (event));
event.sigev_notify = SIGEV_INTR;

/* intNum is the desired interrupt level */
id = InterruptAttachEvent (INTNUM, &event, 0);

/*... insert your code here ... */

while (1) {

InterruptWait (NULL, NULL) ;

/* do something about the interrupt,
* perhaps updating some shared

* structures in the resource manager
*

* unmask the interrupt when done

*/
InterruptUnmask (INTNUM, id);
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int
main (int argc, char **argv) {
thread_pool_attr_t pool_attr;

resmgr_attr_t resmgr_attr;
dispatch_t *dpp;
thread_pool_t *tpp;
int id;
if ((dpp = dispatch_create()) == NULL) {
fprintf (stderr, "%s: Unable to allocate dispatch handle.\n",
argv[0]);

return EXIT_FAILURE;

memset (&pool_attr, 0, sizeof pool_attr);
pool_attr.handle = dpp;

/* We are only doing resmgr-type attach */
pool_attr.context_alloc = resmgr_context_alloc;
pool_attr.block_func = resmgr_block;
pool_attr.handler_func = resmgr_handler;
pool_attr.context_free = resmgr_context_free;
pool_attr.lo_water = 2;

pool_attr.hi_water = 4;

pool_attr.increment = 1;

pool_attr.maximum = 50;

if ((tpp = thread_pool_create (&pool_attr,
POOL_FLAG_EXIT_SELF)) == NULL) {
fprintf (stderr, "%s: Unable to initialize thread pool.\n",
argv[0]);
return EXIT_FAILURE;

iofunc_func_init (_RESMGR_CONNECT_NFUNCS, &connect_funcs,
_RESMGR_IO_NFUNCS, &io_funcs);
iofunc_attr_init(&attr, S_IFNAM | 0666, 0, 0);

memset (&resmgr_attr, 0, sizeof resmgr_attr);
resmgr_attr.nparts_max = 1;
resmgr_attr.msg_max_size = 2048;

if ((id = resmgr_attach(dpp, &resmgr_attr, "/dev/sample",
_FTYPE_ANY, O,
&connect_funcs, &io_funcs, &attr)) == -1) {
fprintf (stderr, "%s: Unable to attach name.\n", argvI[0]);
return EXIT_FAILURE;
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/* Start the thread that will handle interrupt events. */
pthread_create (NULL, NULL, interrupt_thread, NULL);

/* Never returns */
thread_pool_start (tpp) ;

Here the interrupt thread() function uses InterruptAttachEvent() to
bind the interrupt source (intNum) to the event (passed in event), and
then waits for the event to occur.

This approach has a major advantage over using a pulse. A pulse is
delivered as a message to the resource manager, which means that if
the resource manager’s message-handling threads are busy processing
requests, the pulse will be queued until a thread does a MsgReceive().

With the InterruptWait() approach, if the thread that’s executing the
InterruptWait() is of sufficient priority, it unblocks and runs
immediately after the SIGEV_INTR is generated.

Multi-threaded resource managers

In this section:
e Multi-threaded Resource Manager example
e Thread pool attributes

e Thread pool functions

Multi-threaded resource manager example

May 31, 2004

Let’s look at our multi-threaded resource manager example in more
detail.

#include <errno.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>

/*
* define THREAD_POOL_PARAM_T such that we can avoid a compiler
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* warning when we use the dispatch_*() functions below
*/
#define THREAD_POOL_PARAM_T dispatch_context_t

#include <sys/iofunc.h>
#include <sys/dispatch.h>

static resmgr_connect_funcs_t connect_funcs;
static resmgr_io_funcs_t io_funcs;
static iofunc-attr_t attr;

main(int argec, char **argv)

{
/* declare variables we’ll be using */
thread_pool_attr_t pool_attr;

resmgr-attr_t resmgr-attr;
dispatch_t *dpp;
thread_pool_t *tpp;
dispatch_context_t *ctp;

int id;

/* initialize dispatch interface */

if ((dpp = dispatch_create()) == NULL) {
fprintf (stderr, "%s: Unable to allocate dispatch handle.\n",
argv[0]);

return EXIT_FAILURE;

}

/* initialize resource manager attributes */
memset (&resmgr_attr, 0, sizeof resmgr_attr);
resmgr_attr.nparts_max = 1;
resmgr_attr.msg_max_size = 2048;

/* initialize functions for handling messages */
iofunc_func_init (_RESMGR_CONNECT_NFUNCS, &connect_funcs,
_RESMGR_IO_NFUNCS, &io_funcs);

/* initialize attribute structure used by the device */
iofunc_attr_init (&attr, S_IFNAM | 0666, 0, 0);

/* attach our device name */

id = resmgr_attach(dpp, /* dispatch handle */
&resmgr_attr, /* resource manager attrs */
"/dev/sample", /* device name */
_FTYPE_ANY, /* open type */
0, /* flags */
&connect_funcs, /* connect routines */
&io_funcs, /* I/0 routines */
&attr) ; /* handle */

if(id == -1) {
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fprintf (stderr, "%s: Unable to attach name.\n", argv[0]);
return EXIT_FAILURE;

}

/* initialize thread pool attributes */

memset (&pool_attr, 0, sizeof pool_attr);
pool_attr.handle = dpp;

pool_attr.context_alloc = dispatch_context_alloc;
pool_attr.block_func = dispatch_block;
pool_attr.handler_func = dispatch_handler;
pool_attr.context_free = dispatch_context_free;
pool_attr.lo_water = 2;

pool_attr.hi_water = 4;

pool_attr.increment = 1;

pool_attr.maximum = 50;

/* allocate a thread pool handle */
if ((tpp = thread_pool_create (&pool_attr,
POOL_FLAG_EXIT_SELF)) == NULL) {
fprintf (stderr, "%s: Unable to initialize thread pool.\n",
argv([0]);
return EXIT_FAILURE;

}

/* start the threads, will not return */
thread_pool_start (tpp) ;

The thread pool attribute (pool attr) controls various aspects of the
thread pool, such as which functions get called when a new thread is
started or dies, the total number of worker threads, the minimum
number, and so on.

Thread pool attributes

Here’s the _thread_pool_attr Structure:

typedef struct _thread_pool_attr {
THREAD_POOL_HANDLE_T *handle;
THREAD_POOL_PARAM_T * (*block_func) (THREAD_POOL_PARAM_T *ctp) ;

void (*unblock_func) (THREAD_POOL_PARAM_T *ctp) ;
int (*handler_func) (THREAD_POOL_PARAM_T *ctp);
THREAD_POOL_PARAM._T * (*context_alloc) (THREAD_POOL_HANDLE_T *handle) ;
void (*context_free) (THREAD_POOL_PARAM_T *ctp);
pthread_attr_t *attr;
unsigned short lo_water;
unsigned short increment;
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unsigned short hi_water;
unsigned short maximum;
unsigned reserved[8] ;

} thread_pool_attr_t;

The functions that you fill into the above structure can be taken from
the dispatch layer (dispatch_block(), ...), the resmgr layer

(resmgr block(), ...) or they can be of your own making. If you’re not
using the resmgr layer functions, then you’ll have to define
THREAD_POOL_PARAM_T to some sort of context structure for the
library to pass between the various functions. By default, it’s defined
as a resmgr_context_t but since this sample is using the dispatch
layer, we needed it to be adispatch_context_t. We defined it
prior to doing the includes above since the header files refer to it.
THREAD_POOL_PARAM_T

Part of the above structure contains information telling the resource
manager library how you want it to handle multiple threads (if at all).
During development, you should design your resource manager with
multiple threads in mind. But during testing, you’ll most likely have
only one thread running (to simplify debugging). Later, after you’ve
ensured that the base functionality of your resource manager is stable,
you may wish to “turn on” multiple threads and revisit the debug

cycle.

