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What you’ll find in this guide
The System Architecture guide accompanies the QNX Neutrino realtime OS and is
intended for both application developers and end-users.

The guide describes the philosophy of QNX Neutrino and the architecture used to
robustly implement the OS. It covers message-passing services, followed by the
details of the microkernel, the process manager, resource managers, the Photon
microGUI, and other aspects of QNX Neutrino.

Note that certain features of the OS as described in this guide may still be under
development for a given release.

For the latest news and information on any QNX product, visit our website
(www.qnx.com). You’ll find links to many useful areas — Foundry 27, software
downloads, featured articles by developers, forums, technical support options, and
more.

The following table may help you find information quickly:

To find out about: Go to:

OS design goals; message-passing IPC The Philosophy of QNX Neutrino

System services The QNX Neutrino Microkernel

Sharing information between processes Interprocess Communication (IPC)

System event monitoring The Instrumented Microkernel

Working on a system with more than one processor Multicore Processing

Memory management, pathname management, etc. Process Manager

Shared objects Dynamic Linking

Device drivers Resource Managers

Image, RAM, QNX 4, DOS, CD-ROM, Flash, NFS,
CIFS, Ext2 filesystems

Filesystems

Serial and parallel devices Character I/O

Network subsystem Networking Architecture

Native QNX Neutrino networking Native Networking (Qnet)

TCP/IP implementation TCP/IP Networking

Fault recovery High Availability

Sharing resources among competing processes Adaptive Partitioning

continued. . .
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To find out about: Go to:

Graphical environment The Photon microGUI

Multimedia Engine (MME) Multimedia

Terms used in QNX documentation Glossary

For information about programming in Neutrino, see Getting Started with QNX
Neutrino: A Guide for Realtime Programmers and the Neutrino Programmer’s Guide.

Typographical conventions
Throughout this manual, we use certain typographical conventions to distinguish
technical terms. In general, the conventions we use conform to those found in IEEE
POSIX publications. The following table summarizes our conventions:

Reference Example

Code examples if( stream == NULL )

Command options -lR

Commands make

Environment variables PATH

File and pathnames /dev/null

Function names exit()

Keyboard chords Ctrl-Alt-Delete

Keyboard input something you type

Keyboard keys Enter

Program output login:

Programming constants NULL

Programming data types unsigned short

Programming literals 0xFF, "message string"

Variable names stdin

User-interface components Cancel

We use an arrow (→) in directions for accessing menu items, like this:

You’ll find the Other... menu item under Perspective→Show View.

We use notes, cautions, and warnings to highlight important messages:
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Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have
unwanted or undesirable side effects.!

WARNING: Warnings tell you about commands or procedures that could be
dangerous to your files, your hardware, or even yourself.

Note to Windows users
In our documentation, we use a forward slash (/) as a delimiter in all pathnames,
including those pointing to Windows files.

We also generally follow POSIX/UNIX filesystem conventions.

Technical support
To obtain technical support for any QNX product, visit the Support + Services area
on our website (www.qnx.com). You’ll find a wide range of support options,
including community forums.
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Design goals
The primary goal of QNX Neutrino is to deliver the open systems POSIX API in a
robust, scalable form suitable for a wide range of systems — from tiny,
resource-constrained embedded systems to high-end distributed computing
environments. The OS supports several processor families, including x86, ARM,
XScale, PowerPC, and SH-4.

For mission-critical applications, a robust architecture is also fundamental, so the OS
makes flexible and complete use of MMU hardware.

Of course, simply setting out these goals doesn’t guarantee results. We invite you to
read through this System Architecture guide to get a feel for our implementation
approach and the design trade-offs chosen to achieve these goals. When you reach the
end of this guide, we think you’ll agree that QNX Neutrino is the first OS product of
its kind to truly deliver open systems standards, wide scalability, and high reliability.

An embeddable POSIX OS?
According to a prevailing myth, if you scratch a POSIX operating system, you’ll find
UNIX beneath the surface! A POSIX OS is therefore too large and unsuitable for
embedded systems.

The fact, however, is that POSIX is not UNIX. Although the POSIX standards are
rooted in existing UNIX practice, the POSIX working groups explicitly defined the
standards in terms of “interface, not implementation.”

Thanks to the precise specification within the standards, as well as the availability of
POSIX test suites, nontraditional OS architectures can provide a POSIX API without
adopting the traditional UNIX kernel. Compare any two POSIX systems and they’ll
look very much alike — they’ll have many of the same functions, utilities, etc. But
when it comes to performance or reliability, they may be as different as night and day.
Architecture makes the difference.

Despite its decidedly non-UNIX architecture, QNX Neutrino implements the standard
POSIX API. By adopting a microkernel architecture, the OS delivers this API in a
form easily scaled down for realtime embedded systems or incrementally scaled up, as
required.

Product scaling
Since you can readily scale a microkernel OS simply by including or omitting the
particular processes that provide the functionality required, you can use a single
microkernel OS for a much wider range of applications than a realtime executive.

Product development often takes the form of creating a “product line,” with successive
models providing greater functionality. Rather than be forced to change operating
systems for each version of the product, developers using a microkernel OS can easily
scale the system as needed — by adding filesystems, networking, graphical user
interfaces, and other technologies.

Some of the advantages to this scalable approach include:
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• portable application code (between product-line members)

• common tools used to develop the entire product line

• portable skill sets of development staff

• reduced time-to-market.

Why POSIX for embedded systems?
A common problem with realtime application development is that each realtime OS
tends to come equipped with its own proprietary API. In the absence of industry
standards, this isn’t an unusual state for a competitive marketplace to evolve into,
since surveys of the realtime marketplace regularly show heavy use of in-house
proprietary operating systems. POSIX represents a chance to unify this marketplace.

Among the many POSIX standards, those of most interest to embedded systems
developers are:

• 1003.1 — defines the API for process management, device I/O, filesystem I/O, and
basic IPC. This encompasses what might be described as the base functionality of a
UNIX OS, serving as a useful standard for many applications. From a C-language
programming perspective, ANSI X3J11 C is assumed as a starting point, and then
the various aspects of managing processes, files, and tty devices are detailed
beyond what ANSI C specifies.

• Realtime Extensions — defines a set of realtime extensions to the base 1003.1
standard. These extensions consist of semaphores, prioritized process scheduling,
realtime extensions to signals, high-resolution timer control, enhanced IPC
primitives, synchronous and asynchronous I/O, and a recommendation for realtime
contiguous file support.

• Threads — further extends the POSIX environment to include the creation and
management of multiple threads of execution within a given address space.

• Additional Realtime Extensions — defines further extensions to the realtime
standard. Facilities such as attaching interrupt handlers are described.

• Application Environment Profiles — defines several AEPs (Realtime AEP,
Embedded Systems AEP, etc.) of the POSIX environment to suit different
embedded capability sets. These profiles represent embedded OSs with/without
filesystems and other capabilities.

For an up-to-date status of the many POSIX drafts/standards documents, see the PASC
(Portable Applications Standards Committee of the IEEE Computer Society) report at
http://pasc.opengroup.org/standing/sd11.html.

Apart from any “bandwagon” motive for adopting industry standards, there are several
specific advantages to applying the POSIX standard to the embedded realtime
marketplace.
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Multiple OS sources

Hardware manufacturers are loath to choose a single-sourced hardware component
because of the risks implied if that source discontinues production. For the same
reason, manufacturers shouldn’t be tied to a single-sourced, proprietary OS simply
because their application source code isn’t portable to other OSs.

By building applications to the POSIX standards, developers can use OSs from
multiple vendors. Application source code can be readily ported from platform to
platform and from OS to OS, provided that developers avoid using OS-specific
extensions.

Portability of development staff

Using a common API for embedded development, programmers experienced with one
realtime OS can directly apply their skill sets to other projects involving other
processors and operating systems. In addition, programmers with UNIX or POSIX
experience can easily work on embedded realtime systems, since the nonrealtime
portion of the realtime OS’s API is already familiar territory.

Development environment: native and cross development

With the addition of interface hardware similar to the target runtime system, a
workstation running a POSIX OS can become a functional superset of the embedded
system. As a result, the application can be conveniently developed on the self-hosted
desktop system.

Even in a cross-hosted development environment, the API remains essentially the
same. Regardless of the particular host (QNX Neutrino, Linux, Windows,...) or the
target (x86, ARM, PowerPC, ...), the programmer doesn’t need to worry about
platform-specific endian, alignment, or I/O issues.

Why QNX Neutrino for embedded systems?
The main responsibility of an operating system is to manage a computer’s resources.
All activities in the system — scheduling application programs, writing files to disk,
sending data across a network, and so on — should function together as seamlessly
and transparently as possible.

Some environments call for more rigorous resource management and scheduling than
others. Realtime applications, for instance, depend on the OS to handle multiple
events and to ensure that the system responds to those events within predictable time
limits. The more responsive the OS, the more “time” a realtime application has to
meet its deadlines.

QNX Neutrino is ideal for embedded realtime applications. It can be scaled to very
small sizes and provides multitasking, threads, priority-driven preemptive scheduling,
and fast context-switching — all essential ingredients of an embedded realtime
system. Moreover, the OS delivers these capabilities with a POSIX-standard API;
there’s no need to forgo standards in order to achieve a small system.
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QNX Neutrino is also remarkably flexible. Developers can easily customize the OS to
meet the needs of their applications. From a “bare-bones” configuration of a
microkernel with a few small modules to a full-blown network-wide system equipped
to serve hundreds of users, you’re free to set up your system to use only those
resources you require to tackle the job at hand.

QNX Neutrino achieves its unique degree of efficiency, modularity, and simplicity
through two fundamental principles:

• microkernel architecture

• message-based interprocess communication

Microkernel architecture
Buzzwords often fall in and out of fashion. Vendors tend to enthusiastically apply the
buzzwords of the day to their products, whether the terms actually fit or not.

The term “microkernel” has become fashionable. Although many new operating
systems are said to be “microkernels” (or even “nanokernels”), the term may not mean
very much without a clear definition.

Let’s try to define the term. A microkernel OS is structured as a tiny kernel that
provides the minimal services used by a team of optional cooperating processes,
which in turn provide the higher-level OS functionality. The microkernel itself lacks
filesystems and many other services normally expected of an OS — those services are
provided by optional processes.

The real goal in designing a microkernel OS is not simply to “make it small.” A
microkernel OS embodies a fundamental change in the approach to delivering OS
functionality. Modularity is the key, size is but a side effect. To call any kernel a
“microkernel” simply because it happens to be small would miss the point entirely.

Since the IPC services provided by the microkernel are used to “glue” the OS itself
together, the performance and flexibility of those services govern the performance of
the resulting OS. With the exception of those IPC services, a microkernel is roughly
comparable to a realtime executive, both in terms of the services provided and in their
realtime performance.

The microkernel differs from an executive in how the IPC services are used to extend
the functionality of the kernel with additional, service-providing processes. Since the
OS is implemented as a team of cooperating processes managed by the microkernel,
user-written processes can serve both as applications and as processes that extend the
underlying OS functionality for industry-specific applications. The OS itself becomes
“open” and easily extensible. Moreover, user-written extensions to the OS won’t affect
the fundamental reliability of the core OS.

A difficulty for many realtime executives implementing the POSIX 1003.1 standard is
that their runtime environment is typically a single-process, multiple-threaded model,
with unprotected memory between threads. Such an environment is only a subset of
the multi-process model that POSIX assumes; it cannot support the fork() function. In
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contrast, QNX Neutrino fully utilizes an MMU to deliver the complete POSIX process
model in a protected environment.

As the following diagrams show, a true microkernel offers complete memory
protection, not only for user applications, but also for OS components (device drivers,
filesystems, etc.):

Kernel space

Applications Device drivers

File
system

TCP/IP
stack

Conventional executives offer no memory protection.

Applications

Kernel space

User space

File
system

TCP/IP
stack

Device drivers

In a monolithic OS, system processes have no protection.

User space

Applications

Device drivers

File
system

TCP/IP
stack

Microkernel

A microkernel provides complete memory protection.

The first version of the QNX OS was shipped in 1981. With each successive product
revision, we have applied the experience from previous product generations to the
latest incarnation: QNX Neutrino, our most capable, scalable OS to date. We believe
that this time-tested experience is what enables the QNX Neutrino OS to deliver the
functionality it does using the limited resources it consumes.
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The OS as a team of processes
The QNX Neutrino OS consists of a small microkernel managing a group of
cooperating processes. As the following illustration shows, the structure looks more
like a team than a hierarchy, as several “players” of equal rank interact with each other
through the coordinating kernel.

Software bus

QNX 4
file

manager

DOS file
manager

Process
manager

Flash
file

manager

CD-ROM
file

manager

NFS file
manager

Photon
GUI

manager

Character
manager

Mqueue
manager

CIFS file
manager

Application

Qnet
network
manager

Neutrino
microkernel

TCP/IP
manager

The QNX Neutrino architecture.

QNX Neutrino acts as a kind of “software bus” that lets you dynamically plug in/out
OS modules whenever they’re needed.

A true kernel
The kernel is the heart of any operating system. In some systems, the “kernel”
comprises so many functions that for all intents and purposes it is the entire operating
system!

But our microkernel is truly a kernel. First of all, like the kernel of a realtime
executive, it’s very small. Secondly, it’s dedicated to only a few fundamental services:

• thread services via POSIX thread-creation primitives

• signal services via POSIX signal primitives

• message-passing services — the microkernel handles the routing of all messages
between all threads throughout the entire system.

• synchronization services via POSIX thread-synchronization primitives.
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• scheduling services — the microkernel schedules threads for execution using the
various POSIX realtime scheduling algorithms.

• timer services — the microkernel provides the rich set of POSIX timer services.

• process management services — the microkernel and the process manager
together form a unit (called procnto). The process manager portion is responsible
for managing processes, memory, and the pathname space.

Unlike threads, the microkernel itself is never scheduled for execution. The processor
executes code in the microkernel only as the result of an explicit kernel call, an
exception, or in response to a hardware interrupt.

System processes
All OS services, except those provided by the mandatory microkernel/process
manager module (procnto), are handled via standard processes. A richly configured
system could include the following:

• filesystem managers

• character device managers

• graphical user interface (Photon)

• native network manager

• TCP/IP

System processes vs user-written processes

System processes are essentially indistinguishable from any user-written program —
they use the same public API and kernel services available to any (suitably privileged)
user process.

It is this architecture that gives QNX Neutrino unparalleled extensibility. Since most
OS services are provided by standard system processes, it’s very simple to augment
the OS itself: just write new programs to provide new OS services.

In fact, the boundary between the operating system and the application can become
very blurred. The only real difference between system services and applications is that
OS services manage resources for clients.

Suppose you’ve written a database server — how should such a process be classified?

Just as a filesystem accepts requests (via messages) to open files and read or write
data, so too would a database server. While the requests to the database server may be
more sophisticated, both servers are very much the same in that they provide an API
(implemented by messages) that clients use to access a resource. Both are independent
processes that can be written by an end-user and started and stopped on an as-needed
basis.

A database server might be considered a system process at one installation, and an
application at another. It really doesn’t matter! The important point is that the OS
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allows such processes to be implemented cleanly, with no need for modifications to
the standard components of the OS itself. For developers creating custom embedded
systems, this provides the flexibility to extend the OS in directions that are uniquely
useful to their applications, without needing access to OS source code.

Device drivers

Device drivers allow the OS and application programs to make use of the underlying
hardware in a generic way (e.g. a disk drive, a network interface). While most OSs
require device drivers to be tightly bound into the OS itself, device drivers for QNX
Neutrino can be started and stopped as standard processes. As a result, adding device
drivers doesn’t affect any other part of the OS — drivers can be developed and
debugged like any other application.

Interprocess communication
When several threads run concurrently, as in typical realtime multitasking
environments, the OS must provide mechanisms to allow them to communicate with
each other.

Interprocess communication (IPC) is the key to designing an application as a set of
cooperating processes in which each process handles one well-defined part of the
whole.

The OS provides a simple but powerful set of IPC capabilities that greatly simplify the
job of developing applications made up of cooperating processes. For more
information, see the Interprocess Communication (IPC) chapter.

QNX Neutrino as a message-passing operating system
QNX was the first commercial operating system of its kind to make use of message
passing as the fundamental means of IPC. The OS owes much of its power, simplicity,
and elegance to the complete integration of the message-passing method throughout
the entire system.

In QNX Neutrino, a message is a parcel of bytes passed from one process to another.
The OS attaches no special meaning to the content of a message — the data in a
message has meaning for the sender of the message and for its receiver, but for no one
else.

Message passing not only allows processes to pass data to each other, but also
provides a means of synchronizing the execution of several processes. As they send,
receive, and reply to messages, processes undergo various “changes of state” that
affect when, and for how long, they may run. Knowing their states and priorities, the
microkernel can schedule all processes as efficiently as possible to make the most of
available CPU resources. This single, consistent method — message-passing — is
thus constantly operative throughout the entire system.

Realtime and other mission-critical applications generally require a dependable form
of IPC, because the processes that make up such applications are so strongly
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interrelated. The discipline imposed by QNX Neutrino’s message-passing design
helps bring order and greater reliability to applications.

Network distribution of kernels
In its simplest form, local area networking provides a mechanism for sharing files and
peripheral devices among several interconnected computers. QNX Neutrino goes far
beyond this simple concept and integrates the entire network into a single,
homogeneous set of resources.

Any thread on any machine in the network can directly make use of any resource on
any other machine. From the application’s perspective, there’s no difference between a
local or remote resource — no special facilities need to be built into applications to
allow them to make use of remote resources.

Users may access files anywhere on the network, take advantage of any peripheral
device, and run applications on any machine on the network (provided they have the
appropriate authority). Processes can communicate in the same manner anywhere
throughout the entire network. Again, the OS’s all-pervasive message-passing IPC
accounts for such fluid, transparent networking.

Single-computer model
QNX Neutrino is designed from the ground up as a network-wide operating system. In
some ways, a native QNX Neutrino network feels more like a mainframe computer
than a set of individual micros. Users are simply aware of a large set of resources
available for use by any application. But unlike a mainframe, QNX Neutrino provides
a highly responsive environment, since the appropriate amount of computing power
can be made available at each node to meet the needs of each user.

In a mission-critical environment, for example, applications that control realtime I/O
devices may require more performance than other, less critical, applications, such as a
web browser. The network is responsive enough to support both types of applications
at the same time — the OS lets you focus computing power on the devices in your
hard realtime system where and when it’s needed, without sacrificing concurrent
connectivity to the desktop. Moreover, critical aspects of realtime computing, such as
priority inheritance, function seamlessly across a QNX Neutrino network, regardless
of the physical media employed (switch fabric, serial, etc.).

Flexible networking
QNX Neutrino networks can be put together using various hardware and
industry-standard protocols. Since these are completely transparent to application
programs and users, new network architectures can be introduced at any time without
disturbing the OS.

Each node in the network is assigned a unique name that becomes its identifier. This
name is the only visible means to determine whether the OS is running as a network or
as a standalone operating system.
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This degree of transparency is yet another example of the distinctive power of QNX
Neutrino’s message-passing architecture. In many systems, important functions such
as networking, IPC, or even message passing are built on top of the OS, rather than
integrated directly into its core. The result is often an awkward, inefficient “double
standard” interface, whereby communication between processes is one thing, while
penetrating the private interface of a mysterious monolithic kernel is another matter
altogether.

In contrast to monolithic systems, QNX Neutrino is grounded on the principle that
effective communication is the key to effective operation. Message passing thus forms
the cornerstone of our microkernel architecture and enhances the efficiency of all
transactions among all processes throughout the entire system, whether across a PC
backplane or across a mile of twisted pair.
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Introduction
The QNX Neutrino microkernel, procnto, implements the core POSIX features used
in embedded realtime systems, along with the fundamental QNX Neutrino
message-passing services. The POSIX features that aren’t implemented in the
microkernel (file and device I/O, for example) are provided by optional processes and
shared libraries.

To determine the release version of the kernel on your system, use the uname -a

command. For more information, see its entry in the Utilities Reference.

Successive QNX microkernels have seen a reduction in the code required to
implement a given kernel call. The object definitions at the lowest layer in the kernel
code have become more specific, allowing greater code reuse (such as folding various
forms of POSIX signals, realtime signals, and QNX pulses into common data
structures and code to manipulate those structures).

At its lowest level, the microkernel contains a few fundamental objects and the highly
tuned routines that manipulate them. The OS is built from this foundation.

Interface Microkernel Objects

Thread

Sched

Synch

Signal

Message

Clock

Interrupt

Channel

Dispatch

Vector

Connection

Channel

Pulse

Timer

Thread

Timer

The QNX Neutrino microkernel.

Some developers have assumed that our microkernel is implemented entirely in
assembly code for size or performance reasons. In fact, our implementation is coded
primarily in C; size and performance goals are achieved through successively refined
algorithms and data structures, rather than via assembly-level peep-hole optimizations.
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The implementation of QNX Neutrino
Historically, the “application pressure” on QNX operating systems has been from both
ends of the computing spectrum — from memory-limited embedded systems all the
way up to high-end SMP (symmetrical multiprocessing) machines with gigabytes of
physical memory. Accordingly, the design goals for QNX Neutrino accommodate both
seemingly exclusive sets of functionality. Pursuing these goals is intended to extend
the reach of systems well beyond what other OS implementations could address.

POSIX realtime and thread extensions
Since QNX Neutrino implements the majority of the realtime and thread services
directly in the microkernel, these services are available even without the presence of
additional OS modules.

In addition, some of the profiles defined by POSIX suggest that these services be
present without necessarily requiring a process model. In order to accommodate this,
the OS provides direct support for threads, but relies on its process manager portion to
extend this functionality to processes containing multiple threads.

Note that many realtime executives and kernels provide only a nonmemory-protected
threaded model, with no process model and/or protected memory model at all.
Without a process model, full POSIX compliance cannot be achieved.

System services
The QNX Neutrino microkernel has kernel calls to support the following:

• threads

• message passing

• signals

• clocks

• timers

• interrupt handlers

• semaphores

• mutual exclusion locks (mutexes)

• condition variables (condvars)

• barriers

The entire OS is built upon these calls. The OS is fully preemptible, even while
passing messages between processes; it resumes the message pass where it left off
before preemption.
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The minimal complexity of the microkernel helps place an upper bound on the longest
nonpreemptible code path through the kernel, while the small code size makes
addressing complex multiprocessor issues a tractable problem. Services were chosen
for inclusion in the microkernel on the basis of having a short execution path.
Operations requiring significant work (e.g. process loading) were assigned to external
processes/threads, where the effort to enter the context of that thread would be
insignificant compared to the work done within the thread to service the request.

Rigorous application of this rule to dividing the functionality between the kernel and
external processes destroys the myth that a microkernel OS must incur higher runtime
overhead than a monolithic kernel OS. Given the work done between context switches
(implicit in a message pass), and the very quick context-switch times that result from
the simplified kernel, the time spent performing context switches becomes “lost in the
noise” of the work done to service the requests communicated by the message passing
between the processes that make up the OS.

The following diagram shows the preemption details for the non-SMP kernel (x86
implementation).

Entry

Exit

SYSCALL

SYSEXIT

usecs

usecs to
msecs 

Interrupts off

Interrupts off

Interrupts on,
full preemption

Interrupts on,
no preemption

usecs

usecs

Lockdown

Kernel
operations,
which may
include a
message

pass

QNX Neutrino preemption details.

Interrupts are disabled, or preemption is held off, for only very brief intervals
(typically in the order of hundreds of nanoseconds).

Threads and processes
When building an application (realtime, embedded, graphical, or otherwise), the
developer may want several algorithms within the application to execute concurrently.
This concurrency is achieved by using the POSIX thread model, which defines a
process as containing one or more threads of execution.

A thread can be thought of as the minimum “unit of execution,” the unit of scheduling
and execution in the microkernel. A process, on the other hand, can be thought of as a
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“container” for threads, defining the “address space” within which threads will
execute. A process will always contain at least one thread.

Depending on the nature of the application, threads might execute independently with
no need to communicate between the algorithms (unlikely), or they may need to be
tightly coupled, with high-bandwidth communications and tight synchronization. To
assist in this communication and synchronization, QNX Neutrino provides a rich
variety of IPC and synchronization services.

The following pthread_* (POSIX Threads) library calls don’t involve any microkernel
thread calls:

pthread_attr_destroy()

pthread_attr_getdetachstate()

pthread_attr_getinheritsched()

pthread_attr_getschedparam()

pthread_attr_getschedpolicy()

pthread_attr_getscope()

pthread_attr_getstackaddr()

pthread_attr_getstacksize()

pthread_attr_init()

pthread_attr_setdetachstate()

pthread_attr_setinheritsched()

pthread_attr_setschedparam()

pthread_attr_setschedpolicy()

pthread_attr_setscope()

pthread_attr_setstackaddr()

pthread_attr_setstacksize()

pthread_cleanup_pop()

pthread_cleanup_push()

pthread_equal()

pthread_getspecific()

pthread_setspecific()

pthread_key_create()

pthread_key_delete()

pthread_self()

The following table lists the POSIX thread calls that have a corresponding microkernel
thread call, allowing you to choose either interface:
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POSIX call Microkernel call Description

pthread_create() ThreadCreate() Create a new thread of execution.

pthread_exit() ThreadDestroy() Destroy a thread.

pthread_detach() ThreadDetach() Detach a thread so it doesn’t need to be joined.

pthread_join() ThreadJoin() Join a thread waiting for its exit status.

pthread_cancel() ThreadCancel() Cancel a thread at the next cancellation point.

N/A ThreadCtl() Change a thread’s Neutrino-specific thread
characteristics.

pthread_mutex_init() SyncTypeCreate() Create a mutex.

pthread_mutex_destroy() SyncDestroy() Destroy a mutex.

pthread_mutex_lock() SyncMutexLock() Lock a mutex.

pthread_mutex_trylock() SyncMutexLock() Conditionally lock a mutex.

pthread_mutex_unlock() SyncMutexUnlock() Unlock a mutex.

pthread_cond_init() SyncTypeCreate() Create a condition variable.

pthread_cond_destroy() SyncDestroy() Destroy a condition variable.

pthread_cond_wait() SyncCondvarWait() Wait on a condition variable.

pthread_cond_signal() SyncCondvarSignal() Signal a condition variable.

pthread_cond_broadcast() SyncCondvarSignal() Broadcast a condition variable.

pthread_getschedparam() SchedGet() Get the scheduling parameters and policy of a thread.

pthread_setschedparam() SchedSet() Set the scheduling parameters and policy of a thread.

pthread_sigmask() SignalProcmask() Examine or set a thread’s signal mask.

pthread_kill() SignalKill() Send a signal to a specific thread.

The OS can be configured to provide a mix of threads and processes (as defined by
POSIX). Each process is MMU-protected from each other, and each process may
contain one or more threads that share the process’s address space.

The environment you choose affects not only the concurrency capabilities of the
application, but also the IPC and synchronization services the application might make
use of.

Even though the common term “IPC” refers to communicating processes, we use it
here to describe the communication between threads, whether they’re within the same
process or separate processes.

For information about processes and threads from the programming point of view, see
the Processes and Threads chapter of Getting Started with QNX Neutrino, and the
Programming Overview and Processes chapters of the Neutrino Programmer’s Guide.
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Thread attributes
Although threads within a process share everything within the process’s address space,
each thread still has some “private” data. In some cases, this private data is protected
within the kernel (e.g. the tid or thread ID), while other private data resides
unprotected in the process’s address space (e.g. each thread has a stack for its own
use). Some of the more noteworthy thread-private resources are:

tid Each thread is identified by an integer thread ID, starting at 1. The tid
is unique within the thread’s process.

Priority Each thread has a priority that helps determine when it runs. A thread
inherits its initial priority from its parent, but the priority can change,
depending on the scheduling algorithm, explicit changes that the
thread makes, or messages sent to the thread.

In Neutrino, processes don’t have priorities; their threads do.

For more information, see “Thread scheduling,” later in this chapter.

Name Starting with the QNX Neutrino Core OS 6.3.2, you can assign a
name to a thread; see the entries for pthread_getname_np() and
pthread_setname_np() in the Neutrino Library Reference. Utilities
such as dumper and pidin support thread names. Thread names are
a Neutrino extension.

Register set Each thread has its own instruction pointer (IP), stack pointer (SP),
and other processor-specific register context.

Stack Each thread executes on its own stack, stored within the address
space of its process.

Signal mask Each thread has its own signal mask.

Thread local storage

A thread has a system-defined data area called “thread local storage”
(TLS). The TLS is used to store “per-thread” information (such as
tid, pid, stack base, errno, and thread-specific key/data bindings).
The TLS doesn’t need to be accessed directly by a user application.
A thread can have user-defined data associated with a thread-specific
data key.

Cancellation handlers

Callback functions that are executed when the thread terminates.

Thread-specific data, implemented in the pthread library and stored in the TLS,
provides a mechanism for associating a process global integer key with a unique
per-thread data value. To use thread-specific data, you first create a new key and then
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bind a unique data value to the key (per thread). The data value may, for example, be
an integer or a pointer to a dynamically allocated data structure. Subsequently, the key
can return the bound data value per thread.

A typical application of thread-specific data is for a thread-safe function that needs to
maintain a context for each calling thread.

key

tid

Sparse matrix (tid,key) to value mapping.

You use the following functions to create and manipulate this data:

Function Description

pthread_key_create() Create a data key with destructor function

pthread_key_delete() Destroy a data key

pthread_setspecific() Bind a data value to a data key

pthread_getspecific() Return the data value bound to a data key

Thread life cycle

The number of threads within a process can vary widely, with threads being created
and destroyed dynamically. Thread creation (pthread_create()) involves allocating
and initializing the necessary resources within the process’s address space (e.g. thread
stack) and starting the execution of the thread at some function in the address space.

Thread termination (pthread_exit(), pthread_cancel()) involves stopping the thread
and reclaiming the thread’s resources. As a thread executes, its state can generally be
described as either “ready” or “blocked.” More specifically, it can be one of the
following:
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SEND

REPLY

NANO
SLEEP

CONDVAR

MUTEX

SIGSUSP

READY

JOIN

SIG
WAITINFO

INTERRUPT

DEAD

RECEIVE

NET_SEND

SEM

STACK

WAITCTX

WAITPAGE

WAIT
THREAD

STOPPED

RUNNING

NET_REPLY

Possible thread states.

CONDVAR The thread is blocked on a condition variable (e.g. it called
pthread_cond_wait()).

DEAD The thread has terminated and is waiting for a join by another
thread.

INTERRUPT The thread is blocked waiting for an interrupt (i.e. it called
InterruptWait()).

JOIN The thread is blocked waiting to join another thread (e.g. it called
pthread_join()).

MUTEX The thread is blocked on a mutual exclusion lock (e.g. it called
pthread_mutex_lock()).
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NANOSLEEP The thread is sleeping for a short time interval (e.g. it called
nanosleep()).

NET_REPLY The thread is waiting for a reply to be delivered across the
network (i.e. it called MsgReply*()).

NET_SEND The thread is waiting for a pulse or signal to be delivered across
the network (i.e. it called MsgSendPulse(), MsgDeliverEvent(),
or SignalKill()).

READY The thread is waiting to be executed while the processor executes
another thread of equal or higher priority.

RECEIVE The thread is blocked on a message receive (e.g. it called
MsgReceive()).

REPLY The thread is blocked on a message reply (i.e. it called
MsgSend(), and the server received the message).

RUNNING The thread is being executed by a processor. The kernel uses an
array (with one entry per processor in the system) to keep track
of the running threads.

SEM The thread is waiting for a semaphore to be posted (i.e. it called
SyncSemWait()).

SEND The thread is blocked on a message send (e.g. it called
MsgSend(), but the server hasn’t yet received the message).

SIGSUSPEND The thread is blocked waiting for a signal (i.e. it called
sigsuspend()).

SIGWAITINFO The thread is blocked waiting for a signal (i.e. it called
sigwaitinfo()).

STACK The thread is waiting for the virtual address space to be allocated
for the thread’s stack (parent will have called ThreadCreate()).

STOPPED The thread is blocked waiting for a SIGCONT signal.

WAITCTX The thread is waiting for a noninteger (e.g. floating point) context
to become available for use.

WAITPAGE The thread is waiting for physical memory to be allocated for a
virtual address.

WAITTHREAD The thread is waiting for a child thread to finish creating itself
(i.e. it called ThreadCreate()).
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Thread scheduling
When are scheduling decisions are made?

The execution of a running thread is temporarily suspended whenever the microkernel
is entered as the result of a kernel call, exception, or hardware interrupt. A scheduling
decision is made whenever the execution state of any thread changes — it doesn’t
matter which processes the threads might reside within. Threads are scheduled
globally across all processes.

Normally, the execution of the suspended thread will resume, but the thread scheduler
will perform a context switch from one thread to another whenever the running thread:

• is blocked

• is preempted

• yields

When is a thread blocked?

The running thread is blocked when it must wait for some event to occur (response to
an IPC request, wait on a mutex, etc.). The blocked thread is removed from the
running array and the highest-priority ready thread is then run. When the blocked
thread is subsequently unblocked, it’s placed on the end of the ready queue for that
priority level.

When is a thread preempted?

The running thread is preempted when a higher-priority thread is placed on the ready
queue (it becomes READY, as the result of its block condition being resolved). The
preempted thread is put at the beginning of the ready queue for that priority and the
higher-priority thread runs.

When is a thread yielded?

The running thread voluntarily yields the processor (sched_yield()) and is placed on
the end of the ready queue for that priority. The highest-priority thread then runs
(which may still be the thread that just yielded).

Scheduling priority
Every thread is assigned a priority. The thread scheduler selects the next thread to run
by looking at the priority assigned to every thread that is READY (i.e. capable of
using the CPU). The thread with the highest priority is selected to run.

The following diagram shows the ready queue for five threads (B–F) that are READY.
Thread A is currently running. All other threads (G–Z) are BLOCKED. Thread A, B,
and C are at the highest priority, so they’ll share the processor based on the running
thread’s scheduling algorithm.
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The ready queue.

The OS supports a total of 256 scheduling priority levels. A non-root thread can set
its priority to a level from 1 to 63 (the highest priority), independent of the scheduling
policy. Only root threads (i.e. those whose effective uid is 0) are allowed to set
priorities above 63. The special idle thread (in the process manager) has priority 0 and
is always ready to run. A thread inherits the priority of its parent thread by default.

You can change the allowed priority range for non-root processes with the procnto
-P option:

procnto -P priority

Here’s a summary of the ranges:

Priority level Owner

0 Idle thread

1 through priority − 1 Non-root or root

priority through 255 root

Note that in order to prevent priority inversion, the kernel may temporarily boost a
thread’s priority. For more information, see “Priority inheritance and mutexes” later in
this chapter, and “Priority inheritance and messages” in the Interprocess
Communication (IPC) chapter.

The threads on the ready queue are ordered by priority. The ready queue is actually
implemented as 256 separate queues, one for each priority. Most of the time, threads
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are queued in FIFO order in the queue of their priority. (The exception is a server
thread that’s coming out of a RECEIVE-blocked state with a message from a client;
the server thread is inserted at the head of the queue for that priority — that is, the
order is LIFO, not FIFO.) The first thread in the highest-priority queue is selected to
run.

Scheduling algorithms
To meet the needs of various applications, QNX Neutrino provides these scheduling
algorithms:

• FIFO scheduling

• round-robin scheduling

• sporadic scheduling

Each thread in the system may run using any method. The methods are effective on a
per-thread basis, not on a global basis for all threads and processes on a node.

Remember that the FIFO and round-robin scheduling algorithms apply only when two
or more threads that share the same priority are READY (i.e. the threads are directly
competing with each other). The sporadic method, however, employs a “budget” for a
thread’s execution. In all cases, if a higher-priority thread becomes READY, it
immediately preempts all lower-priority threads.

In the following diagram, three threads of equal priority are READY. If Thread A
blocks, Thread B will run.
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Thread A blocks; Thread B runs.

Although a thread inherits its scheduling algorithm from its parent process, the thread
can request to change the algorithm applied by the kernel.
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FIFO scheduling

In FIFO scheduling, a thread selected to run continues executing until it:

• voluntarily relinquishes control (e.g. it blocks)

• is preempted by a higher-priority thread
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FIFO scheduling.

Round-robin scheduling

In round-robin scheduling, a thread selected to run continues executing until it:

• voluntarily relinquishes control

• is preempted by a higher-priority thread

• consumes its timeslice

As the following diagram shows, Thread A ran until it consumed its timeslice; the next
READY thread (Thread B) now runs:
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Round-robin scheduling.

A timeslice is the unit of time assigned to every process. Once it consumes its
timeslice, a thread is preempted and the next READY thread at the same priority level
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is given control. A timeslice is 4 × the clock period. (For more information, see the
entry for ClockPeriod() in the Neutrino Library Reference.)

Apart from time slicing, round-robin scheduling is identical to FIFO scheduling.

Sporadic scheduling

The sporadic scheduling algorithm is generally used to provide a capped limit on the
execution time of a thread within a given period of time. This behavior is essential
when Rate Monotonic Analysis (RMA) is being performed on a system that services
both periodic and aperiodic events. Essentially, this algorithm allows a thread to
service aperiodic events without jeopardizing the hard deadlines of other threads or
processes in the system.

As in FIFO scheduling, a thread using sporadic scheduling continues executing until it
blocks or is preempted by a higher-priority thread. And as in adaptive scheduling, a
thread using sporadic scheduling will drop in priority, but with sporadic scheduling
you have much more precise control over the thread’s behavior.

Under sporadic scheduling, a thread’s priority can oscillate dynamically between a
foreground or normal priority and a background or low priority. Using the following
parameters, you can control the conditions of this sporadic shift:

Initial budget (C) The amount of time a thread is allowed to execute at its normal
priority (N) before being dropped to its low priority (L).

Low priority (L) The priority level to which the thread will drop. The thread
executes at this lower priority (L) while in the background, and
runs at normal priority (N) while in the foreground.

Replenishment period (T)

The period of time during which a thread is allowed to consume
its execution budget. To schedule replenishment operations, the
POSIX implementation also uses this value as the offset from
the time the thread becomes READY.

Max number of pending replenishments

This value limits the number of replenishment operations that
can take place, thereby bounding the amount of system overhead
consumed by the sporadic scheduling policy.

In a poorly configured system, a thread’s execution budget may become eroded
because of too much blocking — i.e. it won’t receive enough replenishments.

As the following diagram shows, the sporadic scheduling policy establishes a thread’s
initial execution budget (C), which is consumed by the thread as it runs and is
replenished periodically (for the amount T). When a thread blocks, the amount of the
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execution budget that’s been consumed (R) is arranged to be replenished at some later
time (e.g. at 40 msec) after the thread first became ready to run.

R
C

T

C

Replenished at this point

0 msec 40 msec 80 msec

A thread’s budget is replenished periodically.

At its normal priority N, a thread will execute for the amount of time defined by its
initial execution budget C. As soon as this time is exhausted, the priority of the thread
will drop to its low priority L until the replenishment operation occurs.

Assume, for example, a system where the thread never blocks or is never preempted:

T

Replenished at this point;
priority is restored

0 msec 40 msec
80 msec

Priority N

Priority L

Exhausts budget;
drops to lower priority

May or may not run

A thread drops in priority until its budget is replenished.

Here the thread will drop to its low-priority (background) level, where it may or may
not get a chance to run depending on the priority of other threads in the system.

Once the replenishment occurs, the thread’s priority is raised to its original level. This
guarantees that within a properly configured system, the thread will be given the
opportunity every period T to run for a maximum execution time C. This ensures that a
thread running at priority N will consume only C/T percent of the system’s resources.

When a thread blocks multiple times, then several replenishment operations may be
started and occur at different times. This could mean that the thread’s execution
budget will total C within a period T; however, the execution budget may not be
contiguous during that period.
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T

0 msec 40 msec 80 msec

Priority N

Priority L

T

1 2

3 4 5 6

A thread oscillates between high and low priority.

In the diagram above, the thread has a budget (C) of 10 msec to be consumed within
each 40-msec replenishment period (T).

1 The initial run of the thread is blocked after 3 msec, so a replenishment
operation of 3 msec is scheduled to begin at the 40-msec mark, i.e. when its first
replenishment period has elapsed.

2 The thread gets an opportunity to run again at 6 msec, which marks the start of
another replenishment period (T). The thread still has 7 msec remaining in its
budget.

3 The thread runs without blocking for 7 msec, thereby exhausting its budget, and
then drops to low priority L, where it may or may not be able to execute. A
replenishment of 7 msec is scheduled to occur at 46 msec (40 + 6), i.e. when T
has elapsed.

4 The thread has 3 msec of its budget replenished at 40 msec (see Step 1) and is
therefore boosted back to its normal priority.

5 The thread consumes the 3 msec of its budget and then is dropped back to the
low priority.

6 The thread has 7 msec of its budget replenished at 46 msec (see Step 3) and is
boosted back to its normal priority.

And so on. The thread will continue to oscillate between its two priority levels,
servicing aperiodic events in your system in a controlled, predictable manner.

Manipulating priority and scheduling algorithms

A thread’s priority can vary during its execution, either from direct manipulation by
the thread itself or from the kernel adjusting the thread’s priority as it receives a
message from a higher-priority thread.
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In addition to priority, you can also select the scheduling algorithm that the kernel will
use for the thread. Although our libraries provide a number of different ways to get
and set the scheduling parameters, your best choices are pthread_getschedparam()
and pthread_setschedparam(). For information about the other choices, see
“Scheduling algorithms” in the Programming Overview chapter of the QNX Neutrino
Programmer’s Guide.

IPC issues
Since all the threads in a process have unhindered access to the shared data space,
wouldn’t this execution model “trivially” solve all of our IPC problems? Can’t we just
communicate the data through shared memory and dispense with any other execution
models and IPC mechanisms?

If only it were that simple!

One issue is that the access of individual threads to common data must be
synchronized. Having one thread read inconsistent data because another thread is part
way through modifying it is a recipe for disaster. For example, if one thread is
updating a linked list, no other threads can be allowed to traverse or modify the list
until the first thread has finished. A code passage that must execute “serially” (i.e. by
only one thread at a time) in this manner is termed a “critical section.” The program
would fail (intermittently, depending on how frequently a “collision” occurred) with
irreparably damaged links unless some synchronization mechanism ensured serial
access.

Mutexes, semaphores, and condvars are examples of synchronization tools that can be
used to address this problem. These tools are described later in this section.

Although synchronization services can be used to allow threads to cooperate, shared
memory per se can’t address a number of IPC issues. For example, although threads
can communicate through the common data space, this works only if all the threads
communicating are within a single process. What if our application needs to
communicate a query to a database server? We need to pass the details of our query to
the database server, but the thread we need to communicate with lies within a database
server process and the address space of that server isn’t addressable to us.

The OS takes care of the network-distributed IPC issue because the one interface —
message passing — operates in both the local and network-remote cases, and can be
used to access all OS services. Since messages can be exactly sized, and since most
messages tend to be quite tiny (e.g. the error status on a write request, or a tiny read
request), the data moved around the network can be far less with message passing than
with network-distributed shared memory, which would tend to copy 4K pages around.

Thread complexity issues
Although threads are very appropriate for some system designs, it’s important to
respect the Pandora’s box of complexities their use unleashes. In some ways, it’s ironic
that while MMU-protected multitasking has become common, computing fashion has
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made popular the use of multiple threads in an unprotected address space. This not
only makes debugging difficult, but also hampers the generation of reliable code.

Threads were initially introduced to UNIX systems as a “light-weight” concurrency
mechanism to address the problem of slow context switches between “heavy weight”
processes. Although this is a worthwhile goal, an obvious question arises: Why are
process-to-process context switches slow in the first place?