The following members control the number of threads that are
running:

lo_water Minimum number of blocked threads.

increment Number of thread to create at a time to achieve
lo_water.

hi_water Maximum number of blocked threads.

maximum Total number of threads created at any time.

The important parameters specify the maximum thread count and the
increment. The value for maximum should ensure that there’s always
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a thread in a RECEIVE-blocked state. If you’re at the number of
maximum threads, then your clients will block until a free thread is
ready to receive data. The value you specify for increment will cut
down on the number of times your driver needs to create threads. It’s
probably wise to err on the side of creating more threads and leaving
them around rather than have them being created/destroyed all the
time.

You determine the number of threads you want to be
RECEIVE-blocked on the MsgReceive() at any time by filling in the
lo_water parameter.

If you ever have fewer than lo_water threads RECEIVE-blocked, the
increment parameter specifies how many threads should be created at
once, so that at least lo_water number of threads are once again
RECEIVE-blocked.

Once the threads are done their processing, they will return to the
block function. The hi water variable specifies an upper limit to the
number of threads that are RECEIVE-blocked. Once this limit is
reached, the threads will destroy themselves to ensure that no more
than hi_water number of threads are RECEIVE-blocked.

To prevent the number of threads from increasing without bounds, the
maximum parameter limits the absolute maximum number of threads
that will ever run simultaneously.

When threads are created by the resource manager library, they’ll
have a stack size as specified by the thread stack size parameter. If
you want to specify stack size or priority, fill in pool attr.attr with a
proper pthread_attr_t pointer.

The thread_pool_attr_t Structure contains pointers to several
functions:

block func() Called by the worker thread when it needs to block
waiting for some message.

handler_func()  Called by the thread when it has unblocked
because it received a message. This function
processes the message.
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context_alloc()  Called when a new thread is created. Returns a
context that this thread uses to do its work.

context_free() Free the context when the worker thread exits.

unblock_func()  Called by the library to shutdown the thread pool
or change the number of running threads.

Thread pool functions

The library provides the following thread pool functions:

thread _pool_create()
Initializes the pool context. Returns a thread pool handle (tpp)
that’s used to start the thread pool.
thread_pool _start()
Start the thread pool. This function may or may not return,
depending on the flags passed to thread_pool _create().
thread_pool _destroy()
Destroy a thread pool.

thread_pool _control()
Control the number of threads.

In the example provided in the multi-threaded resource managers
section, thread_pool_start (tpp) never returns because we set
the POOL _FLAG_EXIT_SELF bit. Also, the POOL_FLAG_USE_SELF
flag itself never returns, but the current thread becomes part of the
thread pool.

If no flags are passed (i.e. o instead of any flags), the function returns
after the thread pool is created.
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Filesystem resource managers

In this section:
e Considerations for Filesystem Resource Managers
e Taking over more than one device

e Handling directories

Considerations for filesystem resource managers

Since a filesystem resource manager may potentially receive long
pathnames, it must be able to parse and handle each component of the
path properly.

Let’s say that a resource manager registers the mountpoint /mount/,
and a user types:

ls -1 /mount/home

where /mount/home is a directory on the device.
1s does the following:

d = opendir ("/mount/home") ;
while (...) {
dirent = readdir(d):

Taking over more than one device

May 31, 2004

If we wanted our resource manager to handle multiple devices, the
change is really quite simple. We would call resmgr attach() for each
device name we wanted to register. We would also pass in an
attributes structure that was unique to each registered device, so that
functions like chmod() would be able to modify the attributes
associated with the correct resource.

Here are the modifications necessary to handle both /dev/samplel
and /dev/sample2:
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/*
* MOD [1]: allocate multiple attribute structures,
and fill in a names array (convenience)

*/

#define NumDevices 2
iofunc_attr_t sample_attrs [NumDevices];
char *names [NumDevices] =

{
"/dev/samplel™,
"/dev/sample2"

}:

main ()

/*
* MOD [2]: £fill in the attribute structure for each device
* and call resmgr_attach for each device
*/
for (i = 0; i < NumDevices; i++) {
iofunc_attr_init (&sample_attrs [il],
S_IFCHR \ 0666, NULL, NULL);
pathID = resmgr_attach (dpp, &resmgr_attr, namel[i],
_FTYPE_ANY, O,
&my_connect_funcs,
&my_io_funcs,
&sample_attrs [i]);

The first modification simply declares an array of attributes, so that
each device has its own attributes structure. As a convenience, we’ve
also declared an array of names to simplify passing the name of the
device in the for loop. Some resource managers (such as
devc-ser8250) construct the device names on the fly or fetch them
from the command line.

The second modification initializes the array of attribute structures
and then calls resmgr_attach() multiple times, once for each device,
passing in a unique name and a unique attribute structure.

Those are all the changes required. Nothing in our io_read() or
io_write() functions has to change — the iofunc-layer default
functions will gracefully handle the multiple devices.
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Handling directories
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Up until this point, our discussion has focused on resource managers
that associate each device name via discrete calls to resmgr _attach().
We’ve shown how to “take over” a single pathname. (Our examples
have used pathnames under /dev, but there’s no reason you couldn’t
take over any other pathnames, e.g. /MyDevice.)

A typical resource manager can take over any number of pathnames.
A practical limit, however, is on the order of a hundred — the real
limit is a function of memory size and lookup speed in the process
manager.

What if you wanted to take over thousands or even millions of
pathnames?

The most straightforward method of doing this is to take over a
pathname prefix and manage a directory structure below that prefix
(or mountpoint).

Here are some examples of resource managers that may wish to do
this:

e A CD-ROM filesystem might take over the pathname prefix
/cdrom, and then handle any requests for files below that
pathname by going out to the CD-ROM device.

e A filesystem for managing compressed files might take over a
pathname prefix of /uncompressed, and then uncompress disk
files on the fly as read requests arrive.

e A network filesystem could present the directory structure of a
remote machine called “flipper” under the pathname prefix of
/mount/£lipper and allow the user to access flipper’s files as if
they were local to the current machine.

And those are just the most obvious ones. The reasons (and
possibilities) are almost endless.

The common characteristic of these resource managers is that they all
implement filesystems. A filesystem resource manager differs from
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the “device” resource managers (that we have shown so far) in the
following key areas:

1 The _RESMGR_FLAG_DIR flag in resmgr_attach() informs the
library that the resource manager will accept matches at or
below the defined mountpoint.

2 The _IO_CONNECT logic has to check the individual pathname
components against permissions and access authorizations. It
must also ensure that the proper attribute is bound when a
particular filename is accessed.

3 The _IO_READ logic has to return the data for either the “file”
or “directory” specified by the pathname.

Let’s look at these points in turn.

Matching at or below a mountpoint

The JIO_OPEN

When we specified the flags argument to resmgr _attach() for our
sample resource manager, we specified a 0, implying that the library
should “use the defaults.”

If we specified the value .RESMGR_FLAG _DIR instead of 0, the library
would allow the resolution of pathnames at or below the specified
mountpoint.

message for filesystems

Once we’ve specified a mountpoint, it would then be up to the
resource manager to determine a suitable response to an open request.
Let’s assume that we’ve defined a mountpoint of /sample _£sys for
our resource manager:

pathID = resmgr_attach

(dpp.,

&resmgr-attr,

"/sample_fsys", /* mountpoint */
_FTYPE_ANY,

_RESMGR_FLAG_DIR, /* it’s a directory */
&connect_funcs,

&io_funcs,

&attr) ;
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Now when the client performs a call like this:

fopen ("/sample_fsys/spud", "r");

we receive an _IO_CONNECT message, and our io_open handler will
be called. Since we haven’t yet looked at the 10 CONNECT message
in depth, let’s take a look now:

struct _io_connect {
unsigned short type;
unsigned short subtype; /* _IO_CONNECT_* */
unsigned long file_type; /* _FTYPE_* in sys/ftype.h */
unsigned short reply_max;
unsigned short entry_max;
unsigned long key;
unsigned long handle;

unsigned long ioflag; /* O_* in fcntl.h, _IO_FLAG_* */
unsigned long mode; /* S_IF* in sys/stat.h */
unsigned short sflag; /* SH_* in share.h */
unsigned short access; /* S_I in sys/stat.h */

unsigned short =zero;
unsigned short path_len;

unsigned char eflag; /* _IO_CONNECT_EFLAG_* */
unsigned char extra_type; /* _IO_EXTRA_* */
unsigned short extra_len;

unsigned char pathl[l]; /* path_len, null, extra_len */

}i

Looking at the relevant fields, we see ioflag, mode, sflag, and access,
which tell us how the resource was opened.

The path_len parameter tells us how many bytes the pathname takes;
the actual pathname appears in the path parameter. Note that the
pathname that appears is not /sample_£sys/spud, as you might
expect, but instead is just spud — the message contains only the
pathname relative to the resource manager’s mountpoint. This
simplifies coding because you don’t have to skip past the mountpoint
name each time, the code doesn’t have to know what the mountpoint
is, and the messages will be a little bit shorter.

Note also that the pathname will never have relative (. and . .) path
components, nor redundant slashes (e.g. spud//stuff) in it — these
are all resolved and removed by the time the message is sent to the
resource manager.

Chapter 4 & Writing a Resource Manager 179



Filesystem resource managers © 2004, QNX Software Systems Ltd.

When writing filesystem resource managers, we encounter additional
complexity when dealing with the pathnames. For verification of
access, we need to break apart the passed pathname and check each
component. You can use strtok() and friends to break apart the string,
and then there’s iofunc_check_access(), a convenient iofunc-layer call
that performs the access verification of pathname components leading
up to the target. (See the Library Reference page for the iofunc_open()
for information detailing the steps needed for this level of checking.)

The binding that takes place after the name is validated requires that
every path that’s handled has its own attribute structure passed to
iofunc_open_default(). Unexpected behavior will result if the wrong
attribute is bound to the pathname that’s provided.

Returning directory entries from _IO_READ

When the _IO_READ handler is called, it may need to return data for
either a file (if S_ISDIR (ocb->attr->mode) is false) ora
directory (if S_ISDIR (ocb->attr->mode) is true). We’ve seen
the algorithm for returning data, especially the method for matching
the returned data’s size to the smaller of the data available or the
client’s buffer size.

A similar constraint is in effect for returning directory data to a client,
except we have the added issue of returning block-integral data. What
this means is that instead of returning a stream of bytes, where we can
arbitrarily package the data, we’re actually returning a number of
struct dirent structures. (In other words, we can’t return 1.5 of
those structures; we always have to return an integral number.)

A struct dirent looks like this:

struct dirent {
ino_t d_ino;
off_t d_offset;
unsigned short d_reclen;
unsigned short d_namelen;
char d_name [NAME_MAX + 1];
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The d_ino member contains a mountpoint-unique file serial number.
This serial number is often used in various disk-checking utilities for
such operations as determining infinite-loop directory links. (Note
that the inode value cannot be zero, which would indicate that the
inode represents an unused entry.)

The d_offset member is typically used to identify the directory entry
itself. For a disk-based filesystem, this value might be the actual
offset into the on-disk directory structure.

Other implementations may assign a directory entry index number (0
for the first directory entry in that directory, 1 for the next, and so on).
The only constraint is that the numbering scheme used must be
consistent between the _IO_LSEEK message handler and the
_IO_READ message handler.

For example, if you’ve chosen to have d offset represent a directory
entry index number, this means that if an _IO_LSEEK message causes
the current offset to be changed to 7, and then an 10 READ request
arrives, you must return directory information starting at directory
entry number 7.

The d_reclen member contains the size of this directory entry and any
other associated information (such as an optional struct stat
structure appended to the struct dirent entry; see below).

The d_namelen parameter indicates the size of the d_name parameter,
which holds the actual name of that directory entry. (Since the size is
calculated using strlen(), the \ 0 string terminator, which must be
present, is not counted.)

So in our io_read handler, we need to generate a number of struct
dirent entries and return them to the client.

If we have a cache of directory entries that we maintain in our
resource manager, it’s a simple matter to construct a set of I0Vs to
point to those entries. If we don’t have a cache, then we must
manually assemble the directory entries into a buffer and then return
an 10V that points to that.
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Returning
information
associated
with a
directory
structure

Instead of returning just the struct dirent inthe JIO_READ
message, you can also return a struct stat. Although this will
improve efficiency, returning the struct stat is entirely optional.
If you don’t return one, the users of your device will then have to call
the stat() function to get that information. (This is basically a usage
question. If your device is typically used in such a way that readdir()
is called, and then stat() is called, it will be more efficient to return
both. See the documentation for readdir() in the Library Reference
for more information.)

The extra struct stat information is returned after each directory
entry:

struct dirent

struct stat

Alignment filler

struct dirent

struct stat

Alignment filler

Returning the optional “struct stat” along with the “struct dirent” entry can
improve efficiency.

The struct stat must be aligned on an 8-byte boundary. The
d_reclen member of the struct dirent must contain the size of
both structures, including any filler necessary for alignment.
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Message types

Generally, a resource manager receives two types of messages:
e connect messages

e 1/O messages.

Connect messages

A connect message is issued by the client to perform an operation
based on a pathname. This may be a message that establishes a longer
term relationship between the client and the resource manager (e.g.
open()), or it may be a message that is a “one-shot” event (e.g.
rename()).