Architecturally, the OS addresses the context-switch performance issue first. In fact,
threads and processes provide nearly identical context-switch performance numbers.
QNX Neutrino’s process-switch times are faster than UNIX thread-switch times. As a
result, QNX Neutrino threads don’t need to be used to solve the IPC performance
problem; instead, they’re a tool for achieving greater concurrency within application
and server processes.

Without resorting to threads, fast process-to-process context switching makes it
reasonable to structure an application as a team of cooperating processes sharing an
explicitly allocated shared-memory region. An application thus exposes itself to bugs
in the cooperating processes only so far as the effects of those bugs on the contents of
the shared-memory region. The private memory of the process is still protected from
the other processes. In the purely threaded model, the private data of all threads
(including their stacks) is openly accessible, vulnerable to stray pointer errors in any
thread in the process.

Nevertheless, threads can also provide concurrency advantages that a pure process
model cannot address. For example, a filesystem server process that executes requests
on behalf of many clients (where each request takes significant time to complete),
definitely benefits from having multiple threads of execution. If one client process
requests a block from disk, while another client requests a block already in cache, the
filesystem process can utilize a pool of threads to concurrently service client requests,
rather than remain “busy” until the disk block is read for the first request.

As requests arrive, each thread is able to respond directly from the buffer cache or to
block and wait for disk I/O without increasing the response latency seen by other
client processes. The filesystem server can “precreate” a team of threads, ready to
respond in turn to client requests as they arrive. Although this complicates the
architecture of the filesystem manager, the gains in concurrency are significant.

Synchronization services
QNX Neutrino provides the POSIX-standard thread-level synchronization primitives,
some of which are useful even between threads in different processes. The
synchronization services include at least the following:
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Synchronization service Supported between
processes

Supported across a
QNX LAN

Mutexes Yes No

Condvars Yes No

Barriers No No

Sleepon locks No No

Reader/writer locks Yes No

Semaphores Yes Yes (named only)

FIFO scheduling Yes No

Send/Receive/Reply Yes Yes

Atomic operations Yes No

The above synchronization primitives are implemented directly by the kernel, except
for:

• barriers, sleepon locks, and reader/writer locks (which are built from mutexes and
condvars)

• atomic operations (which are either implemented directly by the processor or
emulated in the kernel)

Mutexes: mutual exclusion locks
Mutual exclusion locks, or mutexes, are the simplest of the synchronization services.
A mutex is used to ensure exclusive access to data shared between threads. It is
typically acquired (pthread_mutex_lock() or pthread_mutex_timedlock()) and
released (pthread_mutex_unlock()) around the code that accesses the shared data
(usually a critical section).

Only one thread may have the mutex locked at any given time. Threads attempting to
lock an already locked mutex will block until the thread that owns the mutex unlocks
it. When the thread unlocks the mutex, the highest-priority thread waiting to lock the
mutex will unblock and become the new owner of the mutex. In this way, threads will
sequence through a critical region in priority-order.

On most processors, acquisition of a mutex doesn’t require entry to the kernel for a
free mutex. What allows this is the use of the compare-and-swap opcode on x86
processors and the load/store conditional opcodes on most RISC processors.

Entry to the kernel is done at acquisition time only if the mutex is already held so that
the thread can go on a blocked list; kernel entry is done on exit if other threads are
waiting to be unblocked on that mutex. This allows acquisition and release of an
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uncontested critical section or resource to be very quick, incurring work by the OS
only to resolve contention.

A nonblocking lock function (pthread_mutex_trylock()) can be used to test whether
the mutex is currently locked or not. For best performance, the execution time of the
critical section should be small and of bounded duration. A condvar should be used if
the thread may block within the critical section.

Priority inheritance and mutexes

By default, if a thread with a higher priority than the mutex owner attempts to lock a
mutex, then the effective priority of the current owner is increased to that of the
higher-priority blocked thread waiting for the mutex. The current owner returns to its
real priority when it unlocks the mutex. This scheme not only ensures that the
higher-priority thread will be blocked waiting for the mutex for the shortest possible
time, but also solves the classic priority-inversion problem.

The pthread_mutexattr_init() function sets the protocol to PTHREAD_PRIO_INHERIT
to allow this behavior; you can call pthread_mutexattr_setprotocol() to override this
setting. The pthread_mutex_trylock() function doesn’t change the thread priorities
because it doesn’t block.

You can also modify the attributes of the mutex (using
pthread_mutexattr_setrecursive()) to allow a mutex to be recursively locked by the
same thread. This can be useful to allow a thread to call a routine that might attempt to
lock a mutex that the thread already happens to have locked.

Recursive mutexes are non-POSIX services — they don’t work with condvars.

Condvars: condition variables
A condition variable, or condvar, is used to block a thread within a critical section
until some condition is satisfied. The condition can be arbitrarily complex and is
independent of the condvar. However, the condvar must always be used with a mutex
lock in order to implement a monitor.

A condvar supports three operations:

• wait (pthread_cond_wait())

• signal (pthread_cond_signal())

• broadcast (pthread_cond_broadcast())

Note that there’s no connection between a condvar signal and a POSIX signal.

Here’s a typical example of how a condvar can be used:

pthread_mutex_lock( &m );
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. . .
while (!arbitrary_condition) {

pthread_cond_wait( &cv, &m );
}

. . .
pthread_mutex_unlock( &m );

In this code sample, the mutex is acquired before the condition is tested. This ensures
that only this thread has access to the arbitrary condition being examined. While the
condition is true, the code sample will block on the wait call until some other thread
performs a signal or broadcast on the condvar.

The while loop is required for two reasons. First of all, POSIX cannot guarantee that
false wakeups will not occur (e.g. multiprocessor systems). Second, when another
thread has made a modification to the condition, we need to retest to ensure that the
modification matches our criteria. The associated mutex is unlocked atomically by
pthread_cond_wait() when the waiting thread is blocked to allow another thread to
enter the critical section.

A thread that performs a signal will unblock the highest-priority thread queued on the
condvar, while a broadcast will unblock all threads queued on the condvar. The
associated mutex is locked atomically by the highest-priority unblocked thread; the
thread must then unlock the mutex after proceeding through the critical section.

A version of the condvar wait operation allows a timeout to be specified
(pthread_cond_timedwait()). The waiting thread can then be unblocked when the
timeout expires.

Barriers
A barrier is a synchronization mechanism that lets you “corral” several cooperating
threads (e.g. in a matrix computation), forcing them to wait at a specific point until all
have finished before any one thread can continue.

Unlike the pthread_join() function, where you’d wait for the threads to terminate, in
the case of a barrier you’re waiting for the threads to rendezvous at a certain point.
When the specified number of threads arrive at the barrier, we unblock all of them so
they can continue to run.

You first create a barrier with pthread_barrier_init():

#include <pthread.h>

int
pthread_barrier_init (pthread_barrier_t *barrier,

const pthread_barrierattr_t *attr,
unsigned int count);

This creates a barrier object at the passed address (a pointer to the barrier object is in
barrier), with the attributes as specified by attr. The count member holds the number
of threads that must call pthread_barrier_wait().

Once the barrier is created, each thread will call pthread_barrier_wait() to indicate
that it has completed:
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#include <pthread.h>

int pthread_barrier_wait (pthread_barrier_t *barrier);

When a thread calls pthread_barrier_wait(), it blocks until the number of threads
specified initially in the pthread_barrier_init() function have called
pthread_barrier_wait() (and blocked also). When the correct number of threads have
called pthread_barrier_wait(), all those threads will unblock at the same time.

Here’s an example:

/*
* barrier1.c
*/

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <time.h>
#include <pthread.h>
#include <sys/neutrino.h>

pthread_barrier_t barrier; // barrier synchronization object

void *
thread1 (void *not_used)
{

time_t now;

time (&now);
printf ("thread1 starting at %s", ctime (&now));

// do the computation
// let’s just do a sleep here...
sleep (20);
pthread_barrier_wait (&barrier);
// after this point, all three threads have completed.
time (&now);
printf ("barrier in thread1() done at %s", ctime (&now));

}

void *
thread2 (void *not_used)
{

time_t now;

time (&now);
printf ("thread2 starting at %s", ctime (&now));

// do the computation
// let’s just do a sleep here...
sleep (40);
pthread_barrier_wait (&barrier);
// after this point, all three threads have completed.
time (&now);
printf ("barrier in thread2() done at %s", ctime (&now));

}

int main () // ignore arguments
{

time_t now;
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// create a barrier object with a count of 3
pthread_barrier_init (&barrier, NULL, 3);

// start up two threads, thread1 and thread2
pthread_create (NULL, NULL, thread1, NULL);
pthread_create (NULL, NULL, thread2, NULL);

// at this point, thread1 and thread2 are running

// now wait for completion
time (&now);
printf ("main() waiting for barrier at %s", ctime (&now));
pthread_barrier_wait (&barrier);

// after this point, all three threads have completed.
time (&now);
printf ("barrier in main() done at %s", ctime (&now));
pthread_exit( NULL );
return (EXIT_SUCCESS);

}

The main thread created the barrier object and initialized it with a count of the total
number of threads that must be synchronized to the barrier before the threads may
carry on. In the example above, we used a count of 3: one for the main() thread, one
for thread1(), and one for thread2().

Then we start thread1() and thread2(). To simplify this example, we have the threads
sleep to cause a delay, as if computations were occurring. To synchronize, the main
thread simply blocks itself on the barrier, knowing that the barrier will unblock only
after the two worker threads have joined it as well.

In this release, the following barrier functions are included:

Function Description

pthread_barrierattr_getpshared() Get the value of a barrier’s process-shared
attribute

pthread_barrierattr_destroy() Destroy a barrier’s attributes object

pthread_barrierattr_init() Initialize a barrier’s attributes object

pthread_barrierattr_setpshared() Set the value of a barrier’s process-shared
attribute

pthread_barrier_destroy() Destroy a barrier

pthread_barrier_init() Initialize a barrier

pthread_barrier_wait() Synchronize participating threads at the barrier
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Sleepon locks
Sleepon locks are very similar to condvars, with a few subtle differences. Like
condvars, sleepon locks (pthread_sleepon_lock()) can be used to block until a
condition becomes true (like a memory location changing value). But unlike condvars,
which must be allocated for each condition to be checked, sleepon locks multiplex
their functionality over a single mutex and dynamically allocated condvar, regardless
of the number of conditions being checked. The maximum number of condvars ends
up being equal to the maximum number of blocked threads. These locks are patterned
after the sleepon locks commonly used within the UNIX kernel.

Reader/writer locks
More formally known as “Multiple readers, single writer locks,” these locks are used
when the access pattern for a data structure consists of many threads reading the data,
and (at most) one thread writing the data. These locks are more expensive than
mutexes, but can be useful for this data access pattern.

This lock works by allowing all the threads that request a read-access lock
(pthread_rwlock_rdlock()) to succeed in their request. But when a thread wishing to
write asks for the lock (pthread_rwlock_wrlock()), the request is denied until all the
current reading threads release their reading locks (pthread_rwlock_unlock()).

Multiple writing threads can queue (in priority order) waiting for their chance to write
the protected data structure, and all the blocked writer-threads will get to run before
reading threads are allowed access again. The priorities of the reading threads are not
considered.

There are also calls (pthread_rwlock_tryrdlock() and pthread_rwlock_trywrlock()) to
allow a thread to test the attempt to achieve the requested lock, without blocking.
These calls return with a successful lock or a status indicating that the lock couldn’t be
granted immediately.

Reader/writer locks aren’t implemented directly within the kernel, but are instead built
from the mutex and condvar services provided by the kernel.

Semaphores
Semaphores are another common form of synchronization that allows threads to “post”
(sem_post()) and “wait” (sem_wait()) on a semaphore to control when threads wake or
sleep. The post operation increments the semaphore; the wait operation decrements it.

If you wait on a semaphore that is positive, you will not block. Waiting on a
nonpositive semaphore will block until some other thread executes a post. It is valid to
post one or more times before a wait. This use will allow one or more threads to
execute the wait without blocking.

A significant difference between semaphores and other synchronization primitives is
that semaphores are “async safe” and can be manipulated by signal handlers. If the
desired effect is to have a signal handler wake a thread, semaphores are the right
choice.
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Note that in general, mutexes are much faster than semaphores, which always require
a kernel entry. Semaphores don’t affect a thread’s effective priority; if you need
priority inheritance, use a mutex. For more information, see “Mutexes: mutual
exclusion locks,” earlier in this chapter.

Another useful property of semaphores is that they were defined to operate between
processes. Although our mutexes work between processes, the POSIX thread standard
considers this an optional capability and as such may not be portable across systems.
For synchronization between threads in a single process, mutexes will be more
efficient than semaphores.

As a useful variation, a named semaphore service is also available. It lets you use
semaphores between processes on different machines connected by a network.

Note that named semaphores are slower than the unnamed variety.

Since semaphores, like condition variables, can legally return a nonzero value because
of a false wake-up, correct usage requires a loop:

while (sem_wait(&s) && (errno == EINTR)) { do_nothing(); }
do_critical_region(); /* Semaphore was decremented */

Synchronization via scheduling algorithm
By selecting the POSIX FIFO scheduling algorithm, we can guarantee that no two
threads of the same priority execute the critical section concurrently on a non-SMP
system. The FIFO scheduling algorithm dictates that all FIFO-scheduled threads in the
system at the same priority will run, when scheduled, until they voluntarily release the
processor to another thread.

This “release” can also occur when the thread blocks as part of requesting the service
of another process, or when a signal occurs. The critical region must therefore be
carefully coded and documented so that later maintenance of the code doesn’t violate
this condition.

In addition, higher-priority threads in that (or any other) process could still preempt
these FIFO-scheduled threads. So, all the threads that could “collide” within the
critical section must be FIFO-scheduled at the same priority. Having enforced this
condition, the threads can then casually access this shared memory without having to
first make explicit synchronization calls.

CAUTION: This exclusive-access relationship doesn’t apply in multiprocessor
systems, since each CPU could run a thread simultaneously through the region that
would otherwise be serially scheduled on a single-processor machine.

!
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Synchronization via message passing
Our Send/Receive/Reply message-passing IPC services (described later) implement an
implicit synchronization by their blocking nature. These IPC services can, in many
instances, render other synchronization services unnecessary. They are also the only
synchronization and IPC primitives (other than named semaphores, which are built on
top of messaging) that can be used across the network.

Synchronization via atomic operations
In some cases, you may want to perform a short operation (such as incrementing a
variable) with the guarantee that the operation will perform atomically — i.e. the
operation won’t be preempted by another thread or ISR (Interrupt Service Routine).

Under QNX Neutrino, we provide atomic operations for:

• adding a value

• subtracting a value

• clearing bits

• setting bits

• toggling (complementing) bits

These atomic operations are available by including the C header file <atomic.h>.

Although you can use these atomic operations just about anywhere, you’ll find them
particularly useful in these two cases:

• between an ISR and a thread

• between two threads (SMP or single-processor)

Since an ISR can preempt a thread at any given point, the only way that the thread
would be able to protect itself would be to disable interrupts. Since you should avoid
disabling interrupts in a realtime system, we recommend that you use the atomic
operations provided with QNX Neutrino.

On an SMP system, multiple threads can and do run concurrently. Again, we run into
the same situation as with interrupts above — you should use the atomic operations
where applicable to eliminate the need to disable and reenable interrupts.

Synchronization services implementation
The following table lists the various microkernel calls and the higher-level POSIX
calls constructed from them:
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Microkernel call POSIX call Description

SyncTypeCreate() pthread_mutex_init(),
pthread_cond_init(), sem_init()

Create object for mutex, condvars,
and semaphore.

SyncDestroy() pthread_mutex_destroy(),
pthread_cond_destroy(),
sem_destroy()

Destroy synchronization object.

SyncCondvarWait() pthread_cond_wait(),
pthread_cond_timedwait()

Block on a condvar.

SyncCondvarSignal() pthread_cond_broadcast(),
pthread_cond_signal()

Wake up condvar-blocked threads.

SyncMutexLock() pthread_mutex_lock(),
pthread_mutex_trylock()

Lock a mutex.

SyncMutexUnlock() pthread_mutex_unlock() Unlock a mutex.

SyncSemPost() sem_post() Post a semaphore.

SyncSemWait() sem_wait(), sem_trywait() Wait on a semaphore.

Clock and timer services
Clock services are used to maintain the time of day, which is in turn used by the kernel
timer calls to implement interval timers.

Valid dates on a QNX Neutrino system range from January 1970 to at least 2038. The
time_t data type is an unsigned 32-bit number, which extends this range for many
applications through 2106. The kernel itself uses unsigned 64-bit numbers to count the
nanoseconds since January 1970, and so can handle dates through 2554. If your
system must operate past 2554 and there’s no way for the system to be upgraded or
modified in the field, you’ll have to take special care with system dates (contact us for
help with this).

The ClockTime() kernel call allows you to get or set the system clock specified by an
ID (CLOCK_REALTIME), which maintains the system time. Once set, the system time
increments by some number of nanoseconds based on the resolution of the system
clock. This resolution can be queried or changed using the ClockPeriod() call.

Within the system page, an in-memory data structure, there’s a 64-bit field (nsec) that
holds the number of nanoseconds since the system was booted. The nsec field is
always monotonically increasing and is never affected by setting the current time of
day via ClockTime() or ClockAdjust().

The ClockCycles() function returns the current value of a free-running 64-bit cycle
counter. This is implemented on each processor as a high-performance mechanism for
timing short intervals. For example, on Intel x86 processors, an opcode that reads the
processor’s time-stamp counter is used. On a Pentium processor, this counter
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increments on each clock cycle. A 100 MHz Pentium would have a cycle time of
1/100,000,000 seconds (10 nanoseconds). Other CPU architectures have similar
instructions.

On processors that don’t implement such an instruction in hardware (e.g. a 386), the
kernel will emulate one. This will provide a lower time resolution than if the
instruction is provided (838.095345 nanoseconds on an IBM PC-compatible system).

In all cases, the SYSPAGE_ENTRY(qtime)->cycles_per_sec field gives the
number of ClockCycles() increments in one second.

The ClockPeriod() function allows a thread to set the system timer to some multiple of
nanoseconds; the OS kernel will do the best it can to satisfy the precision of the
request with the hardware available.

The interval selected is always rounded down to an integral of the precision of the
underlying hardware timer. Of course, setting it to an extremely low value can result in
a significant portion of CPU performance being consumed servicing timer interrupts.

Microkernel call POSIX call Description

ClockTime() clock_gettime(), clock_settime() Get or set the time of day (using a 64-bit
value in nanoseconds ranging from 1970
to 2554).

ClockAdjust() N/A Apply small time adjustments to
synchronize clocks.

ClockCycles() N/A Read a 64-bit free-running high-precision
counter.

ClockPeriod() clock_getres() Get or set the period of the clock.

ClockId() clock_getcpuclockid(),
pthread_getcpuclockid()

Return an integer that’s passed to
ClockTime() as a clockid_t.

Time correction
In order to facilitate applying time corrections without having the system experience
abrupt “steps” in time (or even having time jump backwards), the ClockAdjust() call
provides the option to specify an interval over which the time correction is to be
applied. This has the effect of speeding or retarding time over a specified interval until
the system has synchronized to the indicated current time. This service can be used to
implement network-coordinated time averaging between multiple nodes on a network.

Timers
QNX Neutrino directly provides the full set of POSIX timer functionality. Since these
timers are quick to create and manipulate, they’re an inexpensive resource in the
kernel.

The POSIX timer model is quite rich, providing the ability to have the timer expire on:
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• an absolute date

• a relative date (i.e. n nanoseconds from now)

• cyclical (i.e. every n nanoseconds)

The cyclical mode is very significant, because the most common use of timers tends to
be as a periodic source of events to “kick” a thread into life to do some processing and
then go back to sleep until the next event. If the thread had to re-program the timer for
every event, there would be the danger that time would slip unless the thread was
programming an absolute date. Worse, if the thread doesn’t get to run on the timer
event because a higher-priority thread is running, the date next programmed into the
timer could be one that has already elapsed!

The cyclical mode circumvents these problems by requiring that the thread set the
timer once and then simply respond to the resulting periodic source of events.

Since timers are another source of events in the OS, they also make use of its
event-delivery system. As a result, the application can request that any of the
Neutrino-supported events be delivered to the application upon occurrence of a
timeout.

An often-needed timeout service provided by the OS is the ability to specify the
maximum time the application is prepared to wait for any given kernel call or request
to complete. A problem with using generic OS timer services in a preemptive realtime
OS is that in the interval between the specification of the timeout and the request for
the service, a higher-priority process might have been scheduled to run and preempted
long enough that the specified timeout will have expired before the service is even
requested. The application will then end up requesting the service with an already
lapsed timeout in effect (i.e. no timeout). This timing window can result in “hung”
processes, inexplicable delays in data transmission protocols, and other problems.

alarm(...);
...
... ← Alarm fires here
...

blocking_call();

Our solution is a form of timeout request atomic to the service request itself. One
approach might have been to provide an optional timeout parameter on every available
service request, but this would overly complicate service requests with a passed
parameter that would often go unused.

QNX Neutrino provides a TimerTimeout() kernel call that allows an application to
specify a list of blocking states for which to start a specified timeout. Later, when the
application makes a request of the kernel, the kernel will atomically enable the
previously configured timeout if the application is about to block on one of the
specified states.
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Since the OS has a very small number of blocking states, this mechanism works very
concisely. At the conclusion of either the service request or the timeout, the timer will
be disabled and control will be given back to the application.
TimerTimeout(...);

...

...

...
blocking_call();

... ← Timer atomically armed within kernel

Microkernel call POSIX call Description

TimerAlarm() alarm() Set a process alarm.

TimerCreate() timer_create() Create an interval timer.

TimerDestroy() timer_delete() Destroy an interval timer.

TimerInfo() timer_gettime() Get time remaining on an interval
timer.

TimerInfo() timer_getoverrun() Get number of overruns on an
interval timer.

TimerSettime() timer_settime() Start an interval timer.

TimerTimeout() sleep(), nanosleep(),
sigtimedwait(),
pthread_cond_timedwait(),
pthread_mutex_trylock()

Arm a kernel timeout for any
blocking state.

For more information, see the Clocks, Timers, and Getting a Kick Every So Often
chapter of Getting Started with QNX Neutrino.

Interrupt handling
No matter how much we wish it were so, computers are not infinitely fast. In a
realtime system, it’s absolutely crucial that CPU cycles aren’t unnecessarily spent. It’s
also crucial to minimize the time from the occurrence of an external event to the actual
execution of code within the thread responsible for reacting to that event. This time is
referred to as latency.

The two forms of latency that most concern us are interrupt latency and scheduling
latency.
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Latency times can vary significantly, depending on the speed of the processor and
other factors. For more information, visit our website (www.qnx.com).

Interrupt latency
Interrupt latency is the time from the assertion of a hardware interrupt until the first
instruction of the device driver’s interrupt handler is executed. The OS leaves
interrupts fully enabled almost all the time, so that interrupt latency is typically
insignificant. But certain critical sections of code do require that interrupts be
temporarily disabled. The maximum such disable time usually defines the worst-case
interrupt latency — in QNX Neutrino this is very small.

The following diagrams illustrate the case where a hardware interrupt is processed by
an established interrupt handler. The interrupt handler either will simply return, or it
will return and cause an event to be delivered.

T interrupt latency

T interrupt processing time

T

il

int

iret interrupt termination time

Tint

Interrupt

occurs

Interrupt handler

runs

Interrupt handler

finishes

Interrupted process

continues execution

Til Tiret

Time

Interrupt handler simply terminates.

The interrupt latency (Til) in the above diagram represents the minimum latency —
that which occurs when interrupts were fully enabled at the time the interrupt
occurred. Worst-case interrupt latency will be this time plus the longest time in which
the OS, or the running system process, disables CPU interrupts.

Scheduling latency
In some cases, the low-level hardware interrupt handler must schedule a higher-level
thread to run. In this scenario, the interrupt handler will return and indicate that an
event is to be delivered. This introduces a second form of latency — scheduling
latency — which must be accounted for.

Scheduling latency is the time between the last instruction of the user’s interrupt
handler and the execution of the first instruction of a driver thread. This usually means
the time it takes to save the context of the currently executing thread and restore the
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context of the required driver thread. Although larger than interrupt latency, this time
is also kept small in a QNX Neutrino system.

Til interrupt latency

Tint interrupt processing time

Tsl scheduling latency

Tint

Interrupt

occurs

Interrupt handler

runs

Interrupt handler

finishes,

triggering a

sigevent

Driver thread

runs

Til Tsl

Time

Interrupt handler terminates, returning an event.

It’s important to note that most interrupts terminate without delivering an event. In a
large number of cases, the interrupt handler can take care of all hardware-related
issues. Delivering an event to wake up a higher-level driver thread occurs only when a
significant event occurs. For example, the interrupt handler for a serial device driver
would feed one byte of data to the hardware upon each received transmit interrupt, and
would trigger the higher-level thread within (devc-ser*) only when the output buffer
is nearly empty.

Nested interrupts
QNX Neutrino fully supports nested interrupts. The previous scenarios describe the
simplest — and most common — situation where only one interrupt occurs.
Worst-case timing considerations for unmasked interrupts must take into account the
time for all interrupts currently being processed, because a higher priority, unmasked
interrupt will preempt an existing interrupt.

In the following diagram, Thread A is running. Interrupt IRQx causes interrupt
handler Intx to run, which is preempted by IRQy and its handler Inty. Inty returns an
event causing Thread B to run; Intx returns an event causing Thread C to run.
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IRQy

IRQx

Intx

Thread B

Thread C

Thread A

Inty

Time

Stacked interrupts.

Interrupt calls
The interrupt-handling API includes the following kernel calls:

Function Description

InterruptAttach() Attach a local function to an interrupt vector.

InterruptAttachEvent() Generate an event on an interrupt, which will ready a
thread. No user interrupt handler runs. This is the
preferred call.

InterruptDetach() Detach from an interrupt using the ID returned by
InterruptAttach() or InterruptAttachEvent().

InterruptWait() Wait for an interrupt.

InterruptEnable() Enable hardware interrupts.

InterruptDisable() Disable hardware interrupts.

InterruptMask() Mask a hardware interrupt.

InterruptUnmask() Unmask a hardware interrupt.

InterruptLock() Guard a critical section of code between an interrupt
handler and a thread. A spinlock is used to make this code
SMP-safe. This function is a superset of
InterruptDisable() and should be used in its place.

InterruptUnlock() Remove an SMP-safe lock on a critical section of code.

Using this API, a suitably privileged user-level thread can call InterruptAttach() or
InterruptAttachEvent(), passing a hardware interrupt number and the address of a
function in the thread’s address space to be called when the interrupt occurs. QNX
Neutrino allows multiple ISRs to be attached to each hardware interrupt number —
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unmasked interrupts can be serviced during the execution of running interrupt
handlers.

• The startup code is responsible for making sure that all interrupt sources are
masked during system initialization. When the first call to InterruptAttach() or
InterruptAttachEvent() is done for an interrupt vector, the kernel unmasks it.
Similarly, when the last InterruptDetach() is done for an interrupt vector, the kernel
remasks the level.

• For more information on InterruptLock() and InterruptUnlock(), see “Critical
sections” in the chapter on Multicore Processing in this guide.

The following code sample shows how to attach an ISR to the hardware timer interrupt
on the PC (which the OS also uses for the system clock). Since the kernel’s timer ISR
is already dealing with clearing the source of the interrupt, this ISR can simply
increment a counter variable in the thread’s data space and return to the kernel:

#include <stdio.h>
#include <sys/neutrino.h>
#include <sys/syspage.h>

struct sigevent event;
volatile unsigned counter;

const struct sigevent *handler( void *area, int id ) {
// Wake up the thread every 100th interrupt
if ( ++counter == 100 ) {

counter = 0;
return( &event );
}

else
return( NULL );

}

int main() {
int i;
int id;

// Request I/O privileges
ThreadCtl( _NTO_TCTL_IO, 0 );

// Initialize event structure
event.sigev_notify = SIGEV_INTR;

// Attach ISR vector
id=InterruptAttach( SYSPAGE_ENTRY(qtime)->intr, &handler,

NULL, 0, 0 );

for( i = 0; i < 10; ++i ) {
// Wait for ISR to wake us up
InterruptWait( 0, NULL );
printf( "100 events\n" );
}

// Disconnect the ISR handler
InterruptDetach(id);
return 0;
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}

With this approach, appropriately privileged user-level threads can dynamically attach
(and detach) interrupt handlers to (and from) hardware interrupt vectors at run time.
These threads can be debugged using regular source-level debug tools; the ISR itself
can be debugged by calling it at the thread level and source-level stepping through it or
by using the InterruptAttachEvent() call.

When the hardware interrupt occurs, the processor will enter the interrupt redirector in
the microkernel. This code pushes the registers for the context of the currently running
thread into the appropriate thread table entry and sets the processor context such that
the ISR has access to the code and data that are part of the thread the ISR is contained
within. This allows the ISR to use the buffers and code in the user-level thread to
resolve the interrupt and, if higher-level work by the thread is required, to queue an
event to the thread the ISR is part of, which can then work on the data the ISR has
placed into thread-owned buffers.

Since it runs with the memory-mapping of the thread containing it, the ISR can
directly manipulate devices mapped into the thread’s address space, or directly
perform I/O instructions. As a result, device drivers that manipulate hardware don’t
need to be linked into the kernel.

The interrupt redirector code in the microkernel will call each ISR attached to that
hardware interrupt. If the value returned indicates that a process is to be passed an
event of some sort, the kernel will queue the event. When the last ISR has been called
for that vector, the kernel interrupt handler will finish manipulating the interrupt
control hardware and then “return from interrupt.”

This interrupt return won’t necessarily be into the context of the thread that was
interrupted. If the queued event caused a higher-priority thread to become READY, the
microkernel will then interrupt-return into the context of the now-READY thread
instead.

This approach provides a well-bounded interval from the occurrence of the interrupt to
the execution of the first instruction of the user-level ISR (measured as interrupt
latency), and from the last instruction of the ISR to the first instruction of the thread
readied by the ISR (measured as thread or process scheduling latency).

The worst-case interrupt latency is well-bounded, because the OS disables interrupts
only for a couple opcodes in a few critical regions. Those intervals when interrupts are
disabled have deterministic runtimes, because they’re not data dependent.

The microkernel’s interrupt redirector executes only a few instructions before calling
the user’s ISR. As a result, process preemption for hardware interrupts or kernel calls
is equally quick and exercises essentially the same code path.

While the ISR is executing, it has full hardware access (since it’s part of a privileged
thread), but can’t issue other kernel calls. The ISR is intended to respond to the
hardware interrupt in as few microseconds as possible, do the minimum amount of
work to satisfy the interrupt (read the byte from the UART, etc.), and if necessary,
cause a thread to be scheduled at some user-specified priority to do further work.
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Worst-case interrupt latency is directly computable for a given hardware priority from
the kernel-imposed interrupt latency and the maximum ISR runtime for each interrupt
higher in hardware priority than the ISR in question. Since hardware interrupt
priorities can be reassigned, the most important interrupt in the system can be made
the highest priority.

Note also that by using the InterruptAttachEvent() call, no user ISR is run. Instead, a
user-specified event is generated on each and every interrupt; the event will typically
cause a waiting thread to be scheduled to run and do the work. The interrupt is
automatically masked when the event is generated and then explicitly unmasked by the
thread that handles the device at the appropriate time.

Both InterruptMask() and InterruptUnmask() are counting functions. For example, if
InterruptMask() is called ten times, then InterruptUnmask() must also be called ten
times.

Thus the priority of the work generated by hardware interrupts can be performed at
OS-scheduled priorities rather than hardware-defined priorities. Since the interrupt
source won’t re-interrupt until serviced, the effect of interrupts on the runtime of
critical code regions for hard-deadline scheduling can be controlled.

In addition to hardware interrupts, various “events” within the microkernel can also be
“hooked” by user processes and threads. When one of these events occurs, the kernel
can upcall into the indicated function in the user thread to perform some specific
processing for this event. For example, whenever the idle thread in the system is
called, a user thread can have the kernel upcall into the thread so that
hardware-specific low-power modes can be readily implemented.

Microkernel call Description

InterruptHookIdle() When the kernel has no active thread to schedule, it will
run the idle thread, which can upcall to a user handler. This
handler can perform hardware-specific power-management
operations.

InterruptHookTrace() This function attaches a pseudo interrupt handler that can
receive trace events from the instrumented kernel.

For more information about interrupts, see the Interrupts chapter of Getting Started
with QNX Neutrino, and the Writing an Interrupt Handler chapter of the Neutrino
Programmer’s Guide.
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Interprocess Communication plays a fundamental role in the transformation of QNX
Neutrino from an embedded realtime kernel into a full-scale POSIX operating system.
As various service-providing processes are added to the microkernel, IPC is the “glue”
that connects those components into a cohesive whole.

Although message passing is the primary form of IPC in QNX Neutrino, several other
forms are available as well. Unless otherwise noted, those other forms of IPC are built
over our native message passing. The strategy is to create a simple, robust IPC service
that can be tuned for performance through a simplified code path in the microkernel;
more “feature cluttered” IPC services can then be implemented from these.

Benchmarks comparing higher-level IPC services (like pipes and FIFOs implemented
over our messaging) with their monolithic kernel counterparts show comparable
performance.

QNX Neutrino offers at least the following forms of IPC:

Service: Implemented in:

Message-passing Kernel

Signals Kernel

POSIX message queues External process

Shared memory Process manager

Pipes External process

FIFOs External process

The designer can select these services on the basis of bandwidth requirements, the
need for queuing, network transparency, etc. The trade-off can be complex, but the
flexibility is useful.

As part of the engineering effort that went into defining the QNX Neutrino
microkernel, the focus on message passing as the fundamental IPC primitive was
deliberate. As a form of IPC, message passing (as implemented in MsgSend(),
MsgReceive(), and MsgReply()), is synchronous and copies data. Let’s explore these
two attributes in more detail.

Synchronous message passing
A thread that does a MsgSend() to another thread (which could be within another
process) will be blocked until the target thread does a MsgReceive(), processes the
message, and executes a MsgReply(). If a thread executes a MsgReceive() without a
previously sent message pending, it will block until another thread executes a
MsgSend().

In Neutrino, a server thread typically loops, waiting to receive a message from a client
thread. As described earlier, a thread — whether a server or a client — is in the
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READY state if it can use the CPU. It might not actually be getting any CPU time
because of its and other threads’ priority and scheduling algorithm, but the thread isn’t
blocked.

Let’s look first at the client thread:

Server does a
MsgReceive()

Server does a
MsgReply() or

MsgError()

Client does a
MsgSend()

SEND
blocked

Client does a
MsgSend()

Other thread

This thread

Legend:
READY

REPLY
blocked

Changes of state for a client thread in a send-receive-reply transaction.

• If the client thread calls MsgSend(), and the server thread hasn’t yet called
MsgReceive(), then the client thread becomes SEND blocked. Once the server
thread calls MsgReceive(), the kernel changes the client thread’s state to be REPLY
blocked, which means that server thread has received the message and now must
reply. When the server thread calls MsgReply(), the client thread becomes READY.

• If the client thread calls MsgSend(), and the server thread is already blocked on the
MsgReceive(), then the client thread immediately becomes REPLY blocked,
skipping the SEND-blocked state completely.

• If the server thread fails, exits, or disappears, the client thread becomes READY,
with MsgSend() indicating an error.

Next, let’s consider the server thread:
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Server does a
MsgReceive()

Server does a
MsgReply() or

MsgError()

READY

Client does a
MsgSend()

RECEIVE
blocked

Server does a
MsgReceive() Other thread

This thread

Legend:

Changes of state for a server thread in a send-receive-reply transaction.

• If the server thread calls MsgReceive(), and no other thread has sent to it, then the
server thread becomes RECEIVE blocked. When another thread sends to it, the
server thread becomes READY.

• If the server thread calls MsgReceive(), and another thread has already sent to it,
then MsgReceive() returns immediately with the message. In this case, the server
thread doesn’t block.

• If the server thread calls MsgReply(), it doesn’t become blocked.

This inherent blocking synchronizes the execution of the sending thread, since the act
of requesting that the data be sent also causes the sending thread to be blocked and the
receiving thread to be scheduled for execution. This happens without requiring
explicit work by the kernel to determine which thread to run next (as would be the
case with most other forms of IPC). Execution and data move directly from one
context to another.

Data-queuing capabilities are omitted from these messaging primitives because
queueing could be implemented when needed within the receiving thread. The sending
thread is often prepared to wait for a response; queueing is unnecessary overhead and
complexity (i.e. it slows down the nonqueued case). As a result, the sending thread
doesn’t need to make a separate, explicit blocking call to wait for a response (as it
would if some other IPC form had been used).

While the send and receive operations are blocking and synchronous, MsgReply() (or
MsgError()) doesn’t block. Since the client thread is already blocked waiting for the
reply, no additional synchronization is required, so a blocking MsgReply() isn’t
needed. This allows a server to reply to a client and continue processing while the
kernel and/or networking code asynchronously passes the reply data to the sending
thread and marks it ready for execution. Since most servers will tend to do some
processing to prepare to receive the next request (at which point they block again), this
works out well.
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Note that in a network, a reply may not complete as “immediately” as in a local
message pass. For more information on network message passing, see the chapter on
Qnet networking in this book.

MsgReply() vs MsgError()
The MsgReply() function is used to return a status and zero or more bytes to the client.
MsgError(), on the other hand, is used to return only a status to the client. Both
functions will unblock the client from its MsgSend().

Message copying
Since our messaging services copy a message directly from the address space of one
thread to another without intermediate buffering, the message-delivery performance
approaches the memory bandwidth of the underlying hardware. The kernel attaches no
special meaning to the content of a message — the data in a message has meaning
only as mutually defined by sender and receiver. However, “well-defined” message
types are also provided so that user-written processes or threads can augment or
substitute for system-supplied services.

The messaging primitives support multipart transfers, so that a message delivered from
the address space of one thread to another needn’t pre-exist in a single, contiguous
buffer. Instead, both the sending and receiving threads can specify a vector table that
indicates where the sending and receiving message fragments reside in memory. Note
that the size of the various parts can be different for the sender and receiver.

Multipart transfers allow messages that have a header block separate from the data
block to be sent without performance-consuming copying of the data to create a
contiguous message. In addition, if the underlying data structure is a ring buffer,
specifying a three-part message will allow a header and two disjoint ranges within the
ring buffer to be sent as a single atomic message. A hardware equivalent of this
concept would be that of a scatter/gather DMA facility.

Each
IOV

may have
any

number
of parts

Message Data

Len Addr

Part 1

Part 3

Part 2

2

0

IOV

Each part
may be
0 to 4 GB 

A multipart transfer.

The multipart transfers are also used extensively by filesystems. On a read, the data is
copied directly from the filesystem cache into the application using a message with
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n parts for the data. Each part points into the cache and compensates for the fact that
cache blocks aren’t contiguous in memory with a read starting or ending within a
block.

For example, with a cache block size of 512 bytes, a read of 1454 bytes can be
satisfied with a 5-part message:

Len Addr

Header

4

0

Five-part IOV
File

system

cache

16

400

512

512

30

4

1

2

3

Scatter/gather of a read of 1454 bytes.

Since message data is explicitly copied between address spaces (rather than by doing
page table manipulations), messages can be easily allocated on the stack instead of
from a special pool of page-aligned memory for MMU “page flipping.” As a result,
many of the library routines that implement the API between client and server
processes can be trivially expressed, without elaborate IPC-specific memory allocation
calls.

For example, the code used by a client thread to request that the filesystem manager
execute lseek on its behalf is implemented as follows:

#include <unistd.h>
#include <errno.h>
#include <sys/iomsg.h>

off64_t lseek64(int fd, off64_t offset, int whence) {
io_lseek_t msg;
off64_t off;

msg.i.type = _IO_LSEEK;
msg.i.combine_len = sizeof msg.i;
msg.i.offset = offset;
msg.i.whence = whence;
msg.i.zero = 0;
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if(MsgSend(fd, &msg.i, sizeof msg.i, &off, sizeof off) == -1) {

return -1;
}
return off;

}

off64_t tell64(int fd) {
return lseek64(fd, 0, SEEK_CUR);

}

off_t lseek(int fd, off_t offset, int whence) {
return lseek64(fd, offset, whence);

}

off_t tell(int fd) {
return lseek64(fd, 0, SEEK_CUR);

}

This code essentially builds a message structure on the stack, populates it with various
constants and passed parameters from the calling thread, and sends it to the filesystem
manager associated with fd. The reply indicates the success or failure of the operation.

This implementation doesn’t prevent the kernel from detecting large message transfers
and choosing to implement “page flipping” for those cases. Since most messages
passed are quite tiny, copying messages is often faster than manipulating MMU page
tables. For bulk data transfer, shared memory between processes (with
message-passing or the other synchronization primitives for notification) is also a
viable option.

Simple messages
For simple single-part messages, the OS provides functions that take a pointer directly
to a buffer without the need for an IOV (input/output vector). In this case, the number
of parts is replaced by the size of the message directly pointed to. In the case of the
message send primitive — which takes a send and a reply buffer — this introduces
four variations:

Function Send message Reply message

MsgSend() Simple Simple

MsgSendsv() Simple IOV

MsgSendvs() IOV Simple

MsgSendv() IOV IOV

The other messaging primitives that take a direct message simply drop the trailing “v”
in their names:
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IOV Simple direct

MsgReceivev() MsgReceive()

MsgReceivePulsev() MsgReceivePulse()

MsgReplyv() MsgReply()

MsgReadv() MsgRead()

MsgWritev() MsgWrite()

Channels and connections
In QNX Neutrino, message passing is directed towards channels and connections,
rather than targeted directly from thread to thread. A thread that wishes to receive
messages first creates a channel; another thread that wishes to send a message to that
thread must first make a connection by “attaching” to that channel.

Channels are required by the message kernel calls and are used by servers to
MsgReceive() messages on. Connections are created by client threads to “connect” to
the channels made available by servers. Once connections are established, clients can
MsgSend() messages over them. If a number of threads in a process all attach to the
same channel, then the connections all map to the same kernel object for efficiency.
Channels and connections are named within a process by a small integer identifier.
Client connections map directly into file descriptors.

Architecturally, this is a key point. By having client connections map directly into
FDs, we have eliminated yet another layer of translation. We don’t need to “figure
out” where to send a message based on the file descriptor (e.g. via a read(fd) call).
Instead, we can simply send a message directly to the “file descriptor” (i.e. connection
ID).

Function Description

ChannelCreate() Create a channel to receive messages on.

ChannelDestroy() Destroy a channel.

ConnectAttach() Create a connection to send messages on.

ConnectDetach() Detach a connection.
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Connections

Channel

Channel

Server

Server

Client

Connections map elegantly into file descriptors.

A process acting as a server would implement an event loop to receive and process
messages as follows:

chid = ChannelCreate(flags);
SETIOV(&iov, &msg, sizeof(msg));
for(;;) {

rcv_id = MsgReceivev( chid, &iov, parts, &info );

switch( msg.type ) {
/* Perform message processing here */
}

MsgReplyv( rcv_id, &iov, rparts );
}

This loop allows the thread to receive messages from any thread that had a connection
to the channel.

The channel has several lists of messages associated with it:

Receive A LIFO queue of threads waiting for messages.

Send A priority FIFO queue of threads that have sent messages that haven’t yet
been received.

Reply An unordered list of threads that have sent messages that have been
received, but not yet replied to.

While in any of these lists, the waiting thread is blocked (i.e. RECEIVE-, SEND-, or
REPLY-blocked). Multiple threads and multiple clients may wait on one channel.