The library looks at the connect _funcs parameter (of type
resmgr_connect_funcs_t — see the Library Reference) and calls
out to the appropriate function.

If the message is the 10 CONNECT message (and variants)
corresponding with the open() outcall, then a context needs to be
established for further 1/0 messages that will be processed later. This
context is referred to as an OCB (Open Control Block) — it holds any
information required between the connect message and subsequent
1/0 messages.

Basically, the OCB is a good place to keep information that needs to
be stored on a per-open basis. An example of this would be the
current position within a file. Each open file descriptor would have its
own file position. The OCB is allocated on a per-open basis. During
the open handling, you’d initialize the file position; during read and
write handling, you’d advance the file position. For more information,
see the section “The open control block (OCB) structure.”

I/O messages

An /O message is one that relies on an existing binding (e.g. OCB)
between the client and the resource manager.
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An an example, an _IO_READ (from the client’s read() function)
message depends on the client’s having previously established an
association (or context) with the resource manager by issuing an
open() and getting back a file descriptor. This context, created by the
open() call, is then used to process the subsequent I/O messages, like
the _IO_READ.

There are good reasons for this design. It would be inefficient to pass
the full pathname for each and every read() request, for example. The
open() handler can also perform tasks that we want done only once
(e.g. permission checks), rather than with each 1/0 message. Also,
when the read() has read 4096 bytes from a disk file, there may be
another 20 megabytes still waiting to be read. Therefore, the read()
function would need to have some context information telling it the
position within the file it’s reading from, how much has been read,
and so on.

The resmgr_io_funcs_t structure is filled in a manner similar to
the connect functions structure resmgr _connect _funcs_t.

Notice that the 1/0 functions all have a common parameter list. The
first entry is a resource manager context structure, the second is a
message (the type of which matches the message being handled and
contains parameters sent from the client), and the last is an OCB
(containing what we bound when we handled the client’s open()
function).

Resource manager data structures
_resmgr_attr_t control structure

The _resmgr_attr_t control structure contains at least the
following:

typedef struct _resmgr_attr {

unsigned flags;

unsigned nparts_max;

unsigned msg_max_size;

int (*other_func) (resmgr_context_t *, void *msg);
unsigned reserved[4];

} resmgr_attr_t;
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Resource manager data structures

nparts_max

msg-max_size

flags

other_func
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The number of components that should be
allocated to the 10OV array.

The size of the message buffer.

These members will be important when you start
writing your own handler functions.

If you specify a value of zero for nparts_max, the
resource manager library will bump the values to
the minimum usable by the library itself. Why
would you want to set the size of the IOV array?
As we’ve seen in the Getting the resource manager
library to do the reply section, you can tell the
resource manager library to do our replying for us.
We may want to give it an IOV array that points to
N buffers containing the reply data. But, since
we’ll ask the library to do the reply for us, we need
to use its IOV array, which of course would need
to be big enough to point to our N buffers.

Lets you change the behavior of the resource
manager interface.

Lets you specify a routine to call in cases where
the resource manager gets an 1/0 message that it
doesn’t understand. (In general, we don’t
recommend that you use this member. For more
information, see the following section.) To attach
an other func, you must set the
RESMGR_FLAG_ATTACH_OTHERFUNC flag.

If the resource manager library gets an 1/O
message that it doesn’t know how to handle, it’ll
call the routine specified by the other_func
member, if non-NULL. (If it’s NULL, the resource
manager library will return an ENOSYS to the
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client, effectively stating that it doesn’t know what
this message means.)

You might specify a non-NULL value for
other_func in the case where you’ve specified some
form of custom messaging between clients and
your resource manager, although the recommended
approach for this is the devctl() function call
(client) and the _IO_DEVCTL message handler
(server) or a MsgSend*() function call (client) and
the _IO_MSG message handler (server).

For non-1/0 message types, you should use the
message_attach() function, which attaches a
message range for the dispatch handle. When a
message with a type in that range is received, the
dispatch_block() function calls a user-supplied
function that’s responsible for doing any specific
work, such as replying to the client.
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QNX Momentics Transparent Distributed Processing (TDP) allows
you to leverage the processing power of your entire network by
sharing resources and services transparently over the network. TDP
uses Neutrino native network protocol Qnet to link the devices in your
network.

What is Qnet?

Qnet is QNX Neutrino’s protocol for distributed networking. Using
Qnet, you can build a transparent distributed-processing platform that
is fast and scalable. This is accomplished by extending the Neutrino
message passing architecture over a network. This creates a group of
tightly integrated Neutrino nodes (systems) or CPUs — a Neutrino
native network.

A program running on a Neutrino node in this Qnet network can
transparently access any resource, whether it’s a file, device, or
another process. These resources reside on any other node (a
computer, a workstation or a CPU in a system) in the Qnet network.
The Qnet protocol builds an optimized network that provides a fast
and seamless interface between Neutrino nodes.

For a high-level description, see Native Networking (Qnet) in the
System Architecture guide; for information about what the user needs
to know about networking, see Using Qnet for Transparent
Distributed Processing in the Neutrino User’s Guide.

For more advanced topics and programming hints on Qnet, see
Advanced Qnet Topics appendix.

Benefits of Qnet

May 31, 2004

The Qnet protocol extends interprocess communication (IPC)
transparently over a network of microkernels. This is done by taking
advantage of the Neutrino’s message-passing paradigm. Message
passing is the central theme of Neutrino that manages a group of
cooperating processes by routing messages. This enhances the
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efficiency of all transactions among all processes throughout the
system.

For more information about message passing and Qnet, see Advanced
Qnet Topics appendix.

What works best

190

The Qnet protocol is deployed as a network of trusted machines. It
lets these machines share all their resources efficiently with minimum
overhead. This is accomplished by allowing a client process to send a
message to a remote manager in the same way that it sends a message
to a local one. See the “How does it work?” section of this chapter.
For example, using Qnet, you can use the Neutrino utilities (cp, mv
and so on) to manipulate files anywhere on the Qnet Network as if
they were on your machine — by communicating with the filesystem
manager on the remote nodes. In addition, the Qnet protocol doesn’t
do any authentication of remote requests. Files are protected by the
normal permissions that apply to users and groups (see “File
ownership and permissions” in Working with Files in the User’s
Guide).

Qnet, through its distributed processing platform, lets you do the
following tasks efficiently:
e access your remote filesystem

e scale your application with unprecedented ease

e write applications using a collection of cooperating processes that
communicate transparently with each other using Neutrino
message passing

e extend your application easily beyond a single processor or
symmetric multi-processor to several single processor machines
and distribute your processes among these processors

e divide your large application into several processes that coordinate
their work using messages
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e debug your application easily for processes that communicate at a
very low level, and that use Neutrino’s memory protection feature

e use builtin remote procedure call functionality.

Since Qnet extends Neutrino message passing over the network, other
forms of interprocess communication (e.g. signals, message queues,
and named semaphores) also work over the network.

What type of application is well-suited for Qnet?

Any application that inherently needs more than one computer, due to
its processing or physical layout requirements, could likely benefit
from Qnet.

For example, you can apply Qnet networking successfully in many
industrial-automation applications (e.g. a fabrication plant, with
computers scattered around). From an application standpoint, Qnet
provides an efficient form of distributed computing where all
computers look like one big computer because Qnet extends the
fundamental Neutrino message passing across all the computers.

Another useful application is in the telecom space, where you need to
implement large routers that have several processors. From an
architectural standpoint, these routers generally have some interface
cards and a central processor that runs a set of server processes. Each
interface card, in turn, has a processor that runs another set of
interface (e.g. client) processes. These client processes communicate
via Qnet using Neutrino message passing with the server processes on
the central processor, as if they were all running on the same
processor. The scalability of Qnet allows more and more interface
cards to be plugged into the router, without any code changes required
to the application.

Qnet drivers

In order to support different hardware, you may need to write a driver
for Qnet. The driver essentially performs three functions: transmits a
packet, receives a packet, and resolves the remote node’s interface.
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In most cases, you don’t need a specific driver for your hardware, for
example, for implementing a local area network using Ethernet
hardware or for implementing TCP/IP networking that require IP
encapsulation. In these cases, the underlying io-net and tcpip
layer is sufficient to interface with the Qnet layer for transmitting and
receiving packets. You use standard Neutrino drivers to implement
Qnet over a local area network or to encapsulate Qnet messages in IP
(TCP/IP) to allow Qnet to be routed to remote networks.

But suppose you want to set up a very tightly coupled network
between two CPUs over a super-fast interconnect (e.g. PCI or
RapidlO). You can easily take advantage of the performance of such a
high-speed link, because Qnet can talk directly to your hardware
driver. There’s no io-net layer in this case. All you need is a little
code at the very bottom of Qnet layer that understands how to transmit
and receive packets. This is simple as there is a standard internal API
between the rest of Qnet and this very bottom portion, the driver
interface. Qnet already supports different packet transmit/receive
interfaces, so adding another is reasonably straightforward. The
transport mechanism of Qnet (called the L4) is quite generic and can
be configured for different size MTUs, whether or not ACK packets
or CRC checks are required, to take the full advantage of your link’s
advanced features (e.g. guaranteed reliability).

For details about how to write a driver, see the section on “Writing a
driver for Qnet” later in this chapter.

The QNX Momentics Transparent Distributed Processing Source Kit
(TDP SK) is available to help you develop custom drivers and/or
modify Qnet components to suit your particular application. For more
information, contact your sales representative.

How does it work?

As explained in the System Architecture guide, Neutrino client and
server applications communicate by Neutrino message passing.
Function calls that need to communicate with a manager application,
such as the POSIX functions open(), write(), read(), ioctl(), or other
functions such as devctl() are all built on Neutrino message passing.
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Qnet allows these messages to be sent over a network. If these
messages are being sent over a network, how is a message sent to a
remote manager vs a local manager?

When you access local devices or manager processes (such as a serial
device, TCP/IP socket, or mqueue), you access these devices by
opening a pathname under /dev. This may be apparent in the
application source code:

/*Open a serial device*/
fd = open("/dev/serl",0_RDWR....);

or it may not. For example, when you open a socket:

/*Create a UDP socket*/
sock = socket (AF_INET, SOCK_DGRAM, 0);

The socket() function opens a pathname under /dev called
/dev/socket/2 (in the case of AF_INET, which is address family
two). The socket() function call uses this pathname to establish a
connection with the socket manager (npm-tecpip. so), just as the
open() call above established a connection to the serial device
manager (devc-ser8250).

The magic of this is that you access all managers by the name that
they added to the pathname space. For more information, see the
Writing a Resource Manager chapter.

When you enable the Qnet native network protocol, the pathname
spaces of all the nodes in your Qnet network are added to yours. The
pathname space of remote nodes appears (by default) under the prefix
/net.

Under QNX 4, you use a double slash followed by a node number to
refer to another node.

The /net directory is created by the Qnet protocol manager
(npm-gnet.so). If, for example, the other node is called node1, its
pathname space appears as follows:
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/net/nodel/dev/socket
/net/nodel/dev/serl
/net/nodel/home
/net/nodel/bin

So with Qnet, you can now open pathnames (files or managers) on
other remote Qnet nodes, in the same way that you open files locally.
This means that you can access regular files or manager processes on
other Qnet nodes as if they were executing on your local node.

First, let’s see some basic examples of Qnet use:

e To display the contents of a file on another machine (node1), you
can use less, specifying the path through /net:
less /net/nodel/etc/TIMEZONE

e To get system information about all of the remote nodes that are
listed in /net, use pidin with the net argument:
$ pidin net

e You can use pidin with the -n option to get information about the
processes on another machine:

pidin -n nodel | less

e You can even run a process on another machine, using the - £
option to the on command:

on -f node date

In all of these uses, the application source or the libraries (for
example 1ibe) they depend on, simply open the pathnames under
/net. For example, if you wish to make use of a serial device on
another node node1, perform an open() function with the pathname
/net/nodel/dev/serl i.e.

fd = open("/net/nodel/dev/serl",O0_RDWR...);
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As you can see, the code required for accessing remote resources and
local resources is identical. The only change is the pathname used.

In the TCP/IP socket() case, it’s the same, but implemented
differently. In the socket case, you don’t directly open a filename.
This is done inside the socket library. In this case, an environment
variable is provided to set the pathname for the socket call (the SOCK
environment variable — see npm- tcpip. so).

Some other applications are:

Remote filesystem access

In order to access /tmp/filel file on nodel
remotely from another node, use
/net/nodel/tmp/£filel in open().

Message queue

You can create or open a message queue by using
mq_open(). The mqueue manager must be running.
When a queue is created, it appears in the pathname
space under /dev/mqueue. SO, yOU Can access
/dev/mqueue 0N nodel from another node by
using /net/nodel/dev/mqueue.

Semaphores Using Qnet, you can create or access named
semaphores in another node. For example, use
/net/nodel/semphore_location in the
sem_open() function. This creates or accesses the
named semaphore in nodel. Note that the mqueue
manager must be running for applications in order to
use named semaphores.

This brings up an important issue for the client application or libraries
that a client application uses. If you think that your application will be
distributed over a network, you will want to include the capability to
specify another pathname for connecting to your services. This way,
your application will have the flexibility of being able to connect to
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local or remote services via a user-configuration adjustment. This
could be as simple as the ability to pass a node name. In your code,
you would add the prefix /net/node_name to any pathname that may
be opened on the remote node. In the local case, or default case if
appropriate, you could omit this prefix when accessing local
managers.

In this example, you’re using standard resource managers, such as
would be developed using the resource manager framework (see the
Writing a Resource Manager chapter). For further information, or for
a more in-depth view of Qnet, see Advanced Qnet Topics appendix.

There is another design issue to contend with at this point: the above
design is a static one. If you have services at known locations, or the
user will be placing services at known locations, then this may be
sufficient. 1t would be convenient, though, if your client application
could locate these services automatically, without the need to know
what nodes exist in the Qnet network, or what pathname they’ve
added to the namespace. You can now use the Global Name Service
(gns) manager to locate services with an arbitrary name representing
that service. For example, you can locate a service with a name such
as printer instead of opening a pathname of
/net/node/dev/parl for a parallel port device. The printer
name locates the parallel port manager process, whether it’s running
locally or remotely.