60 Chapter 3 • Interprocess Communication (IPC) October 16, 2008



© 2008, QNX Software Systems GmbH & Co. KG. Channels and connections

Pulses
In addition to the synchronous Send/Receive/Reply services, the OS also supports
fixed-size, nonblocking messages. These are referred to as pulses and carry a small
payload (four bytes of data plus a single byte code).

Pulses pack a relatively small payload — eight bits of code and 32 bits of data. Pulses
are often used as a notification mechanism within interrupt handlers. They also allow
servers to signal clients without blocking on them.

Value

8 bits

32 bits

Code

Pulses pack a small payload.

Priority inheritance and messages
A server process receives messages and pulses in priority order. As the threads within
the server receive requests, they then inherit the priority (but not the scheduling
algorithm) of the sending thread. As a result, the relative priorities of the threads
requesting work of the server are preserved, and the server work will be executed at
the appropriate priority. This message-driven priority inheritance avoids
priority-inversion problems.

For example, suppose the system includes the following:

• a server thread, at priority 22

• a client thread, T1, at priority 13

• a client thread, T2, at priority 10

Without priority inheritance, if T2 sends a message to the server, it’s effectively
getting work done for it at priority 22, so T2’s priority has been inverted.

What actually happens is that when the server receives a message, its effective priority
changes to that of the highest-priority sender. In this case, T2’s priority is lower than
the server’s, so the change in the server’s effective priority takes place when the server
receives the message.

Next, suppose that T1 sends a message to the server while it’s still at priority 10. Since
T1’s priority is higher than the server’s current priority, the change in the server’s
priority happens when T1 sends the message.

The change happens before the server receives the message to avoid another case of
priority inversion. If the server’s priority remains unchanged at 10, and another thread,
T3, starts to run at priority 11, the server has to wait until T3 lets it have some CPU
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time so that it can eventually receive T1’s message. So, T1 would would be delayed by
a lower-priority thread, T3.
You can turn off priority inheritance by specifying the _NTO_CHF_FIXED_PRIORITY
flag when you call ChannelCreate(). If you’re using adaptive partitioning, this flag
also causes the receiving threads not to run in the sending threads’ partitions.

Message-passing API
The message-passing API consists of the following functions:

Function Description

MsgSend() Send a message and block until reply.

MsgReceive() Wait for a message.

MsgReceivePulse() Wait for a tiny, nonblocking message (pulse).

MsgReply() Reply to a message.

MsgError() Reply only with an error status. No message bytes are
transferred.

MsgRead() Read additional data from a received message.

MsgWrite() Write additional data to a reply message.

MsgInfo() Obtain info on a received message.

MsgSendPulse() Send a tiny, nonblocking message (pulse).

MsgDeliverEvent() Deliver an event to a client.

MsgKeyData() Key a message to allow security checks.

For information about messages from the programming point of view, see the Message
Passing chapter of Getting Started with QNX Neutrino.

Robust implementations with Send/Receive/Reply
Architecting a QNX Neutrino application as a team of cooperating threads and
processes via Send/Receive/Reply results in a system that uses synchronous
notification. IPC thus occurs at specified transitions within the system, rather than
asynchronously.

A significant problem with asynchronous systems is that event notification requires
signal handlers to be run. Asynchronous IPC can make it difficult to thoroughly test
the operation of the system and make sure that no matter when the signal handler runs,
that processing will continue as intended. Applications often try to avoid this scenario
by relying on a “window” explicitly opened and shut, during which signals will be
tolerated.
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With a synchronous, nonqueued system architecture built around Send/Receive/Reply,
robust application architectures can be very readily implemented and delivered.

Avoiding deadlock situations is another difficult problem when constructing
applications from various combinations of queued IPC, shared memory, and
miscellaneous synchronization primitives. For example, suppose thread A doesn’t
release mutex 1 until thread B releases mutex 2. Unfortunately, if thread B is in the
state of not releasing mutex 2 until thread A releases mutex 1, a standoff results.
Simulation tools are often invoked in order to ensure that deadlock won’t occur as the
system runs.

The Send/Receive/Reply IPC primitives allow the construction of deadlock-free
systems with the observation of only these simple rules:

1 Never have two threads send to each other.

2 Always arrange your threads in a hierarchy, with sends going up the tree.

The first rule is an obvious avoidance of the standoff situation, but the second rule
requires further explanation. The team of cooperating threads and processes is
arranged as follows:

MsgSend()

MsgSend()MsgSend()

A

B C

D E F

Threads should always send up to higher-level threads.

Here the threads at any given level in the hierarchy never send to each other, but send
only upwards instead.

One example of this might be a client application that sends to a database server
process, which in turn sends to a filesystem process. Since the sending threads block
and wait for the target thread to reply, and since the target thread isn’t send-blocked on
the sending thread, deadlock can’t happen.

But how does a higher-level thread notify a lower-level thread that it has the results of
a previously requested operation? (Assume the lower-level thread didn’t want to wait
for the replied results when it last sent.)

QNX Neutrino provides a very flexible architecture with the MsgDeliverEvent() kernel
call to deliver nonblocking events. All of the common asynchronous services can be
implemented with this. For example, the server-side of the select() call is an API that
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an application can use to allow a thread to wait for an I/O event to complete on a set of
file descriptors. In addition to an asynchronous notification mechanism being needed
as a “back channel” for notifications from higher-level threads to lower-level threads,
we can also build a reliable notification system for timers, hardware interrupts, and
other event sources around this.

MsgSend() 

A

B

MsgSendPulse()
or

MsgDeliverEvent() 

A higher-level thread can “send” a pulse event.

A related issue is the problem of how a higher-level thread can request work of a
lower-level thread without sending to it, risking deadlock. The lower-level thread is
present only to serve as a “worker thread” for the higher-level thread, doing work on
request. The lower-level thread would send in order to “report for work,” but the
higher-level thread wouldn’t reply then. It would defer the reply until the higher-level
thread had work to be done, and it would reply (which is a nonblocking operation)
with the data describing the work. In effect, the reply is being used to initiate work,
not the send, which neatly side-steps rule #1.

Events
A significant advance in the kernel design for QNX Neutrino is the event-handling
subsystem. POSIX and its realtime extensions define a number of asynchronous
notification methods (e.g. UNIX signals that don’t queue or pass data, POSIX realtime
signals that may queue and pass data, etc.).

The kernel also defines additional, QNX-specific notification techniques such as
pulses. Implementing all of these event mechanisms could have consumed significant
code space, so our implementation strategy was to build all of these notification
methods over a single, rich, event subsystem.

A benefit of this approach is that capabilities exclusive to one notification technique
can become available to others. For example, an application can apply the same
queueing services of POSIX realtime signals to UNIX signals. This can simplify the
robust implementation of signal handlers within applications.

The events encountered by an executing thread can come from any of three sources:

• a MsgDeliverEvent() kernel call invoked by a thread

• an interrupt handler

• the expiry of a timer
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The event itself can be any of a number of different types: QNX Neutrino pulses,
interrupts, various forms of signals, and forced “unblock” events. “Unblock” is a
means by which a thread can be released from a deliberately blocked state without any
explicit event actually being delivered.

Given this multiplicity of event types, and applications needing the ability to request
whichever asynchronous notification technique best suits their needs, it would be
awkward to require that server processes (the higher-level threads from the previous
section) carry code to support all these options.

Instead, the client thread can give a data structure, or “cookie,” to the server to hang on
to until later. When the server needs to notify the client thread, it will invoke
MsgDeliverEvent() and the microkernel will set the event type encoded within the
cookie upon the client thread.

Server Client

MsgDeliverEvent()

MsgReply()

MsgSend()

sigevent

The client sends a sigevent to the server.

I/O notification
The ionotify() function is a means by which a client thread can request asynchronous
event delivery. Many of the POSIX asynchronous services (e.g. mq_notify() and the
client-side of the select()) are built on top of it. When performing I/O on a file
descriptor (fd), the thread may choose to wait for an I/O event to complete (for the
write() case), or for data to arrive (for the read() case). Rather than have the thread
block on the resource manager process that’s servicing the read/write request,
ionotify() can allow the client thread to post an event to the resource manager that the
client thread would like to receive when the indicated I/O condition occurs. Waiting in
this manner allows the thread to continue executing and responding to event sources
other than just the single I/O request.

The select() call is implemented using I/O notification and allows a thread to block
and wait for a mix of I/O events on multiple fd’s while continuing to respond to other
forms of IPC.

Here are the conditions upon which the requested event can be delivered:

_NOTIFY_COND_OUTPUT — there’s room in the output buffer for more data.

_NOTIFY_COND_INPUT — resource-manager-defined amount of data is
available to read.
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_NOTIFY_OUT_OF_BAND — resource-manager-defined “out of band” data is
available.

Signals
The OS supports the 32 standard POSIX signals (as in UNIX) as well as the POSIX
realtime signals, both numbered from a kernel-implemented set of 64 signals with
uniform functionality. While the POSIX standard defines realtime signals as differing
from UNIX-style signals (in that they may contain four bytes of data and a byte code
and may be queued for delivery), this functionality can be explicitly selected or
deselected on a per-signal basis, allowing this converged implementation to still
comply with the standard.

Incidentally, the UNIX-style signals can select POSIX realtime signal queuing, if the
application wants it. QNX Neutrino also extends the signal-delivery mechanisms of
POSIX by allowing signals to be targeted at specific threads, rather than simply at the
process containing the threads. Since signals are an asynchronous event, they’re also
implemented with the event-delivery mechanisms.

Microkernel call POSIX call Description

SignalKill() kill(), pthread_kill(),
raise(), sigqueue()

Set a signal on a process
group, process, or thread.

SignalAction() sigaction() Define action to take on
receipt of a signal.

SignalProcmask() sigprocmask(),
pthread_sigmask()

Change signal blocked
mask of a thread.

SignalSuspend() sigsuspend(), pause() Block until a signal
invokes a signal handler.

SignalWaitinfo() sigwaitinfo() Wait for signal and return
info on it.

The original POSIX specification defined signal operation on processes only. In a
multithreaded process, the following rules are followed:

• The signal actions are maintained at the process level. If a thread ignores or catches
a signal, it affects all threads within the process.

• The signal mask is maintained at the thread level. If a thread blocks a signal, it
affects only that thread.

• An unignored signal targeted at a thread will be delivered to that thread alone.

• An unignored signal targeted at a process is delivered to the first thread that doesn’t
have the signal blocked. If all threads have the signal blocked, the signal will be
queued on the process until any thread ignores or unblocks the signal. If ignored,
the signal on the process will be removed. If unblocked, the signal will be moved
from the process to the thread that unblocked it.
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When a signal is targeted at a process with a large number of threads, the thread table
must be scanned, looking for a thread with the signal unblocked. Standard practice for
most multithreaded processes is to mask the signal in all threads but one, which is
dedicated to handling them. To increase the efficiency of process-signal delivery, the
kernel will cache the last thread that accepted a signal and will always attempt to
deliver the signal to it first.

Process

Signal

ignore

Signal

queue

64...1

64

64...1

47

Signals queued to this thread.

64...1

Signals delivered to this thread.

Thread

vector

Thread

Signal

blocked

Signal

queue

Thread

Signal

blocked

Signal

queue

33

33

Signals delivered to process
but blocked by all threads.

Signal delivery.

The POSIX standard includes the concept of queued realtime signals. QNX Neutrino
supports optional queuing of any signal, not just realtime signals. The queuing can be
specified on a signal-by-signal basis within a process. Each signal can have an
associated 8-bit code and a 32-bit value.

This is very similar to message pulses described earlier. The kernel takes advantage of
this similarity and uses common code for managing both signals and pulses. The
signal number is mapped to a pulse priority using _SIGMAX – signo. As a result,
signals are delivered in priority order with lower signal numbers having higher
priority. This conforms with the POSIX standard, which states that existing signals
have priority over the new realtime signals.
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Special signals
As mentioned earlier, the OS defines a total of 64 signals. Their range is as follows:

Signal range Description

1 ... 57 57 POSIX signals (including traditional UNIX signals)

41 ... 56 16 POSIX realtime signals (SIGRTMIN to SIGRTMAX)

57 ... 64 Eight special-purpose QNX Neutrino signals

The eight special signals cannot be ignored or caught. An attempt to call the signal()
or sigaction() functions or the SignalAction() kernel call to change them will fail with
an error of EINVAL.

In addition, these signals are always blocked and have signal queuing enabled. An
attempt to unblock these signals via the sigprocmask() function or SignalProcmask()
kernel call will be quietly ignored.

A regular signal can be programmed to this behavior using the following standard
signal calls. The special signals save the programmer from writing this code and
protect the signal from accidental changes to this behavior.

sigset_t *set;
struct sigaction action;

sigemptyset(&set);
sigaddset(&set, signo);
sigprocmask(SIG_BLOCK, &set, NULL);

action.sa_handler = SIG_DFL;
action.sa_flags = SA_SIGINFO;
sigaction(signo, &action, NULL);

This configuration makes these signals suitable for synchronous notification using the
sigwaitinfo() function or SignalWaitinfo() kernel call. The following code will block
until the eighth special signal is received:

sigset_t *set;
siginfo_t info;

sigemptyset(&set);
sigaddset(&set, SIGRTMAX + 8);
sigwaitinfo(&set, &info);
printf("Received signal %d with code %d and value %d\n",

info.si_signo,
info.si_code,
info.si_value.sival_int);

Since the signals are always blocked, the program cannot be interrupted or killed if the
special signal is delivered outside of the sigwaitinfo() function. Since signal queuing is
always enabled, signals won’t be lost — they’ll be queued for the next sigwaitinfo()
call.
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These signals were designed to solve a common IPC requirement where a server
wishes to notify a client that it has information available for the client. The server will
use the MsgDeliverEvent() call to notify the client. There are two reasonable choices
for the event within the notification: pulses or signals.

A pulse is the preferred method for a client that may also be a server to other clients.
In this case, the client will have created a channel for receiving messages and can also
receive the pulse.

This won’t be true for most simple clients. In order to receive a pulse, a simple client
would be forced to create a channel for this express purpose. A signal can be used in
place of a pulse if the signal is configured to be synchronous (i.e. the signal is
blocked) and queued — this is exactly how the special signals are configured. The
client would replace the MsgReceive() call used to wait for a pulse on a channel with a
simple sigwaitinfo() call to wait for the signal.

This signal mechanism is used by Photon to wait for events and by the select()
function to wait for I/O from multiple servers. Of the eight special signals, the first
two have been given special names for this use.

#define SIGSELECT (SIGRTMAX + 1)
#define SIGPHOTON (SIGRTMAX + 2)

Summary of signals

Signal Description

SIGABRT Abnormal termination signal such as issued by the abort() function.

SIGALRM Timeout signal such as issued by the alarm() function.

SIGBUS Indicates a memory parity error (QNX-specific interpretation). Note
that if a second fault occurs while your process is in a signal handler
for this fault, the process will be terminated.

SIGCHLD Child process terminated. The default action is to ignore the signal.

SIGCONT Continue if HELD. The default action is to ignore the signal if the
process isn’t HELD.

SIGDEADLK Mutex deadlock occurred. If you haven’t called SyncMutexEvent(),
and if the conditions that would cause the kernel to deliver the event
occur, then the kernel delivers a SIGDEADLK instead.

SIGEMT EMT instruction (emulator trap).

SIGFPE Erroneous arithmetic operation (integer or floating point), such as
division by zero or an operation resulting in overflow. Note that if a
second fault occurs while your process is in a signal handler for this
fault, the process will be terminated.

continued. . .
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Signal Description

SIGHUP Death of session leader, or hangup detected on controlling terminal.

SIGILL Detection of an invalid hardware instruction. Note that if a second
fault occurs while your process is in a signal handler for this fault,
the process will be terminated.

SIGINT Interactive attention signal (Break).

SIGIOT IOT instruction (not generated on x86 hardware).

SIGKILL Termination signal — should be used only for emergency situations.
This signal cannot be caught or ignored.

SIGPIPE Attempt to write on a pipe with no readers.

SIGPOLL Pollable event occurred.

SIGQUIT Interactive termination signal.

SIGSEGV Detection of an invalid memory reference. Note that if a second
fault occurs while your process is in a signal handler for this fault,
the process will be terminated.

SIGSTOP Stop process (the default). This signal cannot be caught or ignored.

SIGSYS Bad argument to system call.

SIGTERM Termination signal.

SIGTRAP Unsupported software interrupt.

SIGTSTP Stop signal generated from keyboard.

SIGTTIN Background read attempted from control terminal.

SIGTTOU Background write attempted to control terminal.

SIGURG Urgent condition present on socket.

SIGUSR1 Reserved as application-defined signal 1.

SIGUSR2 Reserved as application-defined signal 2.

SIGWINCH Window size changed.

POSIX message queues
POSIX defines a set of nonblocking message-passing facilities known as message
queues. Like pipes, message queues are named objects that operate with “readers” and
“writers.” As a priority queue of discrete messages, a message queue has more
structure than a pipe and offers applications more control over communications.
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To use POSIX message queues in QNX Neutrino, the message queue server must be
running. QNX Neutrino has two implementations of message queues:

• a “traditional” implementation that uses the mqueue resource manager (see the
Resource Managers chapter in this book)

• an alternate implementation that uses the mq server and asynchronous messages

For more information about these implementations, see the Utilities Reference.

Unlike our inherent message-passing primitives, the POSIX message queues reside
outside the kernel.

Why use POSIX message queues?
POSIX message queues provide a familiar interface for many realtime programmers.
They are similar to the “mailboxes” found in many realtime executives.

There’s a fundamental difference between our messages and POSIX message queues.
Our messages block — they copy their data directly between the address spaces of the
processes sending the messages. POSIX messages queues, on the other hand,
implement a store-and-forward design in which the sender need not block and may
have many outstanding messages queued. POSIX message queues exist independently
of the processes that use them. You would likely use message queues in a design where
a number of named queues will be operated on by a variety of processes over time.

For raw performance, POSIX message queues will be slower than QNX Neutrino
native messages for transferring data. However, the flexibility of queues may make
this small performance penalty worth the cost.

File-like interface
Message queues resemble files, at least as far as their interface is concerned. You open
a message queue with mq_open(), close it with mq_close(), and destroy it with
mq_unlink(). And to put data into (“write”) and take it out of (“read”) a message
queue, you use mq_send() and mq_receive().

For strict POSIX conformance, you should create message queues that start with a
single slash (/) and contain no other slashes. But note that we extend the POSIX
standard by supporting pathnames that may contain multiple slashes. This allows, for
example, a company to place all its message queues under its company name and
distribute a product with increased confidence that a queue name will not conflict with
that of another company.

In QNX Neutrino, all message queues created will appear in the filename space under
the directory:

• /dev/mqueue if you’re using the traditional (mqueue) implementation

• /dev/mq if you’re using the alternate (mq) implementation
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For example, with the traditional implementation:

mq_open() name: Pathname of message queue:

/data /dev/mqueue/data

/acme/data /dev/mqueue/acme/data

/qnx/data /dev/mqueue/qnx/data

You can display all message queues in the system using the ls command as follows:

ls -Rl /dev/mqueue

The size printed is the number of messages waiting.

Message-queue functions
POSIX message queues are managed via the following functions:

Function Description

mq_open() Open a message queue.

mq_close() Close a message queue.

mq_unlink() Remove a message queue.

mq_send() Add a message to the message queue.

mq_receive() Receive a message from the message queue.

mq_notify() Tell the calling process that a message is available on a message
queue.

mq_setattr() Set message queue attributes.

mq_getattr() Get message queue attributes.

Shared memory
Shared memory offers the highest bandwidth IPC available. Once a shared-memory
object is created, processes with access to the object can use pointers to directly read
and write into it. This means that access to shared memory is in itself unsynchronized.
If a process is updating an area of shared memory, care must be taken to prevent
another process from reading or updating the same area. Even in the simple case of a
read, the other process may get information that is in flux and inconsistent.

To solve these problems, shared memory is often used in conjunction with one of the
synchronization primitives to make updates atomic between processes. If the
granularity of updates is small, then the synchronization primitives themselves will
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limit the inherently high bandwidth of using shared memory. Shared memory is
therefore most efficient when used for updating large amounts of data as a block.

Both semaphores and mutexes are suitable synchronization primitives for use with
shared memory. Semaphores were introduced with the POSIX realtime standard for
interprocess synchronization. Mutexes were introduced with the POSIX threads
standard for thread synchronization. Mutexes may also be used between threads in
different processes. POSIX considers this an optional capability; we support it. In
general, mutexes are more efficient than semaphores.

Shared memory with message passing
Shared memory and message passing can be combined to provide IPC that offers:

• very high performance (shared memory)

• synchronization (message passing)

• network transparency (message passing)

Using message passing, a client sends a request to a server and blocks. The server
receives the messages in priority order from clients, processes them, and replies when
it can satisfy a request. At this point, the client is unblocked and continues. The very
act of sending messages provides natural synchronization between the client and the
server. Rather than copy all the data through the message pass, the message can
contain a reference to a shared-memory region, so the server could read or write the
data directly. This is best explained with a simple example.

Let’s assume a graphics server accepts draw image requests from clients and renders
them into a frame buffer on a graphics card. Using message passing alone, the client
would send a message containing the image data to the server. This would result in a
copy of the image data from the client’s address space to the server’s address space.
The server would then render the image and issue a short reply.

If the client didn’t send the image data inline with the message, but instead sent a
reference to a shared-memory region that contained the image data, then the server
could access the client’s data directly.

Since the client is blocked on the server as a result of sending it a message, the server
knows that the data in shared memory is stable and will not change until the server
replies. This combination of message passing and shared memory achieves natural
synchronization and very high performance.

This model of operation can also be reversed — the server can generate data and give
it to a client. For example, suppose a client sends a message to a server that will read
video data directly from a CD-ROM into a shared memory buffer provided by the
client. The client will be blocked on the server while the shared memory is being
changed. When the server replies and the client continues, the shared memory will be
stable for the client to access. This type of design can be pipelined using more than
one shared-memory region.
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Simple shared memory can’t be used between processes on different computers
connected via a network. Message passing, on the other hand, is network transparent.
A server could use shared memory for local clients and full message passing of the
data for remote clients. This allows you to provide a high-performance server that is
also network transparent.

In practice, the message-passing primitives are more than fast enough for the majority
of IPC needs. The added complexity of a combined approach need only be considered
for special applications with very high bandwidth.

Creating a shared-memory object
Multiple threads within a process share the memory of that process. To share memory
between processes, you must first create a shared-memory region and then map that
region into your process’s address space. Shared-memory regions are created and
manipulated using the following calls:

Function Description

shm_open() Open (or create) a shared-memory region.

close() Close a shared-memory region.

mmap() Map a shared-memory region into a process’s address space.

munmap() Unmap a shared-memory region from a process’s address space.

mprotect() Change protections on a shared-memory region.

msync() Synchronize memory with physical storage.

shm_ctl() Give special attributes to a shared-memory object.

shm_unlink() Remove a shared-memory region.

POSIX shared memory is implemented in QNX Neutrino via the process manager
(procnto). The above calls are implemented as messages to procnto (see the
Process Manager chapter in this book).

The shm_open() function takes the same arguments as open() and returns a file
descriptor to the object. As with a regular file, this function lets you create a new
shared-memory object or open an existing shared-memory object.

When a new shared-memory object is created, the size of the object is set to zero. To
set the size, you use the ftruncate() or shm_ctl() function. Note that this is the very
same function used to set the size of a file.

mmap()
Once you have a file descriptor to a shared-memory object, you use the mmap()
function to map the object, or part of it, into your process’s address space. The mmap()
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function is the cornerstone of memory management within QNX Neutrino and
deserves a detailed discussion of its capabilities.

The mmap() function is defined as follows:

void * mmap(void *where_i_want_it, size_t length,
int memory_protections, int mapping_flags, int fd,
off_t offset_within_shared_memory);

In simple terms this says: “Map in length bytes of shared memory at
offset_within_shared_memory in the shared-memory object associated with fd.”

The mmap() function will try to place the memory at the address where_i_want_it in
your address space. The memory will be given the protections specified by
memory_protections and the mapping will be done according to the mapping_flags.

The three arguments fd, offset_within_shared_memory, and length define a portion of
a particular shared object to be mapped in. It’s common to map in an entire shared
object, in which case the offset will be zero and the length will be the size of the
shared object in bytes. On an Intel processor, the length will be a multiple of the page
size, which is 4096 bytes.

mmap ( addr, len, prot, flags, fd, offset );

len

len

addr

offset

Shared memory

object

Process address

space

Arguments to mmap().

The return value of mmap() will be the address in your process’s address space where
the object was mapped. The argument where_i_want_it is used as a hint by the
system to where you want the object placed. If possible, the object will be placed at
the address requested. Most applications specify an address of zero, which gives the
system free reign to place the object where it wishes.

The following protection types may be specified for memory_protections:
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Manifest Description

PROT_EXEC Memory may be executed.

PROT_NOCACHE Memory should not be cached.

PROT_NONE No access allowed.

PROT_READ Memory may be read.

PROT_WRITE Memory may be written.

The PROT_NOCACHE manifest should be used when a shared-memory region is used
to gain access to dual-ported memory that may be modified by hardware (e.g. a video
frame buffer or a memory-mapped network or communications board). Without this
manifest, the processor may return “stale” data from a previously cached read.

The mapping_flags determine how the memory is mapped. These flags are broken
down into two parts — the first part is a type and must be specified as one of the
following:

Map type Description

MAP_SHARED The mapping is shared by the calling processes.

MAP_PRIVATE The mapping is private to the calling process. It allocates system
RAM and makes a copy of the object.

The MAP_SHARED type is the one to use for setting up shared memory between
processes; MAP_PRIVATE has more specialized uses.

A number of flags may be ORed into the above type to further define the mapping.
These are described in detail in the mmap() entry in the Library Reference. A few of
the more interesting flags are:

Map type modifier Description

MAP_ANON You commonly use this with MAP_PRIVATE; you must set
the fd parameter to NOFD. You can use MAP_ANON as the
basis for a page-level memory allocator. By default, the
allocated memory is zero-filled; see “Initializing allocated
memory,” below.

continued. . .
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Map type modifier Description

MAP_FIXED Map object to the address specified by where_i_want_it. If a
shared-memory region contains pointers within it, then you
may need to force the region at the same address in all
processes that map it. This can be avoided by using offsets
within the region in place of direct pointers.

MAP_PHYS This flag indicates that you wish to deal with physical
memory. The fd parameter should be set to NOFD. When
used with MAP_SHARED, the offset_within_shared_memory
specifies the exact physical address to map (e.g. for video
frame buffers). If used with MAP_ANON then physically
contiguous memory is allocated (e.g. for a DMA buffer).
MAP_NOX64K and MAP_BELOW16M are used to further
define the MAP_ANON allocated memory and address
limitations present in some forms of DMA.

MAP_NOX64K Used with MAP_PHYS | MAP_ANON. The allocated
memory area will not cross a 64-KB boundary. This is
required for the old 16-bit PC DMA.

MAP_BELOW16M Used with MAP_PHYS | MAP_ANON. The allocated
memory area will reside in physical memory below 16 MB.
This is necessary when using DMA with ISA bus devices.

MAP_NOINIT Relax the POSIX requirement to zero the allocated memory;
see “Initializing allocated memory,” below.

Using the mapping flags described above, a process can easily share memory between
processes:

/* Map in a shared memory region */
fd = shm_open("datapoints", O_RDWR);
addr = mmap(0, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

Or share memory with hardware such as video memory:

/* Map in VGA display memory */
addr = mmap(0, 65536, PROT_READ|PROT_WRITE,

MAP_PHYS|MAP_SHARED, NOFD, 0xa0000);

Or allocate a DMA buffer for a bus-mastering PCI network card:

/* Allocate a physically contiguous buffer */
addr = mmap(0, 262144, PROT_READ|PROT_WRITE|PROT_NOCACHE,

MAP_PHYS|MAP_ANON, NOFD, 0);

You can unmap all or part of a shared-memory object from your address space using
munmap(). This primitive isn’t restricted to unmapping shared memory — it can be
used to unmap any region of memory within your process. When used in conjunction
with the MAP_ANON flag to mmap(), you can easily implement a private page-level
allocator/deallocator.

You can change the protections on a mapped region of memory using mprotect(). Like
munmap(), mprotect() isn’t restricted to shared-memory regions — it can change the
protection on any region of memory within your process.
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Initializing allocated memory
POSIX requires that mmap() zero any memory that it allocates. It can take a while to
initialize the memory, so QNX Neutrino provides a way to relax the POSIX
requirement. This allows for faster starting, but can be a security problem.

This feature was added in the QNX Neutrino Core OS 6.3.2.

Avoiding initializing the memory requires the cooperation of the process doing the
unmapping and the one doing the mapping:

• The munmap_flags() function is a non-POSIX function that’s similar to munmap()
but lets you control what happens when the memory is next mapped:

int munmap_flags( void *addr, size_t len,
unsigned flags );

Pass one of the following for the flags argument:

0 Behave like munmap().

UNMAP_INIT_REQUIRED

POSIX initialization of the page to all zeroes is required the next time the
underlying physical memory is allocated.

UNMAP_INIT_OPTIONAL

Initialization of the underlying physical memory to zeroes on its next
allocation is optional.

• If you specify the MAP_NOINIT flag to mmap(), and the physical memory being
mapped was previously unmapped with UNMAP_INIT_OPTIONAL, the POSIX
requirement that the memory be zeroed is relaxed.

By default, the kernel initializes the memory, but you can control this by using the -m
option to procnto. The argument to this option is a string that lets you enable or
disable aspects of the memory manager:

i munmap() acts as if UNMAP_INIT_REQUIRED were specified.

˜i munmap() acts as if UNMAP_INIT_OPTIONAL were specified.

Note again that munmap_flags() with a flags argument of 0 behaves the same as
munmap() does.

Typed memory
Typed memory is POSIX functionality defined in the 1003.1 specification. It’s part of
the advanced realtime extensions, and the manifests are located in the <sys/mman.h>
header file.

Typed memory adds the following functions to the C library:
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posix_typed_mem_open()

Open a typed memory object. This function returns a file descriptor, which you
can then pass to mmap() to establish a memory mapping of the typed memory
object.

posix_typed_mem_get_info()

Get information (currently the amount of available memory) about a typed
memory object.

POSIX typed memory provides an interface to open memory objects (which are
defined in an OS-specific fashion) and perform mapping operations on them. It’s
useful in providing an abstraction between BSP- or board-specific address layouts and
device drivers or user code.

Implementation-defined behavior
POSIX specifies that typed memory pools (or objects) are created and defined in an
implementation-specific fashion. This section describes the following for Neutrino:

• Seeding of typed memory regions

• Naming of typed memory regions

• Pathname space and typed memory

• mmap() allocation flags and typed memory objects

• Permissions and typed memory objects

• Object length and offset definitions

• Interaction with other POSIX APIs

Seeding of typed memory regions

Under Neutrino, typed memory objects are defined from the memory regions specified
in the asinfo section of the system page. Thus, typed memory objects map directly to
the address space hierarchy (asinfo segments) define by startup. The typed memory
objects also inherit the properties defined in asinfo, namely the physical address (or
bounds) of the memory segments.

In general, the naming and properties of the asinfo entries is arbitrary and is
completely under the user’s control. There are, however, some mandatory entries:

memory Physical addressability of the processor, typically 4 GB on a 32-bit CPU
(more with physical addressing extensions).

ram All of the RAM on the system. This may consist of multiple entries.

sysram System RAM, i.e. memory that has been given to the OS to manage. This
may also consist of multiple entries.
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Since by convention sysram is the memory that has been given to the OS, this pool is
the same as that used by the OS to satisfy anonymous mmap() and malloc() requests.
You can create additional entries, but only in startup, using the as_add() function.

Naming of typed memory regions

The names of typed memory regions are derived directly from the names of the asinfo
segments. The asinfo section itself describes a hierarchy, and so the naming of typed
memory object is a hierarchy. Here’s a sample system configuration:

Name Range (start, end)

/memory 0, 0xFFFFFFFF

/memory/ram 0, 0x1FFFFFF

/memory/ram/sysram 0x1000, 0x1FFFFFF

/memory/isa/ram/dma 0x1000, 0xFFFFFF

/memory/ram/dma 0x1000, 0x1FFFFFF

The name you pass to posix_typed_mem_open() follows the above naming
convention. POSIX allows an implementation to define what happens when the name
doesn’t start with a leading slash (/). The resolution rules on opening are as follows:

1 If the name starts with a leading /, an exact match is done.

2 The name may contain intermediate / characters. These are considered as path
component separators. If multiple path components are specified, they’re
matched from the bottom up (the opposite of the way filenames are resolved).

3 If the name doesn’t start with a leading /, a tail match is done on the pathname
components specified.

Here are some examples of how posix_typed_mem_open() resolves names, using the
above sample configuration:

This name: Resolves to: See:

/memory /memory Rule 1

/memory/ram /memory/ram Rule 2

/sysram Fails

sysram /memory/ram/sysram Rule 3
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Pathname space and typed memory

The typed memory name hierarchy is exported through the process manager
namespace under /dev/tymem. Applications can list this hierarchy, and look at the
asinfo entries in the system page to get information about the typed memory.

Unlike for shared memory objects, you can’t open typed memory through the
namespace interface, because posix_typed_mem_open() takes the additional
parameter tflag, which is required and isn’t provided in the open() API.

mmap() allocation flags and typed memory objects

The following general cases of allocations and mapping are considered for typed
memory:

• The typed memory pool is explicitly allocated from
(POSIX_TYPED_MEM_ALLOCATE and
POSIX_TYPED_MEM_ALLOCATE_CONTIG). This case is just like a normal
MAP_SHARED of a anonymous object:

mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_SHARED|MAP_ANON,
NOFD, 0);

The memory is allocated and not available for other allocations, but if you fork the
process, the child processes can access it as well. The memory is released when the
last mapping to it is removed.

Note that like somebody doing mem_offset() and then a MAP_PHYS to gain access
to previously allocated memory, somebody else could open the typed memory
object with POSIX_TYPED_MEMORY_ALLOCATABLE (or with no flags) and gain
access to the same physical memory that way.

POSIX_TYPED_MEM_ALLOC_CONTIG is like MAP_ANON | MAP_SHARED, in
that it causes a contiguous allocation.

• The POSIX_TYPED_MEM_ALLOCATABLE case, which is used to create a
mapping to an object without allocation or deallocation. This is equivalent to a
shared mapping to physical memory.

You should use only MAP_SHARED mappings, since a write to a MAP_PRIVATE
mapping will (as normal) create a private copy for the process in normal anonymous
memory.

If you specify no flag, or you specify POSIX_TYPED_MEM_MAP_ALLOCATABLE,
the offset parameter to mmap() specifies the starting physical address in the typed
memory region; if the typed memory region is discontiguous (multiple asinfo entries),
the allowed offset values are also discontiguous and don’t start at zero as they do for
shared memory objects. If you specify a [paddr, paddr + size) region that falls outside
the allowed addresses for the typed memory object, mmap() fails with ENXIO.
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Permissions and typed memory objects

Permissions on a typed memory object are governed by UNIX permissions. The oflags
argument to posix_typed_mem_open() specifies the desired access privilege, and these
flags are checked against the permission mask of the typed memory object.

POSIX doesn’t specify how permissions are assigned to the typed memory objects.
Under Neutrino, default permissions are assigned at system boot-up. By default, root
is the owner and group, and has read-write permissions; no one else has any
permissions.

Currently, there’s no mechanism to change the permissions of an object. In the future,
the implementation may be extended to allow chmod() and chown() to modify the
permissions.

Object length and offset definitions

You can retrieve the size of an object by using posix_typed_mem_get_info(). This call
fills in a posix_typed_mem_info structure, which includes the posix_tmi_length
field, which contains the size of the typed memory object.

As specified by POSIX, the length field is dynamic and contains the current
allocatable size for that object (in effect, the free size of the object for
POSIX_TYPED_MEM_ALLOCATE and POSIX_TYPED_MEM_ALLOCATE_CONTIG).
If you opened the object with a tflag of 0 or POSIX_TYPED_MEM_ALLOCATABLE,
the length field is set to zero.

When you map in a typed memory object, you usually pass an offset to mmap(). The
offset is the physical address of the location in the object where the mapping should
commence. The offset is appropriate only when opening the object with a tflag of 0 or
POSIX_TYPED_MEM_ALLOCATABLE. If you opened the typed memory object with
POSIX_TYPED_MEM_ALLOCATE or POSIX_TYPED_MEM_ALLOCATE_CONTIG, a
nonzero offset causes the call to mmap() to fail with an error of EINVAL.

Interaction with other POSIX APIs

rlimits The POSIX setrlimit() APIs provide the ability to set limits on the
virtual and physical memory that a process can consume. Since typed
memory operations may operate on normal RAM (sysram) and will
create mappings in the process’s address space, they need to be taken
into account when doing the rlimit accounting. In particular, the
following rules apply:

• Any mapping created by mmap() for typed memory objects is
counted in the process’s RLIMIT_VMEM or RLIMIT_AS limit.

• Typed memory never counts against RLIMIT_DATA.

POSIX file-descriptor functions

You can use the file descriptor that posix_typed_memory_open() returns
with selected POSIX fd-based calls, as follows:
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• fstat(fd,..), which fills in the stat structure as it does for a shared
memory object, except that the size field doesn’t hold the size of the
typed memory object.

• close(fd) closes the file descriptor.

• dup() and dup2() duplicate the file handle.

• posix_mem_offset() behaves as documented in the POSIX
specification.

Practical examples
Allocating contiguous memory from system RAM

int fd = posix_typed_mem_open( "/memory/ram/sysram", O_RDWR,
POSIX_TYPED_MEM_ALLOCATE_CONTIG);

unsigned vaddr = mmap( NULL, size, PROT_READ | PROT_WRITE,
MAP_PRIVATE, fd, 0);

Defining packet memory and allocating from it

Assume you have special memory (say fast SRAM) that you want to use for packet
memory. This SRAM isn’t put in the global system RAM pool. Instead, in startup, we
use as_add() (see the Customizing Image Startup Programs chapter of Building
Embedded Systems) to add an asinfo entry for the packet memory:

as_add(phys_addr, phys_addr + size - 1, AS_ATTR_NONE,
"packet_memory", mem_id);

where phys_addr is the physical address of the SRAM, size is the SRAM size, and
mem_id is the ID of the parent (typically memory, which is returned by as_default()).

This code creates an asinfo entry for packet_memory, which you can then use as
POSIX typed memory. The following code allows different applications to allocate
pages from packet_memory:

int fd = posix_typed_mem_open( "packet_memory", O_RDWR,
POSIX_TYPED_MEM_ALLOCATE);

unsigned vaddr = mmap( NULL, size, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

Alternatively, you may want to use the packet memory as direct shared, physical
buffers. In this case, applications would use it as follows:

int fd = posix_typed_mem_open( "packet_memory", O_RDWR,
POSIX_TYPED_MEM_ALLOCATABLE);

unsigned vaddr = mmap( NULL, size, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, offset);

Defining a DMA-safe region

On some hardware, due to limitations of the chipset or memory controller, it may not
be possible to perform DMA to arbitrary addresses in the system. In some cases, the
chipset has only the ability to DMA to a subset of all physical RAM. This has
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traditionally been difficult to solve without statically reserving some portion of RAM
of driver DMA buffers (which is potentially wasteful). Typed memory provides a
clean abstraction to solve this issue. Here’s an example:

In startup, use as_add_containing() (see the Customizing Image Startup Programs
chapter of Building Embedded Systems) to define an asinfo entry for DMA-safe
memory. Make this entry be a child of ram:

as_add_containing( dma_addr, dma_addr + size - 1,
AS_ATTR_RAM, "dma", "ram");

where dma_addr is the start of the DMA-safe RAM, and size is the size of the
DMA-safe region.

This code creates an asinfo entry for dma, which is a child of ram. Drivers can then
use it to allocate DMA-safe buffers:

int fd = posix_typed_mem_open( "ram/dma", O_RDWR,
POSIX_TYPED_MEM_ALLOCATE_CONTIG);

unsigned vaddr = mmap( NULL, size, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

Pipes and FIFOs
To use pipes or FIFOs in QNX Neutrino, the pipe resource manager (pipe) must be
running.

Pipes
A pipe is an unnamed file that serves as an I/O channel between two or more
cooperating processes—one process writes into the pipe, the other reads from the pipe.
The pipe manager takes care of buffering the data. The buffer size is defined as
PIPE_BUF in the <limits.h> file. A pipe is removed once both of its ends have
closed. The function pathconf() returns the value of the limit.

Pipes are normally used when two processes want to run in parallel, with data moving
from one process to the other in a single direction. (If bidirectional communication is
required, messages should be used instead.)

A typical application for a pipe is connecting the output of one program to the input of
another program. This connection is often made by the shell. For example:

ls | more

directs the standard output from the ls utility through a pipe to the standard input of
the more utility.
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If you want to: Use the:

Create pipes from within the shell pipe symbol (“|”)

Create pipes from within programs pipe() or popen() functions

FIFOs
FIFOs are essentially the same as pipes, except that FIFOs are named permanent files
that are stored in filesystem directories.

If you want to: Use the:

Create FIFOs from within the shell mkfifo utility

Create FIFOs from within programs mkfifo() function

Remove FIFOs from within the shell rm utility

Remove FIFOs from within programs remove() or unlink() function
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Introduction
An instrumented version of the QNX Neutrino microkernel (procnto-instr) is
equipped with a sophisticated tracing and profiling mechanism that lets you monitor
your system’s execution in real time. The procnto-instrmodule works on both
single-CPU and SMP systems.

The procnto-instrmodule uses very little overhead and gives exceptionally good
performance — it’s typically about 98% as fast as the noninstrumented kernel (when it
isn’t logging). The additional amount of code (about 30 KB on an x86 system) in the
instrumented kernel is a relatively small price to pay for the added power and
flexibility of this useful tool. Depending on the footprint requirements of your final
system, you may choose to use this special kernel as a development/prototyping tool
or as the actual kernel in your final product.

The instrumented module is nonintrusive — you don’t have to modify a program’s
source code in order to monitor how that program interacts with the kernel. You can
trace as many or as few interactions (e.g. kernel calls, state changes, and other system
activities) as you want between the kernel and any running thread or process in your
system. You can even monitor interrupts. In this context, all such activities are known
as events.

For more details, see the System Analysis Toolkit User’s Guide.

Instrumentation at a glance
Here are the essential tasks involved in kernel instrumentation:

1 The instrumented microkernel (procnto-instr) emits trace events as a result
of various system activities. These events are automatically copied to a set of
buffers grouped into a circular linked list.

2 As soon as the number of events inside a buffer reaches the high-water mark, the
kernel notifies a data-capture utility.

3 The data-capture utility then writes the trace events from the buffer to an output
device (e.g. a serial port, an event file, etc.).

4 A data-interpretation facility then interprets the events and presents this data to
the user.
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Instrumentation at a glance.

Event control
Given the large number of activities occurring in a live system, the number of events
that the kernel emits can be overwhelming (in terms of the amount of data, the
processing requirements, and the resources needed to store it). But you can easily
control the amount of data emitted. Specifically, you can:

• control the initial conditions that trigger event emissions

• apply predefined kernel filters to dynamically control emissions

• implement your own event handlers for even more filtering.

Once the data has been collected by the data-capture utility (tracelogger), it can
then be analyzed. You can analyze the data in real time or offline after the relevant
events have been gathered. The System Analysis tool within the IDE presents this data
graphically so you can “see” what’s going on in your system.

Modes of emission
Apart from applying the various filters to control the event stream, you can also
specify one of two modes the kernel can use to emit events:

fast mode Emits only the most pertinent information (e.g. only two kernel call
arguments) about an event.

wide mode Generates more information (e.g. all kernel call arguments) for the
same event.