Locating services using GNS

You use gns, the Global Name Service or GNS manager to locate
services. GNS is a standalone resource manager. With the help of this
utility, an application can advertise, look up, and use (connect to) a
service across Qnet network, without knowing the details of where
the service is, or who the provider is.

Different modes of gns

The gns utility runs in two different modes: server- and client-mode.
A server-mode manager is a central database that stores advertised
services, and handles lookup and connect requests. A client-mode
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manager relays advertisement, lookup, and connect requests between
local application and the GNS server(s).

For more information on starting and configuring GNS, see the gns
utility in the Utilities Reference.

Here’s a simple layout for a GNS client and a GNS server distributed
over a network:

nodel node2
/dev/parl
Manager: Application:
name_attach name_open
] (prmtér__{__'_____________ffrlnter )
. GNS client GNS server . 4
Global Name
Service
Qnet Qnet
Name Path
printer /net/nodel/dev/name/global/printer

A simple GNS setup.

In this example, there’s one gns client and one gns server. As far as
an application is concerned, the GNS service is one entity. The
client-server relationship is only between gns processes (we’ll
examine this later). The server GNS process keeps track of the
globally registered services, while the client GNS process on the other
node relays gns requests for that node to the gns server.
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Server

Client

When a client and server application interacts with the GNS service,
they use the following APIs:

name_attach()
Register your service with the GNS server.

name_detach()
Deregister your service with the GNS server.

name_open() Open a service via the GNS server.

name_close()  Close the service opened with name _open().

Registering a Service

198

In order to use GNS, you need to first register the manager process
with GNS, by calling name_attach().

When you register a service, you need to decide whether to register
this manager’s service locally or globally. If you register your service
locally, only the local node is able to see this service; another node is
not able to see it. This allows you to have client applications that look
for service names rather than pathnames on the node it is executing
on. This document highlights registering services globally.

When you register GNS service globally, any node on the network
running a client application can use this service, provided the node is
running a gns client process and is connected to the gns server, along
with client applications on the nodes running the gns server process.
You can use a typical name attach() call as follows:

if ((attach = name_attach(NULL, "printer", NAME_FLAG_ATTACH_GLOBAL)) == NULL) {
return EXIT_FAILURE;

}

First thing you do is to pass the flag NAME _FLAG_ATTACH_GLOBAL.
This causes your service to be registered globally instead locally.
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The last thing to note is the name. This is the name that clients search
for. This name can have a single level, as above, or it can be nested,
such as printer/ps. The call looks like this:

if ((attach = name_attach(NULL, "printer/ps", NAME_FLAG_ATTACH_GLOBAL)) == NULL) {

return EXIT_FAILURE;

}

Nested names have no impact on how the service works. The only
difference is how the services are organized in the filesystem
generated by gns. For example:

$ 1s -1 /dev/name/global/

total 2

dr-xr-xr-x 0 root techies 1l Feb 06 16:20 net
dr-xr-xr-x 0 root techies 1 Feb 06 16:21 printer

$ 1s -1 /dev/name/global/printer
total 1
dr-xr-xr-x 0 root techies 1 Feb 06 16:21 ps

The first argument to the name attach() function is the dispatch
handle. You pass a dispatch handle to name_attach() once you’ve
already created a dispatch structure. If this argument is NULL, a
dispatch structure is created automatically.

What happens if more than one instance of the server application (or
two or more applications that register the same service name) are
started and registered with GNS? This is treated as a redundant
service. If one application terminates or detaches its service, the other
service takes over. However, it’s not a round-robin configuration; all
requests go to one application until it’s no longer available. At that
point, the requests resolve to another application that had registered
the same service. There is no guaranteed ordering.

There’s no credential restriction for applications that are attached as
local services. An application can attach a service globally only if the
application has root privilege.

When your application is to terminate, or you wish not to provide
access to the service via GNS, you should call name detach(). This
removes the service from GNS.

For more information, see name_attach() and name _detach().
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Your client should call name_open() to locate the service. If you wish
to locate a global service, you need to pass the flag
NAME_FLAG_ATTACH_GLOBAL.:

if ((fd = name_open ("printer", NAME_FLAG_ATTACH_GLOBAL)) == -1) {
return EXIT_FAILURE;
}

or.

if ((fd = name_open("printer/ps", NAME_FLAG-ATTACH_GLOBAL)) == -1) {

return EXIT_FAILURE;

}

If you don’t specify this flag, GNS looks only for a local service. The
function returns an £4 that you can then use to access the service
manager by sending messages, just as if you it had opened the service
directly as /dev/parl, Or /net/node/dev/parl.

GNS Path namespace

A service is represented by a path namespace (without a leading “/”)
and is registered under /dev/name/global Of /dev/name/local,
depending on how it attaches itself. Every machine running a gns
client or server on the same network has the same view of the
/dev/name/global namespace. Each machine has its own local
namespace /dev/name/local that reflects its own local services.

Here’s an example after a service called printer has attached itself

globally:

$ 1s -1 /dev/name/global/

total 2

dr-xr-xr-x 0 root techies 1l Feb 06 16:20 net
dr-xr-xr-x 0 root techies 1 Feb 06 16:21 printer

Deploying the gns processes

When you deploy the gns processes on your network, you start the
gns process in two modes: server and client. You need at least one
gns Process running as a server on one node, and you can have one or
more gns clients running on the remaining nodes. The role of the gns
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server process is to maintain the database that stores the advertised
services. The role of a client gns process is to relay requests from its
node to the gns server process on the other node. A gns process must
be running on each node that wishes to access GNS.

It’s possible to start multiple global name service managers (gns
process) in server mode on different nodes. You can deploy
server-mode gns processes in two ways: as redundant servers, or as
servers that handle two or more different global domains.

In the first scenario, you have two or more servers with identical
database information. The gns client processes are started with
contact information for both servers. Operations are then sent to all
gns server processes. The gns servers, however, don’t communicate
with each other. This means that if an application on one gns server
node wants to register a global service, another gns server can’t do it.
This doesn’t affect other applications on the network, because when
they connect to that service, both GNS servers are contacted.
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Name Path
printer /net/node3/dev/name/global/printer

Name Path
printer /net/node3/dev/name/global/printer

nodel node?2
\ T
GNS server GNS server
Akw T4
y & h| 4 A v
GNS client GNS client GNS client
/dev/parl
Manager Application Application
node3 node4 nodeb

A redundant GNS setup.

You don’t have to start all redundant gns servers at the same time.
You can start one gns server process first, and then start a second gns
server process at a later time. In this case, use the special option -s
backup server on the second gns server process to make it download
the current service database from another node that’s already running
the gns server process. When you do this, the clients connected to the
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first node (that’s already running the gns server process) are notified
of the existence of the other server.