The trade-off here is one of speed vs knowledge: fast mode delivers less data, while
wide mode packs much more information for each event. Either way, you can easily
tune your system, because these modes work on a per-event basis.
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As an example of the difference between the fast and wide emission modes, let’s look
at the kinds of information we might see for a MsgSendv() call entry:

Fast mode data Number of bytes for the event

Connection ID 4 bytes

Message data 4 bytes (the first 4 bytes usually comprise the header)

Total emitted: 8 bytes

Wide mode data Number of bytes for the event

Connection ID 4 bytes

# of parts to send 4 bytes

# of parts to receive 4 bytes

Message data 4 bytes (the first 4 bytes usually comprise the header)

Message data 4 bytes

Message data 4 bytes

Total emitted: 24 bytes

Ring buffer
Rather than always emit events to an external device, the kernel can keep all of the
trace events in an internal circular buffer.

This buffer can be programmatically dumped to an external device on demand when a
certain triggering condition is met, making this a very powerful tool for identifying
elusive bugs that crop up under certain runtime conditions.

Data interpretation
The data of an event includes a high-precision timestamp as well as the ID number of
the CPU on which the event was generated. This information helps you easily
diagnose difficult timing problems, which are more likely to occur on multiprocessor
systems.

The event format also includes the CPU platform (e.g. x86, PowerPC, etc.) and endian
type, which facilitates remote analysis (whether in real time or offline). Using a data
interpreter, you can view the data output in various ways, such as:

• a timestamp-based linear presentation of the entire system

• a “running” view of only the active threads/processes

• a state-based view of events per process/thread.
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The linear output from the data interpreter might look something like this:

TRACEPRINTER version 0.94
-- HEADER FILE INFORMATION --

TRACE_FILE_NAME:: /dev/shmem/tracebuffer

TRACE_DATE:: Fri Jun 8 13:14:40 2001
TRACE_VER_MAJOR:: 0
TRACE_VER_MINOR:: 96

TRACE_LITTLE_ENDIAN:: TRUE
TRACE_ENCODING:: 16 byte events

TRACE_BOOT_DATE:: Fri Jun 8 04:31:05 2001

TRACE_CYCLES_PER_SEC:: 400181900
TRACE_CPU_NUM:: 4
TRACE_SYSNAME:: QNX

TRACE_NODENAME:: x86quad.gp.qa
TRACE_SYS_RELEASE:: 6.1.0
TRACE_SYS_VERSION:: 2001/06/04-14:07:56

TRACE_MACHINE:: x86pc
TRACE_SYSPAGE_LEN:: 2440

-- KERNEL EVENTS --
t:0x1310da15 CPU:01 CONTROL :TIME msb:0x0000000f, lsb(offset):0x1310d81c

t:0x1310e89d CPU:01 PROCESS :PROCCREATE_NAME
ppid:0
pid:1

name:./procnto-smp-instr
t:0x1310eee4 CPU:00 THREAD :THCREATE pid:1 tid:1
t:0x1310f052 CPU:00 THREAD :THRUNNING pid:1 tid:1

t:0x1310f144 CPU:01 THREAD :THCREATE pid:1 tid:2
t:0x1310f201 CPU:01 THREAD :THREADY pid:1 tid:2
t:0x1310f32f CPU:02 THREAD :THCREATE pid:1 tid:3

t:0x1310f3ec CPU:02 THREAD :THREADY pid:1 tid:3
t:0x1310f52d CPU:03 THREAD :THCREATE pid:1 tid:4
t:0x1310f5ea CPU:03 THREAD :THRUNNING pid:1 tid:4

t:0x1310f731 CPU:02 THREAD :THCREATE pid:1 tid:5
.
.

.

To help you fine-tune your interpretation of the event data stream, we provide a library
(traceparser) so you can write your own custom event interpreters.

System analysis with the IDE
The IDE module of the System Analysis Toolkit (SAT) can serve as a comprehensive
instrumentation control and post-processing visualization tool.

From within the IDE, developers can configure all trace events and modes, and then
transfer log files automatically to a remote system for analysis. As a visualization tool,
the IDE provides a rich set of event and process filters designed to help developers
quickly prune down massive event sets in order to see only those events of interest.
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The IDE helps you visualize system activity.

For more information, see the IDE User’s Guide.

Proactive tracing
While the instrumented kernel provides an excellent unobtrusive method for
instrumenting and monitoring processes, threads, and the state of your system in
general, you can also have your applications proactively influence the event-collection
process.

Using the TraceEvent() library call, applications themselves can inject custom events
into the trace stream. This facility is especially useful when building large, tightly
coupled, multicomponent systems.

For example, the following simple call would inject the integer values of eventcode,
first, and second into the event stream:

TraceEvent(_NTO_TRACE_INSERTSUSEREVENT, eventcode, first,
second);

You can also inject a string (e.g. “My Event”) into the event stream, as shown in the
following code:

#include <stdio.h>
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#include <sys/trace.h>

/* Code to associate with emitted events */
#define MYEVENTCODE 12

int main(int argc, char **argv) {
printf("My pid is %d \n", getpid());

/* Inject two integer events (26, 1975) */
TraceEvent(_NTO_TRACE_INSERTSUSEREVENT, MYEVENTCODE,

26, 1975);

/* Inject a string event (My Event) */
TraceEvent(_NTO_TRACE_INSERTUSRSTREVENT, MYEVENTCODE,

"My Event");

return 0;
}

The output, as gathered by the traceprinter data interpreter, would then look
something like this:

.

.

.
t:0x38ea737e CPU:00 USREVENT:EVENT:12, d0:26 d1:1975
.
.
.
t:0x38ea7cb0 CPU:00 USREVENT:EVENT:12 STR:"My Event"

Note that 12 was specified as the trace user eventcode for these events.
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Introduction
“Two heads are better than one” goes the old saying, and the same is true for computer
systems, where two—or more—processors can greatly improve performance.
Multiprocessing systems can be in these forms:

Discrete or traditional

A system that has separate physical processors hooked up in
multiprocessing mode over a board-level bus.

Multicore A chip that has one physical processor with multiple CPUs
interconnected over a chip-level bus.

Multicore processors deliver greater computing power through
concurrency, offer greater system density, and run at lower clock speeds
than uniprocessor chips. Multicore processors also reduce thermal
dissipation, power consumption, and board area (and hence the cost of
the system).

Multiprocessing includes several operating modes:

Asymmetric multiprocessing (AMP)

A separate OS, or a separate instantiation of the same OS, runs on each CPU.

Symmetric multiprocessing (SMP)

A single instantiation of an OS manages all CPUs simultaneously, and
applications can float to any of them.

Bound multiprocessing (BMP)

A single instantiation of an OS manages all CPUs simultaneously, but each
application is locked to a specific CPU.

To determine how many processors there are on your system, look at the num_cpu
entry of the system page. For more information, see “Structure of the system page” in
the Customizing Image Startup Programs chapter of Building Embedded Systems.

Asymmetric multiprocessing (AMP)
Asymmetric multiprocessing provides an execution environment that’s similar to
conventional uniprocessor systems. It offers a relatively straightforward path for
porting legacy code and provides a direct mechanism for controlling how the CPUs are
used. In most cases, it lets you work with standard debugging tools and techniques.

AMP can be:

• homogeneous — each CPU runs the same type and version of the OS
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• heterogeneous — each CPU runs either a different OS or a different version of the
same OS

Neutrino’s distributed programming model lets you make the best use of the multiple
CPUs in a homogeneous environment. Applications running on one CPU can
communicate transparently with applications and system services (e.g. device drivers,
protocol stacks) on other CPUs, without the high CPU utilization imposed by
traditional forms of interprocessor communication.

In heterogeneous systems, you must either implement a proprietary communications
scheme or choose two OSs that share a common infrastructure (likely IP based) for
interprocessor communications. To help avoid resource conflicts, the OSs should also
provide standardized mechanisms for accessing shared hardware components.

With AMP, you decide how the shared hardware resources used by applications are
divided up between the CPUs. Normally, this resource allocation occurs statically
during boot time and includes physical memory allocation, peripheral usage, and
interrupt handling. While the system could allocate the resources dynamically, doing
so would entail complex coordination between the CPUs.

In an AMP system, a process always runs on the same CPU, even when other CPUs
run idle. As a result, one CPU can end up being under- or overutilized. To address the
problem, the system could allow applications to migrate dynamically from CPU to
another. Doing so, however, can involve complex checkpointing of state information
or a possible service interruption as the application is stopped on one CPU and
restarted on another. Also, such migration is difficult, if not impossible, if the CPUs
run different OSs.

Symmetric multiprocessing (SMP)
Allocating resources in a multicore design can be difficult, especially when multiple
software components are unaware of how other components are employing those
resources.

Symmetric multiprocessing addresses the issue by running only one copy of Neutrino
on all of the system’s CPUs. Because the OS has insight into all system elements at all
times, it can allocate resources on the multiple CPUs with little or no input from the
application designer. Moreover, Neutrino provides built-in standardized primitives,
such as pthread_mutex_lock(), pthread_mutex_unlock(), pthread_spin_lock(), and
pthread_spin_unlock(), that let multiple applications share these resources safely and
easily.

By running only one copy of Neutrino, SMP can dynamically allocate resources to
specific applications rather than to CPUs, thereby enabling greater utilization of
available processing power. It also lets system tracing tools gather operating statistics
and application interactions for the multiprocessing system as a whole, giving you
valuable insight into how to optimize and debug applications.

For instance, the System Profiler in the IDE can track thread migration from one CPU
to another, as well as OS primitive usage, scheduling events, application-to-application
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messaging, and other events, all with high-resolution timestamping. Application
synchronization also becomes much easier since you use standard OS primitives rather
than complex IPC mechanisms.

Neutrino lets the threads of execution within an application run concurrently on any
CPU, making the entire computing power of the chip available to applications at all
times. Neutrino’s preemption and thread prioritization capabilities help you ensure
that CPU cycles go to the application that needs them the most.

Neutrino’s microkernel approach
SMP is typically associated with high-end operating systems such as Unix and
Windows NT running on high-end servers. These large monolithic systems tend to be
quite complex, the result of many person-years of development. Since these large
kernels contain the bulk of all OS services, the changes to support SMP are extensive,
usually requiring large numbers of modifications and the use of specialized spinlocks
throughout the code.

QNX Neutrino, on the other hand, contains a very small microkernel surrounded by
processes that act as resource managers, providing services such as filesystems,
character I/O, and networking. By modifying the microkernel alone, all other OS
services will gain full advantage of SMP without the need for coding changes. If these
service-providing processes are multithreaded, their many threads will be scheduled
among the available processors. Even a single-threaded server would also benefit from
an SMP system, because its thread would be scheduled on the available processors
beside other servers and client processes.

As a testament to this microkernel approach, the SMP-enabled QNX Neutrino
kernel/process manager adds only a few kilobytes of additional code. The SMP
versions are designed for these main processor families:

• PowerPC (e.g. procnto-600-smp)

• x86 (procnto-smp)

The x86 version can boot on any system that conforms to the Intel MultiProcessor
Specification (MP Spec) with up to eight Pentium (or better) processors. QNX
Neutrino also supports Intel’s Hyper-Threading Technology found in P4 and Xeon
processors.

The procnto-smp manager will also function on a single non-SMP system. With the
cost of building a dual-processor Pentium motherboard very nearly the same as that
for a single-processor motherboard, it’s possible to deliver cost-effective solutions that
can be scaled in the field by the simple addition of a second CPU. The fact that the OS
itself is only a few kilobytes larger also allows SMP to be seriously considered for
small CPU-intensive embedded systems, not just high-end servers.

The PowerPC versions of the SMP-enabled kernel deliver full SMP support (e.g.
cache-coherency, interprocessor interrupts, etc.) on appropriate PPC hardware. The
PPC version supports any SMP system with 7xx or 74xx series processors, as in such
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reference design platforms as the Motorola MVP or the Marvell
EV-64260-2XMPC7450 SMP Development System.

Booting an x86 SMP system
The microkernel itself contains very little hardware- or system-specific code. The code
that determines the capabilities of the system is isolated in a startup program, which is
responsible for initializing the system, determining available memory, etc. Information
gathered is placed into a memory table available to the microkernel and to all
processes (on a read-only basis).

The startup-bios program is designed to work on systems compatible with the
Intel MP Spec (version 1.4 or later). This startup program is responsible for:

• determining the number of processors

• determining the address of the local and I/O APIC

• initializing each additional processor

After a reset, only one processor will be executing the reset code. This processor is
called the boot processor (BP). For each additional processor found, the BP running
the startup-bios code will:

• initialize the processor

• switch it to 32-bit protected mode

• allocate the processor its own page directory

• set the processor spinning with interrupts disabled, waiting to be released by the
kernel

Booting a PowerPC SMP system
On a PPC SMP system, the boot sequence is similar to that of an x86, but a specific
startup program (e.g. startup-mvp, startup-bcm1250) will be used instead.
Specifically, the PPC-specific startup is responsible for:

• determining the number of processors

• initializing each additional processor

• initializing the IRQ, IPI, system controller, etc.

For each additional processor found, the startup code will:

• initialize the processor

• initialize the MMU

• initialize the caches

• set the processor spinning with interrupts disabled, waiting to be released by the
kernel
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How the SMP microkernel works
Once the additional processors have been released and are running, all processors are
considered peers for the scheduling of threads.

Scheduling

The scheduling algorithm follows the same rules as on a uniprocessor system. That is,
the highest-priority thread will be running on the available processor. If a new thread
becomes ready to run as the highest-priority thread in the system, it will be dispatched
to the appropriate processor. If more than one processor is selected as a potential
target, then the microkernel will try to dispatch the thread to the processor where it last
ran. This affinity is used as an attempt to reduce thread migration from one processor
to another, which can affect cache performance.

In an SMP system, the scheduler has some flexibility in deciding exactly how to
schedule low-priority threads, with an eye towards optimizing cache usage and
minimizing thread migration. In any case, the realtime scheduling rules that were in
place on a uniprocessor system are guaranteed to be upheld on an SMP system.

Kernel locking

In a uniprocessor system, only one thread is allowed to execute within the microkernel
at a time. Most kernel operations are short in duration (typically a few microseconds
on a Pentium-class processor). The microkernel is also designed to be completely
preemptible and restartable for those operations that take more time. This design
keeps the microkernel lean and fast without the need for large numbers of fine-grained
locks. It is interesting to note that placing many locks in the main code path through a
kernel will noticeably slow the kernel down. Each lock typically involves processor
bus transactions, which can cause processor stalls.

In an SMP system, QNX Neutrino maintains this philosophy of only one thread in a
preemptible and restartable kernel. The microkernel may be entered on any processor,
but only one processor will be granted access at a time.

For most systems, the time spent in the microkernel represents only a small fraction of
the processor’s workload. Therefore, while conflicts will occur, they should be more
the exception than the norm. This is especially true for a microkernel where traditional
OS services like filesystems are separate processes and not part of the kernel itself.

Interprocessor interrupts (IPIs)

The processors communicate with each other through IPIs (interprocessor interrupts).
IPIs can effectively schedule and control threads over multiple processors. For
example, an IPI to another processor is often needed when:

• a higher-priority thread becomes ready

• a thread running on another processor is hit with a signal

• a thread running on another processor is canceled

• a thread running on another processor is destroyed
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Critical sections
To control access to data structures that are shared between them, threads and
processes use the standard POSIX primitives of mutexes, condvars, and semaphores.
These work without change in an SMP system.

Many realtime systems also need to protect access to shared data structures between
an interrupt handler and the thread that owns the handler. The traditional POSIX
primitives used between threads aren’t available for use by an interrupt handler. There
are two solutions here:

• One is to remove all work from the interrupt handler and do all the work at thread
time instead. Given our fast thread scheduling, this is a very viable solution.

• In a uniprocessor system running QNX Neutrino, an interrupt handler may preempt
a thread, but a thread will never preempt an interrupt handler. This allows the
thread to protect itself from the interrupt handler by disabling and enabling
interrupts for very brief periods of time.

The thread on a non-SMP system protects itself with code of the form:

InterruptDisable()
// critical section
InterruptEnable()

Or:

InterruptMask(intr)
// critical section
InterruptUnmask(intr)

Unfortunately, this code will fail on an SMP system since the thread may be running
on one processor while the interrupt handler is concurrently running on another
processor!

One solution would be to lock the thread to a particular processor (see “Bound
Multiprocessing (BMP),” later in this chapter).

A better solution would be to use a new exclusion lock available to both the thread and
the interrupt handler. This is provided by the following primitives, which work on both
uniprocessor and SMP machines:

InterruptLock(intrspin_t* spinlock)

Attempt to acquire a spinlock, a variable shared between the interrupt handler
and thread. The code will spin in a tight loop until the lock is acquired. After
disabling interrupts, the code will acquire the lock (if it was acquired by a
thread). The lock must be released as soon as possible (typically within a few
lines of C code without any loops).

InterruptUnlock(intrspin_t* spinlock)

Release a lock and reenable interrupts.
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On a non-SMP system, there’s no need for a spinlock.

For more information, see the Multicore Processing User’s Guide.

Bound multiprocessing (BMP)
Bound multiprocessing provides the scheduling control of an asymmetric
multiprocessing model, while preserving the hardware abstraction and management of
symmetric multiprocessing. BMP is similar to SMP, but you can specify which
processors a thread can run on. You can use both SMP and BMP on the same system,
allowing some threads to migrate from one processor to another, while other threads
are restricted to one or more processors.

As with SMP, a single copy of the OS maintains an overall view of all system
resources, allowing them to be dynamically allocated and shared among applications.
But, during application initialization, a setting determined by the system designer
forces all of an application’s threads to execute only on a specified CPU.

Compared to full, floating SMP operation, this approach offers several advantages:

• It eliminates the cache thrashing that can reduce performance in an SMP system by
allowing applications that share the same data set to run exclusively on the same
CPU.

• It offers simpler application debugging than SMP since all execution threads within
an application run on a single CPU.

• It helps legacy applications that use poor techniques for synchronizing shared data
to run correctly, again by letting them run on a single CPU.

With BMP, an application locked to one CPU can’t use other CPUs, even if they’re
idle. However, Neutrino lets you dynamically change the designated CPU, without
having to checkpoint, and then stop and restart the application.

QNX Neutrino supports the concept of hard processor affinity through a runmask.
Each bit that’s set in the runmask represents a processor that a thread can run on. By
default, a thread’s runmask is set to all ones, allowing it to run on any processor. A
value of 0x01 would allow a thread to execute only on the first processor.

By default, a process’s or thread’s children don’t inherit the runmask; there’s a
separate inherit mask.

By careful use of these masks, a systems designer can further optimize the runtime
performance of a system (e.g. by relegating nonrealtime processes to a specific
processor). In general, however, this shouldn’t be necessary, because our realtime
scheduler will always preempt a lower-priority thread immediately when a
higher-priority thread becomes ready. Processor locking will likely affect only the
efficiency of the cache, since threads can be prevented from migrating.

You can specify the runmask for a new thread or process by:
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• setting the runmask member of the inheritance structure and specifying the
SPAWN_EXPLICIT_CPU flag when you call spawn()

Or:

• using the -C or -R option to the on utility when you launch a program. This also
sets the process’s inherit mask to the same value.

You can change the runmask for an existing thread or process by:

• using the _NTO_TCTL_RUNMASK or
_NTO_TCTL_RUNMASK_GET_AND_SET_INHERIT command to the ThreadCtl()
kernel call

Or:

• using the -C or -R option to the slay utility. If you also use the -i option, slay
sets the inherit mask to the same value.

For more information, see the Multicore Processing User’s Guide.

A viable migration strategy
As a midway point between AMP and SMP, BMP offers a viable migration strategy if
you wish to move towards full SMP, but you’re concerned that your existing code may
operate incorrectly in a truly concurrent execution model.

You can port legacy code to a multicore system and initially bind it to a single CPU to
ensure correct operation. By judiciously binding applications (and possibly single
threads) to specific CPUs, you can isolate potential concurrency issues down to the
application and thread level. Resolving these issues will allow the application to run
fully concurrently, thereby maximizing the performance gains provided by the
multiple processors.

Choosing between AMP, SMP, and BMP
The choice between AMP, SMP, and BMP depends on the problem you’re trying to
solve:

• AMP works well with legacy applications, but has limited scalability beyond two
CPUs.

• SMP offers transparent resource management, but software that hasn’t been
properly designed for concurrency might have problems.

• BMP offers many of the same benefits as SMP, but guarantees that uniprocessor
applications will behave correctly, greatly simplifying the migration of legacy
software.

As the following table illustrates, the flexibility to choose from any of these models
lets you strike the optimal balance between performance, scalability, and ease of
migration.
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Feature SMP BMP AMP

Seamless resource
sharing

Yes Yes —

Scalable beyond dual
CPU

Yes Yes Limited

Legacy application
operation

In most cases Yes Yes

Mixed OS environment
(e.g. Neutrino and
Linux)

— — Yes

Dedicated processor by
function

— Yes Yes

Intercore messaging Fast (OS primitives) Fast (OS primitives) Slower (application)

Thread synchronization
between CPUs

Yes Yes —

Load balancing Yes Yes —

System-wide debugging
and optimization

Yes Yes —
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Introduction
In QNX Neutrino, the microkernel is paired with the Process Manager in a single
module (procnto). This module is required for all runtime systems.

The process manager is capable of creating multiple POSIX processes (each of which
may contain multiple POSIX threads). Its main areas of responsibility include:

• process management — manages process creation, destruction, and process
attributes such as user ID (uid) and group ID (gid).

• memory management — manages a range of memory-protection capabilities,
shared libraries, and interprocess POSIX shared-memory primitives.

• pathname management — manages the pathname space into which resource
managers may attach.

User processes can access microkernel functions directly via kernel calls and process
manager functions by sending messages to procnto. Note that a user process sends a
message by invoking the MsgSend*() kernel call.

It’s important to note that threads executing within procnto invoke the microkernel in
exactly the same way as threads in other processes. The fact that the process manager
code and the microkernel share the same process address space doesn’t imply a
“special” or “private” interface. All threads in the system share the same consistent
kernel interface and all perform a privilege switch when invoking the microkernel.

Process management
The first responsibility of procnto is to dynamically create new processes. These
processes will then depend on procnto’s other responsibilities of memory
management and pathname management.

Process management consists of both process creation and destruction as well as the
management of process attributes such as process IDs, process groups, user IDs, etc.

Process primitives
The process primitives include:

posix_spawn() POSIX

spawn() QNX Neutrino

fork() POSIX

vfork() UNIX BSD extension

exec*() POSIX
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posix_spawn()

The posix_spawn() function creates a child process by directly specifying an
executable to load. To those familiar with UNIX systems, the call is modeled after a
fork() followed by an exec*(). However, it operates much more efficiently in that
there’s no need to duplicate address spaces as in a fork(), only to destroy and replace it
when the exec*() is called.

In a UNIX system, one of the main advantages of using the fork()-then-exec*() method
of creating a child process is the flexibility in changing the default environment
inherited by the new child process. This is done in the forked child just before the
exec*(). For example, the following simple shell command would close and reopen the
standard output before exec*()’ing:

ls >file

You can do the same with posix_spawn(); it gives you control over the following
classes of environment inheritance, which are often adjusted when creating a new
child process:

• file descriptors

• process user and group IDs

• signal mask

• ignored signals

• adaptive partitioning (scheduler ) attributes

There’s also a companion function, posix_spawnp(), that doesn’t require the absolute
path to the program to spawn, but instead searches for the executable using the caller’s
PATH.

Using the posix_spawn() functions is the preferred way to create a new child process.

spawn()

The QNX Neutrino spawn() function is similar to posix_spawn(). The spawn()
function gives you control over the following:

• file descriptors

• process group ID

• signal mask

• ignored signals

• the node to create the process on

• scheduling policy

• scheduling parameters (priority)
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• maximum stack size

• runmask (for SMP systems)

The basic forms of the spawn() function are:

spawn() Spawn with the explicitly specified path.

spawnp() Search the current PATH and invoke spawn() with the first matching
executable.

There’s also a set of convenience functions that are built on top of spawn() and
spawnp() as follows:

spawnl() Spawn with the command line provided as inline arguments.

spawnle() spawnl() with explicitly passed environment variables.

spawnlp() spawnp() that follows the command search path.

spawnlpe() spawnlp() with explicitly passed environment variables.

spawnv() Spawn with the command line pointed to by an array of pointers.

spawnve() spawnv() with explicitly passed environment variables.

spawnvp() spawnv() that follows the command search path.

spawnvpe() spawnvp() with explicitly passed environment variables.

When a process is spawn()’ed, the child process inherits the following attributes of its
parent:

• process group ID (unless SPAWN_SETGROUP is set in inherit.flags)

• session membership

• real user ID and real group ID

• supplementary group IDs

• priority and scheduling policy

• current working directory and root directory

• file creation mask

• signal mask (unless SPAWN_SETSIGMASK is set in inherit.flags)

• signal actions specified as SIG_DFL

• signal actions specified as SIG_IGN (except the ones modified by inherit.sigdefault
when SPAWN_SETSIGDEF is set in inherit.flags)
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The child process has several differences from the parent process:

• Signals set to be caught by the parent process are set to the default action
(SIG_DFL).

• The child process’s tms_utime, tms_stime, tms_cutime, and tms_cstime are tracked
separately from the parent’s.

• The number of seconds left until a SIGALRM signal would be generated is set to
zero for the child process.

• The set of pending signals for the child process is empty.

• File locks set by the parent aren’t inherited.

• Per-process timers created by the parent aren’t inherited.

• Memory locks and mappings set by the parent aren’t inherited.

If the child process is spawned on a remote node, the process group ID and the session
membership aren’t set; the child process is put into a new session and a new process
group.

The child process can access the parent process’s environment by using the environ
global variable (found in <unistd.h>).

For more information, see the spawn() function in the QNX Neutrino Library
Reference.

fork()

The fork() function creates a new child process by sharing the same code as the calling
process and duplicating the calling process’s data to give the child process an exact
copy. Most process resources are inherited. The following lists some resources that are
explicitly not inherited:

• process ID

• parent process ID

• file locks

• pending signals and alarms

• timers

The fork() function is typically used for one of two reasons:

• to create a new instance of the current execution environment

• to create a new process running a different program
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When creating a new thread, common data is placed in an explicitly created shared
memory region. Prior to the POSIX thread standard, this was the only way to
accomplish this. With POSIX threads, this use of fork() is better accomplished by
creating threads within a single process using pthread_create().

When creating a new process running a different program, the call to fork() is soon
followed by a call to one of the exec*() functions. This too is better accomplished by a
single call to the posix_spawn() function or the QNX Neutrino spawn() function,
which combine both operations with far greater efficiency.

Since QNX Neutrino provides better POSIX solutions than using fork(), its use is
probably best suited for porting existing code and for writing portable code that must
run on a UNIX system that doesn’t support the POSIX pthread_create() or
posix_spawn() API.

Note that fork() should be called from a process containing only a single thread.

vfork()

The vfork() function (which should also be called only from a single-threaded process)
is useful when the purpose of fork() would have been to create a new system context
for a call to one of the exec*() functions. The vfork() function differs from fork() in
that the child doesn’t get a copy of the calling process’s data. Instead, it borrows the
calling process’s memory and thread of control until a call to one of the exec*()
functions is made. The calling process is suspended while the child is using its
resources.

The vfork() child can’t return from the procedure that called vfork(), since the eventual
return from the parent vfork() would then return to a stack frame that no longer existed.

exec*()

The exec*() family of functions replaces the current process with a new process,
loaded from an executable file. Since the calling process is replaced, there can be no
successful return.

The following exec*() functions are defined:

execl() Exec with the command line provided as inline arguments.

execle() execl() with explicitly passed environment variables.

execlp() execl() that follows the command search path.

execlpe() execlp()with explicitly passed environment variables.

execv() execl() with the command line pointed to by an array of pointers.

execve() execv() with explicitly passed environment variables.

execvp() execv() that follows the command search path.
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execvpe() execvp() with explicitly passed environment variables.

The exec*() functions usually follow a fork() or vfork() in order to load a new child
process. This is better achieved by using the posix_spawn() call.

Process loading
Processes loaded from a filesystem using the exec*(), posix_spawn() or spawn() calls
are in ELF format. If the filesystem is on a block-oriented device, the code and data
are loaded into main memory.

If the filesystem is memory mapped (e.g. ROM/flash image), the code needn’t be
loaded into RAM, but may be executed in place. This approach makes all RAM
available for data and stack, leaving the code in ROM or flash. In all cases, if the same
process is loaded more than once, its code will be shared.

Memory management
While some realtime kernels or executives provide support for memory protection in
the development environment, few provide protected memory support for the runtime
configuration, citing penalties in memory and performance as reasons. But with
memory protection becoming common on many embedded processors, the benefits of
memory protection far outweigh the very small penalties in performance for enabling
it.

The key advantage gained by adding memory protection to embedded applications,
especially for mission-critical systems, is improved robustness.

With memory protection, if one of the processes executing in a multitasking
environment attempts to access memory that hasn’t been explicitly declared or
allocated for the type of access attempted, the MMU hardware can notify the OS,
which can then abort the thread (at the failing/offending instruction).

This “protects” process address spaces from each other, preventing coding errors in a
thread in one process from “damaging” memory used by threads in other processes or
even in the OS. This protection is useful both for development and for the installed
runtime system, because it makes postmortem analysis possible.

During development, common coding errors (e.g. stray pointers and indexing beyond
array bounds) can result in one process/thread accidentally overwriting the data space
of another process. If the overwriting touches memory that isn’t referenced again until
much later, you can spend hours of debugging — often using in-circuit emulators and
logic analyzers — in an attempt to find the “guilty party.”

With an MMU enabled, the OS can abort the process the instant the memory-access
violation occurs, providing immediate feedback to the programmer instead of
mysteriously crashing the system some time later. The OS can then provide the
location of the errant instruction in the failed process, or position a symbolic debugger
directly on this instruction.
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Memory Management Units (MMUs)
A typical MMU operates by dividing physical memory into a number of 4-KB pages.
The hardware within the processor then uses a set of page tables stored in system
memory that define the mapping of virtual addresses (i.e. the memory addresses used
within the application program) to the addresses emitted by the CPU to access
physical memory.

While the thread executes, the page tables managed by the OS control how the
memory addresses that the thread is using are “mapped” onto the physical memory
attached to the processor.
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tables
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Virtual address mapping (on an x86).

For a large address space with many processes and threads, the number of page-table
entries needed to describe these mappings can be significant — more than can be
stored within the processor. To maintain performance, the processor caches frequently
used portions of the external page tables within a TLB (translation look-aside buffer).

The servicing of “misses” on the TLB cache is part of the overhead imposed by
enabling the MMU. Our OS uses various clever page-table arrangements to minimize
this overhead.

Associated with these page tables are bits that define the attributes of each page of
memory. Pages can be marked as read-only, read-write, etc. Typically, the memory of
an executing process would be described with read-only pages for code, and
read-write pages for the data and stack.

When the OS performs a context switch (i.e. suspends the execution of one thread and
resumes another), it will manipulate the MMU to use a potentially different set of page
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tables for the newly resumed thread. If the OS is switching between threads within a
single process, no MMU manipulations are necessary.

When the new thread resumes execution, any addresses generated as the thread runs
are mapped to physical memory through the assigned page tables. If the thread tries to
use an address not mapped to it, or it tries to use an address in a way that violates the
defined attributes (e.g. writing to a read-only page), the CPU will receive a “fault”
(similar to a divide-by-zero error), typically implemented as a special type of interrupt.

By examining the instruction pointer pushed on the stack by the interrupt, the OS can
determine the address of the instruction that caused the memory-access fault within
the thread/process and can act accordingly.

Memory protection at run time
While memory protection is useful during development, it can also provide greater
reliability for embedded systems installed in the field. Many embedded systems
already employ a hardware “watchdog timer” to detect if the software or hardware has
“lost its mind,” but this approach lacks the finesse of an MMU-assisted watchdog.

Hardware watchdog timers are usually implemented as a retriggerable monostable
timer attached to the processor reset line. If the system software doesn’t strobe the
hardware timer regularly, the timer will expire and force a processor reset. Typically,
some component of the system software will check for system integrity and strobe the
timer hardware to indicate the system is “sane.”

Although this approach enables recovery from a lockup related to a software or
hardware glitch, it results in a complete system restart and perhaps significant
“downtime” while this restart occurs.

Software watchdog

When an intermittent software error occurs in a memory-protected system, the OS can
catch the event and pass control to a user-written thread instead of the memory dump
facilities. This thread can make an intelligent decision about how best to recover from
the failure, instead of forcing a full reset as the hardware watchdog timer would do.
The software watchdog could:

• Abort the process that failed due to a memory access violation and simply restart
that process without shutting down the rest of the system.

• Abort the failed process and any related processes, initialize the hardware to a
“safe” state, and then restart the related processes in a coordinated manner.

• If the failure is very critical, perform a coordinated shutdown of the entire system
and sound an audible alarm.

The important distinction here is that we retain intelligent, programmed control of the
embedded system, even though various processes and threads within the control
software may have failed for various reasons. A hardware watchdog timer is still of
use to recover from hardware “latch-ups,” but for software failures we now have much
better control.
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While performing some variation of these recovery strategies, the system can also
collect information about the nature of the software failure. For example, if the
embedded system contains or has access to some mass storage (flash memory, hard
drive, a network link to another computer with disk storage), the software watchdog
can generate a chronologically archived sequence of dump files. These dump files
could then be used for postmortem diagnostics.

Embedded control systems often employ these “partial restart” approaches to
surviving intermittent software failures without the operators experiencing any system
“downtime” or even being aware of these quick-recovery software failures. Since the
dump files are available, the developers of the software can detect and correct software
problems without having to deal with the emergencies that result when critical systems
fail at inconvenient times. If we compare this to the hardware watchdog timer
approach and the prolonged interruptions in service that result, it’s obvious what our
preference is!

Postmortem dump-file analysis is especially important for mission-critical embedded
systems. Whenever a critical system fails in the field, significant effort should be made
to identify the cause of the failure so that a “fix” can be engineered and applied to
other systems before they experience similar failures.

Dump files give programmers the information they need to fix the problem — without
them, programmers may have little more to go on than a customer’s cryptic complaint
that “the system crashed.”

Quality control
By dividing embedded software into a team of cooperating, memory-protected
processes (containing threads), we can readily treat these processes as “components”
to be used again in new projects. Because of the explicitly defined (and
hardware-enforced) interfaces, these processes can be integrated into applications with
confidence that they won’t disrupt the system’s overall reliability. In addition, because
the exact binary image (not just the source code) of the process is being reused, we can
better control changes and instabilities that might have resulted from recompilation of
source code, relinking, new versions of development tools, header files, library
routines, etc.

Since the binary image of the process is reused (with its behavior perhaps modified by
command-line options), the confidence we have in that binary module from acquired
experience in the field more easily carries over to new applications than if the binary
image of the process were changed.

As much as we strive to produce error-free code for the systems we deploy, the reality
of software-intensive embedded systems is that programming errors will end up in
released products. Rather than pretend these bugs don’t exist (until the customer calls
to report them), we should adopt a “mission-critical” mindset. Systems should be
designed to be tolerant of, and able to recover from, software faults. Making use of the
memory protection delivered by integrated MMUs in the embedded systems we build
is a good step in that direction.
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Full-protection model
Our full-protection model relocates all code in the image into a new virtual space,
enabling the MMU hardware and setting up the initial page-table mappings. This
allows procnto to start in a correct, MMU-enabled environment. The process
manager will then take over this environment, changing the mapping tables as needed
by the processes it starts.

Private virtual memory

In the full-protection model, each process is given its own private virtual memory,
which spans to 2 or 3.5 gigabytes (depending on the CPU). This is accomplished by
using the CPU’s MMU. The performance cost for a process switch and a message pass
will increase due to the increased complexity of obtaining addressability between two
completely private address spaces.

Private memory space starts at 0 on x86, SH-4, and ARM processors, but not on the
PowerPC, where the space from 0 to 1 GB is reserved for system processes.

3.5G 4G0 3.5G 0 3.5G 0 3.5G

User
process 1

User
process 2

User
process 3

System process

procnto

Full protection VM (on an x86).

The memory cost per process may increase by 4 KB to 8 KB for each process’s page
tables. Note that this memory model supports the POSIX fork() call.

Variable page size
The virtual memory manager may use variable page sizes if the processor supports
them and there’s a benefit to doing so. Using a variable page size can improve
performance because:

• You can increase the page size beyond 4 KB. As a result, the system uses fewer
TLB entries.

• There are fewer TLB misses.

If you want to disable the variable page size feature, specify the -m˜v option to
procnto in your buildfile. The -mv option enables it.
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Pathname management
Domains of authority

I/O resources are not built into the microkernel, but are instead provided by resource
manager processes that may be started dynamically at runtime. The procnto
manager allows resource managers, through a standard API, to adopt a subset of the
pathname space as a “domain of authority” to administer. As other resource managers
adopt their respective domains of authority, procnto becomes responsible for
maintaining a pathname tree to track the processes that own portions of the pathname
space. An adopted pathname is sometimes referred to as a “prefix” because it prefixes
any pathnames that lie beneath it; prefixes can be arranged in a hierarchy called a
prefix tree. The adopted pathname is also called a mountpoint, because that’s where a
server mounts into the pathname.

This approach to pathname space management is what allows QNX Neutrino to
preserve the POSIX semantics for device and file access, while making the presence of
those services optional for small embedded systems.

At startup, procnto populates the pathname space with the following pathname
prefixes:

Prefix Description

/ Root of the filesystem.

/proc/boot/ Some of the files from the boot image presented as a flat
filesystem.

/proc/ The running processes, each represented by their process ID
(PID).

/dev/zero A device that always returns zero. Used for allocating zero-filled
pages using the mmap() function.

/dev/mem A device that represents all physical memory.

Resolving pathnames
When a process opens a file, the POSIX-compliant open() library routine first sends
the pathname to procnto, where the pathname is compared against the prefix tree to
determine which resource managers should be sent the open() message.

The prefix tree may contain identical or partially overlapping regions of authority —
multiple servers can register the same prefix. If the regions are identical, the order of
resolution can be specified (see “Ordering mountpoints,” below). If the regions are
overlapping, the responses from the path manager are ordered with the longest prefixes
first; for prefixes of equal length, the same specified order of resolution applies as for
identical regions.

For example, suppose we have these prefixes registered:
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Prefix Description

/ QNX 4 disk-based filesystem (fs-qnx4.so)

/dev/ser1 Serial device manager (devc-ser*)

/dev/ser2 Serial device manager (devc-ser*)

/dev/hd0 Raw disk volume (devb-eide)

The filesystem manager has registered a prefix for a mounted QNX 4 filesystem (i.e.
/). The block device driver has registered a prefix for a block special file that
represents an entire physical hard drive (i.e. /dev/hd0). The serial device manager
has registered two prefixes for the two PC serial ports.

The following table illustrates the longest-match rule for pathname resolution:

This pathname: matches: and resolves to:

/dev/ser1 /dev/ser1 devc-ser*

/dev/ser2 /dev/ser2 devc-ser*

/dev/ser / fs-qnx4.so

/dev/hd0 /dev/hd0 devb-eide.so

/usr/jhsmith/test / fs-qnx4.so

Ordering mountpoints

Generally the order of resolving a filename is the order in which you mounted the
filesystems at the same mountpoint (i.e. new mounts go on top of or in front of any
existing ones). You can specify the order of resolution when you mount the filesystem.
For example, you can use:

• the before and after keywords for block I/O (devb-*) drivers, in the blk
options

• the -Z b and -Z a options to fs-cifs, fs-nfs2, and fs-nfs3

You can also use the -o option to mount with these keywords:

before Mount the filesystem so that it’s resolved before any other filesystems
mounted at the same pathname (in other words, it’s placed in front of any
existing mount). When you access a file, the system looks on this
filesystem first.

after Mount the filesystem so that it’s resolved after any other filesystems
mounted at the same pathname (in other words, it’s placed behind any
existing mounts). When you access a file, the system looks on this
filesystem last, and only if the file wasn’t found on any other filesystems.
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If you specify the appropriate before option, the filesystem floats in front of any
other filesystems mounted at the same mountpoint, except those that you later mount
with before. If you specify after, the filesystem goes behind any any other
filesystems mounted at the same mountpoint, except those that are already mounted
with after. So, the search order for these filesystems is:

1 those mounted with before

2 those mounted with no flags

3 those mounted with after

with each list searched in order of mount requests. The first server to claim the name
gets it. You would typically use after to have a filesystem wait at the back and pick
up things the no one else is handling, and before to make sure a filesystems looks
first at filenames.

Single-device mountpoints

Consider an example involving three servers:

Server A A QNX 4 filesystem. Its mountpoint is /. It contains the files bin/true
and bin/false.

Server B A flash filesystem. Its mountpoint is /bin. It contains the files ls and
echo.

Server C A single device that generates numbers. Its mountpoint is
/dev/random.

At this point, the process manager’s internal mount table would look like this:

Mountpoint Server

/ Server A (QNX 4 filesystem)

/bin Server B (flash filesystem)

/dev/random Server C (device)

Of course, each “Server” name is actually an abbreviation for the nd,pid,chid for that
particular server channel.

Now suppose a client wants to send a message to Server C. The client’s code might
look like this:

int fd;
fd = open("/dev/random", ...);
read(fd, ...);
close(fd);
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In this case, the C library will ask the process manager for the servers that could
potentially handle the path /dev/random. The process manager would return a list of
servers:

• Server C (most likely; longest path match)

• Server A (least likely; shortest path match)

From this information, the library will then contact each server in turn and send it an
open message, including the component of the path that the server should validate:

1 Server C receives a null path, since the request came in on the same path as the
mountpoint.

2 Server A receives the path dev/random, since its mountpoint was /.

As soon as one server positively acknowledges the request, the library won’t contact
the remaining servers. This means Server A is contacted only if Server C denies the
request.

This process is fairly straightforward with single device entries, where the first server
is generally the server that will handle the request. Where it becomes interesting is in
the case of unioned filesystem mountpoints.

Unioned filesystem mountpoints

Let’s assume we have two servers set up as before:

Server A A QNX 4 filesystem. Its mountpoint is /. It contains the files bin/true
and bin/false.

Server B A flash filesystem. Its mountpoint is /bin. It contains the files ls and
echo.

Note that each server has a /bin directory, but with different contents.

Once both servers are mounted, you would see the following due to the unioning of
the mountpoints:

/ Server A

/bin Servers A and B

/bin/echo Server B

/bin/false Server A

/bin/ls Server B

/bin/true Server A
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What’s happening here is that the resolution for the path /bin takes place as before,
but rather than limit the return to just one connection ID, all the servers are contacted
and asked about their handling for the path:
DIR *dirp;
dirp = opendir("/bin", ...);
closedir(dirp);

which results in:

1 Server B receives a null path, since the request came in on the same path as the
mountpoint.

2 Server A receives the path "bin", since its mountpoint was "/".

The result now is that we have a collection of file descriptors to servers who handle the
path /bin (in this case two servers); the actual directory name entries are read in turn
when a readdir() is called. If any of the names in the directory are accessed with a
regular open, then the normal resolution procedure takes place and only one server is
accessed.

Why overlay mountpoints?

This overlaying of mountpoints is a very handy feature when doing field updates,
servicing, etc. It also makes for a more unified system, where pathnames result in
connections to servers regardless of what services they’re providing, thus resulting in a
more unified API.

Symbolic prefixes
We’ve discussed prefixes that map to a resource manager. A second form of prefix,
known as a symbolic prefix, is a simple string substitution for a matched prefix.

You create symbolic prefixes using the POSIX ln (link) command. This command is
typically used to create hard or symbolic links on a filesystem by using the -s option.
If you also specify the -P option, then a symbolic link is created in the in-memory
prefix space of procnto.

Command Description

ln -s existing_file symbolic_link Create a filesystem symbolic link.

ln -Ps existing_file symbolic_link Create a prefix tree symbolic link.

Note that a prefix tree symbolic link will always take precedence over a filesystem
symbolic link.

For example, assume you’re running on a machine that doesn’t have a local filesystem.
However, there’s a filesystem on another node (say neutron) that you wish to access
as “/bin”. You accomplish this using the following symbolic prefix:

ln -Ps /net/neutron/bin /bin
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This will cause /bin to be mapped into /net/neutron/bin. For example,
/bin/ls will be replaced with the following:

/net/neutron/bin/ls

This new pathname will again be applied against the prefix tree, but this time the
prefix matched will be /net, which will point to lsm-qnet. The lsm-qnet resource
manager will then resolve the neutron component, and redirect further resolution
requests to the node called neutron. On node neutron, the rest of the pathname (i.e.
/bin/ls) will be resolved against the prefix space on that node. This will resolve to
the filesystem manager on node neutron, where the open() request will be directed.
With just a few characters, this symbolic prefix has allowed us to access a remote
filesystem as though it were local.

It’s not necessary to run a local filesystem process to perform the redirection. A
diskless workstation’s prefix tree might look something like this:

/

dev

ser2

ser1

console

devc-ser...

lsm-qnet.so

devc-con

With this prefix tree, local devices such as /dev/ser1 or /dev/console will be
routed to the local character device manager, while requests for other pathnames will
be routed to the remote filesystem.

Creating special device names

You can also use symbolic prefixes to create special device names. For example, if
your modem was on /dev/ser1, you could create a symbolic prefix of /dev/modem
as follows:

ln -Ps /dev/ser1 /dev/modem

Any request to open /dev/modem will be replaced with /dev/ser1. This mapping
would allow the modem to be changed to a different serial port simply by changing the
symbolic prefix and without affecting any applications.
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Relative pathnames

Pathnames need not start with slash. In such cases, the path is considered relative to
the current working directory. The OS maintains the current working directory as a
character string. Relative pathnames are always converted to full network pathnames
by prepending the current working directory string to the relative pathname.

Note that different behaviors result when your current working directory starts with a
slash versus starting with a network root.

A note about cd

In some traditional UNIX systems, the cd (change directory) command modifies the
pathname given to it if that pathname contains symbolic links. As a result, the
pathname of the new current working directory — which you can display with pwd —
may differ from the one given to cd.

In QNX Neutrino, however, cd doesn’t modify the pathname — aside from collapsing
.. references. For example:

cd /usr/home/dan/test/../doc

would result in a current working directory of /usr/home/dan/doc, even if some of
the elements in the pathname were symbolic links.

For more information about symbolic links and .. references, see “QNX 4 filesystem”
in the Working with Filesystems chapter of the QNX Neutrino User’s Guide.

File descriptor namespace
Once an I/O resource has been opened, a different namespace comes into play. The
open() returns an integer referred to as a file descriptor (FD), which is used to direct
all further I/O requests to that resource manager.

Unlike the pathname space, the file descriptor namespace is completely local to each
process. The resource manager uses the combination of a SCOID (server connection
ID) and FD (file descriptor/connection ID) to identify the control structure associated
with the previous open() call. This structure is referred to as an open control block
(OCB) and is contained within the resource manager.

The following diagram shows an I/O manager taking some SCOID, FD pairs and
mapping them to OCBs.
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The SCOID and FD map to an OCB of an I/O Manager.

Open control blocks

The open control block (OCB) contains active information about the open resource.
For example, the filesystem keeps the current seek point within the file here. Each
open() creates a new OCB. Therefore, if a process opens the same file twice, any calls
to lseek() using one FD will not affect the seek point of the other FD. The same is true
for different processes opening the same file.

The following diagram shows two processes, in which one opens the same file twice,
and the other opens it once. There are no shared FDs.
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FDs are a process resource, not a thread resource.

Several file descriptors in one or more processes can refer to the same OCB. This is
accomplished by two means:

• A process may use the dup(), dup2(), or fcntl() functions to create a duplicate file
descriptor that refers to the same OCB.

• When a new process is created via vfork(), fork(), posix_spawn(), or spawn(), all
open file descriptors are by default inherited by the new process; these inherited
descriptors refer to the same OCBs as the corresponding file descriptors in the
parent process.

When several FDs refer to the same OCB, then any change in the state of the OCB is
immediately seen by all processes that have file descriptors linked to the same OCB.

For example, if one process uses the lseek() function to change the position of the seek
point, then reading or writing takes place from the new position no matter which
linked file descriptor is used.

The following diagram shows two processes in which one opens a file twice, then does
a dup() to get a third FD. The process then creates a child that inherits all open files.
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A process opens a file twice.

You can prevent a file descriptor from being inherited when you posix_spawn(),
spawn(), or exec*() by calling the fcntl() function and setting the FD_CLOEXEC flag.
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Shared objects
In a typical system, a number of programs will be running. Each program relies on a
number of functions, some of which will be “standard” C library functions, like
printf(), malloc(), write(), etc.

If every program uses the standard C library, it follows that each program would
normally have a unique copy of this particular library present within it. Unfortunately,
this results in wasted resources. Since the C library is common, it makes more sense to
have each program reference the common instance of that library, instead of having
each program contain a copy of the library. This approach yields several advantages,
not the least of which is the savings in terms of total system memory required.

Statically linked
The term statically linked means that the program and the particular library that it’s
linked against are combined together by the linker at linktime. This means that the
binding between the program and the particular library is fixed and known at linktime
— well in advance of the program ever running. It also means that we can’t change
this binding, unless we relink the program with a new version of the library.

You might consider linking a program statically in cases where you weren’t sure
whether the correct version of a library will be available at runtime, or if you were
testing a new version of a library that you don’t yet want to install as shared.

Programs that are linked statically are linked against archives of objects (libraries) that
typically have the extension of .a. An example of such a collection of objects is the
standard C library, libc.a.

Dynamically linked
The term dynamically linked means that the program and the particular library it
references are not combined together by the linker at linktime. Instead, the linker
places information into the executable that tells the loader which shared object module
the code is in and which runtime linker should be used to find and bind the references.
This means that the binding between the program and the shared object is done at
runtime — before the program starts, the appropriate shared objects are found and
bound.

This type of program is called a partially bound executable, because it isn’t fully
resolved — the linker, at linktime, didn’t cause all the referenced symbols in the
program to be associated with specific code from the library. Instead, the linker simply
said: “This program calls some functions within a particular shared object, so I’ll just
make a note of which shared object these functions are in, and continue on.”
Effectively, this defers the binding until runtime.

Programs that are linked dynamically are linked against shared objects that have the
extension .so. An example of such an object is the shared object version of the
standard C library, libc.so.
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You use a command-line option to the compiler driver qcc to tell the tool chain
whether you’re linking statically or dynamically. This command-line option then
determines the extension used (either .a or .so).

Augmenting code at runtime
Taking this one step further, a program may not know which functions it needs to call
until it’s running. While this may seem a little strange initially (after all, how could a
program not know what functions it’s going to call?), it really can be a very powerful
feature. Here’s why.

Consider a “generic” disk driver. It starts, probes the hardware, and detects a hard
disk. The driver would then dynamically load the io-blk code to handle the disk
blocks, because it found a block-oriented device. Now that the driver has access to the
disk at the block level, it finds two partitions present on the disk: a DOS partition and
a QNX 4 partition. Rather than force the disk driver to contain filesystem drivers for
all possible partition types it may encounter, we kept it simple: it doesn’t have any
filesystem drivers! At runtime, it detects the two partitions and then knows that it
should load the fs-dos.so and fs-qnx4.so filesystem code to handle those
partitions.

By deferring the decision of which functions to call, we’ve enhanced the flexibility of
the disk driver (and also reduced its size).

How shared objects are used
To understand how a program makes use of shared objects, let’s first see the format of
an executable and then examine the steps that occur when the program starts.

ELF format
QNX Neutrino uses the ELF (Executable and Linking Format) binary format, which is
currently used in SVR4 Unix systems. ELF not only simplifies the task of making
shared libraries, but also enhances dynamic loading of modules at runtime.

In the following diagram, we show two views of an ELF file: the linking view and the
execution view. The linking view, which is used when the program or library is linked,
deals with sections within an object file. Sections contain the bulk of the object file
information: data, instructions, relocation information, symbols, debugging
information, etc. The execution view, which is used when the program runs, deals with
segments.

At linktime, the program or library is built by merging together sections with similar
attributes into segments. Typically, all the executable and read-only data sections are
combined into a single “text” segment, while the data and “BSS”s are combined into
the “data” segment. These segments are called load segments, because they need to
be loaded in memory at process creation. Other sections such as symbol information
and debugging sections are merged into other, nonload segments.
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...

...

Section header table

Execution view:

ELF header

Program header table

Segment 1

Segment 2

...

Section header table
(optional)

Object file format: linking view and execution view.

ELF without COFF
Most implementations of ELF loaders are derived from COFF (Common Object File
Format) loaders; they use the linking view of the ELF objects at load time. This is
inefficient because the program loader must load the executable using sections. A
typical program could contain a large number of sections, each of which would have to
be located in the program and loaded into memory separately.

QNX Neutrino, however, doesn’t rely at all on the COFF technique of loading
sections. When developing our ELF implementation, we worked directly from the
ELF spec and kept efficiency paramount. The ELF loader uses the “execution view” of
the program. By using the execution view, the task of the loader is greatly simplified:
all it has to do is copy to memory the load segments (usually two) of the program or
library. As a result, process creation and library loading operations are much faster.

The process
The diagram below shows the memory layout of a typical process. The process load
segments (corresponding to “text” and “data” in the diagram) are loaded at the
process’s base address. The main stack is located just below and grows downwards.
Any additional threads that are created will have their own stacks, located below the
main stack. Each of the stacks is separated by a guard page to detect stack overflows.
The heap is located above the process and grows upwards.

October 16, 2008 Chapter 7 • Dynamic Linking 133



How shared objects are used © 2008, QNX Software Systems GmbH & Co. KG.

Reserved

Shared libraries

Shared memory

Heap

Data

Text

Stack

Stack

Process base address

0xFFFFFFFF

0

Guard page

Process memory layout on an x86.

In the middle of the process’s address space, a large region is reserved for shared
objects. Shared libraries are located at the top of the address space and grow
downwards.

When a new process is created, the process manager first maps the two segments from
the executable into memory. It then decodes the program’s ELF header. If the program
header indicates that the executable was linked against a shared library, the process
manager will extract the name of the dynamic interpreter from the program header.
The dynamic interpreter points to a shared library that contains the runtime linker
code. The process manager will load this shared library in memory and will then pass
control to the runtime linker code in this library.

Runtime linker
The runtime linker is invoked when a program that was linked against a shared object
is started or when a program requests that a shared object be dynamically loaded. The
runtime linker is contained within the C runtime library.

The runtime linker performs several tasks when loading a shared library (.so file):

1 If the requested shared library isn’t already loaded in memory, the runtime
linker loads it:
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• If the shared library name is fully qualified (i.e. begins with a slash), it’s
loaded directly from the specified location. If it can’t be found there, no
further searches are performed.

• If it’s not a fully qualified pathname, the runtime linker searches for it as
follows:

1a If the executable’s dynamic section contains a DT_RPATH tag, then the
path specified by DT_RPATH is searched.

1b If the shared library isn’t found, the runtime linker searches for it in the
directories specified by LD_LIBRARY_PATH only if the program
isn’t marked as setuid.

1c If the shared library still isn’t found, then the runtime linker searches for
the default library search path as specified by the
LD_LIBRARY_PATH environment variable to procnto (i.e. the
CS_LIBPATH configuration string). If none has been specified, then the
default library path is set to the image filesystem’s path.

2 Once the requested shared library is found, it’s loaded into memory. For ELF
shared libraries, this is a very efficient operation: the runtime linker simply
needs to use the mmap() call twice to map the two load segments into memory.

3 The shared library is then added to the internal list of all libraries that the
process has loaded. The runtime linker maintains this list.

4 The runtime linker then decodes the dynamic section of the shared object.

This dynamic section provides information to the linker about other libraries that this
library was linked against. It also gives information about the relocations that need to
be applied and the external symbols that need to be resolved. The runtime linker will
first load any other required shared libraries (which may themselves reference other
shared libraries). It will then process the relocations for each library. Some of these
relocations are local to the library, while others require the runtime linker to resolve a
global symbol. In the latter case, the runtime linker will search through the list of
libraries for this symbol. In ELF files, hash tables are used for the symbol lookup, so
they’re very fast. The order in which libraries are searched for symbols is very
important, as we’ll see in the section on “Symbol name resolution” below.

Once all relocations have been applied, any initialization functions that have been
registered in the shared library’s init section are called. This is used in some
implementations of C++ to call global constructors.

Loading a shared library at runtime
A process can load a shared library at runtime by using the dlopen() call, which
instructs the runtime linker to load this library. Once the library is loaded, the program
can call any function within that library by using the dlsym() call to determine its
address.
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Remember: shared libraries are available only to processes that are dynamically
linked.

The program can also determine the symbol associated with a given address by using
the dladdr() call. Finally, when the process no longer needs the shared library, it can
call dlclose() to unload the library from memory.

Symbol name resolution
When the runtime linker loads a shared library, the symbols within that library have to
be resolved. The order and the scope of the symbol resolution are important. If a
shared library calls a function that happens to exist by the same name in several
libraries that the program has loaded, the order in which these libraries are searched
for this symbol is critical. This is why the OS defines several options that can be used
when loading libraries.

All the objects (executables and libraries) that have global scope are stored on an
internal list (the global list). Any global-scope object, by default, makes available all
of its symbols to any shared library that gets loaded. The global list initially contains
the executable and any libraries that are loaded at the program’s startup.

By default, when a new shared library is loaded by using the dlopen() call, symbols
within that library are resolved by searching in this order through:

1 The shared library.

2 The global list.

3 Any dependent objects that the shared library references (i.e. any other libraries
that the shared library was linked against).

The runtime linker’s scoping behavior can be changed in two ways when dlopen()’ing
a shared library:

• When the program loads a new library, it may instruct the runtime linker to place
the library’s symbols on the global list by passing the RTLD_GLOBAL flag to the
dlopen() call. This will make the library’s symbols available to any libraries that
are subsequently loaded.

• The list of objects that are searched when resolving the symbols within the shared
library can be modified. If the RTLD_GROUP flag is passed to dlopen(), then only
objects that the library directly references will be searched for symbols. If the
RTLD_WORLD flag is passed, only the objects on the global list will be searched.
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Introduction
To give QNX Neutrino a great degree of flexibility, to minimize the runtime memory
requirements of the final system, and to cope with the wide variety of devices that may
be found in a custom embedded system, the OS allows user-written processes to act as
resource managers that can be started and stopped dynamically.

Resource managers are typically responsible for presenting an interface to various
types of devices. This may involve managing actual hardware devices (like serial
ports, parallel ports, network cards, and disk drives) or virtual devices (like
/dev/null, a network filesystem, and pseudo-ttys).

In other operating systems, this functionality is traditionally associated with device
drivers. But unlike device drivers, resource managers don’t require any special
arrangements with the kernel. In fact, a resource manager looks just like any other
user-level program.

What is a resource manager?
Since QNX Neutrino is a distributed, microkernel OS with virtually all nonkernel
functionality provided by user-installable programs, a clean and well-defined interface
is required between client programs and resource managers. All resource manager
functions are documented; there’s no “magic” or private interface between the kernel
and a resource manager.

In fact, a resource manager is basically a user-level server program that accepts
messages from other programs and, optionally, communicates with hardware. Again,
the power and flexibility of our native IPC services allow the resource manager to be
decoupled from the OS.

The binding between the resource manager and the client programs that use the
associated resource is done through a flexible mechanism called pathname space
mapping.

In pathname space mapping, an association is made between a pathname and a
resource manager. The resource manager sets up this pathname space mapping by
informing the process manager that it is the one responsible for handling requests at
(or below, in the case of filesystems), a certain mountpoint. This allows the process
manager to associate services (i.e. functions provided by resource managers) with
pathnames.

For example, a serial port may be managed by a resource manager called devc-ser*,
but the actual resource may be called /dev/ser1 in the pathname space. Therefore,
when a program requests serial port services, it typically does so by opening a serial
port — in this case /dev/ser1.

Why write a resource manager?
Here are a few reasons why you may want to write a resource manager:

• The client API is POSIX.
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The API for communicating with the resource manager is for the most part,
POSIX. All C programmers are familiar with the open(), read(), and write()
functions. Training costs are minimized, and so is the need to document the
interface to your server.

• You can reduce the number of interface types.

If you have many server processes, writing each server as a resource manager keeps
the number of different interfaces that clients need to use to a minimum.

For example, suppose you have a team of programmers building your overall
application, and each programmer is writing one or more servers for that
application. These programmers may work directly for your company, or they may
belong to partner companies who are developing addon hardware for your modular
platform.

If the servers are resource managers, then the interface to all of those servers is the
POSIX functions: open(), read(), write(), and whatever else makes sense. For
control-type messages that don’t fit into a read/write model, there’s devctl()
(although devctl() isn’t POSIX).

• Command-line utilities can communicate with resource managers.

Since the API for communicating with a resource manager is the POSIX set of
functions, and since standard POSIX utilities use this API, you can use the utilities
for communicating with the resource managers.

For instance, suppose a resource manager registers the name /proc/my_stats. If
you open this name and read from it, the resource manager responds with a body of
text that describes its statistics.

The cat utility takes the name of a file and opens the file, reads from it, and
displays whatever it reads to standard output (typically the screen). As a result, you
could type:

cat /proc/my_stats
and the resource manager would respond with the appropriate statistics.

You could also use command-line utilities for a robot-arm driver. The driver could
register the name, /dev/robot/arm/angle, and interpret any writes to this
device as the angle to set the robot arm to. To test the driver from the command
line, you’d type:

echo 87 >/dev/robot/arm/angle
The echo utility opens /dev/robot/arm/angle and writes the string (“87”) to
it. The driver handles the write by setting the robot arm to 87 degrees. Note that
this was accomplished without writing a special tester program.

Another example would be names such as /dev/robot/registers/r1, r2,....
Reading from these names returns the contents of the corresponding registers;
writing to these names sets the corresponding registers to the given values.

Even if all of your other IPC is done via some non-POSIX API, it’s still worth
having one thread written as a resource manager for responding to reads and writes
for doing things as shown above.
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The types of resource managers
Depending on how much work you want to do yourself in order to present a proper
POSIX filesystem to the client, you can break resource managers into two types:

• Device resource managers

• Filesystem resource managers

Device resource managers

Device resource managers create only single-file entries in the filesystem, each of
which is registered with the process manager. Each name usually represents a single
device. These resource managers typically rely on the resource-manager library to do
most of the work in presenting a POSIX device to the user.

For example, a serial port driver registers names such as /dev/ser1 and /dev/ser2.
When the user does ls -l /dev, the library does the necessary handling to respond
to the resulting _IO_STAT messages with the proper information. The person who
writes the serial port driver can concentrate instead on the details of managing the
serial port hardware.

Filesystem resource managers

Filesystem resource managers register a mountpoint with the process manager. A
mountpoint is the portion of the path that’s registered with the process manager. The
remaining parts of the path are managed by the filesystem resource manager. For
example, when a filesystem resource manager attaches a mountpoint at /mount, and
the path /mount/home/thomasf is examined:

/mount/ Identifies the mountpoint that’s managed by the process
manager.

home/thomasf Identifies the remaining part that’s to be managed by the
filesystem resource manager.

Here are some examples of using filesystem resource managers:

• flash filesystem drivers (although a flash driver toolkit is available that takes care of
these details)

• a tar filesystem process that presents the contents of a tar file as a filesystem that
the user can cd into and ls from

• a mailbox-management process that registers the name /mailboxes and manages
individual mailboxes that look like directories, and files that contain the actual
messages.
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Communication via native IPC
Once a resource manager has established its pathname prefix, it will receive messages
whenever any client program tries to do an open(), read(), write(), etc. on that
pathname. For example, after devc-ser* has taken over the pathname /dev/ser1,
and a client program executes:

fd = open ("/dev/ser1", O_RDONLY);

the client’s C library will construct an io_open message, which it then sends to the
devc-ser* resource manager via IPC.

Some time later, when the client program executes:

read (fd, buf, BUFSIZ);

the client’s C library constructs an io_read message, which is then sent to the
resource manager.

A key point is that all communications between the client program and the resource
manager are done through native IPC messaging. This allows for a number of unique
features:

• A well-defined interface to application programs. In a development environment,
this allows a very clean division of labor for the implementation of the client side
and the resource manager side.

• A simple interface to the resource manager. Since all interactions with the resource
manager go through native IPC, and there are no special “back door” hooks or
arrangements with the OS, the writer of a resource manager can focus on the task at
hand, rather than worry about all the special considerations needed in other
operating systems.

• Free network transparency. Since the underlying native IPC messaging mechanism
is inherently network-distributed without any additional effort required by the client
or server (resource manager), programs can seamlessly access resources on other
nodes in the network without even being aware that they’re going over a network.

All QNX Neutrino device drivers and filesystems are implemented as resource
managers. This means that everything that a “native” QNX Neutrino device driver or
filesystem can do, a user-written resource manager can do as well.

Consider FTP filesystems, for instance. Here a resource manager would take over a
portion of the pathname space (e.g. /ftp) and allow users to cd into FTP sites to get
files. For example, cd /ftp/rtfm.mit.edu/pubwould connect to the FTP site
rtfm.mit.edu and change directory to /pub. After that point, the user could open,
edit, or copy files.

Application-specific filesystems would be another example of a user-written resource
manager. Given an application that makes extensive use of disk-based files, a custom
tailored filesystem can be written that works with that application and delivers
superior performance.
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The possibilities for custom resource managers are limited only by the application
developer’s imagination.

Resource manager architecture
Here is the heart of a resource manager:

initialize the dispatch interface
register the pathname with the process manager
DO forever

receive a message
SWITCH on the type of message

CASE io_open:
perform io_open processing
ENDCASE

CASE io_read:
perform io_read processing
ENDCASE

CASE io_write:
perform io_write processing
ENDCASE

. // etc. handle all other messages

. // that may occur, performing

. // processing as appropriate
ENDSWITCH

ENDDO

The architecture contains three parts:

1 A channel is created so that client programs can connect to the resource
manager to send it messages.

2 The pathname (or pathnames) that the resource manager is going to be
responsible for is registered with the process manager, so that it can resolve
open requests for that particular pathname to this resource manager.

3 Messages are received and processed.

This message-processing structure (the switch/case, above) is required for each and
every resource manager. However, we provide a set of convenient library functions to
handle this functionality (and other key functionality as well).

Message types
Architecturally, there are two categories of messages that a resource manager will
receive:

• connect messages

• I/O messages.

A connect message is issued by the client to perform an operation based on a
pathname (e.g. an io_open message). This may involve performing operations such
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as permission checks (does the client have the correct permission to open this device?)
and setting up a context for that request.

An I/O message is one that relies upon this context (created between the client and the
resource manager) to perform subsequent processing of I/O messages (e.g. io_read).

There are good reasons for this design. It would be inefficient to pass the full
pathname for each and every read() request, for example. The io_open handler can
also perform tasks that we want done only once (e.g. permission checks), rather than
with each I/O message. Also, when the read() has read 4096 bytes from a disk file,
there may be another 20 megabytes still waiting to be read. Therefore, the read()
function would need to have some context information telling it the position within the
file it’s reading from.

The resource manager shared library
In a custom embedded system, part of the design effort may be spent writing a
resource manager, because there may not be an off-the-shelf driver available for the
custom hardware component in the system.

Our resource manager shared library makes this task relatively simple.

Automatic default message handling

If there are functions that the resource manager doesn’t want to handle for some reason
(e.g. a digital-to-analog converter doesn’t support a function such as lseek(), or the
software doesn’t require it), the shared library will conveniently supply default actions.

There are two levels of default actions:

• The first level simply returns ENOSYS to the client application, informing it that
that particular function is not supported.

• The second level (i.e. the iofunc_*() shared library) allows a resource manager to
automatically handle various functions.

For more information on default actions, see the section on “Second-level default
message handling” in this chapter.

open(), dup(), and close()

Another convenient service that the resource manager shared library provides is the
automatic handling of dup() messages.

Suppose that the client program executed code that eventually ended up performing:

fd = open ("/dev/device", O_RDONLY);
...
fd2 = dup (fd);
...
fd3 = dup (fd);
...
close (fd3);
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...
close (fd2);
...
close (fd);

The client would generate an io_open message for the first open(), and then two
io_dup messages for the two dup() calls. Then, when the client executed the close()
calls, three io_close messages would be generated.

Since the dup() functions generate duplicates of the file descriptors, new context
information should not be allocated for each one. When the io_close messages
arrive, because no new context has been allocated for each dup(), no release of the
memory by each io_close message should occur either! (If it did, the first close
would wipe out the context.)

The resource manager shared library provides default handlers that keep track of the
open(), dup(), and close() messages and perform work only for the last close (i.e. the
third io_close message in the example above).

Multiple thread handling

One of the salient features of QNX Neutrino is the ability to use threads. By using
multiple threads, a resource manager can be structured so that several threads are
waiting for messages and then simultaneously handling them.

This thread management is another convenient function provided by the resource
manager shared library. Besides keeping track of both the number of threads created
and the number of threads waiting, the library also takes care of maintaining the
optimal number of threads.

Dispatch functions

The OS provides a set of dispatch_* functions that:

• allow a common blocking point for managers and clients that need to support
multiple message types (e.g. a resource manager could handle its own private
message range).

• provide a flexible interface for message types that isn’t tied to the resource manager
(for clean handling of private messages and pulse codes)

• decouple the blocking and handler code from threads. You can implement the
resource manager event loop in your main code. This decoupling also makes for
easier debugging, because you can put a breakpoint between the block function and
the handler function.

For more information, see the Resource Managers chapter of Getting Started with
QNX Neutrino, and the Writing a Resource Manager chapter in the Neutrino
Programmer’s Guide.
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Combine messages

In order to conserve network bandwidth and to provide support for atomic operations,
the OS supports combine messages. A combine message is constructed by the client’s
C library and consists of a number of I/O and/or connect messages packaged together
into one.

For example, the function readblock() allows a thread to atomically perform an lseek()
and read() operation. This is done in the client library by combining the io_lseek
and io_read messages into one. When the resource manager shared library receives
the message, it will process both the io_lseek and io_read messages, effectively
making that readblock() function behave atomically.

Combine messages are also useful for the stat() function. A stat() call can be
implemented in the client’s library as an open(), fstat(), and close(). Instead of
generating three separate messages (one for each of the component functions), the
library puts them together into one contiguous combine message. This boosts
performance, especially over a networked connection, and also simplifies the resource
manager, which doesn’t need a connect function to handle stat().

The resource manager shared library takes care of the issues associated with breaking
out the individual components of the combine message and passing them to the
various handler functions supplied. Again, this minimizes the effort associated with
writing a resource manager.

Second-level default message handling

Since a large number of the messages received by a resource manager deal with a
common set of attributes, the OS provides another level of default handling. This
second level, called the iofunc_*() shared library, allows a resource manager to handle
functions like stat(), chmod(), chown(), lseek(), etc. automatically, without the
programmer having to write additional code. As an added benefit, these iofunc_*()
default handlers implement the POSIX semantics for the messages, again offloading
work from the programmer.

Three main structures need to be considered:

• context

• attributes structure

• mount structure

Context
structure

Attribute
structure

Mount
structure

(optional)

A resource manager is responsible for three data structures.
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The first data structure, the context, has already been discussed (see the section on
“Message types”). It holds data used on a per-open basis, such as the current position
into a file (the lseek() offset).

Since a resource manager may be responsible for more than one device (e.g.
devc-ser* may be responsible for /dev/ser1, /dev/ser2, /dev/ser3, etc.), the
attributes structure holds data on a per-device basis. The attributes structure contains
such items as the user and group ID of the owner of the device, the last modification
time, etc.

For filesystem (block I/O device) managers, one more structure is used. This is the
mount structure, which contains data items that are global to the entire mount device.

When a number of client programs have opened various devices on a particular
resource, the data structures may look like this:

Channel

Process
A

Process
B

Process
C

Client Context A

Context B

Context C

Attribute
structure

Attribute
structure

Mount
structure
(optional)

resmgr

Multiple clients opening various devices.

The iofunc_*() default functions operate on the assumption that the programmer has
used the default definitions for the context block and the attributes structures. This is a
safe assumption for two reasons:

1 The default context and attribute structures contain sufficient information for
most applications.

2 If the default structures don’t hold enough information, they can be
encapsulated within the structures that you’ve defined.
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By definition, the default structures must be the first members of their respective
superstructures, allowing clean and simple access to the requisite base members by the
iofunc_*() default functions:

(iofunc_attr_t *)

Attribute
superstructure

Default
members

Extensions

Encapsulation.

The library contains iofunc_*() default handlers for these client functions:

chmod()
chown()
close()
devctl()
fpathconf()
fseek()
fstat()

lock()
lseek()
mmap()
open()
pathconf()
stat()
utime()

Summary
By supporting pathname space mapping, by having a well-defined interface to
resource managers, and by providing a set of libraries for common resource manager
functions, QNX Neutrino offers the developer unprecedented flexibility and simplicity
in developing “drivers” for new hardware — a critical feature for many embedded
systems.

For more details on developing a resource manager, see the Resource Managers
chapter of Getting Started with QNX Neutrino, and the Writing a Resource Manager
chapter of the Neutrino Programmer’s Guide.
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Introduction
QNX Neutrino provides a rich variety of filesystems. Like most service-providing
processes in the OS, these filesystems execute outside the kernel; applications use
them by communicating via messages generated by the shared-library implementation
of the POSIX API.

Most of these filesystems are resource managers as described in this book. Each
filesystem adopts a portion of the pathname space (called a mountpoint) and provides
filesystem services through the standard POSIX API (open(), close(), read(), write(),
lseek(), etc.). Filesystem resource managers take over a mountpoint and manage the
directory structure below it. They also check the individual pathname components for
permissions and for access authorizations.

This implementation means that:

• Filesystems may be started and stopped dynamically.

• Multiple filesystems may run concurrently.

• Applications are presented with a single unified pathname space and interface,
regardless of the configuration and number of underlying filesystems.

• A filesystem running on one node is transparently accessible from any other node.

Filesystems and pathname resolution
You can seamlessly locate and connect to any service or filesystem that’s been
registered with the process manager. When a filesystem resource manager registers a
mountpoint, the process manager creates an entry in the internal mount table for that
mountpoint and its corresponding server ID (i.e. the nd, pid, chid identifiers).

This table effectively joins multiple filesystem directories into what users perceive as a
single directory. The process manager handles the mountpoint portion of the
pathname; the individual filesystem resource managers take care of the remaining
parts of the pathname. Filesystems can be registered (i.e. mounted) in any order.

When a pathname is resolved, the process manager contacts all the filesystem resource
managers that can handle some component of that path. The result is a collection of
file descriptors that can resolve the pathname.

If the pathname represents a directory, the process manager asks all the filesystems
that can resolve the pathname for a listing of files in that directory when readdir() is
called. If the pathname isn’t a directory, then the first filesystem that resolves the
pathname is accessed.

For more information on pathname resolution, see the section “Pathname
management” in the chapter on the Process Manager in this guide.
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Filesystem classes
The many filesystems available can be categorized into the following classes:

Image A special filesystem that presents the modules in the image and is always
present. Note that the procnto process automatically provides an image
filesystem and a RAM filesystem.

Block Traditional filesystems that operate on block devices like hard disks and
CD-ROM drives. This includes the QNX 4, DOS, and CD-ROM
filesystems.

Flash Nonblock-oriented filesystems designed explicitly for the characteristics
of flash memory devices. For NOR devices, use the FFS3 filesystem; for
NAND, use ETFS.

Network Filesystems that provide network file access to the filesystems on remote
host computers. This includes the NFS and CIFS (SMB) filesystems.

Virtual QNX Neutrino provides an Inflator virtual filesystem, a resource
manager that sits in front of other filesystems and uncompresses files that
were previously compressed (using the deflate utility).

Filesystems as shared libraries
Since it’s common to run many filesystems under QNX Neutrino, they have been
designed as a family of drivers and shared libraries to maximize code reuse. This
means the cost of adding an additional filesystem is typically smaller than might
otherwise be expected.

Once an initial filesystem is running, the incremental memory cost for additional
filesystems is minimal, since only the code to implement the new filesystem protocol
would be added to the system.

The various filesystems are layered as follows:

152 Chapter 9 • Filesystems October 16, 2008



© 2008, QNX Software Systems GmbH & Co. KG. Filesystem classes

procnto

devf-*

devb-*

fs-cifsfs-nfs2

fs-qnx4.so fs-dos.so fs-cd.so

io_blk.so

cam-cdrom.so cam-disk.so

io-pkt

devn-*.so

QNX Neutrino filesystem layering.

As shown in this diagram, the filesystems and io-blk are implemented as shared
libraries (essentially passive blocks of code resident in memory), while the devb-*
driver is the executing process that calls into the libraries. In operation, the driver
process starts first and invokes the block-level shared library (io-blk.so). The
filesystem shared libraries may be dynamically loaded later to provide filesystem
interfaces and services.

A “filesystem” shared library implements a filesystem protocol or “personality” on a
set of blocks on a physical disk device. The filesystems aren’t built into the OS kernel;
rather, they’re dynamic entities that can be loaded or unloaded on demand.

For example, a removable storage device (PCCard flash card, floppy disk, removable
cartridge disk, etc.) may be inserted at any time, with any of a number of filesystems
stored on it. While the hardware the driver interfaces to is unlikely to change
dynamically, the on-disk data structure could vary widely. The dynamic nature of the
filesystem copes with this very naturally.

io-blk
Most of the filesystem shared libraries ride on top of the Block I/O module
(io-blk.so). This module also acts as a resource manager and exports a
block-special file for each physical device. For a system with two hard disks the
default files would be:
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/dev/hd0 First hard disk

/dev/hd1 Second hard disk

These files represent each raw disk and may be accessed using all the normal POSIX
file primitives (open(), close(), read(), write(), lseek(), etc.). Although the io-blk
module can support a 64-bit offset on seek, the driver interface is 32-bit, allowing
access to 2-terabyte disks.

Builtin RAM disk

The io-blk module supports an internal RAM-disk device that can be created via a
command-line option (blk ramdisk=size). Since this RAM disk is internal to the
io-blk module (rather than created and maintained by an additional device driver
such as devb-ram), performance is significantly better than that of a dedicated
RAM-disk driver.

By incorporating the RAM-disk device directly at the io-blk layer, the device’s data
memory parallels the main cache, so I/O operations to this device can bypass the
buffer cache, eliminating a memory copy yet still retaining coherency. Contrast this
with a driver-level implementation (e.g. devb-ram) where transparently presenting
the RAM as a block device involves additional memory copies and duplicates data in
the buffer cache. Inter-DLL callouts are also eliminated. In addition, there are benefits
in terms of installation footprint for systems that have a hard disk and also want a
RAM disk — only the single driver is needed.

Partitions

QNX Neutrino complies with the de facto industry standard for partitioning a disk.
This allows a number of filesystems to share the same physical disk. Each partition is
also represented as a block-special file, with the partition type appended to the
filename of the disk it’s located on. In the above “two-disk” example, if the first disk
had a QNX partition and a DOS partition, while the second disk had only a QNX
partition, then the default files would be:

/dev/hd0 First hard disk

/dev/hd0t6 DOS partition on first hard disk

/dev/hd0t79 QNX partition on first hard disk

/dev/hd1 Second hard disk

/dev/hd1t79 QNX partition on second hard disk

The following list shows some typical assigned partition types:
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Type Filesystem

1 DOS (12-bit FAT)

4 DOS (16-bit FAT; partitions <32M)

5 DOS Extended Partition (enumerated but not presented)

6 DOS 4.0 (16-bit FAT; partitions ≥32M)

7 OS/2 HPFS

7 Previous QNX version 2 (pre-1988)

8 QNX 1.x and 2.x (“qny”)

9 QNX 1.x and 2.x (“qnz”)

11 DOS 32-bit FAT; partitions up to 2047G

12 Same as Type 11, but uses Logical Block Address Int 13h extensions

14 Same as Type 6, but uses Logical Block Address Int 13h extensions

15 Same as Type 5, but uses Logical Block Address Int 13h extensions

77 QNX POSIX partition (secondary)

78 QNX POSIX partition (secondary)

79 QNX POSIX partition

99 UNIX

131 Linux (Ext2)

Buffer cache

The io-blk shared library implements a buffer cache that all filesystems inherit. The
buffer cache attempts to store frequently accessed filesystem blocks in order to
minimize the number of times a system has to perform a physical I/O to the disk.

Read operations are synchronous; write operations are usually asynchronous. When
an application writes to a file, the data enters the cache, and the filesystem manager
immediately replies to the client process to indicate that the data has been written. The
data is then written to the disk.

Critical filesystem blocks such as bitmap blocks, directory blocks, extent blocks, and
inode blocks are written immediately and synchronously to disk.

Applications can modify write behavior on a file-by-file basis. For example, a database
application can cause all writes for a given file to be performed synchronously. This
would ensure a high level of file integrity in the face of potential hardware or power
problems that might otherwise leave a database in an inconsistent state.
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Filesystem limitations
POSIX defines the set of services a filesystem must provide. However, not all
filesystems are capable of delivering all those services:

Filesystem Access

date

Modifi-

cation
date

Status

change
date

File-

name
length

Permis-

sions

Direc-

tories

Hard

links

Soft

links

Decom-

pression
on read

Image No No No 255 Yes No No No No

RAM Yes Yes Yes 255 Yes No No No No

ETFS Yes Yes Yes 91 Yes Yes No Yes No

QNX 4 Yes Yes Yes 48a Yes Yes Yes Yes No

Power-Safe Yes Yes Yes 510 Yes Yes Yes Yes No

DOS Yesb Yes No 8.3c No Yes No No No

CD-ROM Yesd Yesd Yesd 32e Yesd Yes No Yesd No

UDF Yes Yes Yes 254 Yes Yes No No No

FFS3 No Yes Yes 255 Yes Yes No Yes Yes

NFS Yes Yes Yes —f Yesf Yes Yesf Yesf No

CIFS No Yes No —f Yesf Yes No No No

Ext2 Yes Yes Yes 255 Yes Yes Yes Yes No

a 505 if .longfilenames is enabled; otherwise, 48.

b VFAT or FAT32 (e.g. Windows 95).

c 255-character filename lengths used by VFAT or FAT32 (e.g. Windows 95).

d With Rock Ridge extensions.

e 128 with Joliet extensions; 255 with Rock Ridge extensions.

f Limited by the remote filesystem.

Image filesystem
Every QNX Neutrino system image provides a simple read-only filesystem that
presents the set of files built into the OS image.

Since this image may include both executables and data files, this filesystem is
sufficient for many embedded systems. If additional filesystems are required, they
would be placed as modules within the image where they can be started as needed.
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RAM “filesystem”
Every QNX system also provides a simple RAM-based “filesystem” that allows
read/write files to be placed under /dev/shmem.

This RAM filesystem finds the most use in tiny embedded systems where persistent
storage across reboots isn’t required, yet where a small, fast, temporary-storage
filesystem with limited features is called for.

The filesystem comes for free with procnto and doesn’t require any setup. You can
simply create files under /dev/shmem and grow them to any size (depending on RAM
resources).

Although the RAM filesystem itself doesn’t support hard or soft links or directories,
you can create a link to it by using process-manager links. For example, you could
create a link to a RAM-based /tmp directory:

ln -sP /dev/shmem /tmp

This tells procnto to create a process manager link to /dev/shmem known as
“/tmp.” Application programs can then open files under /tmp as if it were a normal
filesystem.

In order to minimize the size of the RAM filesystem code inside the process manager,
this filesystem specifically doesn’t include “big filesystem” features such as file
locking and directory creation.

Embedded transaction filesystem (ETFS)
ETFS implements a high-reliability filesystem for use with embedded solid-state
memory devices, particularly NAND flash memory. The filesystem supports a fully
hierarchical directory structure with POSIX semantics as shown in the table above.

ETFS is a filesystem composed entirely of transactions. Every write operation,
whether of user data or filesystem metadata, consists of a transaction. A transaction
either succeeds or is treated as if it never occurred.

Transactions never overwrite live data. A write in the middle of a file or a directory
update always writes to a new unused area. In this way, if the operation fails part way
through (due to a crash or power failure), the old data is still intact.

Some log-based filesystems also operate under the principle that live data is never
overwritten. But ETFS takes this to the extreme by turning everything into a log of
transactions. The filesystem hierarchy is built on the fly by processing the log of
transactions in the device. This scan occurs at startup, but is designed such that only a
small subset of the data is read and CRC-checked, resulting in faster startup times
without sacrificing reliability.

Transactions are position-independent in the device and may occur in any order. You
could read the transactions from one device and write them in a different order to
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another device. This is important because it allows bulk programming of devices
containing bad blocks that may be at arbitrary locations.

This design is well-suited for NAND flash memory. NAND flash is shipped with
factory-marked bad blocks that may occur in any location.

Header Data DataHeader Header ...

FID

Offset

Size

Sequence

CRCs

ECCs

Other

Required;
device-independent

Optional;
device-dependent

Transaction

ETFS is a filesystem composed entirely of transactions.

Inside a transaction
Each transaction consists of a header followed by data. The header contains the
following:

FID A unique file ID that identifies which file the transaction belongs to.

Offset The offset of the data portion within the file.

Size The size of the data portion.

Sequence A monotonically increasing number (to enable time ordering).

CRCs Data integrity checks (for NAND, NOR, SRAM).

ECCs Error correction (for NAND).

Other Reserved for future expansion.

Types of storage media
Although best for NAND devices, ETFS also supports other types of embedded
storage media through the use of driver classes as follows:
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Class CRC ECC Wear-levelingerase Wear-levelingread Cluster size

NAND 512+16 Yes Yes Yes Yes 1K

NAND 2048+64 Yes Yes Yes Yes 2K

RAM No No No No 1K

SRAM Yes No No No 1K

NOR Yes No Yes No 1K

Although ETFS can support NOR flash, we recommend instead the FFS3 filesystem
(devf-*), which is designed explicitly for NOR flash devices.

Reliability features
ETFS is designed to survive across a power failure, even during an active flash write or
block erase. The following features contribute to its reliability:

• dynamic wear-leveling

• static wear-leveling

• CRC error detection

• ECC error correction

• read degradation monitoring with automatic refresh

• transaction rollback

• atomic file operations

• automatic file defragmentation.

Dynamic wear-leveling

Flash memory allows a limited number of erase cycles on a flash block before the
block will fail. This number can be as low as 100,000. ETFS tracks the number of
erases on each block. When selecting a block to use, ETFS attempts to spread the
erase cycles evenly over the device, dramatically increasing its life. The difference can
be extreme: from usage scenarios of failure within a few days without wear-leveling to
over 40 years with wear-leveling.

Static wear-leveling

Filesystems often consist of a large number of static files that are read but not written.
These files will occupy flash blocks that have no reason to be erased. If the majority of
the files in flash are static, this will cause the remaining blocks containing dynamic
data to wear at a dramatically increased rate.
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ETFS notices these under-worked static blocks and forces them into service by
copying their data to an over-worked block. This solves two problems: It gives the
over-worked block a rest, since it now contains static data, and it forces the
under-worked static block into the dynamic pool of blocks.