In the second scenario, you maintain more than one global domain.
For example, assume you have two nodes, each running a gns server
process. You also have a client node that’s running a gns client
process and is connecting to one of the servers. A different client
node connects to the other server. Each server node has unique
services registered by each client. A client connected to server nodel
can’t see the service registered on the server node2.
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Name Path
printer /net/node3/dev/name/global/printer

Name Path
printer /net/node5/dev/name/global/printer

nodel node?2
L _—
GNS server GNS server
A A
» \ 4 Y 4
GNS client GNS client GNS client GNS client
Manager Application Manager Application
node3 node4 nodeb node6
/dev/parl /dev/parl

Separate global domains.
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What is demonstrated in each scenario is that it’s the client that
determines whether a server is acting as a redundant server or not. If a
client is configured to connect to two or more servers, then those
servers are redundant servers for that client’s services. The client can
see the services that exist on those servers, and it registers its services
with those servers.

There’s no limit to the number of server mode gns processes that can
be run on the network. Increasing the number of servers, however, in
a redundant environment can increase network use and make gns
function calls such as name_attach() more expensive as clients send
requests to each server that exists in its configuration. It’s
recommended that you run only as many gns servers in a redundant
configuration as your system design requires and no more than that.

For more information, see gns documentation in the Utilities
Reference.

Quality of Service (QoS) and multiple paths

QoS policies

May 31, 2004

Quality of Service (QoS) is an issue that often arises in
high-availability networks as well as realtime control systems. In the
Qnet context, QoS really boils down to transmission media selection
— in a system with two or more network interfaces, Qnet chooses
which one to use, according to the policy you specify.

If you have only a single network interface, the QoS policies don’t
apply at all.

Qnet supports transmission over multiple networks and provides the
following policies for specifying how Qnet should select a network
interface for transmission:

loadbalance (the default)

Qnet is free to use all available network links, and
shares transmission equally among them.
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preferred Qnet uses one specified link, ignoring all other
networks (unless the preferred one fails).

exclusive Qnet uses one — and only one — link, ignoring all
others, even if the exclusive link fails.

loadbalance

Qnet decides which links to use for sending packets, depending on
current load and link speeds as determined by io-net. A packet is
queued on the link that can deliver the packet the soonest to the
remote end. This effectively provides greater bandwidth between
nodes when the links are up (the bandwidth is the sum of the
bandwidths of all available links) and allows a graceful degradation of
service when links fail.

If a link does fail, Qnet switches to the next available link. By default,
this switch takes a few seconds the first time, because the network
driver on the bad link will have timed out, retried, and finally died.
But once Qnet “knows” that a link is down, it will not send user data
over that link. (This is a significant improvement over the QNX 4
implementation.)

The time required to switch to another link can be set to whatever is
appropriate for your application using command line options of Qnet.
See npm-gnet-14_lite.so documentation.

Using these options, you can create a redundant behavior by
minimizing the latency that occurs when switching to another
interface in case one of the interfaces fail.

While load-balancing among the live links, Qnet sends periodic
maintenance packets on the failed link in order to detect recovery.
When the link recovers, Qnet places it back into the pool of available
links.

The loadbalance QO0S policy is the default.
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preferred

With this policy, you specify a preferred link to use for transmissions.
Qnet uses only that one link until it fails. If your preferred link fails,
Qnet then turns to the other available links and resumes transmission,
using the loadbalance policy.

Once your preferred link is available again, Qnet again uses only that
link, ignoring all others (unless the preferred link fails).

exclusive

You use this policy when you want to lock transmissions to only one
link. Regardless of how many other links are available, Qnet will
latch onto the one interface you specify. And if that exclusive link
fails, Qnet will not use any other link.

Why would you want to use the exclusive policy? Suppose you
have two networks, one much faster than the other, and you have an
application that moves large amounts of data. You might want to
restrict transmissions to only the fast network, in order to avoid
swamping the slow network if the fast one fails.

Specifying QoS policies

You specify the QoS policy as part of the pathname. For example, to
access /net/nodel/dev/serl With a QoS of exclusive, you
could use the following pathname:

/net/nodel~exclusive:en0/dev/serl

The QoS parameter always begins with a tilde (~) character. Here
we’re telling Qnet to lock onto the en0 interface exclusively, even if it
fails.

Symbolic links

You can set up symbolic links to the various “QoS-qualified”
pathnames:

ln -sP /net/notel~preferred:enl /remote/sql_server
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This assigns an “abstracted” name of /remote/sql _server to the
node nodel with a preferred QoS (i.e. over the enl link).

You can’t create symbolic links inside /net because Qnet takes over
that namespace.

Abstracting the pathnames by one level of indirection gives you
multiple servers available in a network, all providing the same
service. When one server fails, the abstract pathname can be
“remapped” to point to the pathname of a different server. For
example, if node1 fails, then a monitoring program could detect this
and effectively issue:

rm /remote/sqgl_server
ln -sP /net/magenta /remote/sql_server

This removes nodel and reassigns the service to node2. The real
advantage here is that applications can be coded based on the abstract
“service name” rather than be bound to a specific node name.

For a real world example of choosing appropriate QoS policy in an
application, see the following section on designing a system using
Qnet.

Designing a system using Qnet
The product

In order to explain the design of a system that takes advantage of the
power of Qnet by performing distributed processing, consider a
multiprocessor hardware configuration that is suitable for a typical
telecom box. This configuration has a generic controller card and
several data cards to start with. These cards are interconnected by a
high-speed transport (HST) bus. The controller card configures the
box by communicating with the data cards, and establishes/enables
data transport in and out of the box (i.e. data cards) by routing
packets.
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The typical challenges to consider for this type of box include:
e Configuring the data cards

e Configuring the controller card

e Replacing a data card

e Enhancing reliability via multiple transport buses

e Enhancing reliability via multiple controller cards.

Developing your distributed system

You need several pieces of software components (along with the
hardware) to build your distributed system. Before going into further
details, you may review the following sections from Using Qnet for
Transparent Distributed Processing chapter in the Neutrino User’s
Guide:

e Software components for Qnet networking
e Starting Qnet

e Conventions for naming nodes.

Configuring the data cards

May 31, 2004

Power up the data cards to start procnto and gnet in sequence.
These data cards need a minimal amount of flash memory (e.g.
typically 1 MB) to store the Neutrino image.

In the buildfile of the data cards, you should link the directories of the
data cards to the controller cards as follows:
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[type=1link] /bin = /net/cc0/bin
[type=1link] /sbin = /net/cc0/sbin
[type=1link] /usr = /net/cc0/usr

where cc0 is the name of the the controller card.

Assuming that the data card has a console and shell prompt, try the
following commands:

$ 1s /net

You get a list of boards running Neutrino and Qnet:

cc0 dcO0 dcl dc2 dec3

Or, use the following command on a data card:

$ 1s /net/ccO

You get the following output (i.e. the contents of the root of the
filesystem for the controller card):

.inodes mnto0 tmp
.. .longfilenames mntl usr
.altboot bin net var
.bad_blks dev proc xfer
.bitmap etc sbin
.boot home scratch

Configuring the controller card
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Configure the controller card in order to access different servers
running on it — either by the data cards, or by the controller card
itself. Make sure that the controller card has a larger amount of flash
memory than the data cards do. This flash memory contains all the
binaries, data and configuration files that the applications on the data
cards access as if they were on a local storage device.