CRC error detection

Each transaction is protected by a cyclic redundancy check (CRC). This ensures quick
detection of corrupted data, and forms the basis for the rollback operation of damaged
or incomplete transactions at startup. The CRC can detect multiple bit errors that may
occur during a power failure.

ECC error correction

On a CRC error, ETFS can apply error correction coding (ECC) to attempt to recover
the data. This is suitable for NAND flash memory, in which single-bit errors may
occur during normal usage. An ECC error is a warning signal that the flash block the
error occurred in may be getting weak, i.e. losing charge.

ETFS will mark the weak block for a refresh operation, which copies the data to a new
flash block and erases the weak block. The erase recharges the flash block.

Read degradation monitoring with automatic refresh

Each read operation within a NAND flash block weakens the charge maintaining the
data bits. Most devices support about 100,000 reads before there’s danger of losing a
bit. The ECC will recover a single-bit error, but may not be able to recover multi-bit
errors.

ETFS solves this by tracking reads and marking blocks for refresh before the 100,000
read limit is reached.

Transaction rollback

When ETFS starts, it processes all transactions and rolls back (discards) the last partial
or damaged transaction. The rollback code is designed to handle a power failure
during a rollback operation, thus allowing the system to recover from multiple nested
faults. The validity of a transaction is protected by CRC codes on each transaction.

Atomic file operations

ETFS implements a very simple directory structure on the device, allowing significant
modifications with a single flash write. For example, the move of a file or directory to
another directory is often a multistage operation in most filesystems. In ETFS, a move
is accomplished with a single flash write.

Automatic file defragmentation

Log-based filesystems often suffer from fragmentation, since each update or write to
an existing file causes a new transaction to be created. ETFS uses write-buffering to
combine small writes into larger write transactions in an attempt to minimize
fragmentation caused by lots of very small transactions. ETFS also monitors the
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fragmentation level of each file and will do a background defrag operation on files that
do become badly fragmented. Note that this background activity will always be
preempted by a user data request in order to ensure immediate access to the file being
defragmented.

QNX 4 filesystem
The QNX 4 filesystem (fs-qnx4.so) is a high-performance filesystem that shares the
same on-disk structure as in the QNX 4 RTOS.

The QNX 4 filesystem implements an extremely robust design, utilizing an
extent-based, bitmap allocation scheme with fingerprint control structures to safeguard
against data loss and to provide easy recovery. Features include:

• extent-based POSIX filesystem

• robustness: all sensitive filesystem info is written through to disk

• on-disk “signatures” and special key information to allow fast data recovery in the
event of disk damage

• 505-character filenames

• multi-threaded design

• client-driven priority

• same disk format as the filesystem under QNX 4

Since the release of 6.2.1, the 48-character filename limit has increased to 505
characters via a backwards-compatible extension. The same on-disk format is
retained, but new systems will see the longer name, old ones will see a truncated
48-character name.

For more information, see “QNX 4 filesystem” in the Working with Filesystems
chapter of the QNX Neutrino User’s Guide.

Power-Safe filesystem
The Power-Safe filesystem, supported by the fs-qnx6.so shared object, is a reliable
disk filesystem that can withstand power failures without losing or corrupting data.

Problems with existing disk filesystems
Although existing disk filesystems are designed to be robust and reliable, there’s still
the possibility of losing data, depending on what the filesystem is doing when a
catastrophic failure (such as a power failure) occurs:

• Each sector on a hard disk includes a 4-byte error-correcting code (ECC) that the
drive uses to catch hardware errors and so on. If the driver is writing the disk when
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the power fails, then the heads are removed to prevent them from crashing on the
surface, leaving the sector half-written with the new content. The next time you try
to read that block — or sector — the inconsistent ECC causes the read to fail, so
you lose both the old and new content.

You can get hard drives that offer atomic sector upgrades and promise you that
either all of the old or new data in the sector will be readable, but these drives are
rare and expensive.

• Some filesystem operations require updating multiple on-disk data structures. For
example, if a program calls unlink(), the filesystem has to update a bitmap block, a
directory block, and an inode, which means it has to write three separate blocks. If
the power fails between writing these blocks, the filesystem will be in an
inconsistent state on the disk. Critical filesystem data, such as updates to
directories, inodes, extent blocks, and the bitmap are written synchronously to the
disk in a carefully chosen order to reduce — but not eliminate — this risk.

• You can use chkfsys to check for consistency on a QNX 4 filesystem, but it
checks only the filesystem’s structure and metadata, not the user’s file data, and it
can be slow if the disk is large or there are many directories on it.

• If the root directory, the bitmap, or inode file (all in the first few blocks of the disk)
gets corrupted, you wouldn’t be able to mount the filesystem at all. You might be
able to manually repair the system, but you need to be very familiar with the details
of the filesystem structure.

Copy-on-write filesystem
To address the problems associated with existing disk filesystems, the Power-Safe
filesystem never overwrites live data; it does all updates using copy-on-write (COW),
assembling a new view of the filesystem in unused blocks on the disk. The new view
of the filesystem becomes “live” only when all the updates are safely written on the
disk. Everything is COW: both metadata and user data are protected.

To see how this works, let’s consider how the data is stored. A Power-Safe filesystem
is divided into logical blocks, the size of which you can specify when you use
mkqnx6fs to format the filesystem. Each inode includes 16 pointers to blocks. If the
file is smaller than 16 blocks, the inode points to the data blocks directly. If the file is
any bigger, those 16 blocks become pointers to more blocks, and so on.

The final block pointers to the real data are all in the leaves and are all at the same
level. In some other filesystems — such as EXT2 — a file always has some direct
blocks, some indirect ones, and some double indirect, so you go to different levels to
get to different parts of the file. With the Power-Safe filesystem, all the user data for a
file is at the same level.
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...

...

...

...

Inode

Indirect block
pointers

User data

If you change some data, it’s written in one or more unused blocks, and the original
data remains unchanged. The list of indirect block pointers must be modified to refer
to the newly used blocks, but again the filesystem copies the existing block of pointers
and modifies the copy. The filesystem then updates the inode — once again by
modifying a copy — to refer to the new block of indirect pointers. When the operation
is complete, the original data and the pointers to it remain intact, but there’s a new set
of blocks, indirect pointers, and inode for the modified data:

...

...

...

...

Inode

Indirect block
pointers

User data

...

...

This has several implications for the COW filesystem:

• The bitmap and inodes are treated in the same way as user files.

• Any filesystem block can be relocated, so there aren’t any fixed locations, such as
those for the root block or bitmap in the QNX 4 filesystem

• The filesystem must be completely self-referential.

A superblock is a global root block that contains the inodes for the system bitmap and
inodes files. A Power-Safe filesystem maintains two superblocks:

• a stable superblock that reflects the original version of all the blocks

• a working superblock that reflects the modified data

The working superblock can include pointers to blocks in the stable superblock. These
blocks contain data that hasn’t yet been modified. The inodes and bitmap for the
working superblock grow from it.
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... ...

...

... ...

...

Stable superblock Working superblock

A snapshot is a consistent view of the filesystem (simply a committed superblock). To
take a snapshot, the filesystem:

1 Locks the filesystem to make sure that it’s in a stable state; all client activity is
suspended, and there must be no active operations.

2 Writes all the copied blocks to disk. The order isn’t important (as it is for the
QNX 4 filesystem), so it can be optimized.

3 Forces the data to be synchronized to disk, including flushing any hardware
track cache.

4 Constructs the superblock, recording the new location of the bitmap and inodes,
incrementing its sequence number, and calculating a CRC.

5 Writes the superblock to disk.

6 Switches between the working and committed views. The old versions of the
copied blocks are freed and become available for use.

To mount the disk at startup, the filesystem simply reads the superblocks from disk,
validates their CRCs, and then chooses the one with the higher sequence number.
There’s no need to run chkfsys or replay a transaction log. The time it takes to
mount the filesystem is the time it takes to read a couple of blocks.

Performance
The COW method has some drawbacks:

• Each change to user data can cause up to a dozen blocks to be copied and modified,
because the filesystem never modifies the inode and indirect block pointers in
place; it has to copy the blocks to a new location and modify the copies. Thus,
write operations are longer.

• When taking a snapshot, the filesystem must force all blocks fully to disk before it
commits the superblock.

However:
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• There’s no constraint on the order in which the blocks (aside from the superblock)
can be written.

• The new blocks can be allocated from any free, contiguous space.

The performance of the filesystem depends on how much buffer cache is available, and
on the frequency of the snapshots. Snapshots occur periodically (every 10 seconds, or
as specified by the snapshot option to fs-qnx6.so), and also when you call sync()
for the entire filesystem, or fsync() for a single file.

Synchronization is at the filesystem level, not at that of individual files, so fsync() is
potentially an expensive operation; the Power-Safe filesystem ignores the O_SYNC
flag.

You can also turn snapshots off if you’re doing some long operation, and the
intermediate states aren’t useful to you. For example, suppose you’re copying a very
large file into a Power-Safe filesystem. The cp utility is really just a sequence of basic
operations:

• an open(O_CREAT|O_TRUNC) to make the file

• a bunch of write() operations to copy the data

• a close(), chmod(), and chown() to copy the metadata

If the file is big enough so that copying it spans snapshots, you have on-disk views that
include the file not existing, the file existing at a variety of sizes, and finally the
complete file copied and its IDs and permissions set:

Time

open() write() write() write() close(),
chmod(),
chown()

...

Snapshot Snapshot Snapshot Snapshot...

Each snapshot is a valid point-in-time view of the filesystem (i.e. if you’ve copied 50
MB, the size is 50 MB, and all data up to 50 MB is also correctly copied and
available). If there’s a power failure, the filesystem is restored to the most recent
snapshot. But the filesystem has no concept that the sequence of open(), write(), and
close() operations is really one higher-level operation, cp. If you want the higher-level
semantics, disable the snapshots around the cp, and then the middle snapshots won’t
happen, and if a power failure occurs, the file will either be complete, or not there at
all.

For information about using this filesystem, see “Power-Safe filesystem” in the
Working with Filesystems chapter of the QNX Neutrino User’s Guide.
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DOS Filesystem
The DOS Filesystem, fs-dos.so, provides transparent access to DOS disks, so you
can treat DOS filesystems as though they were POSIX filesystems. This transparency
allows processes to operate on DOS files without any special knowledge or work on
their part.

The structure of the DOS filesystem on disk is old and inefficient, and lacks many
desirable features. Its only major virtue is its portability to DOS and Windows
environments. You should choose this filesystem only if you need to transport DOS
files to other machines that require it. Consider using the QNX filesystem alone if
DOS file portability isn’t an issue or in conjunction with the DOS filesystem if it is.

If there’s no DOS equivalent to a POSIX feature, fs-dos.so will either return an
error or a reasonable default. For example, an attempt to create a link() will result in
the appropriate errno being returned. On the other hand, if there’s an attempt to read
the POSIX times on a file, fs-dos.so will treat any of the unsupported times the
same as the last write time.

DOS version support

The fs-dos.so program supports both floppies and hard disk partitions from DOS
version 2.1 to Windows 98 with long filenames.

DOS text files

DOS terminates each line in a text file with two characters (CR/LF), while POSIX
(and most other) systems terminate each line with a single character (LF). Note that
fs-dos.so makes no attempt to translate text files being read. Most utilities and
programs won’t be affected by this difference.

Note also that some very old DOS programs may use a Ctrl-Z (ˆZ) as a file terminator.
This character is also passed through without modification.

QNX-to-DOS filename mapping

In DOS, a filename cannot contain any of the following characters:

/ \ [ ] : * | + = ; , ?

An attempt to create a file that contains one of these invalid characters will return an
error. DOS (8.3 format) also expects all alphabetical characters to be uppercase, so
fs-dos.so maps these characters to uppercase when creating a filename on disk. But
it maps a filename to lowercase by default when returning a filename to a QNX
Neutrino application, so that QNX Neutrino users and programs can always see and
type lowercase (via the sfn=sfn_mode option).

Handling filenames

You can specify how you want fs-dos.so to handle long filenames (via the
lfn=lfn_mode option):

• Ignore them — display/create only 8.3 filenames.
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• Show them — if filenames are longer than 8.3 or if mixed case is used.

• Always create both short and long filenames.

If you use the ignore option, you can specify whether or not to silently truncate
filename characters beyond the 8.3 limit.

International filenames

The DOS filesystem supports DOS “code pages” (international character sets) for
locale filenames. Short 8.3 names are stored using a particular character set (typically
the most common extended characters for a locale are encoded in the 8th-bit character
range). All the common American as well as Western and Eastern European code
pages (437, 850, 852, 866, 1250, 1251, 1252) are supported. If you produce software
that must access a variety of DOS/Windows hard disks, or operate in non-US-English
countries, this feature offers important portability — filenames will be created with
both a Unicode and locale name and are accessible via either name.

The DOS filesystem supports international text in filenames only. No attempt is made
to be aware of data contents, with the sole exception of Windows “shortcut” (.LNK)
files, which will be parsed and translated into symbolic links if you’ve specified that
option (lnk=lnk_mode).

DOS volume labels

DOS uses the concept of a volume label, which is an actual directory entry in the root
of the DOS filesystem. To distinguish between the volume label and an actual DOS
directory, fs-dos.so reports the volume label according to the way you specify its
vollabel option. You can choose to:

• Ignore the volume label.

• Display the volume label as a name-special file.

• Display the volume label as a name-special file with an equal sign (=) as the first
character of the volume name (the default).

DOS-QNX permission mapping

DOS doesn’t support all the permission bits specified by POSIX. It has a
READ_ONLY bit in place of separate READ and WRITE bits; it doesn’t have an
EXECUTE bit. When a DOS file is created, the DOS READ_ONLY bit will be set if
all the POSIX WRITE bits are off. When a DOS file is accessed, the POSIX READ
bit is always assumed to be set for user, group, and other.

Since you can’t execute a file that doesn’t have EXECUTE permission, fs-dos.so
has an option (exe=exec_mode) that lets you specify how to handle the POSIX
EXECUTE bit for executables.
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File ownership

Although the DOS file structure doesn’t support user IDs and group IDs, fs-dos.so
(by default) won’t return an error code if an attempt is made to change them. An error
isn’t returned because a number of utilities attempt to do this and failure would result
in unexpected errors. The approach taken is “you can change anything to anything
since it isn’t written to disk anyway.”

The posix= options let you set stricter POSIX checks and enable POSIX emulation.
For example, in POSIX mode, an error of EINVAL is flagged for attempts to do any of
the following:

• Set the user ID or group ID to something other than the default (root).

• Remove an r (read) permission.

• Set an s (set ID on execution) permission.

If you set the posix option to emulate (the default) or strict, you get the
following benefits:

• The . and .. directory entries are created in the root directory.

• The directory size is calculated.

• The number of links in a directory is calculated, based on its subdirectories.

CD-ROM filesystem
The CD-ROM filesystem provides transparent access to CD-ROM media, so you can
treat CD-ROM filesystems as though they were POSIX filesystems. This transparency
allows processes to operate on CD-ROM files without any special knowledge or work
on their part.

The fs-cd.so manager implements the ISO 9660 standard as well as a number of
extensions, including Rock Ridge (RRIP), Joliet (Microsoft), and multisession (Kodak
Photo CD, enhanced audio).

FFS3 filesystem
The FFS3 filesystem drivers implement a POSIX-like filesystem on NOR flash
memory devices. The drivers are standalone executables that contain both the flash
filesystem code and the flash device code. There are versions of the FFS3 filesystem
driver for different embedded systems hardware as well as PCMCIA memory cards.

The naming convention for the drivers is devf-system, where system describes the
embedded system. For example, the devf-800fads driver is for the 800FADS
PowerPC evaluation board.

To find out what flash devices we currently support, please refer to the following
sources:
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• the boards and mtd-flash directories under
bsp_working_dir/src/hardware/flash

• QNX Neutrino OS docs (devf-* entries in the Utilities Reference)

• the QNX Software Systems website (www.qnx.com)

Customization
Along with the prebuilt flash filesystem drivers, including the “generic” driver
(devf-generic), we provide the libraries and source code that you’ll need to build
custom flash filesystem drivers for different embedded systems. For information on
how to do this, see the Customizing the Flash Filesystem chapter in the Building
Embedded Systems book.

Organization
The FFS3 filesystem drivers support one or more logical flash drives. Each logical
drive is called a socket, which consists of a contiguous and homogeneous region of
flash memory. For example, in a system containing two different types of flash device
at different addresses, where one flash device is used for the boot image and the other
for the flash filesystem, each flash device would appear in a different socket.

Each socket may be divided into one or more partitions. Two types of partitions are
supported: raw partitions and flash filesystem partitions.

Raw partitions

A raw partition in the socket is any partition that doesn’t contain a flash filesystem.
The driver doesn’t recognize any filesystem types other than the flash filesystem. A
raw partition may contain an image filesystem or some application-specific data.

The filesystem will make accessible through a raw mountpoint (see below) any
partitions on the flash that aren’t flash filesystem partitions. Note that the flash
filesystem partitions are available as raw partitions as well.

Filesystem partitions

A flash filesystem partition contains the POSIX-like flash filesystem, which uses a
QNX proprietary format to store the filesystem data on the flash devices. This format
isn’t compatible with either the Microsoft FFS2 or PCMCIA FTL specification.

The filesystem allows files and directories to be freely created and deleted. It recovers
space from deleted files using a reclaim mechanism similar to garbage collection.

Mountpoints

When you start the flash filesystem driver, it will by default mount any partitions it
finds in the socket. Note that you can specify the mountpoint using mkefs or
flashctl (e.g. /flash).
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Mountpoint Description

/dev/fsX raw mountpoint socket X

/dev/fsXpY raw mountpoint socket X partition Y

/fsXpY filesystem mountpoint socket X partition Y

/fsXpY/.cmp filesystem compressed mountpoint socket X partition Y

Features
The FFS3 filesystem supports many advanced features, such as POSIX compatibility,
multiple threads, background reclaim, fault recovery, transparent decompression,
endian-awareness, wear-leveling, and error-handling.

POSIX

The filesystem supports the standard POSIX functionality (including long filenames,
access privileges, random writes, truncation, and symbolic links) with the following
exceptions:

• You can’t create hard links.

• Access times aren’t supported (but file modification times and attribute change
times are).

These design compromises allow this filesystem to remain small and simple, yet
include most features normally found with block device filesystems.

Background reclaim

The FFS3 filesystem stores files and directories as a linked list of extents, which are
marked for deletion as they’re deleted or updated. Blocks to be reclaimed are chosen
using a simple algorithm that finds the block with the most space to be reclaimed
while keeping level the amount of wear of each individual block. This wear-leveling
increases the MTBF (mean time between failures) of the flash devices, thus increasing
their longevity.

The background reclaim process is performed when there isn’t enough free space. The
reclaim process first copies the contents of the reclaim block to an empty spare block,
which then replaces the reclaim block. The reclaim block is then erased. Unlike
rotating media with a mechanical head, proximity of data isn’t a factor with a flash
filesystem, so data can be scattered on the media without loss of performance.

Fault recovery

The filesystem has been designed to minimize corruption due to accidental
loss-of-power faults. Updates to extent headers and erase block headers are always
executed in carefully scheduled sequences. These sequences allow the recovery of the
filesystem’s integrity in the case of data corruption.
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Note that properly designed flash hardware is essential for effective fault-recovery
systems. In particular, special reset circuitry must be in place to hold the system in
“reset” before power levels drop below critical. Otherwise, spurious or random bus
activity can form write/erase commands and corrupt the flash beyond recovery.

Rename operations are guaranteed atomic, even through loss-of-power faults. This
means, for example, that if you lost power while giving an image or executable a new
name, you would still be able to access the file via its old name upon recovery.

When the FFS3 filesystem driver is started, it scans the state of every extent header on
the media (in order to validate its integrity) and takes appropriate action, ranging from
a simple block reclamation to the erasure of dangling extent links. This process is
merged with the filesystem’s normal mount procedure in order to achieve optimal
bootstrap timings.

Compression/decompression

For fast and efficient compression/decompression, you can use the deflate and
inflator utilities, which rely on popular deflate/inflate algorithms.

The deflate algorithm combines two algorithms. The first takes care of removing data
duplication in files; the second algorithm handles data sequences that appear the most
often by giving them shorter symbols. Those two algorithms provide excellent lossless
compression of data and executable files. The inflate algorithm simply reverses what
the deflate algorithm does.

The deflate utility is intended for use with the filter attribute for mkefs. You can
also use it to precompress files intended for a flash filesystem.

The inflator resource manager sits in front of the other filesystems that were
previously compressed using the deflate utility. It can almost double the effective
size of the flash memory.

Compressed files can be manipulated with standard utilities such as cp or ftp — they
can display their compressed and uncompressed size with the ls utility if used with
the proper mountpoint. These features make the management of a compressed flash
filesystem seamless to a systems designer.

Flash errors

As flash hardware wears out, its write state-machine may find that it can’t write or
erase a particular bit cell. When this happens, the error status is propagated to the flash
driver so it can take proper action (i.e. mark the bad area and try to write/erase in
another place).

This error-handling mechanism is transparent. Note that after several flash errors, all
writes and erases that fail will eventually render the flash read-only. Fortunately, this
situation shouldn’t happen before several years of flash operation. Check your flash
specification and analyze your application’s data flow to flash in order to calculate its
potential longevity or MTBF.
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Endian awareness

The FFS3 filesystem is endian-aware, making it portable across different platforms.
The optimal approach is to use the mkefs utility to select the target’s endian-ness.

Utilities
The filesystem supports all the standard POSIX utilities such as ls, mkdir, rm, ln,
mv, and cp. There are also some QNX Neutrino utilities for managing the flash:

flashctl Erase, format, and mount flash partitions.

deflate Compress files for flash filesystems.

mkefs Create flash filesystem image files.

System calls
The filesystem supports all the standard POSIX I/O functions such as open(), close(),
read(), and write(). Special functions such as erasing are supported using the devctl()
function.

NFS filesystem
The Network File System (NFS) allows a client workstation to perform transparent file
access over a network. It allows a client workstation to operate on files that reside on a
server across a variety of operating systems. Client file access calls are converted to
NFS protocol requests, and are sent to the server over the network. The server receives
the request, performs the actual filesystem operation, and sends a response back to the
client.

The Network File System operates in a stateless fashion by using remote procedure
calls (RPC) and TCP/IP for its transport. Therefore, to use fs-nfs2 or fs-nfs3,
you’ll also need to run the TCP/IP client for Neutrino.

Any POSIX limitations in the remote server filesystem will be passed through to the
client. For example, the length of filenames may vary across servers from different
operating systems. NFS (versions 2 and 3) limits filenames to 255 characters; mountd
(versions 1 and 3) limits pathnames to 1024 characters.

Although NFS (version 2) is older than POSIX, it was designed to emulate UNIX
filesystem semantics and happens to be relatively close to POSIX. If possible, you
should use fs-nfs3 instead of fs-nfs2.

CIFS filesystem
Formerly known as SMB, the Common Internet File System (CIFS) allows a client
workstation to perform transparent file access over a network to a Windows 98 or NT
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system, or a UNIX system running an SMB server. Client file access calls are
converted to CIFS protocol requests and are sent to the server over the network. The
server receives the request, performs the actual filesystem operation, and sends a
response back to the client.

The CIFS protocol makes no attempt to conform to POSIX.

The fs-cifs manager uses TCP/IP for its transport. Therefore, to use fs-cifs
(SMBfsys in QNX 4), you’ll also need to run the TCP/IP client for Neutrino.

Linux Ext2 filesystem
The Ext2 filesystem (fs-ext2.so) provides transparent access to Linux disk
partitions. This implementation supports the standard set of features found in Ext2
versions 0 and 1.

Sparse file support is included in order to be compatible with existing Linux partitions.
Other filesystems can only be “stacked” read-only on top of sparse files. There are no
such restrictions on normal files.

If an Ext2 filesystem isn’t unmounted properly, a filesystem checker is usually
responsible for cleaning up the next time the filesystem is mounted. Although the
fs-ext2.so module is equipped to perform a quick test, it automatically mounts the
filesystem as read-only if it detects any significant problems (which should be fixed
using a filesystem checker).

Universal Disk Format (UDF) filesystem
The Universal Disk Format (UDF) filesystem provides access to recordable media,
such as CD, CD-R, CD-RW, and DVD. It’s used for DVD video, but can also be used
for backups to CD, and so on. For more information, see
http://osta.org/specs/index.htm.

The UDF filesystem is supported by the fs-udf.so shared object.

In our implementation, UDF filesystems are read-only.

Virtual filesystems
QNX Neutrino provides an Inflator virtual filesystem, which is a resource manager
that sits in front of other filesystems and inflates files that were previously deflated
(using the deflate utility).

The inflator utility is typically used when the underlying filesystem is a flash
filesystem. Using it can almost double the effective size of the flash memory.

If a file is being opened for a read, inflator attempts to open the file itself on an
underlying filesystem. It reads the first 16 bytes and checks for the signature of a
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deflated file. If the file was deflated, inflator places itself between the application
and the underlying filesystem. All reads return the original file data before it was
deflated.

From the application’s point of view, the file appears to be uncompressed. Random
seeks are also supported. If the application does a stat() on the file, the size of the
inflated file (the original size before it was deflated) is returned.
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Introduction
A key requirement of any realtime operating system is high-performance character
I/O. Character devices can be described as devices to which I/O consists of a sequence
of bytes transferred serially, as opposed to block-oriented devices (e.g. disk drives).

As in the POSIX and UNIX tradition, these character devices are located in the OS
pathname space under the /dev directory. For example, a serial port to which a
modem or terminal could be connected might appear in the system as:

/dev/ser1

Typical character devices found on PC hardware include:

• serial ports

• parallel ports

• text-mode consoles

• pseudo terminals (ptys)

Programs access character devices using the standard open(), close(), read(), and
write() API functions. Additional functions are available for manipulating other
aspects of the character device, such as baud rate, parity, flow control, etc.

Since it’s common to run multiple character devices, they have been designed as a
family of drivers and a library called io-char to maximize code reuse.

Serial
driver

Parallel
driver

Console
driver

Pty
driver

io-char

The io-char module is implemented as a library.

As shown in this diagram, io-char is implemented as a library. The io-char
module contains all the code to support POSIX semantics on the device. It also
contains a significant amount of code to implement character I/O features beyond
POSIX but desirable in a realtime system. Since this code is in the common library, all
drivers inherit these capabilities.

The driver is the executing process that calls into the library. In operation, the driver
starts first and invokes io-char. The drivers themselves are just like any other QNX
Neutrino process and can run at different priorities according to the nature of the
hardware being controlled and the client’s requesting service.
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Once a single character device is running, the memory cost of adding additional
devices is minimal, since only the code to implement the new driver structure would
be new.

Driver/io-char communication
The io-char library manages the flow of data between an application and the device
driver. Data flows between io-char and the driver through a set of memory queues
associated with each character device.

Three queues are used for each device. Each queue is implemented using a first-in,
first-out (FIFO) mechanism.

Driver interface

Application
processes

Console
driver

Parallel
driver

out in canon

Serial
driver

System console

Parallel printer

Serial
communication

ports

Process
A

Process
B

Process
C

io-char

Device I/O in QNX Neutrino.

Received data is placed into the raw input queue by the driver and is consumed by
io-char only when application processes request data. (For details on raw versus
edited or canonical input, see the section “Input modes” later in this chapter.)
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Interrupt handlers within drivers typically call a trusted library routine within
io-char to add data to this queue — this ensures a consistent input discipline and
minimizes the responsibility of the driver (and effort required to create new drivers).

The io-char module places output data into the output queue to be consumed by the
driver as characters are physically transmitted to the device. The module calls a trusted
routine within the driver each time new data is added so it can “kick” the driver into
operation (in the event that it was idle). Since output queues are used, io-char
implements write-behind for all character devices. Only when the output buffers are
full will io-char cause a process to block while writing.

The canonical queue is managed entirely by io-char and is used while processing
input data in edited mode. The size of this queue determines the maximum edited
input line that can be processed for a particular device.

The sizes of these queues are configurable using command-line options. Default
values are usually more than adequate to handle most hardware configurations, but
you can “tune” these to reduce overall system memory requirements, to accommodate
unusual hardware situations, or to handle unique protocol requirements.

Device drivers simply add received data to the raw input queue or consume and
transmit data from the output queue. The io-char module decides when (and if)
output transmission is to be suspended, how (and if) received data is echoed, etc.

Device control
Low-level device control is implemented using the devctl() call. The POSIX terminal
control functions are layered on top of devctl() as follows:

tcgetattr() Get terminal attributes.

tcsetattr() Set terminal attributes.

tcgetpgrp() Get ID of process group leader for a terminal.

tcsetpgrp() Set ID of process group leader for a terminal.

tcsendbreak() Send a break condition.

tcflow() Suspend or restart data transmission/reception.

QNX extensions

The QNX extensions to the terminal control API are as follows:

tcdropline() Initiate a disconnect. For a serial device, this will pulse the DTR line.

tcinject() Inject characters into the canonical buffer.

The io-char module acts directly on a common set of devctl() commands supported
by most drivers. Applications send device-specific devctl() commands through
io-char to the drivers.
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Input modes
Each device can be in a raw or edited input mode.

Raw input mode

In raw mode, io-char performs no editing on received characters. This reduces the
processing done on each character to a minimum and provides the highest
performance interface for reading data.

Fullscreen programs and serial communications programs are examples of
applications that use a character device in raw mode.

In raw mode, each character is received into the raw input buffer by the interrupt
handler. When an application requests data from the device, it can specify under what
conditions an input request is to be satisfied. Until the conditions are satisfied, the
interrupt handler won’t signal the driver to run, and the driver won’t return any data to
the application. The normal case of a simple read by an application would block until
at least one character was available.

The following diagram shows the full set of available conditions:

MIN
TIME

TIMEOUT
FORWARD

Respond when at least this number of characters arrives.
Respond if a pause in the character stream occurs.
Respond if an overall amount of time passes.
Respond if a framing character arrives.

MIN
TIME

TIMEOUT

FORWARD

OR io-char reads n bytes

Conditions for satisfying an input request.

In the case where multiple conditions are specified, the read will be satisfied when any
one of them is satisfied.

MIN

The qualifier MIN is useful when an application has knowledge of the number of
characters it expects to receive.

Any protocol that knows the character count for a frame of data can use MIN to wait
for the entire frame to arrive. This significantly reduces IPC and process scheduling.
MIN is often used in conjunction with TIME or TIMEOUT . MIN is part of the POSIX
standard.

TIME

The qualifier TIME is useful when an application is receiving streaming data and
wishes to be notified when the data stops or pauses. The pause time is specified in
1/10ths of a second. TIME is part of the POSIX standard.
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TIMEOUT

The qualifier TIMEOUT is useful when an application has knowledge of how long it
should wait for data before timing out. The timeout is specified in 1/10ths of a second.

Any protocol that knows the character count for a frame of data it expects to receive
can use TIMEOUT . This in combination with the baud rate allows a reasonable guess
to be made when data should be available. It acts as a deadman timer to detect
dropped characters. It can also be used in interactive programs with user input to
timeout a read if no response is available within a given time.

TIMEOUT is a QNX extension and is not part of the POSIX standard.

FORWARD

The qualifier FORWARD is useful when a protocol is delimited by a special framing
character. For example, the PPP protocol used for TCP/IP over a serial link starts and
ends its packets with a framing character. When used in conjunction with TIMEOUT ,
the FORWARD character can greatly improve the efficiency of a protocol
implementation. The protocol process will receive complete frames, rather than
character by character. In the case of a dropped framing character, TIMEOUT or
TIME can be used to quickly recover.

This greatly minimizes the amount of IPC work for the OS and results in a much lower
processor utilization for a given TCP/IP data rate. It’s interesting to note that PPP
doesn’t contain a character count for its frames. Without the data-forwarding
character, an implementation might be forced to read the data one character at a time.

FORWARD is a QNX extension and is not part of the POSIX standard.

The ability to “push” the processing for application notification into the
service-providing components of the OS reduces the frequency with which user-level
processing must occur. This minimizes the IPC work to be done in the system and
frees CPU cycles for application processing. In addition, if the application
implementing the protocol is executing on a different network node than the
communications port, the number of network transactions is also minimized.

For intelligent, multiport serial cards, the data-forwarding character recognition can
also be implemented within the intelligent serial card itself, thereby significantly
reducing the number of times the card must interrupt the host processor for interrupt
servicing.

Edited input mode

In edited mode, io-char performs line-editing operations on each received character.
Only when a line is “completely entered” — typically when a carriage return (CR) is
received — will the line of data be made available to application processes. This mode
of operation is often referred to as canonical or sometimes “cooked” mode.

Most nonfullscreen applications run in edited mode, because this allows the
application to deal with the data a line at a time, rather than have to examine each
character received, scanning for an end-of-line character.
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In edited mode, each character is received into the raw input buffer by the interrupt
handler. Unlike raw mode where the driver is scheduled to run only when some input
conditions are met, the interrupt handler will schedule the driver on every received
character.

There are two reasons for this. First, edited input mode is rarely used for
high-performance communication protocols. Second, the work of editing is significant
and not suitable for an interrupt handler.

When the driver runs, code in io-char will examine the character and apply it to the
canonical buffer in which it’s building a line. When a line is complete and an
application requests input, the line will be transferred from the canonical buffer to the
application — the transfer is direct from the canonical buffer to the application buffer
without any intervening copies.

The editing code correctly handles multiple pending input lines in the canonical buffer
and allows partial lines to be read. This can happen, for example, if an application
asked only for 1 character when a 10-character line was available. In this case, the
next read will continue where the last one left off.

The io-char module provides a rich set of editing capabilities, including full support
for moving over the line with cursor keys and for changing, inserting, or deleting
characters. Here are some of the more common capabilities:

LEFT Move the cursor one character to the left.

RIGHT Move the cursor one character to the right.

HOME Move the cursor to the beginning of the line.

END Move the cursor to the end of the line.

ERASE Erase the character to the left of the cursor.

DEL Erase the character at the current cursor position.

KILL Erase the entire input line.

UP Erase the current line and recall a previous line.

DOWN Erase the current line and recall the next line.

INS Toggle between insert mode and typeover mode (every new line starts in
insert mode).

Line-editing characters vary from terminal to terminal. The console always starts out
with a full set of editing keys defined.

If a terminal is connected via a serial channel, you need to define the editing characters
that apply to that particular terminal. To do this, you can use the stty utility. For
example, if you have an ANSI terminal connected to a serial port (called /dev/ser1),
you would use the following command to extract the appropriate editing keys from the
terminfo database and apply them to /dev/ser1:
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stty term=ansi </dev/ser1

Device subsystem performance
The flow of events within the device subsystem is engineered to minimize overhead
and maximize throughput when a device is in raw mode. To accomplish this, the
following rules are used:

• Interrupt handlers place received data directly into a memory queue. Only when a
read operation is pending, and that read operation can be satisfied, will the interrupt
handler schedule the driver to run. In all other cases, the interrupt simply returns.
Moreover, if io-char is already running, no scheduling takes place, since the
availability of data will be noticed without further notification.

• When a read operation is satisfied, the driver replies to the application process
directly from the raw input buffer into the application’s receive buffer. The net
result is that the data is copied only once.

These rules — coupled with the extremely small interrupt and scheduling latencies
inherent within the OS — result in a very lean input model that provides POSIX
conformance together with extensions suitable to the realtime requirements of
protocol implementations.

Console devices
System consoles (with VGA-compatible graphics chips in text mode) are managed by
the devc-con or devc-con-hid driver. The video display card/screen and the
system keyboard are collectively referred to as the physical console.

The devc-con permits multiple sessions to be run concurrently on a physical console
by means of virtual consoles. The devc-con console driver process typically
manages more than one set of I/O queues to io-char, which are made available to
user processes as a set of character devices with names like /dev/con1, /dev/con2,
etc. From the application’s point of view, there “really are” multiple consoles available
to be used.

Of course, there’s only one physical console (screen and keyboard), so only one of
these virtual consoles is actually displayed at any one time. The keyboard is
“attached” to whichever virtual console is currently visible.

Terminal emulation
The console drivers emulate an ANSI terminal.

Serial devices
Serial communication channels are managed by the devc-ser* family of driver
processes. These drivers can manage more than one physical channel and provide
character devices with names such as /dev/ser1, /dev/ser2, etc.
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When devc-ser* is started, command-line arguments can specify which — and how
many — serial ports are installed. On a PC-compatible system, this will typically be
the two standard serial ports often referred to as com1 and com2. The devc-ser*
driver directly supports most nonintelligent multiport serial cards.

QNX Neutrino includes various serial drivers (e.g. devc-ser8250,
devc-serppc800, etc.). For details, see the devc-ser* entries in Utilities
Reference.

The devc-ser* drivers support hardware flow control (except under edited mode)
provided that the hardware supports it. Loss of carrier on a modem can be
programmed to deliver a SIGHUP signal to an application process (as defined by
POSIX).

Parallel devices
Parallel printer ports are managed by the devc-par driver. When devc-par is
started, command-line arguments can specify which parallel port is installed.

The devc-par driver is an output-only driver, so it has no raw input or canonical
input queues. The size of the output buffer can be configured with a command-line
argument. If configured to a large size, this creates the effect of a software print buffer.

Pseudo terminal devices (ptys)
Pseudo terminals are managed by the devc-pty driver. Command-line arguments to
devc-pty specify the number of pseudo terminals to create.

A pseudo terminal (pty) is a pair of character devices: a master device and a slave
device. The slave device provides an interface identical to that of a tty device as
defined by POSIX. However, while other tty devices represent hardware devices, the
slave device instead has another process manipulating it through the master half of the
pseudo terminal. That is, anything written on the master device is given to the slave
device as input; anything written on the slave device is presented as input to the master
device. As a result, pseudo-ttys can be used to connect processes that would otherwise
expect to be communicating with a character device.

Serial line devc-ser* Application
process

Process devc-pty Application
process

Pseudo-ttys.
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Ptys are routinely used to create pseudo-terminal interfaces for programs like pterm,
a terminal emulator that runs under the Photon microGUI and telnet, which uses
TCP/IP to provide a terminal session to a remote system.
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Introduction
As with other service-providing processes in QNX Neutrino, the networking services
execute outside the kernel. Developers are presented with a single unified interface,
regardless of the configuration and number of networks involved.

This architecture allows:

• Network drivers to be started and stopped dynamically.

• Qnet and other protocols to run together in any combination.

Our native network subsystem consists of the network manager executable
(io-pkt-v4, io-pkt-v4-hc, or io-pkt-v6-hc), plus one or more shared library
modules. These modules can include protocols (e.g. lsm-qnet.so) and drivers (e.g.
devnp-speedo.so).

Network manager (io-pkt*)
The io-pkt* component is the active executable within the network subsystem.
Acting as a kind of packet redirector/multiplexer, io-pkt* is responsible for loading
protocol and driver modules based on the configuration given to it on its command line
(or via the mount command after it’s started).

Employing a zero-copy architecture, the io-pkt* executable efficiently loads
multiple networking protocols or drivers (e.g. lsm-qnet.so) on the fly— these
modules are shared objects that install into io-pkt*.

The io-pkt stack is very similar in architecture to other component subsystems
inside of the Neutrino operating system. At the bottom layer, are drivers that provide
the mechanism for passing data to and receiving data from the hardware. The drivers
hook into a multi-threaded layer-2 component (that also provides fast forwarding and
bridging capability) that ties them together and provides a unified interface for
directing packets into the protocol-processing components of the stack. This includes,
for example, handling individual IP and upper-layer protocols such as TCP and UDP.

In Neutrino, a resource manager forms a layer on top of the stack. The resource
manager acts as the message-passing intermediary between the stack and user
applications. It provides a standardized type of interface involving open(), read(),
write(), and ioctl() that uses a message stream to communicate with networking
applications. Networking applications written by the user link with the socket library.
The socket library converts the message-passing interface exposed by the stack into a
standard BSD-style socket layer API, which is the standard for most networking code
today.
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At the driver layer, there are interfaces for Ethernet traffic (used by all Ethernet
drivers), and an interface into the stack for 802.11 management frames from wireless
drivers. The hc variants of the stack also include a separate hardware crypto API that
allows the stack to use a crypto offload engine when it’s encrypting or decrypting data
for secure links. You can load drivers (built as DLLs for dynamic linking and prefixed
with devnp- for new-style drivers, and devn- for legacy drivers) into the stack using
the -d option to io-pkt.

APIs providing connection into the data flow at either the Ethernet or IP layer allow
protocols to coexist within the stack process. Protocols (such as Qnet) are also built as
DLLs. A protocol links directly into either the IP or Ethernet layer and runs within the
stack context. They’re prefixed with lsm (loadable shared module) and you load them
into the stack using the -p option. The tcpip protocol (-ptcpip) is a special option
that the stack recognizes, but doesn’t link a protocol module for (since the IP stack is
already built in). You still use the -ptcpip option to pass additional parameters to the
stack that apply to the IP protocol layer (e.g. -ptcpip prefix=/alt to get the IP
stack to register /alt/dev/socket as the name of its resource manager).

A protocol requiring interaction from an application sitting outside of the stack
process may include its own resource manager infrastructure (this is what Qnet does)
to allow communication and configuration to occur.
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In addition to drivers and protocols, the stack also includes hooks for packet filtering.
The main interfaces supported for filtering are:

Berkeley Packet Filter (BPF) interface

A socket-level interface that lets you read and write, but not modify or block,
packets, and that you access by using a socket interface at the application layer
(see http://en.wikipedia.org/wiki/Berkeley_Packet_Filter).
This is the interface of choice for basic, raw packet interception and
transmission and gives applications outside of the stack process domain access
to raw data streams.

Packet Filter (PF) interface

A read/write/modify/block interface that gives complete control over which
packets are received by or transmitted from the upper layers and is more closely
related to the io-net filter API.

For more information, see the Packet Filtering and Firewalling chapter of the Neutrino
Core Networking User’s Guide.

Threading model
The default mode of operation is for io-pkt to create one thread per CPU. The
io-pkt stack is fully multi-threaded at layer 2. However, only one thread may acquire
the “stack context” for upper-layer packet processing. If multiple interrupt sources
require servicing at the same time, these may be serviced by multiple threads. Only
one thread will be servicing a particular interrupt source at any point in time. Typically
an interrupt on a network device indicates that there are packets to be received. The
same thread that handles the receive processing may later transmit the received
packets out another interface. Examples of this are layer-2 bridging and the “ipflow”
fastforwarding of IP packets.

The stack uses a thread pool to service events that are generated from other parts of the
system. These events may be:

• time outs

• ISR events

• other things generated by the stack or protocol modules

You can use a command-line option to the driver to control the priority at which the
thread is run to receive packets. Client connection requests are handled in a floating
priority mode (i.e. the thread priority matches that of the client application thread
accessing the stack resource manager).

Once a thread receives an event, it examines the event type to see if it’s a hardware
event, stack event, or “other” event:
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• If the event is a hardware event, the hardware is serviced and, for a receive packet,
the thread determines whether bridging or fast-forwarding is required. If so, the
thread performs the appropriate lookup to determine which interface the packet
should be queued for, and then takes care of transmitting it, after which it goes back
to check and see if the hardware needs to be serviced again.

• If the packet is meant for the local stack, the thread queues the packet on the stack
queue. The thread then goes back and continues checking and servicing hardware
events until there are no more events.

• Once a thread has completed servicing the hardware, it checks to see if there’s
currently a stack thread running to service stack events that may have been
generated as a result of its actions. If there’s no stack thread running, the thread
becomes the stack thread and loops, processing stack events until there are none
remaining. It then returns to the “wait for event” state in the thread pool.

This capability of having a thread change directly from being a hardware-servicing
thread to being the stack thread eliminates context switching and greatly improves the
receive performance for locally terminated IP flows.

Protocol module
The networking protocol module is responsible for implementing the details of a
particular protocol (e.g. Qnet). Each protocol component is packaged as a shared
object (e.g. lsm-qnet.so). One or more protocol components may run concurrently.

For example, the following line from a buildfile shows io-pkt-v4 loading the Qnet
protocol via its -p protocol command-line option:

io-pkt-v4 -dne2000 -pqnet

The io-pkt* managers include the TCP/IP stack.

Qnet is the QNX Neutrino native networking protocol. Its main purpose is to extend
the OS’s powerful message-passing IPC transparently over a network of microkernels.

Qnet also provides Quality of Service policies to help ensure reliable network
transactions.

For more information on the Qnet and TCP/IP protocols, see the following chapters in
this book:

• Native Networking (Qnet)

• TCP/IP Networking
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Driver module
The network driver module is responsible for managing the details of a particular
network adaptor (e.g. an NE-2000 compatible Ethernet controller). Each driver is
packaged as a shared object and installs into the io-pkt* component.

Loading and unloading a driver
Once io-pkt* is running, you can dynamically load drivers at the command line
using the mount command. For example, the following commands start
io-pkt-v6-hc and then mount the driver for the Broadcom 57xx chip set adapter:

io-pkt-v6-hc &
mount -T io-pkt devnp-bge.so

All network device drivers are shared objects whose names are of the form
devnp-driver.so.

The io-pkt* manager can also load legacy io-net drivers. The names of these
drivers start with devn-.

Once the shared object is loaded, io-pkt* will then initialize it. The driver and
io-pkt* are then effectively bound together — the driver will call into io-pkt* (for
example when packets arrive from the interface) and io-pkt* will call into the driver
(for example when packets need to be sent from an application to the interface).

To unload a legacy io-net driver, you can use the umount command. For example:

umount /dev/io-pkt/en0

To unload a new-style driver or a legacy io-net driver, use the ifconfig destroy

command:

ifconfig bge0 destroy

For more information on network device drivers, see their individual utility pages
(devn-*, devnp-*) in the Utilities Reference.
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QNX Neutrino distributed
Earlier in this manual, we described message passing in the context of a single node
(see the Interprocess Communication (IPC) chapter). But the true power of QNX
Neutrino lies in its ability to take the message-passing paradigm and extend it
transparently over a network of microkernels.

This chapter describes QNX Neutrino native networking (via the Qnet protocol). For
information on TCP/IP networking, please refer to the next chapter.

At the heart of QNX Neutrino native networking is the Qnet protocol, which is
deployed as a network of tightly coupled trusted machines. Qnet lets these machines
share their resources efficiently with little overhead. Using Qnet, you can use the
standard OS utilities (cp, mv, and so on) to manipulate files anywhere on the Qnet
network as if they were on your machine. In addition, the Qnet protocol doesn’t do
any authentication of remote requests; files are protected by the normal permissions
that apply to users and groups. Besides files, you can also access and start/stop
processes, including managers, that reside on any machine on the Qnet network.

The distributed processing power of Qnet lets you do the following tasks efficiently:

• Access your remote filesystem.

• Scale your application with unprecedented ease.

• Write applications using a collection of cooperating processes that communicate
transparently with each other using Neutrino message-passing.

• Extend your application easily beyond a single processor or SMP machine to
several single-processor machines and distribute your processes among those
CPUs.

• Divide your large application into several processes, where each process can
perform different functions. These processes coordinate their work using message
passing.

• Take advantage of Qnet’s inherent remote procedure call functionality.

Moreover, since Qnet extends Neutrino message passing over the network, other forms
of IPC (e.g. signals, message queues, named semaphores) also work over the network.

To understand how network-wide IPC works, consider two processes that wish to
communicate with each other: a client process and a server process (in this case, the
serial port manager process). In the single-node case, the client simply calls open(),
read(), write(), etc. As we’ll see shortly, a high-level POSIX call such as open()
actually entails message-passing kernel calls “underneath” (ConnectAttach(),
MsgSend(), etc.). But the client doesn’t need to concern itself with those functions; it
simply calls open().

fd = open("/dev/ser1",O_RDWR....); /*Open a serial device*/
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Now consider the case of a simple network with two machines — one contains the
client process, the other contains the server process.

lab1 lab2

Client Server

A simple network where the client and server reside on separate machines.

The code required for client-server communication is identical to the code in the
single-node case, but with one important exception: the pathname. The pathname will
contain a prefix that specifies the node that the service (/dev/ser1) resides on. As
we’ll see later, this prefix will be translated into a node descriptor for the lower-level
ConnectAttach() kernel call that will take place. Each node in the network is assigned
a node descriptor, which serves as the only visible means to determine whether the OS
is running as a network or standalone.

For more information on node descriptors, see the Transparent Distributed Processing
with Qnet chapter of the Neutrino Programmer’s Guide.

Name resolution and lookup
When you run Qnet, the pathname space of all the nodes in your Qnet network is
added to yours. Recall that a pathname is a symbolic name that tells a program where
to find a file within the directory hierarchy based at root (/).

The pathname space of remote nodes will appear under the prefix /net (the directory
created by the Qnet protocol manager, lsm-qnet.so, by default).

For example, remote node1 would appear as:

/net/node1/dev/socket
/net/node1/dev/ser1
/net/node1/home
/net/node1/bin
....

So with Qnet running, you can now open pathnames (files or managers) on other
remote Qnet nodes, just as you open files locally on your own node. This means you
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can access regular files or manager processes on other Qnet nodes as if they were
executing on your local node.
Recall our open() example above. If you wanted to open a serial device on node1

instead of on your local machine, you simply specify the path:

fd = open("/net/node1/dev/ser1",O_RDWR...); /*Open a serial device on node1*/

For client-server communications, how does the client know what node descriptor to
use for the server?

The client uses the filesystem’s pathname space to “look up” the server’s address. In
the single-machine case, the result of that lookup will be a node descriptor, a process
ID, and a channel ID. In the networked case, the results are the same — the only
difference will be the value of the node descriptor.

If node descriptor is: Then the server is:

0 (or ND_LOCAL_NODE) Local (i.e. “this node”)

Nonzero Remote

File descriptor (connection ID)
The practical result in both the local and networked case is that when the client
connects to the server, the client gets a file descriptor (or connection ID in the case of
kernel calls such as ConnectAttach()). This file descriptor is then used for all
subsequent message-passing operations. Note that from the client’s perspective, the
file descriptor is identical for both the local and networked case.

Behind a simple open()
Let’s return to our open() example. Suppose a client on one node (lab1) wishes to use
the serial port (/dev/ser1) on another node (lab2). The client will effectively
perform an open() on the pathname /net/lab2/dev/ser1.

The following diagram shows the steps involved when the client open()’s
/net/lab2/dev/ser1:
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Here are the interactions:

1 A message is sent from the client to its local process manager, effectively asking
who should be contacted to resolve the pathname /net/lab2/dev/ser1.

Since the native network manager (lsm-qnet.so) has taken over the entire
/net namespace, the process manager returns a redirect message, saying that
the client should contact the local network manager for more information.

2 The client then sends a message to the local network manager, again asking who
should be contacted to resolve the pathname.

The local network manager then replies with another redirect message, giving
the node descriptor, process ID, and channel ID of the process manager on node
lab2 — effectively deferring the resolution of the request to node lab2.

3 The client then creates a connection to the process manager on node lab2, once
again asking who should be contacted to resolve the pathname.

The process manager on node lab2 returns another redirect, this time with the
node descriptor, channel ID, and process ID of the serial driver on its own node.

4 The client creates a connection to the serial driver on node lab2, and finally gets
a connection ID that it can then use for subsequent message-passing operations.

After this point, from the client’s perspective, message passing to the connection
ID is identical to the local case. Note that all further message operations are now
direct between the client and server.

The key thing to keep in mind here is that the client isn’t aware of the operations
taking place; these are all handled by the POSIX open() call. As far as the client is
concerned, it performs an open() and gets back a file descriptor (or an error indication).
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In each subsequent name-resolution step, the request from the client is stripped of
already-resolved name components; this occurs automagically within the resource
manager framework. This means that in step 2 above, the relevant part of the request is
lab2/dev/ser1 from the perspective of the local network manager. In step 3, the
relevant part of the request has been stripped to just dev/ser1, because that’s all that
lab2’s process manager needs to know. Finally, in step 4, the relevant part of the
request is simply ser1, because that’s all the serial driver needs to know.

Global Name Service (GNS)
In the examples shown so far, remote services or files are located on known nodes or at
known pathnames. For example, the serial port on lab1 is found at
/net/lab1/dev/ser1.

GNS allows you to locate services via an arbitrary name wherever the service is
located, whether on the local system or on a remote node. For example, if you wanted
to locate a modem on the network, you could simply look for the name “modem.” This
would cause the GNS server to locate the “modem” service, instead of using a static
path such as /net/lab1/dev/ser1. The GNS server can be deployed such that it
services all or a portion of your Qnet nodes. And you can have redundant GNS
servers.

Network naming
As mentioned earlier, the pathname prefix /net is the most common name that
lsm-qnet.so uses. In resolving names in a network-wide pathname space, the
following terms come into play:

node name A character string that identifies the node you’re talking to. Note
that a node name can’t contain slashes or dots. In the example
above, we used lab2 as one of our node names. The default is
fetched via confstr() with the _CS_HOSTNAME parameter.

node domain A character string that’s “tacked” onto the node name by
lsm-qnet.so. Together the node name and node domain must
form a string that’s unique for all nodes that are talking to each
other. The default is fetched via confstr() with the
_CS_DOMAIN parameter.

fully qualified node name (FQNN)

The string formed by tacking the node name and node domain
together. For example, if the node name is lab2 and the node
domain name is qnx.com, the resulting FQNN would be:
lab2.qnx.com.

network directory A directory in the pathname space implemented by
lsm-qnet.so. Each network directory (there can be more than
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one on a node) has an associated node domain. The default is
/net, as used in the examples in this chapter.

name resolution The process by which lsm-qnet.so converts an FQNN to a
list of destination addresses that the transport layer knows how
to get to.

name resolver A piece of code that implements one method of converting an
FQNN to a list of destination addresses. Each network directory
has a list of name resolvers that are applied in turn to attempt to
resolve the FQNN. The default is en_ionet (see the next
section).

Quality of Service (QoS)

A definition of connectivity between two nodes. The default
QoS is loadbalance (see the section on QoS later in this
chapter.)

Resolvers

The following resolvers are built into the network manager:

• en_ionet — Broadcast requests for name resolution on the LAN (similar to the
TCP/IP ARP protocol). This is the default.

• dns — Take the node name, add a dot (.) followed by the node domain, and send
the result to the TCP/IP gethostbyname() function.

• file — Search for accessible nodes, including the relevant network address, in a
static file.

Redundant Qnet: Quality of Service (QoS) and multiple
paths
Quality of Service (QoS) is an issue that often arises in high-availability networks as
well as realtime control systems. In the Qnet context, QoS really boils down to
transmission media selection — in a system with two or more network interfaces,
Qnet will choose which one to use according to the policy you specify.

If you have only a single network interface, the QoS policies don’t apply at all.

QoS policies
Qnet supports transmission over multiple networks and provides the following policies
for specifying how Qnet should select a network interface for transmission:
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loadbalance (the default)

Qnet is free to use all available network links, and will share
transmission equally among them.

preferred Qnet uses one specified link, ignoring all other networks (unless the
preferred one fails).

exclusive Qnet uses one — and only one — link, ignoring all others, even if the
exclusive link fails.

To fully benefit from Qnet’s QoS, you need to have physically separate networks. For
example, consider a network with two nodes and a hub, where each node has two
connections to the hub:

Hub

Node 1 Node 2

Qnet and a single network.

If the link that’s currently in use fails, Qnet detects the failure, but doesn’t switch to
the other link because both links go to the same hub. It’s up to the application to
recover from the error; when the application reestablishes the connection, Qnet
switches to the working link.

Now, consider the same network, but with two hubs:
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Hub

Node 1 Node 2

Hub

Qnet and physically separate networks.

If the networks are physically separate and a link fails, Qnet automatically switches to
another link, depending on the QoS that you chose. The application isn’t aware that
the first link failed.

You can use the tx_retries option to lsm-qnet.so to limit the number of times
that Qnet retries a transmission, and hence control how long Qnet waits before
deciding that a link has failed. Note that if the number of retries is too low, Qnet won’t
tolerate any lost packets and may prematurely decide that a link is down.

Let’s look in more detail at the QoS policies.

loadbalance

Qnet decides which links to use for sending packets, depending on current load and
link speeds as determined by io-pkt*. A packet is queued on the link that can deliver
the packet the soonest to the remote end. This effectively provides greater bandwidth
between nodes when the links are up (the bandwidth is the sum of the bandwidths of
all available links), and allows a graceful degradation of service when links fail.

If a link does fail, Qnet will switch to the next available link. This switch takes a few
seconds the first time, because the network driver on the bad link will have timed out,
retried, and finally died. But once Qnet “knows” that a link is down, it will not send
user data over that link. (This is a significant improvement over the QNX 4
implementation.)

While load-balancing among the live links, Qnet will send periodic maintenance
packets on the failed link in order to detect recovery. When the link recovers, Qnet
places it back into the pool of available links.
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The loadbalance QoS policy is the default.

preferred

With this policy, you specify a preferred link to use for transmissions. Qnet will use
only that one link until it fails. If your preferred link fails, Qnet will then turn to the
other available links and resume transmission, using the loadbalance policy.

Once your preferred link is available again, Qnet will again use only that link, ignoring
all others (unless the preferred link fails).

exclusive

You use this policy when you want to lock transmissions to only one link. Regardless
of how many other links are available, Qnet will latch onto the one interface you
specify. And if that exclusive link fails, Qnet will NOT use any other link.

Why would you want to use the exclusive policy? Suppose you have two networks,
one much faster than the other, and you have an application that moves large amounts
of data. You might want to restrict transmissions to only the fast network in order to
avoid swamping the slow network under failure conditions.

Specifying QoS policies
You specify the QoS policy as part of the pathname. For example, to access
/net/lab2/dev/ser1with a QoS of exclusive, you could use the following
pathname:

/net/lab2˜exclusive:en0/dev/ser1

The QoS parameter always begins with a tilde (˜) character. Here we’re telling Qnet to
lock onto the en0 interface exclusively, even if it fails.

Symbolic links
You can set up symbolic links to the various “QoS-qualified” pathnames:

ln -sP /net/lab2˜preferred:en1 /remote/sql_server

This assigns an “abstracted” name of /remote/sql_server to the node lab2 with a
preferred QoS (i.e. over the en1 link).

You can’t create symbolic links inside /net because Qnet takes over that namespace.

Abstracting the pathnames by one level of indirection gives you multiple servers
available in a network, all providing the same service. When one server fails, the
abstract pathname can be “remapped” to point to the pathname of a different server.
For example, if lab2 failed, then a monitoring program could detect this and
effectively issue:
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rm /remote/sql_server
ln -sP /net/lab1 /remote/sql_server

This would remove lab2 and reassign the service to lab1. The real advantage here is
that applications can be coded based on the abstract “service name” rather than be
bound to a specific node name.

Examples
Let’s look at a few examples of how you’d use the network manager.

The QNX Neutrino native network manager lsm-qnet.so is actually a shared object
that installs into the executable io-pkt*.

Local networks
If you’re using QNX Neutrino on a small LAN, you can use just the default en_ionet
resolver. When a node name that’s currently unknown is being resolved, the resolver
will broadcast the name request over the LAN, and the node that has the name will
respond with an identification message. Once the name’s been resolved, it’s cached for
future reference.

Since en_ionet is the default resolver when you start lsm-qnet.so, you can simply
issue commands like:

ls /net/lab2/

If you have a machine called “lab2” on your LAN, you’ll see the contents of its root
directory.

Remote networks
CAUTION: For security reasons, you should have a firewall set up on your network
before connecting to the Internet. For more information, see
ftp://ftp3.usa.openbsd.org/pub/OpenBSD/doc/pf-faq.pdf in the
OpenBSD documentation.

!

Qnet uses DNS (Domain Name System) when resolving remote names. To use
lsm-qnet.so with DNS, you specify this resolver on mount’s command line:

mount -Tio-pkt -o"mount=:,resolve=dns,mount=.com:.net:.edu" /lib/dll/lsm-qnet.so

In this example, Qnet will use both its native en_ionet resolver (indicated by the first
mount= command) and DNS for resolving remote names.

Note that we’ve specified several types of domain names (mount=.com:.net:.edu)
as mountpoints, simply to ensure better remote name resolution.

Now you could enter a command such as:

ls /net/qnet.qnx.com/repository

and you’d get a listing of the repository directory at the qnet.qnx.com site.
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Custom device drivers
In most cases, you can use standard QNX drivers to implement Qnet over a local area
network or to encapsulate Qnet messages in IP (TCP/IP) to allow Qnet to be routed to
remote networks. But suppose you want to set up a very tightly coupled network
between two CPUs over a super-fast interconnect (e.g. PCI or RapidIO)?

You can easily take advantage of the performance of such a high-speed link, because
Qnet can talk directly to your hardware driver. There’s no io-pkt* layer in this case.
All you need is a little code at the very bottom of the Qnet layer that understands how
to transmit and receive packets. This is simple, thanks to a standard internal API
between the rest of Qnet and this very bottom portion, the driver interface.

Qnet already supports different packet transmit/receive interfaces, so adding another is
reasonably straightforward. Qnet’s transport mechanism (called “L4”) is quite generic,
and can be configured for different size MTUs, for whether or not ACK packets or
CRC checks are required, etc., to take full advantage of your link’s advanced features
(e.g. guaranteed reliability).

A Qnet software development kit is available to help you write custom drivers and/or
modify Qnet components to suit your particular application.
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Introduction
As the Internet has grown to become more and more visible in our daily lives, the
protocol it’s based on — IP (Internet Protocol) — has become increasingly important.
The IP protocol and tools that go with it are ubiquitous, making IP the de facto choice
for many private networks.

IP is used for everything from simple tasks (e.g. remote login) to more complicated
tasks (e.g. delivering realtime stock quotes). Most businesses are turning to the World
Wide Web, which commonly rides on IP, for communication with their customers,
advertising, and other business connectivity. QNX Neutrino is well-suited for a variety
of roles in this global network, from embedded devices connected to the Internet, to
the routers that are used to implement the Internet itself.

Given these and many other user requirements, we’ve made our TCP/IP stack
(included in io-pkt*) relatively light on resources, while using the common BSD
API.

Stack configurations
We provide the following stack configurations:

NetBSD TCP/IP stack

Based on the latest RFCs, including UDP, IP, and TCP. Also supports
forwarding, broadcast and multicast, hardware checksum support, routing
sockets, Unix domain sockets, multilink PPP, PPPoE, supernetting (CIDR),
NAT/IP filtering, ARP, ICMP, and IGMP, as well as CIFS, DHCP, AutoIP, DNS,
NFS (v2 and v3 server/client), NTP, RIP, RIPv2, and an embedded web server.

To create applications for this stack, you use the industry-standard BSD socket
API. This stack also includes optimized forwarding code for additional
performance and efficient packet routing when the stack is functioning as a
network gateway.

Enhanced NetBSD stack with IPsec and IPv6

Includes all the features in the standard stack, plus the functionality targeted at
the new generation of mobile and secure communications. This stack provides
full IPv6 and IPsec (both IPv4 and IPv6) support through KAME extensions, as
well as support for VPNs over IPsec tunnels.

This dual-mode stack supports IPv4 and IPv6 simultaneously and includes IPv6
support for autoconfiguration, which allows device configuration in
plug-and-play network environments. IPv6 support includes IPv6-aware utilities
and RIP/RIPng to support dynamic routing. An Advanced Socket API is also
provided to supplement the standard socket API to take advantage of IPv6
extended-development capabilities.

IPsec support allows secure communication between hosts or networks,
providing data confidentiality via strong encryption algorithms and data
authentication features. IPsec support also includes the IKE (ISAKMP/Oakley)
key management protocol for establishing secure host associations.
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The QNX TCP/IP suite is also modular. For example, it provides NFS as separate
modules. With this kind of modularity, together with small-sized modules, embedded
systems developers can more easily and quickly build small TCP/IP-capable systems.

Structure of the TCP/IP manager
As a resource manager, io-pkt* benefits from the code savings and standard
interface that all native resource managers enjoy. Due to the natural priority
inheritance of QNX Neutrino IPC, clients will be dealt with in priority and time order,
which leads to a more natural allocation of CPU resources.

ntpd

snmpd

devc-ser*

pppd

telnetd

User
applications

devnp-*.so

devn-*.so

io-pkt

fs-nfs2

syslogd

fs-cifs

routed

ftpd
inetd

pppoed

lsm-pf-*.so

The io-pkt suite and its dependents.

PPP is implemented as part of io-pkt-*. Since io-pkt* handles the transmission of
PPP packets, there’s no need for a memory copy of the packet data. This approach
allows for high-performance PPPoE connections.

Other components of the TCP/IP suite (such as the NFS, the snmpd daemon, etc.) are
implemented outside of io-pkt*. This leads to better modularity and fault-tolerance.

Socket API
The BSD Socket API was the obvious choice for QNX Neutrino. The Socket API is
the standard API for TCP/IP programming in the UNIX world. In the Windows world,
the Winsock API is based on and shares a lot with the BSD Socket API. This makes
conversion between the two fairly easy.
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All the routines that application programmers would expect are available, including
(but not limited to):

accept()
bind()
bindresvport()
connect()
dn_comp()
dn_expand()
endprotoent()
endservent()
gethostbyaddr()
gethostbyname()
getpeername()
getprotobyname()
getprotobynumber()
getprotoent()
getservbyname()
getservent()
getsockname()
getsockopt()
herror()
hstrerror()
htonl()
htons()
h_errlist()
h_errno()
h_nerr()
inet_addr()

inet_aton()
inet_lnaof()
inet_makeaddr()
inet_netof()
inet_network()
inet_ntoa()
ioctl()
listen()
ntohl()
ntohs()
recv()
recvfrom()
res_init()
res_mkquery()
res_query()
res_querydomain()
res_search()
res_send()
select()
send()
sendto()
setprotoent()
setservent()
setsockopt()
shutdown()
socket()

For more information, see the Neutrino Library Reference.

The common daemons and utilities from the Internet will easily port or just compile in
this environment. This makes it easy to leverage what already exists for your
applications.

Database routines
The database routines have been modified to better suit embedded systems.

/etc/resolv.conf

You can use configuration strings (via the confstr() function) to override the data
usually contained in the /etc/resolv.conf file. You can also use the RESCONF
environment variable to do this. Either method lets you use a nameserver without
/etc/resolv.conf. This affects gethostbyname() and other resolver routines.
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/etc/protocols

The getprotobyname() and getprotobynumber() functions have been modified to
contain a small number of builtin protocols, including IP, ICNP, UDP, and TCP. For
many applications, this means that the /etc/protocols file doesn’t need to exist.

/etc/services

The getservbyname() function has been modified to contain a small number of builtin
services, including ftp, telnet, smtp, domain, nntp, netbios-ns,
netbios-ssn, sunrpc, and nfsd. For many applications, this means that the
/etc/services file doesn’t need to exist.

Multiple stacks
The QNX Neutrino network manager (io-pkt) lets you load multiple protocol shared
objects. This means, for example, that you can load several instances of the TCP/IP
stack on the same physical interface, making it easy to create multiple virtual
networks (VLANs). You can even run multiple, independent instances of the network
manager (io-pkt*) itself. As with all QNX Neutrino system components, each
io-pkt* naturally benefits from complete memory protection thanks to our
microkernel architecture.

IP filtering and NAT
The IP filtering and NAT (Network Address Translation) io-pkt* module
(lsm-pf-*.so) is a dynamically loadable TCP/IP stack module. This module
provides high-efficiency firewall services and includes such features as:

• rule grouping — to apply different groups of rules to different packets

• stateful filtering — an optional configuration to allow packets related to an already
authorized connection to bypass the filter rules

• NAT — for mapping several internal addresses into a public (Internet) address,
allowing several internal systems to share a single Internet IP address.

• proxy services — to allow ftp, netbios, and H.323 to use NAT

• port redirection — for redirecting incoming traffic to an internal server or to a pool
of servers.

The IP filtering and NAT rules can be added or deleted dynamically to a running
system. Logging services are also provided with the suite of utilities to monitor and
control this module.

NTP
NTP (Network Time Protocol) allows you to keep the time of day for the devices in
your network synchronized with the Internet standard time servers. The QNX NTP
daemon supports both server and client modes.
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In server mode, a daemon on the local network synchronizes with the standard time
servers. It will then broadcast or multicast what it learned to the clients on the local
network, or wait for client requests. The client NTP systems will then be synchronized
with the server NTP system. The NTP suite implements NTP v4 while maintaining
compatibility with v3, v2, and v1.

Dynamic host configuration
We support DHCP (Dynamic Host Configuration Protocol), which is used to obtain
TCP/IP configuration parameters. Our DHCP client (dhcp.client) will obtain its
configuration parameters from the DHCP server and configure the TCP/IP host for the
user. This allows the user to add a host to the network without knowing what
parameters (IP address, gateway, etc.) are required for the host. DHCP also allows a
system administrator to control how hosts are added to the network. A DHCP server
daemon (dhcpd) and relay agent (dhcprelay) are also provided to manage these
clients.

For more information, see the dhcp.client, dhcpd, and dhcprelay entries in the
Utilities Reference.

AutoIP
Developed from the Zeroconf IETF draft, lsm-autoip.so is an io-pkt* module
that automatically configures the IPv4 address of your interface without the need of a
server (as per DHCP) by negotiating with its peers on the network. This module can
also coexist with DHCP (dhcp.client), allowing your interface to be assigned both
a link-local IP address and a DHCP-assigned IP address at the same time.

PPP over Ethernet
We support the Point-to-Point Protocol over Ethernet (PPPoE), which is commonly
deployed by broadband service providers. Our PPPoE support consists of the
io-pkt-* stack as well as the pppoed daemon, which negotiates the PPPoE session.
Once the PPPoE session is established, the pppd daemon creates a PPP connection.

When you use PPPoE, you don’t need to specify any configuration parameters — our
modules will automatically obtain the appropriate configuration data from your ISP
and set everything up for you.

For more information, see the following in the Utilities Reference:

io-pkt Networking manager.

pppoed Daemon to negotiate the PPPoE session.

phlip Photon TCP/IP and dialup configuration tool.

phdialer Photon modem dialer.
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/etc/autoconnect
Our autoconnect feature automatically sets up a connection to your ISP whenever a
TCP/IP application is started. For example, suppose you want to start a dialup
connection to the Internet. When your Web browser is started, it will pause and the
/etc/autoconnect script will automatically dial your ISP. The browser will resume
when the PPP session is established.

For more information, see the entry for /etc/autoconnect in the Utilities
Reference.

Embedded web server
Our embedded web server, slinger, uses very little memory and communicates over
TCP/IP sockets. The embedded web server supports CGI 1.1, HTTP 1.1, and dynamic
HTML (via SSI commands).

TCP/IP

Hardware

Data
Server

Slinger

File
system

Control
apps

HTTP Tag Get/
Set

Tag Get/Set

HTML
SHTML

Internet

Web pages

Embedded web server.

Many embedded servers force the user to relink the server in order to add pages, which
compromises reliability as vendor and user code compete in a shared memory space.

Despite its size, our embedded web server provides enough functionality to support
accessing generated (dynamic) HTML via CGI or SSI.

CGI method
The embedded web server supports the Common Gateway Interface (CGI) 1.1, a
readily available means of handling dynamic data. The downside of CGI is that it’s
resource-heavy because an interpreted language is often involved.
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SSI method
With SSI (Server Side Includes), a type of command language that can be embedded
in HTML files, you can add dynamic content to your HTML. For example, the
embedded server can:

• execute utilities at user-defined points in an HTML document (the output of these
utilities can be optionally placed in the document).

• insert contents of other HTML files at a user-defined point.

• handle conditional statements (if, break, goto) so you can define what parts of
an HTML file are transmitted.

Note that SSI tags are available to interact with a data server.

Data server method

You can also handle dynamic HTML by using what we call a data server. The data
server allows multiple threads to share data without regard for process boundaries.
Since the embedded web server supports SSI, we’ve extended this support by adding
the ability to talk to the data server.

Now you can have a process updating the data server about the state of a hardware
device while the embedded web server accesses that state in a decoupled but reliable
manner.

You can write a simple I/O manager to provide dynamic data. Note that this method
isn’t specific to the embedded web server and that the I/O manager can handle only
output, not posts.
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What is High Availability?
The term High Availability (HA) is commonly used in telecommunications and other
industries to describe a system’s ability to remain up and running without interruption
for extended periods of time. The celebrated “five nines” availability metric refers to
the percentage of uptime a system can sustain in a year — 99.999% uptime amounts to
about five minutes downtime per year.

Obviously, an effective HA solution involves various hardware and software
components that conspire to form a stable, working system. Assuming reliable
hardware components with sufficient redundancy, how can an OS best remain stable
and responsive when a particular component or application program fails? And in
cases where redundant hardware may not be an option (e.g. consumer appliances),
how can the OS itself support HA?

An OS for HA
If you had to design an HA-capable OS from the ground up, would you start with a
single executable environment? In this simple, high-performance design, all OS
components, device drivers, applications, the works, would all run without memory
protection in kernel mode.

On second thought, maybe such an OS wouldn’t be suited for HA, simply because if a
single software component were to fail, the entire system would crash. And if you
wanted to add a software component or otherwise modify the HA system, you’d have
to take the system out of service to do so. In other words, the conventional realtime
executive architecture wasn’t built with HA in mind.

Suppose, then, that you base your HA-enabled OS on a separation of kernel space and
user space, so that all applications would run in user mode and enjoy memory
protection. You’d even be able to upgrade an application without incurring any
downtime.

So far so good, but what would happen if a device driver, filesystem manager, or other
essential OS component were to crash? Or what if you needed to add a new driver to a
live system? You’d have to rebuild and restart the kernel. Based on such a monolithic
kernel architecture, your HA system wouldn’t be as available as it should be.

Inherent HA

A true microkernel that provides full memory protection is inherently the most stable
OS architecture. Very little code is running in kernel mode that could cause the kernel
itself to fail. And individual processes, whether applications or OS services, can be
started and stopped dynamically, without jeopardizing system uptime.

QNX Neutrino inherently provides several key features that are well-suited for HA
systems:

• System stability through full memory protection for all OS and user processes.

• Dynamic loading and unloading of system components (device drivers, filesystem
managers, etc.).
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• Separation of all software components for simpler development and maintenance.

While any claims regarding “five nines” availability on the part of an OS must be
viewed only in the context of the entire hardware/software HA system, one can always
ask whether an OS truly has the appropriate underlying architecture capable of
supporting HA.

HA-specific modules

Apart from its inherently robust architecture, Neutrino also provides several
components to help developers simplify the task of building and maintaining effective
HA systems:

• HA client-side library — cover functions that allow for automatic and transparent
recovery mechanisms for failed server connections.

• HA Manager — a “smart watchdog” that can perform multistage recovery
whenever system services or processes fail.

Custom hardware support
While many operating systems provide HA support in a hardware-specific way (e.g.
via PCI Hot Plug), QNX Neutrino isn’t tied to PCI. Your particular HA system may be
built on a custom chassis, in which case an OS that offers a PCI-based HA “solution”
may not address your needs at all.

QNX Software Systems is an actively contributing member of the Service Availability
Forum (www.saforum.org), an industry body dedicated to developing open,
industry-standard specifications for building HA systems.

Client library
The HA client-side library provides a drop-in enhancement solution for many standard
C Library I/O operations. The HA library’s cover functions allow for automatic and
transparent recovery mechanisms for failed connections that can be recovered from in
an HA scenario. Note that the HA library is both thread-safe and cancellation-safe.

The main principle of the client library is to provide drop-in replacements for all the
message-delivery functions (i.e. MsgSend*). A client can select which particular
connections it would like to make highly available, thereby allowing all other
connections to operate as ordinary connections (i.e. in a non-HA environment).

Normally, when a server that the client is talking to fails, or if there’s a transient
network fault, the MsgSend* functions return an error indicating that the connection
ID (or file descriptor) is stale or invalid (e.g. EBADF). But in an HA-aware scenario,
these transient faults are recovered from almost immediately, thus making the services
available again.
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Recovery example
The following example demonstrates a simple recovery scenario, where a client opens
a file across a network file system. If the NFS server were to die, the HA Manager
would restart it and remount the filesystem. Normally, any clients that previously had
files open across the old connection would now have a stale connection handle. But if
the client uses the ha_attach functions, it can recover from the lost connection.

The ha_attach functions allow the client to provide a custom recovery function that’s
automatically invoked by the cover-function library. This recovery function could
simply reopen the connection (thereby getting a connection to the new server), or it
could perform a more complex recovery (e.g. adjusting the file position offsets and
reconstructing its state with respect to the connection). This mechanism thus lets you
develop arbitrarily complex recovery scenarios, while the cover-function library takes
care of the details (detecting a failure, invoking recovery functions, and retransmitting
state information).

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <ha/cover.h>

#define TESTFILE "/net/machine99/home/test/testfile"

typedef struct handle {
int nr;
int curr_offset;

} Handle ;

int recover_conn(int oldfd, void *hdl)
{

int newfd;
Handle *thdl;
thdl = (Handle *)hdl;
newfd = ha_reopen(oldfd, TESTFILE, O_RDONLY);
if (newfd >= 0) {
// adjust file offset to previously known point
lseek(newfd, thdl->curr_offset, SEEK_SET);
// increment our count of successful recoveries
(thdl->nr)++;

}
return(newfd);

}

int main(int argc, char *argv[])
{

int status;
int fd;
int fd2;
Handle hdl;
char buf[80];

hdl.nr = 0;
hdl.curr_offset = 0;
// open a connection
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// recovery will be using "recovery_conn", and "hdl" will
// be passed to it as a parameter
fd = ha_open(TESTFILE, O_RDONLY, recover_conn, (void *)&hdl, 0);
if (fd < 0) {
printf("could not open file\n");
exit(-1);

}
status = read(fd,buf,15);
if (status < 0) {
printf("error: %s\n",strerror(errno));
exit(-1);

}
else {
hdl.curr_offset += status;

}
fd2 = ha_dup(fd);
// fs-nfs3 fails, and is restarted, the network mounts
// are re-instated at this point.
// Our previous "fd" to the file is stale
sleep(18);
// reading from dup-ped fd
// will fail, and will recover via recover_conn
status = read(fd,buf,15);
if (status < 0) {
printf("error: %s\n",strerror(errno));
exit(-1);

}
else {
hdl.curr_offset += status;

}
printf("total recoveries, %d\n",hdl.nr);
ha_close(fd);
ha_close(fd2);
exit(0);

}

Since the cover-function library takes over the lowest MsgSend*() calls, most standard
library functions (read(), write(), printf(), scanf(), etc.) are also automatically
HA-aware. The library also provides an ha-dup() function, which is semantically
equivalent to the standard dup() function in the context of HA-aware connections. You
can replace recovery functions during the lifetime of a connection, which greatly
simplifies the task of developing highly customized recovery mechanisms.

High Availability Manager
The High Availability Manager (HAM) provides a mechanism for monitoring
processes and services on your system. The goal is to provide a resilient manager (or
“smart watchdog”) that can perform multistage recovery whenever system services or
processes fail, no longer respond, or are detected to be in a state where they cease to
provide acceptable levels of service. The HA framework, including the HAM, uses a
simple publish/subscribe mechanism to communicate interesting system events
between interested components in the system. By automatically integrating itself into
the native networking mechanism (Qnet), this framework transparently extends a local
monitoring mechanism to a network-distributed one.

The HAM acts as a conduit through which the rest of the system can both obtain and
deliver information regarding the state of the system as a whole. Again, the system
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could be simply a single node or a collection of nodes connected via Qnet. The HAM
can monitor specific processes and can control the behavior of the system when
specific components fail and need to be recovered. The HAM also allows external
detectors to detect and report interesting events to the system, and can associate
actions with the occurrence of those events.

In many HA systems, each single points of failure (SPOF) must be identified and dealt
with carefully. Since the HAM maintains information about the health of the system
and also provides the basic recovery framework, the HAM itself must never become a
SPOF.

HAM and the Guardian
As a self-monitoring manager, the HAM is resilient to internal failures. If, for
whatever reason, the HAM itself is stopped abnormally, it can immediately and
completely reconstruct its own state. A mirror process called the Guardian perpetually
stands ready and waiting to take over the HAM’s role. Since all state information is
maintained in shared memory, the Guardian can assume the exact same state that the
original HAM was in before the failure.

But what happens if the Guardian terminates abnormally? The Guardian (now the new
HAM) creates a new Guardian for itself before taking the place of the original HAM.
Practically speaking, therefore, one can’t exist without the other.

Since the HAM/Guardian pair monitor each other, the failure of either one can be
completely recovered from. The only way to stop the HAM is to explicitly instruct it
to terminate the Guardian and then to terminate itself.

HAM hierarchy
HAM consists of three main components:

• Entities

• Conditions

• Actions

Entities

Entities are the fundamental units of observation/monitoring in the system.
Essentially, an entity is a process (pid). As processes, all entities are uniquely
identifiable by their pids. Associated with each entity is a symbolic name that can be
used to refer to that specific entity. Again, the names associated with entities are
unique across the system. Managers are currently associated with a node, so
uniqueness rules apply to a node. As we’ll see later, this uniqueness requirement is
very similar to the naming scheme used in a hierarchical filesystem.

There are three fundamental entity types:

• Self-attached entities (HA-aware components) — processes that choose to send
heartbeats to the HAM, which will then monitor them for failure. Self-attached
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entities can, on their own, decide at exactly what point in their lifespan they want to
be monitored, what conditions they want acted upon, and when they want to stop
the monitoring. In other words, this is a situation where a process says, “Do the
following if I die.”

• Externally attached entities (HA-unaware components) — generic processes
(including legacy components) in the system that are being monitored. These could
be arbitrary daemons/service providers whose health is deemed important. This
method is useful for the case where Process A says, “Tell me when Process B dies”
but Process B needn’t know about this at all.

• Global entity — a place holder for matching any entity. The global entity can be
used to associate actions that will be triggered when an interesting event is detected
with respect to any entity on the system. The term “global” refers to the set of
entities being monitored in the system, and allows a process to say things like,
“When any process dies or misses a heartbeat, do the following.” The global entity
is never added or removed, but only referred to. Conditions can be added to or
removed from the global entity, of course, and actions can be added to or removed
from any of the conditions.

Conditions

Conditions are associated with entities; a condition represents the entity’s state.

Condition Description

CONDDEATH The entity has died.

CONDABNORMALDEATH The entity has died an abnormal death. Whenever an
entity dies, this condition is triggered by a mechanism
that results in the generation of a core dump file.

CONDDETACH The entity that was being monitored is detaching.
This ends the HAM’s monitoring of that entity.

CONDATTACH An entity for whom a place holder was previously
created (i.e. some process has subscribed to events
relating to this entity) has joined the system. This is
also the start of the HAM’s monitoring of the entity.

CONDBEATMISSEDHIGH The entity missed sending a “heartbeat” message
specified for a condition of “high” severity.

CONDBEATMISSEDLOW The entity missed sending a “heartbeat” message
specified for a condition of “low”

CONDRESTART The entity was restarted. This condition is true after
the entity is successfully restarted.

continued. . .
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Condition Description

CONDRAISE An externally detected condition is reported to the
HAM. Subscribers can associate actions with these
externally detected conditions.

CONDSTATE An entity reports a state transition to the HAM.
Subscribers can associate actions with specific state
transitions.

CONDANY This condition type matches any condition type. It can
be used to associate the same actions with one of
many conditions.

For the conditions listed above (except CONDSTATE, CONDRAISE, and CONDANY),
the HAM is the publisher — it automatically detects and/or triggers the conditions.
For the CONDSTATE and CONDRAISE conditions, external detectors publish the
conditions to the HAM.

For all conditions, subscribers can associate with lists of actions that will be performed
in sequence when the condition is triggered. Both the CONDSTATE and CONDRAISE
conditions provide filtering capabilities, so subscribers can selectively associate
actions with individual conditions based on the information published.

Any condition can be associated as a wild card with any entity, so a process can
associate actions with any condition in a specific entity, or even in any entity. Note that
conditions are also associated with symbolic names, which also need to be unique
within an entity.

Actions

Actions are associated with conditions. Actions are executed when the appropriate
conditions are true with respect to a specific entity. The HAM API includes several
functions for different kinds of actions:

Action Description

ham_action_restart() This action restarts the entity.

ham_action_execute() Executes an arbitrary command (e.g. to start a
process).

ham_action_notify_pulse() Notifies some process that this condition has
occurred. This notification is sent using a
specific pulse with a value specified by the
process that wished to receive this notify
message.

continued. . .
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Action Description

ham_action_notify_signal() Notifies some process that this condition has
occurred. This notification is sent using a
specific realtime signal with a value specified
by the process that wished to receive this
notify message.

ham_action_notify_pulse_node() This is the same as
ham_action_notify_pulse() above, except that
the node name specified for the recipient of
the pulse can be the fully qualified node name.

ham_action_notify_signal_node() This is the same as
ham_action_notify_signal() above, except
that the node name specified for the recipient
of the signal can be the fully qualified node
name.

ham_action_waitfor() Lets you insert delays between consecutive
actions in a sequence. You can also wait for
certain names to appear in the namespace.

ham_action_heartbeat_healthy() Resets the heartbeat mechanism for an entity
that had previously missed sending heartbeats
and had triggered a missed heartbeat
condition, but has now recovered.

ham_action_log() Reports this condition to a logging
mechanism.

Actions are also associated with symbolic names, which are unique within a specific
condition.

Alternate actions

What happens if an action itself fails? You can specify an alternate list of actions to be
performed to recover from that failure. These alternate actions are associated with the
primary actions through several ham_action_fail* functions:

ham_action_fail_execute()

ham_action_fail_notify_pulse()

ham_action_fail_notify_signal()

ham_action_fail_notify_pulse_node()

ham_action_fail_notify_signal_node()

ham_action_fail_waitfor()

ham_action_fail_log()
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Publishing autonomously detected conditions
Entities or other components in the system can inform the HAM about conditions
(events) that they deem interesting, and the HAM in turn can deliver these conditions
(events) to other components in the system that have expressed interest in (subscribed
to) them.

This publishing feature allows arbitrary components that are capable of detecting error
conditions (or potentially erroneous conditions) to report these to the HAM, which in
turn can notify other components to start corrective and/or preventive action.

There are currently two different ways of publishing information to the HAM; both of
these are designed to be general enough to permit clients to build more complex
information exchange mechanisms:

• publishing state transitions

• publishing other conditions.

State transitions

An entity can report its state transitions to the HAM, which maintains every entity’s
current state (as reported by the entity). The HAM doesn’t interpret the meaning of the
state value itself, nor does it try to validate the state transitions, but it can generate
events based on transitions from one state to another.

Components can publish transitions that they want the external world to know about.
These states needn’t necessarily represent a specific state the application uses
internally for decision making.

To notify the HAM of a state transition, components can use the
ham_entity_condition_state() function. Since the HAM is interested only in the next
state in the transition, this is the only information that’s transmitted to the HAM. The
HAM then triggers a condition state-change event internally, which other components
can subscribe to using the ham_condition_state() API call (see below).

Other conditions

In addition to the above, components on the system can also publish autonomously
detected conditions by using the ham_entity_condition_raise() API call. The
component raising the condition can also specify a type, class, and severity of its
choice, to allow subscribers further granularity in filtering out specific conditions to
subscribe to. As a result of this call, the HAM triggers a condition-raise event
internally, which other components can subscribe to using the ham_condition_raise()
API call (see below).