Call the following API to communicate with the mqueue server by
any application:
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mg_open ("/net/cc0/dev/mqueue/app-q", ....)

A simple variation of the above command requires that you run the
following command during initialization:

$ 1In -s /net/cc0/dev/mgueue /mg

Then all applications, whether they’re running on the data cards or on
the controller card, can call:

mg-open ("/mqg/app-q", ....)

Similarly, applications can even utilize the TCP/IP stack running on
the controller card.

Enhancing reliability via multiple transport buses

May 31, 2004

Qnet provides design choices to improve the reliability of a
high-speed transport bus, most often a single-point of failure in such
type of telecom box.

HSTO High-speed

transport

HST1

.10 :
0 g D:DDJ_H
B- 00 ;

B- 00

Controller Data
card cards

You can choose between different transport selections to achieve a
different Quality of Service (or QoS), such as:

e load-balance — no interface specified
e preferred — specify an interface, but allow failover

e exclusive — specify an interface, no failover.
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These selections allow you to control how data will flow via different
transports.

In order to do that, first, find out what interfaces are available. Use the
following command at the prompt of any card:

ls /dev/io-net

You see the following:

hs0 hsl

These are the interfaces available: HST 0 and HST 1.

Select your choice of transport as follows:

Use this command: To select thistransport:
1ls /net/ccO Loadbalance, the default
choice

ls /net/ccO0"preferred:hs0 Preferred. Try HST O first; if
that fails, then transmit on
HST 1.

ls /net/cc0~exclusive:hs0 EXclusive. Try HST O first. If
that fails, terminate
transmission.

You can have another economical variation of the above hardware
configuration:

High-speed transport

Low-speed transport

.1 '
00 D:DD
Jo UL 0. 00

— TN
Controller Data
card cards
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This configuration has asymmetric transport: a High-Speed Transport
(HST) and a reliable and economical Low-Speed Transport (LST).
You might use the HST for user data, and the LST exclusively for
out-of-band control (which can be very helpful for diagnosis and
during booting). For example, if you use generic Ethernet as the LST,
you could use a bootp ROM on the data cards to economically boot
— no flash would be required on the data cards.

With asymmetric transport, use of the QoS policy as described above
likely becomes even more useful. You might want some applications
to use the HST link first, but use the LST if the HST fails. You might
want applications that transfer large amounts of data to exclusively
use the HST, to avoid swamping the LST.

Redundancy and scalability using multiple controller

Redundancy

May 31, 2004

cards

The reliability of such a telecom box also hinges on the controller
card, that’s a critical component and certainly a potential SPOF
(single point of failure). You can increase the reliability of this
telecom box by using additional controller cards.

The additional controller card is for redundancy. Add another
controller card as shown below:

. 0 . 0 1
0- 0 0- 0 0
O0- 00 O0- 00 0- 00

High-speed
transport

TN — VTR
Controller Controller Data
card card cards

Once the (second) controller card is installed, the challenge is in the
determination of the primary controller card. This is done by the
software running on the controller cards. By default, applications on
the data cards access the primary controller card. Assuming cco0 is
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Scalability

the primary controller card, Use the following command to access this
card in /cc directory:

In -s /net/cc0 /cc

The above indirection makes communication between data card and
controller card transparent. In fact, the data cards remain unaware of
the number of controller cards, or which card is the primary controller
card.

Applications on the data cards access the primary controller card. In
the event of failure of the primary controller card, the secondary
controller card takes over. The applications on the data cards redirect
their communications via Qnet to the secondary controller card.

You can also scale your resources to run a particular server
application using additional controller cards. For example, if your
controller card (either a SMP or non-SMP board) doesn’t have the
necessary resources (e.g. CPU cycle, memory), you could increase
the total processor and box resources by using additional controller
cards. Qnet transparently distributes the (load of) application servers
across two or more controller cards.

Autodiscovery vs static

When you’re creating a network of Neutrino hosts via Qnet, one thing
you must consider is how they locate and address each other. This
falls into two categories: autodiscovery and static mappings.

The decision to use one or the other can depend on security and ease
of use.
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The discussion in this section applies only to
npm-gnet-14_lite.so (default). The other shared object
npm-qgnet-compat . so doesn’t have the same functionality. You
may also find the information on available Qnet resolvers in the
description of npm-gnet-14_lite.so.

The autodiscovery mechanism (i.e. ndp — Node Discovery Protocol;
see npm-gnet-14_lite.so for more information) allows Qnet
nodes to discover each other automatically on a transport that supports
broadcast. This is a very convenient and dynamic way to build your
network, and doesn’t require user intervention to access a new node.

One issue to consider is whether or not the physical link being used
by your Qnet nodes is secure. Can another untrusted Qnet node be
added to this physical network of Qnet nodes? If the answer is yes,
you should consider another resolver (file: filename). If you use
this resolver, only the nodes listed in the file can be accessed. This file
consists of node names and a string representing the addressing
scheme of your transport layer. In the Ethernet case, this is the unique
MAC address of the Qnet node listed. If you’re using the file resolver
for this purpose, you also want to specify the option auto_add=0 in
npm-gnet-14_lite.so. This keeps your node from responding to
node discovery protocol requests and adding a host that isn’t listed in
your resolver £ile.

Another available resolver, dns lets you access another Qnet node if
you know its name (zP). This is used in combination with the IP
transport (npm-gnet-compat.so Option bind=ip). Since it doesn’t
have an auto_add feature as the ndp resolver does, you don’t need
to specify a similar Qnet option. Your Qnet node resolve the remote
Qnet node’s name only via the file used by the Qnet £ile resolver.

When should you use Qnet, TCP/IP or NFS?

In your network design, when should you use Qnet, TCP/IP, or NFS?
The decision depends on what your intended application is and what
machines you need to connect.
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The advantage of using Qnet is that it lets you build a truly distributed
processing system with incredible scalability. For many applications,
it could be a benefit to be able to share resources among your
application systems (nodes). Qnet implements a native network
protocol to build this distributed processing system.

The basic purpose of Qnet is to extend Neutrino message passing to
work over a network link. It lets these machines share all their
resources with little overhead. A Qnet network is a trusted
environment where resources are tightly integrated, and remote
manager processes can be accessed transparently. For example, with
Qnet, you can use the Neutrino utilities ( ¢p, mv and so on) to
manipulate files anywhere on the Qnet network as if they were on
your machine. Because it’s meant for a group of trusted machines
(such as you’d find in an embedded system), Qnet doesn’t do any
authentication of remote requests. Also, the application really doesn’t
know whether it’s accessing a resource on a remote system; and most
importantly, the application doesn’t need any special code to handle
this capability.

If you’re developing a system that requires remote procedure calling
(RPC), or remote file access, Qnet provides this capability
transparently. In fact, you use a form of remote procedure call (a
Neutrino message pass) every time you access a manager on your
Neutrino system. Since Qnet creates an environment where there’s no
difference between a