Subscribing to autonomously published conditions
To express their interest in events published by other components, subscribers can use
the ham_condition_state() and ham_condition_raise() API calls. These are similar to
the ham_condition() API call (e.g. they return a handle to a condition), but they allow
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the subscriber customize which of several possible published conditions they’re
interested in.

Trigger based on state transition

When an entity publishes a state transition, a state transition condition is raised for
that entity, based on the two states involved in the transition (the from state and the to
state). Subscribers indicate which states they’re interested in by specifying values for
the fromstate and tostate parameters in the API call. For more information, see the
API reference documentation for the ham_condition_state() call in the High
Availability Framework Developer’s Guide.

Trigger based on specific published condition

To express interest in conditions raised by entities, subscribers can use the API call
ham_condition_raise(), indicating as parameters to the call what sort of conditions
they’re interested in. For more information, refer to the API documentation for the
ham_condition_raise() call in the High Availability Framework Developer’s Guide.

HAM as a “filesystem”
Effectively, HAM’s internal state is like a hierarchical filesystem, where entities are
like directories, conditions associated with those entities are like subdirectories, and
actions inside those conditions are like leaf nodes of this tree structure.

HAM also presents this state as a read-only filesystem under /proc/ham. As a result,
arbitrary processes can also view the current state (e.g. you can do ls /proc/ham).

The /proc/ham filesystem presents a lot of information about the current state of the
system’s entities. It also provides useful statistics on heartbeats, restarts, and deaths,
giving you a snapshot in time of the system’s various entities, conditions, and actions.

Multistage recovery
HAM can perform a multistage recovery, executing several actions in a certain order.
This technique is useful whenever strict dependencies exist between various actions in
a sequence. In most cases, recovery requires more than a single restart mechanism in
order to properly restore the system’s state to what it was before a failure.

For example, suppose you’ve started fs-nfs3 (the NFS filesystem) and then mounted
a few directories from multiple sources. You can instruct HAM to restart fs-nfs3
upon failure, and also to remount the appropriate directories as required after
restarting the NFS process.

As another example, suppose io-pkt* (the network I/O manager) were to die. We
can tell HAM to restart it and also to load the appropriate network drivers (and maybe
a few more services that essentially depend on network services in order to function).
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HAM API
The basic mechanism to talk to HAM is to use its API. This API is implemented as a
library that you can link against. The library is thread-safe as well as cancellation-safe.

To control exactly what/how you’re monitoring, the HAM API provides a collection of
functions, including:

Function Description

ham_action_control() Perform control operations on an action
object.

ham_action_execute() Add an execute action to a condition.

ham_action_fail_execute() Add to an action an execute action that
will be executed if the corresponding
action fails.

ham_action_fail_log() Insert a log message into the activity log.

ham_action_fail_notify_pulse() Add to an action a notify pulse action
that will be executed if the corresponding
action fails.

ham_action_fail_notify_pulse_node() Add to an action a node-specific notify
pulse action that will be executed if the
corresponding action fails.

ham_action_fail_notify_signal() Add to an action a notify signal action
that will be executed if the corresponding
action fails.

ham_action_fail_notify_signal_node() Add to an action a node-specific notify
signal action that will be executed if the
corresponding action fails.

ham_action_fail_waitfor() Add to an action a waitfor action that
will be executed if the corresponding
action fails.

ham_action_handle() Get a handle to an action in a condition
in an entity.

ham_action_handle_node() Get a handle to an action in a condition
in an entity, using a nodename.

ham_action_handle_free() Free a previously obtained handle to an
action in a condition in an entity.

ham_action_heartbeat_healthy() Reset a heartbeat’s state to healthy.

continued. . .
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Function Description

ham_action_log() Insert a log message into the activity log.

ham_action_notify_pulse() Add a notify-pulse action to a condition.

ham_action_notify_pulse_node() Add a notify-pulse action to a condition,
using a nodename.

ham_action_notify_signal() Add a notify-signal action to a condition.

ham_action_notify_signal_node() Add a notify-signal action to a condition,
using a nodename.

ham_action_remove() Remove an action from a condition.

ham_action_restart() Add a restart action to a condition.

ham_action_waitfor() Add a waitfor action to a condition.

ham_attach() Attach an entity.

ham_attach_node() Attach an entity, using a nodename.

ham_attach_self() Attach an application as a self-attached
entity.

ham_condition() Set up a condition to be triggered when a
certain event occurs.

ham_condition_control() Perform control operations on a
condition object.

ham_condition_handle() Get a handle to a condition in an entity.

ham_condition_handle_node() Get a handle to a condition in an entity,
using a nodename.

ham_condition_handle_free() Free a previously obtained handle to a
condition in an entity.

ham_condition_raise() Attach a condition associated with a
condition raise condition that’s triggered
by an entity raising a condition.

ham_condition_remove() Remove a condition from an entity.

ham_condition_state() Attach a condition associated with a state
transition condition that’s triggered by an
entity reporting a state change.

ham_connect() Connect to a HAM.

ham_connect_nd() Connect to a remote HAM.

continued. . .
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Function Description

ham_connect_node() Connect to a remote HAM, using a
nodename.

ham_detach() Detach an entity from a HAM.

ham_detach_name() Detach an entity from a HAM, using an
entity name.

ham_detach_name_node() Detach an entity from a HAM, using an
entity name and a nodename.

ham_detach_self() Detach a self-attached entity from a
HAM.

ham_disconnect() Disconnect from a HAM.

ham_disconnect_nd() Disconnect from a remote HAM.

ham_disconnect_node() Disconnect from a remote HAM, using a
nodename.

ham_entity() Create entity placeholder objects in a
HAM.

ham_entity_condition_raise() Raise a condition.

ham_entity_condition_state() Notify the HAM of a state transition.

ham_entity_control() Perform control operations on an entity
object in a HAM.

ham_entity_handle() Get a handle to an entity.

ham_entity_handle_node() Get a handle to an entity, using a
nodename.

ham_entity_handle_free() Free a previously obtained handle to an
entity.

ham_entity_node() Create entity placeholder objects in a
HAM, using a nodename.

ham_heartbeat() Send a heartbeat to a HAM.

ham_stop() Stop a HAM.

ham_stop_nd() Stop a remote HAM.

ham_stop_node() Stop a remote HAM, using a nodename.

ham_verbose() Modify the verbosity of a HAM.

October 16, 2008 Chapter 14 • High Availability 233





Chapter 15

Adaptive Partitioning

In this chapter. . .
What are partitions? 237
Why adaptive? 238
Benefits of adaptive partitioning 239
Adaptive partitioning thread scheduler 242

October 16, 2008 Chapter 15 • Adaptive Partitioning 235





© 2008, QNX Software Systems GmbH & Co. KG. What are partitions?

What are partitions?
In many computer systems, it’s important to protect different applications or groups of
applications from others. You don’t want one application — whether defective or
malicious — to corrupt another or prevent it from running.

To address this issue, some systems use virtual walls, called partitions, around a set of
applications to ensure that each partition is given an engineered set of resources. The
primary resource considered is CPU time, but can also include any shared resource,
such as memory and file space (disk or flash).

Partition 2 Partition 3Partition 1

Partition scheduler

50% 20% 30%

Static partitions guarantee that processes get the resources specified by the system designer.

Typically, the main objective of competing resource partitioning systems is to divide a
computer into a set of smaller computers that interact as little as possible; however, this
approach is not very flexible. Adaptive partitioning takes a much more flexible view.

QNX Neutrino partitions are adaptive because:

• you can change configurations at run time

• they’re typically fixed at one configuration time

• the partition behavior auto-adapts to conditions at run time. For example:

- free time is redistributed to other scheduler partitions

- filesystems can bill time to clients with a mechanism that temporarily moves
threads between time partitions

As a result, adaptive partitions are less restrictive and much more powerful. In
addition to being adaptive, time partitions allow you to easily model the fundamentally
different behavior of CPU time when viewed as a resource. The separation of
scheduler partitions also allows you to create a highly tuned implementation for each.
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Because adaptive partitions are not “boxes” what are they?
An adaptive partition is a named set of rules. The rules are selected to control the
global resource behavior of the system. When a process or thread is associated with a
particular partition (scheduler), then its actions are governed by the rules of that
partition at that time.

For example, adaptive partitioning is similar to people who belong to clubs. Each
person can join several different clubs. They can even move from club to club at times.
But while they are at a particular club, they agree to abide by the rules of that
particular club.

Partitions provide:

• memory protection — each partition is discrete and controlled by the Memory
Management Unit (MMU)

• overload protection — each partition is guaranteed a slice of execution time, as
specified by the system designer

By using multiple partitions, you can avoid having a single point of failure. For
example, a runaway process can’t occupy the entire system’s resources; processes in
other partitions still receive their allocated share of system resources.

Currently, QNX Neutrino’s process model provides significantly more protection than
some other operating systems do, including:

• full memory protection between processes

• message-passing to provide uniform and controlled IPC

• priority inheritance with a clean client-server model

• hard realtime deterministic scheduling

• a detailed permission model for devices, files, and memory

• memory, file-descriptor, CPU, and priority limits, using the POSIX setrlimit()
function to constrain runaway processes

Why adaptive?
To provide realtime performance with guarantees against overloading, QNX Neutrino
introduced adaptive partitioning. Rigid partitions work best in fairly static systems
with little or no dynamic deployment of software. In dynamic systems, static partitions
can be inefficient. For example, the static division of execution time between
partitions can waste CPU time and introduce delays:

• If most of the partitions are idle, and one is very busy, the busy partition doesn’t
receive any additional execution time, while background threads in the other
partitions waste CPU time.
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• If an interrupt is scheduled for a partition, it has to wait until the partition runs.
This can cause unacceptable latency, especially if bursts of interrupts occur.

You can introduce adaptive partitioning without changing — or even recompiling —
your application code, although you do have to rebuild your system’s OS image.

An adaptive partition is a set of threads that work on a common or related goal or
activity. Like a static partition, an adaptive partition has a budget allocated to it that
guarantees its minimum share of the CPU’s resources. Unlike a static partition, an
adaptive partition:

• isn’t locked to a fixed set of code in a static partition; you can dynamically add and
configure adaptive partitions, as required

There’s a limit to the number of partitions. For the thread scheduler, there’s a
maximum of eight scheduler partitions because for every scheduling operation, the
thread scheduler must examine every partition before it can pick a thread on which to
run. That may occur 50000 times per second on a 700 MHz x86 (i.e. a slow machine).
So it’s important to limit the number of scheduler partitions to keep the scheduler
overhead to a minimum.

• behaves as a global hard realtime thread scheduler under normal load, but can still
provide minimal interrupt latencies even under overload conditions

• maximizes the usage of the CPU’s resources. In the case of the thread scheduler, it
distributes a partition’s unused budget among partitions that require extra resources
when the system isn’t loaded.

Benefits of adaptive partitioning
Adaptive partitioning provides a number of benefits to the design, development,
running, and debugging of your system, as described in these areas:

Engineering product performance
Partitioning

Partitions divide resources so that they can be used by a collection of programs. A
partition represents a fraction of a resource and includes few rules that define the
resource usage. The resources include basic objects, such as processor cycles,
program store or high-level objects, such as buffers, page tables, or file descriptors.

With respect to the thread scheduler, adaptive partitioning ensures that any free time
available in the system (i.e. CPU time in a partition’s budget that the partition doesn’t
need) is made available to other partitions. This lets the system handle sudden
processing demands that occur during normal system operation. With a cyclic thread
scheduler, there’s a “use it or lose it” approach where unused CPU time is spent
running an idler thread in partitions that don’t use their full budget.
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Partition inheritance

Another important feature of adaptive partitioning is the concept of partition
inheritance.

For the thread scheduler, this feature lets designers develop server processes that run
with no (or minimal) budget. When the server performs requests from clients, the
client partition is billed for the time. Without this feature, CPU budget would be
allocated to a server regardless of how much or often it’s used. The benefits of these
features include:

• You don’t have to over-engineer the system, so the overall cost decreases.

• If you add an application, you don’t have to re-engineer the budget of common
services, such as filesystems or servers.

• The system is faster and more responsive to the user.

• The system guarantees time for important tasks.

• You can use priorities to specify a process’s urgency, and a partition’s CPU budget
to specify its importance.

Dealing with design complexity
Designing large-scale distributed systems is inherently complex. Typical systems have
a large number of subsystems, processes, and threads developed in isolation from each
other. The design is divided among groups with differing system performance goals,
different schemes for determining priorities, and different approaches to runtime
optimization.

This can be further compounded by product development in different geographic
locations and time zones. Once all of these disparate subsystems are integrated into a
common runtime environment, all parts of the system need to provide adequate
response under all operating scenarios, such as:

• normal system loading

• peak periods

• failure conditions

Given the parallel development paths, system issues invariably arise when integrating
the product. Typically, once a system is running, unforeseen interactions that cause
serious performance degradations are uncovered. When situations such as this arise,
there are usually very few designers or architects who can diagnose and solve these
problems at a system level. Solutions often take considerable modifications
(frequently, by trial and error) to get it right. This extends system integration,
impacting the time to market.

Problems of this nature can take a week or more to troubleshoot, and several weeks to
adjust priorities across the system, retest, and refine. If these problems can’t be solved
effectively, product scalability is limited.
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This is largely due to the fact that there’s no effective way to “budget” CPU use across
these groups. Thread priorities provide a way to ensure that critical tasks run, but don’t
provide guaranteed CPU time for important, noncritical tasks, which can be starved in
normal operations. In addition, a common approach to establishing thread priorities is
difficult to scale across a large development team.

Adaptive partitioning using the thread scheduler lets architects maintain a reserve of
resources for emergency purposes, such as a disaster-recovery system, or a
field-debugging shell, and define high-level CPU budgets per subsystem, allowing
development groups to implement their own priority schemes and optimizations
within a given budget. This approach lets design groups develop subsystems
independently and eases the integration effort. The net effect is to improve
time-to-market and facilitate product scaling.

Providing security
Many systems are vulnerable to Denial of Service (DOS) attacks. For example, a
malicious user could bombard a system with requests that need to be processed by one
process. When under attack, this process overloads the CPU and effectively starves the
rest of the system.
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Without adaptive partitioning, a DOS attack on one process can starve other critical functions.

Some systems try to overcome this problem by implementing a monitor process that
detects CPU utilization and invokes corrective actions when it deems that a process is
using too much CPU. This approach has a number of drawbacks, including:

• Response time is typically slow.

• This approach caps the CPU usage in times when legitimate processing is required.
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• It isn’t infallible or reliable; it depends on appropriate thread priorities to ensure
that the monitor process obtains sufficient CPU time.

The thread scheduler can solve this problem. The thread scheduler can provide
separate budgets to the system’s various functions. This ensures that the system
always has some CPU capacity for important tasks. Threads can change their own
priorities, which can be a security hole, but you can configure the thread scheduler to
prevent code running in a partition from changing its own budget.
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System
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attack!

With scheduler partitions, a DOS attack is contained.

Since adaptive partitioning can allocate any unused CPU time to partitions that require
it, it doesn’t unnecessarily cap control-plane activity when there’s a legitimate need for
increased processing.

Debugging
Adaptive partitioning can even make debugging an embedded system easier—during
development or deployment—by providing an “emergency door” into the system.

Simply create a partition that you can run diagnostic tools in; if you don’t need to use
the partition, the thread scheduler allocates its budget among the other partitions. This
provides you with access to the system without compromising its performance. For
more information, see the Testing and Debugging chapter of the Adaptive Partitioning
User’s Guide.

Adaptive partitioning thread scheduler
The thread scheduler is an optional scheduler that lets you guarantee minimum
percentages of the CPU’s throughput to groups of threads, processes, or applications.
The percentage of the CPU time allotted to a partition is called a budget.
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The thread scheduler has been designed on top of the core QNX Neutrino architecture
primarily to solve these problems in embedded systems design:

• guaranteeing a specified minimum share of CPU time when the system is
overloaded

• preventing unimportant or untrusted applications from monopolizing the system

For more information, see the Adaptive Partitioning User’s Guide.
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A graphical microkernel
This chapter provides an overview of the Photon microGUI, the graphical environment
for QNX Neutrino. For more information, see the Photon documentation set.

Many embedded systems require a UI so that users can access and control the
embedded application. For complex applications, or for maximum ease of use, a
graphical windowing system is a natural choice. However, the windowing systems on
desktop PCs simply require too much in the way of system resources to be practical in
an embedded system where memory and cost are limiting factors.

Drawing upon the successful approach of the QNX Neutrino microkernel architecture
to achieve a POSIX OS environment for embedded systems, we have followed a
similar course in creating the Photon microGUI windowing system.

To implement an effective microkernel OS, we first had to tune the microkernel so that
the kernel calls for IPC were as lean and efficient as possible (since the performance of
the whole OS rests on this message-based IPC). Using this low-overhead IPC, we
were able to structure a GUI as a graphical “microkernel” process with a team of
cooperating processes around it, communicating via that IPC.

While at first glance this might seem similar to building a graphical system around the
classic client/server paradigm already used by the X Window System, the Photon
architecture differentiates itself by restricting the functionality implemented within the
graphical microkernel (or server) itself and distributing the bulk of the GUI
functionality among the cooperating processes.

The Photon microkernel runs as a tiny process, implementing only a few fundamental
primitives that external, optional processes use to construct the higher-level
functionality of a windowing system. Ironically, for the Photon microkernel itself,
“windows” do not exist. Nor can the Photon microkernel “draw” anything, or manage
a pen, mouse, or keyboard.

To manage a GUI environment, Photon creates a 3-dimensional event space and
confines itself only to handling regions and processing the clipping and steering of
various events as they flow through the regions in this event space.

This abstraction is roughly parallel to the concept of a microkernel OS being incapable
of filesystem or device I/O, but relying instead on external processes to provide these
high-level services. Just as this allows a microkernel OS to scale up or down in size
and functionality, so also a microkernel GUI.

The core microkernel “abstraction” implemented by the Photon microkernel is that of
a graphical event space that other processes can populate with regions. Using native
IPC to communicate with the Photon microkernel, these other processes manipulate
their regions to provide higher-level graphical services or to act as user applications.
By removing service-providing processes, Photon can be scaled down for
limited-resource systems; by adding service-providing processes, Photon can be
scaled up to full desktop functionality.
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The Photon event space
The “event space” managed by the Photon microkernel can be visualized as an empty
void with a “root region” at the back. The end-user can be imagined to be “looking
into” this event space from the front. Applications place “regions” into the
3-dimensional space between the root region and the end-user; they use those regions
to generate and accept various types of “events” within this space.

Processes that provide device driver services place regions at the front of the event
space. In addition to managing the event space and root region, the Photon
microkernel projects draw events.

Root

Device

Graphics

Workspace (PWM)

Backdrop (PWM)

Focus (PWM)

Input Group

Pointer/Keyboard

Application

Window (PWM)

Photon regions.

We can think of these events that travel through this space as “photons” (from which
this windowing system gets its name). Events themselves consist of a list of rectangles
with some attached data. As these events flow through the event space, their rectangle
lists intersect the “regions” placed there by various processes (applications).

Events traveling away from the root region of the event space are said to be traveling
outwards (or towards the user), while events from the user are said to be traveling
inwards towards the root region at the back of the event space.

The interaction between events and regions is the basis for the input and output
facilities in Photon. Pen, mouse, and keyboard events travel away from the user
towards the root plane. Draw events originate from regions and travel towards the
device plane and the user.
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Regions
Regions are managed in a hierarchy associated as a family of rectangles that define
their location in the 3-dimensional event space. A region also has attributes that define
how it interacts with various classes of events as they intersect the region. The
interactions a region can have with events are defined by two bitmasks:

• sensitivity bitmask

• opaque bitmask.

The sensitivity bitmask uses specific event types to define which intersections the
process owning the region wishes to be informed of. A bit in the sensitivity bitmask
defines whether or not the region is sensitive to each event type. When an event
intersects a region for which the bit is set, a copy of that event is enqueued to the
application process that owns the region, notifying the application of events traveling
through the region. This notification doesn’t modify the event in any way.

The opaque bitmask is used to define which events the region can or can’t pass
through. For each event type, a bit in the opaque mask defines whether or not the
region is opaque or transparent to that event. The optical property of “opaqueness” is
implemented by modifying the event itself as it passes through the intersection.

These two bitmasks can be combined to accomplish a variety of effects in the event
space. The four possible combinations are:

Bitmask combination: Description:

Not sensitive, transparent The event passes through the region, unmodified, without the region owner being
notified. The process owning the region simply isn’t interested in the event.

Not sensitive, opaque The event is clipped by the region as it passes through; the region owner isn’t
notified. For example, most applications would use this attribute combination
for draw event clipping, so that an application’s window wouldn’t be overwritten
by draw events coming from underlying windows.

Sensitive, transparent A copy of the event is sent to the region owner; the event then continues,
unmodified, through the event space. A process wishing to log the flow of events
through the event space could use this combination.

Sensitive, opaque A copy of the event is sent to the region owner; the event is also clipped by the
region as it passes through. By setting this bitmask combination, an application
can act as an event filter or translator. For every event received, the application
can process and regenerate it, arbitrarily transformed in some manner, possibly
traveling in a new direction, and perhaps sourced from a new coordinate in the
event space. For example, a region could absorb pen events, perform
handwriting recognition on those events, and then generate the equivalent
keystroke events.
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Events
Like regions, events also come in various classes and have various attributes. An event
is defined by:

• an originating region

• a type

• a direction

• an attached list of rectangles

• some event-specific data (optional).

Unlike most windowing systems, Photon classifies both input (pen, mouse, keyboard,
etc.) and output (drawing requests) as events. Events can be generated either from the
regions that processes have placed in the event space or by the Photon microkernel
itself. Event types are defined for:

• keystrokes

• pen and mouse button actions

• pen and mouse motion

• region boundary crossings

• expose and covered events

• draw events

• drag events

• drag-and-drop events.

Application processes can either poll for these events, block and wait for them to
occur, or be asynchronously notified of a pending event.

The rectangle list attached to the event can describe one or more rectangular regions,
or it can be a “point-source” — a single rectangle where the upper-left corner is the
same as the lower-right corner.

When an event intersects a region that is opaque to it, that region’s rectangle is
“clipped out” of the event’s list of rectangles such that the list describes only the
portion of the event that would ultimately be visible.

The best way to illustrate how this clipping is performed is to examine the changes in
the rectangle list of a draw event as it passes through various intersecting regions.
When the draw event is first generated, the rectangle list consists of only a single,
simple rectangle describing the region that the event originated from.

If the event goes through a region that clips the upper-left corner out of the draw event,
the rectangle list is modified to contain only the two rectangles that would define the
area remaining to be drawn. These resulting rectangles are called “tiles.”
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Likewise, every time the draw event intersects a region opaque to draw events, the
rectangle list will be modified to represent what will remain visible of the draw event
after the opaque region has been “clipped out.” Ultimately, when the draw event
arrives at a graphics driver ready to be drawn, the rectangle list will precisely define
only the portion of the draw event that is to be visible.

Region
A

Region
B

Region
C

Region
D

Tile
1

Tile
2

Tile
3

Tile
4

Event received by
Region D

Opaque regions are clipped out.

If the event is entirely clipped by the intersection of a region, the draw event will cease
to exist. This mechanism of “opaque” windows modifying the rectangle list of a draw
event is how draw events from an underlying region (and its attached process) are
properly clipped for display as they travel towards the user.

Graphics drivers
Graphics drivers are implemented as processes that place a region at the front of the
event space. Rather than inject pen, mouse, or keyboard events (as would an input
driver), a graphics driver’s region is sensitive to draw events coming out of the event
space. As draw events intersect the region, those events are received by the graphics
driver process. In effect, the region can be imagined to be coated in “phosphor,” which
is illuminated by the impact of “photons.”

Since the Photon drawing API accumulates draw requests into batches emitted as
single draw events, each draw event received by the driver contains a list of individual
graphical primitives to be rendered. By the time the draw event intersects the graphics
driver region, its rectangle list will also contain a “clip list” describing exactly which
portions of the draw list are to be rendered to the display. The driver’s job is to
transform this clipped draw list into a visual representation on whatever graphics
hardware the driver is controlling.

One advantage of delivering a “clip list” within the event passed to the driver is that
each draw request then represents a significant “batch” of work. As graphics hardware
advances, more and more of this “batch” of work can be pushed directly into the
graphics hardware. Many display controller chips already handle a single clip
rectangle; some handle multiple clip rectangles.
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Although using the OS IPC services to pass draw requests from the application to the
graphics driver may appear to be an unacceptable overhead, our performance
measurements demonstrate that this implementation performs as well as having the
application make direct calls into a graphics driver. One reason for such performance
is that multiple draw calls are batched with the event mechanism, allowing the already
minimal overhead of our lightweight IPC to be amortized over many draw calls.

Multiple graphics drivers
Since graphics drivers simply put a region into the Photon event space, and since that
region describes a rectangle to be intersected by draw events, it naturally follows that
multiple graphics drivers can be started for multiple graphics controller cards, all with
their draw-event-sensitive regions present in the same event space.

These multiple regions could be placed adjacent to each other, describing an array of
“drawable” tiles, or overlapped in various ways. Since Photon inherits the OS’s
network transparency, Photon applications or drivers can run on any network node,
allowing additional graphics drivers to extend the graphical space of Photon to the
physical displays of many networked computers. By having the graphics driver
regions overlap, the draw events can be replicated onto multiple display screens.

Many interesting applications become possible with this capability. For example, a
factory operator with a wireless-LAN handheld computer could walk up to a
workstation and drag a window from a plant control screen onto the handheld, and
then walk out onto the plant floor and interact with the control system.

In other environments, an embedded system without a UI could project a display onto
any network-connected computer. This connectivity also enables useful collaborative
modes of work for people using computers — a group of people could simultaneously
see the same application screen and cooperatively operate the application.

From the application’s perspective, this looks like a single unified graphical space.
From the user’s perspective, this looks like a seamlessly connected set of computers,
where windows can be dragged from physical screen to physical screen across
network links.

Color model
Colors processed by the graphics drivers are defined by a 24-bit RGB quantity (8 bits
for each of red, green, and blue), providing a total range of 16,777,216 colors.
Depending on the actual display hardware, the driver will either invoke the 24-bit
color directly from the underlying hardware or map it into the color space supported
by the less-capable hardware.

Since the graphics drivers use a hardware-independent color representation,
applications can be displayed without modifications on hardware that has varied color
models. This allows applications to be “dragged” from screen to screen, without
concern for what the underlying display hardware’s color model might be.
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Font support
Photon uses Bitstream’s Font Fusion object-oriented font engine, which provides
developers with full font fidelity and high-quality typographic output at any resolution
on any device, while maintaining the integrity of the original character shapes.

Photon is shipped with a limited number of TrueType fonts. These industry-standard
fonts are readily available from various sources.

Stroke-based fonts
To support Asian languages (e.g. Chinese, Japanese, and Korean), Photon relies on
Bitstream’s stroke-based fonts. These high-speed fonts are ideal for
memory-constrained environments. For example, a complete traditional Chinese font
with over 13,000 characters can occupy as much as 8M in a conventional desktop
system — a stroke-based version of the same font occupies less than 0.5M!

Apart from their compact size and fast rasterization, these fonts are also fully scalable,
which makes them perfect for various nondesktop displays such as LCDs, TVs, PDAs,
and so on.

Unicode multilingual support
Photon is designed to handle international characters. Following the Unicode Standard
(ISO/IEC 10646), Photon provides developers with the ability to create applications
that can easily support the world’s major languages and scripts.

Scripts that read from right to left, such as Arabic, aren’t supported at this time.

Unicode is modeled on the ASCII character set, but uses a 16-bit (or 32-bit) encoding
to support full multilingual text. There’s no need for escape sequences or control
codes when specifying any character in any language. Note that Unicode encoding
conveniently treats all characters — whether alphabetic, ideographs, or symbols — in
exactly the same way.

UTF-8 encoding
Formerly known as UTF-2, the UTF-8 (for “8-bit form”) transformation format is
designed to address the use of Unicode character data in 8-bit UNIX environments.

Here are some of the main features of UTF-8:

• Unicode characters from U+0000 to U+007E (ASCII set) map to UTF-8 bytes 00
to 7E (ASCII values).

• ASCII values don’t otherwise occur in a UTF-8 transformation, giving complete
compatibility with historical filesystems that parse for ASCII bytes.

• The first byte indicates the number of bytes to follow in a multibyte sequence,
allowing for efficient forward parsing.
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• Finding the start of a character from an arbitrary location in a byte stream is
efficient, because you need to search at most four bytes backwards to find an easily
recognizable initial byte. For example: isInitialByte = ((byte & 0xC0)

!= 0x80);

• UTF-8 is reasonably compact in terms of the number of bytes used for encoding.

• UTF-8 strings are terminated with a single NULL byte, like traditional ASCII C
strings.

Animation support
Photon provides flicker-free animations by employing off-screen video memory where
possible. For instance, a special container widget (PtOSContainer) creates a
dedicated off-screen memory context for drawing images. The PtOSContainer
widget uses a block of video memory large enough to hold an image the size of its
canvas. (For more information about widgets, see the section “Widget library” in this
chapter.)

Photon’s graphics drivers also maximize the use of off-screen memory to enhance the
perceptual performance of animated images. The graphics drivers support other
advanced techniques, such as direct graphics mode, alpha-blending, chroma-key
substitution, and more.

Video overlay

Besides the ability to superimpose a semi-transparent image on top of a background
(alpha-blending) or to place a color-masked foreground image on top of a separate
background (chroma-key), Photon also supports video overlay — a full-motion video
image is rendered within a window on the display.

Layers

Some display controllers let you transparently overlay multiple “screens” on a single
display. Each overlay is called a layer.

You can use layers to combine independent display elements. Since the graphics
hardware performs the overlaying, this can be more efficient than rendering all of the
display elements onto a single layer. For example, a fast navigational display can have
a scrolling navigational map on a background layer and a web browser or other popup
GUI element on a foreground layer.

The images on all the active layers of a display are combined, using alpha-blending,
chroma-keying, or both, to produce the final image on the display.

Printing support
Photon provides built-in printing support for a variety of outputs, including:

• bitmap files
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• PostScript

• Hewlett-Packard PCL

• Epson ESC/P2

• Epson IJS

• Canon

• Lexmark

Photon also comes with a print-selection widget/convenience dialog to make printing
simpler within developers’ own applications.

The Photon Window Manager
Adding a window manager to Photon creates a fully functional desktop-class GUI.
The window manager is entirely optional and can be omitted for most classes of
embedded systems. If present, the window manager allows the user to manipulate
application windows by resizing, moving, and iconifying them.

The window manager is built on the concept of filtering events with additional regions
placed behind application regions, upon which a title bar, resize handles, and other
elements are drawn and interacted with. Since the replaceable window manager
implements the actual “look and feel” of the environment, various UI flavors can be
optionally installed.

Widget library
Photon provides a library of components known as widgets — objects that can manage
much of their on-screen behavior automatically, without explicit programming effort.
As a result, a complete application can be quickly assembled by combining widgets in
various ways and then attaching C code to the appropriate callbacks the widgets
provide.

The Photon Application Builder (PhAB), which is included as part of the Photon
development system, provides an extensive widget palette in its visual development
environment.

Photon provides a wide range of widgets, which can be classified as follows:

• fundamental widgets (e.g. a button)

• container widgets (e.g. a window widget)

• advanced widgets (e.g. an HTML display widget).
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Fundamental widgets
Label widget (PtLabel)

The label widget can display bitmaps, images, or textual information. The PtLabel
widget is the superclass for all text-based widgets, providing many customizable
attributes (e.g. font typeface, pop-up balloons, colors, borders, alignment, margins,
etc.), all of which are inherited by all its subclasses.

Push-button widget (PtButton)

Push buttons are a necessary component in every windowing system. They have a
raised look that changes to depressed when pushed, giving a visual cue to let the user
know the button has been selected. In addition to this visual behavior, push buttons
automatically invoke an application-defined callback when they’re selected.

Text input widgets (PtText, PtMultiText)

Photon provides two text-input widgets:

• a simple single-line input widget (PtText) commonly used in forms

• a powerful wordprocessor-like multi-line widget (PtMultiText) providing full
editing capabilities, word wrapping, automatic scrolling, and multi-font line
segments.

Toggle-button widgets (PtToggleButton)

Toggle buttons are objects that display two states — on or off. Photon provides
various styles of toggle buttons, each with a different visual appearance. Toggle
buttons are used to display or request state information related to a command or action
about to be performed.
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Graphical widgets (PtArc, PtPixel, PtRect, PtLine, PtPolygon, PtEllipse,
PtBezier, PtGrid)

Photon has no shortage of graphical widgets. There’s a widget to accomplish
everything from simple lines and rectangles to complex multi-segmented Bézier
curves. Graphical widgets provide attributes for color, fills, patterns, line thickness,
joins, and much more.

Scrollbar widget (PtScrollbar)

A scrollbar widget is used to scroll the display of a viewable area. The scrollbar is
combined with other widgets (e.g. PtList, PtScrollContainer) to allow scrolling.

Separator widget (PtSeparator)

The separator widget is used to separate two or more different areas, such as the menu
items as shown in this example. The separator can be customized for many different
styles and looks.
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Slider widget (PtSlider)

Sliders are different from scrollbars. A scrollbar defines a range, whereas a slider
defines a single value.

Image widgets (PtLabel, PtButton)

Photon supports every major graphics file standard, so you can import graphics and
display them inside widgets. Many Photon widgets directly support displaying
graphics — the most common are PtButton for making push-button toolbars and
PtLabel for displaying images.

Progress-bar widget (PtProgress)

If an application needs to do something that takes a fair amount of time (e.g. loading a
file), it can use the progress bar widget to let the user know what’s happening and,
more importantly, how much longer the process is going to take. The progress bar has
many attributes for customization — it can be horizontal or vertical, it can display
specific or indeterminate values (both are shown here), etc.

Numeric widgets (PtNumericInteger, PtNumericFloat)

The PtNumericInteger class lets the user specify integer values between given
minimum and maximum values. The PtNumericFloat class lets the user enter
floating-point values.

Container widgets
A container widget is a powerful and convenient interface tool that holds other widgets
and manages their layout. Containers are used extensively in most Photon applications.
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Window widget (PtWindow)

Windows are the main application containers. The main UI components (menu bars,
toolbars, etc.) appear with the window widget. The widget automatically handles all
the necessary interactions with the Photon Window Manager (PWM) — all you need
to specify is what should and shouldn’t be rendered or managed.

Group widget (PtGroup)

The group widget is a very powerful widget that manages the geometry of all its child
widgets. It can align the widgets horizontally, vertically, or in a matrix. The widget
also provides attributes that let you specify whether the children should be stretched to
fit the group if it’s resized larger due to anchoring.

Panel group widget (PtPanelGroup)

The panel group widget is a container for panels, a useful element for organizing data
in dialogs. Besides managing the geometry and layout of panels, PtPanelGroup also
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provides two selection modes to switch between panels: multiple-tab selection (each
panel has its own tab to select) and single-tab selection (clicking the tab pops up a
menu to select other panels).

Viewport widget (PtScrollContainer)

The PtScrollContainerwidget is a very powerful widget that provides a viewport
into a potentially larger container. You can place any number of widgets inside a scroll
container and it will automatically display a scrollbar if the widgets are contained
within the viewable area. PtScrollContainerwidgets could be used to implement
a text file viewer, wordprocessor, customized list display, and so on.

To scroll child widgets quickly, the scrolling area widget uses a hardware blitter
(provided the underlying graphics driver supports it).

Background widget (PtBkgd)

The background widget provides a way to create fancy background displays, from
simple color gradations to tiled textures. This widget can handle just about any
background requirement.

Advanced widgets
Armed with Photon’s rich set of widgets, developers can build practically any
graphical application imaginable. Here are some of the more powerful widgets at your
disposal:
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Menu-related widgets (PtMenu, PtMenuBar, PtMenuButton)

Photon has a widget for every menu-related requirement. There’s a widget to simplify
the creation of a standard menu bar. The menu widget handles the pop-up display,
press-drag-release, point and click, keyboard traversal, and selection of menu items.
The menu button widget is used for creating individual menu items.

Toolbar widgets (PtToolbar, PtToolbarGroup)

This container holds buttons, labels, images, whatever widgets you wish, and aligns
them either vertically or horizontally in a toolbar. The toolbar group widget lets you
combine a toolbar with a menu bar to create a very flexible access element for your
applications.

List widget (PtList)

The list widget is a very powerful widget that manages a list of items. It provides
many different selection modes, including single selection, multiple selection and
range selection. The list widget also supports multi-columned lists through the use of
a divider widget (PtDivider).

Pulldown list widget (PtComboBox)

The pulldown list widget combines the PtText widget (for text input) with a pulldown
button for displaying a list widget. When the user selects from the list, the text widget
is automatically updated with the current selection. The pulldown list widget is very
useful for displaying a list of items using a small space. Dialogs and containers use a
lot less screen real-estate, which is important in embedded environments.
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Tree widget (PtTree)

The tree widget is similar to the list widget — in fact they both have the same
ancestors. The main difference is that the tree widget displays the items in a
hierarchical manner. Items, called branches, can be expanded or collapsed; any
number of tree branches can be created. Each branch can define its own unique image
to display. Trees are useful because they display information in a very logical manner.

Photon applications that use the tree widget include the File Manager (directory
display), PhAB (widget layout), Helpviewer, and many others.

Terminal widgets (PtTty, PtTerminal)

A terminal widget creates and manages an entire text-mode terminal inside a widget.
Just drop it into your application and you’ve created your very own pterm (Photon’s
terminal application).

The terminal widget doesn’t stop there — it also provides complete cut-and-paste
functionality and quick-launch help by highlighting any text within the widget.
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Divider widget (PtDivider)

This powerful widget manages its children in a unique and useful way. When you
place two or more widgets inside a divider widget, it automatically puts little
separators in between the child widgets. Using these separators, the user can drag back
and forth, causing the child widgets on either side of the separator to be resized. This
is very useful for creating resizable column headings for lists. In fact, if you drop a
divider widget into a list widget, it will automatically turn your simple list into a
resizable multi-column list.

Dividers aren’t limited to just labels or buttons. Any widgets can be placed inside to
create side-by-side resizable trees, scroll areas, and so on.

Trend graph widgets (PtTrend and PtMTrend)

Realtime systems often require trend graphs. Photon comes with a trend bar widget,
PtTrend, that supports the display of multiple trend lines simultaneously. If your
graphics hardware supports masked blits, it can even smooth-scroll the trend across
grid lines. The PtMTrend widget has additional features, such as a trace line, which
make it appropriate for medical applications.
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Color-selection widgets (PtColorSel, PtColorPanel, PtColorPatch,
PtColorSelGroup, PtColorWell)

Photon provides several handy controls for building color-selection dialogs. This
convenient set of widgets includes PtColorPanel, a compound widget that provides
several ways to easily select a color.

Web client widget (PtWebClient)
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The PtWebClient widget is used to start, interact, and control a web browser. The
widget also provides a user-defined area within the application for the server to format
and display web pages.

The application controls the server by setting widget resources. The server
communicates status information and user interaction back to the application using the
widget callbacks. The PtWebClient widget transparently supports the version of
HTML that the server supports.

Convenience functions
Once a widget has been created, you can take advantage of Photon’s convenience
functions to easily set up dialogs and control the widget.

Here are some examples of common dialogs created using the following convenience
functions in Photon’s widget toolkit:

• PtFileSelection() — create a file-selector dialog

• PtFontSelection() — display a modal dialog for selecting a font

• PtPrintSelection() — display a modal dialog for selecting print options

• PtAlert() — display a message and request a response from the user

• PtNotice() — display a message and wait for acknowledgment by the user

• PtPrompt() — display a message and get textual input from the user.

For more information about these functions, see the Photon Library Reference.

File-selection dialog (PtFileSelection())

The PtFileSelection() function incorporates a tree widget that displays files,
directories, links to files or directories, and custom entries. Besides selecting a
particular file in response to an application prompt, users can also navigate an entire
filesystem and choose their own file and directory.
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Font-selection dialog (PtFontSelection())

To accommodate the wide selection of fonts available, Photon provides a handy
font-selector. The dialog displays a list of all available fonts and allows the user to
choose the typeface and style (bold, italic, etc.) and to indicate whether the font should
be anti-aliased.

Print-selection dialog (PtPrintSelection())

The print selector lets a user select a printer or control its properties. The user may
also select a range of pages as well as the number of copies to print.

Alert dialog (PtAlert())
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This modal dialog is useful for informing the user of some significant event and
waiting for a response (e.g. clicking a button).

Notice dialog (PtNotice())

This dialog can display a message that may or may not require a response. This type
of dialog often contains an “OK” button for the user to acknowledge the notice.

Prompt dialog (PtPrompt())

Like the alert dialog, the prompt dialog displays a message that requires the user to
respond, but it also provides a field for inputting text within the dialog.

Driver development kits
As a product geared towards developers, Photon offers all the tools needed to build
high-performance, accelerated graphics drivers that can be readily tailored for
particular graphics cards and chipsets.

Developers will be able to create drivers that support advanced graphics techniques
(e.g. alpha-blending or chroma-key substitution) through a software-only approach, a
perfect fallback for “simple” hardware that doesn’t directly handle such techniques.

The Photon graphics driver development kit provides full source code for several
sample drivers as well as detailed instructions for handling the hardware-dependent
issues involved in developing custom drivers.
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Summary
Photon represents a new approach to GUI building — using a microkernel and a team
of cooperating processes, rather than the monolithic approach typified by other
windowing systems. As a result, Photon exhibits a unique set of capabilities:

• Low memory requirements enable Photon to deliver a high level of windowing
functionality to environments where only a graphics library might have been
allowed within the memory constraints.

• Photon provides a very flexible, user-extensible architecture that allows developers
to extend the GUI in directions unique to their applications.

• With flexible cross-platform connectivity, Photon applications can be used from
virtually any connected desktop environment.
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Overview
The QNX Aviage multimedia suite consists of several packages, including the
multimedia core package, codec packages that provide WMA9, MP3, and AAC
decoding and encoding, and software packages that support iPod and PlaysForSure
media players.

The major component of the multimedia core package is the MultiMedia Engine
(MME). The MME provides the main interfaces for configuring and controlling your
multimedia applications. Designed to run on the QNX Neutrino OS, which can be
installed on a wide variety of hardware platforms, the MME provides
consumer-product developers a component-based solution that reduces the work
required to develop and deliver multimedia products to their end customers.

QDB MME API

MME DB

Mediastores

Output
devices

mme

io-fs-tmpfs

io-fs-pfs

io-fs-ipod

io-media

External
device
control
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hardware
codecs

Output
drivers

io-display
io-audio
...

High-level view of the MME components.

The MME is designed to simplify and speed development of end-user applications that
require device and filesystem access, content synchronization, playback control, and
audio and graphics delivery. It handles multiple clients, sessions and streams, and
abstracts hardware and protocol dependencies from other functional areas. It provides
integration with a wide variety of media sources, including those requiring Digital
Rights Management (DRM), and provides a high-level API for media transport
control, device control and browsing, and media library management; and it
automatically detects media devices and integrates their contents into a general
database view. The applications the MME can be used to develop include:

• transport media systems

• in-seat entertainment systems

October 16, 2008 Chapter 17 • Multimedia 271



Overview © 2008, QNX Software Systems GmbH & Co. KG.

• medical device imaging and sound monitoring units

• industrial control systems

The MME lets Human-Machine Interface (HMI) developers apply their talents to
designing the best possible user experience instead of focusing on managing the
media. When you build a client application that uses the MME, you can focus on:

• designing and building the best possible user interface (HMI)

• implementing simple playback functionality such as track session creation, “play”,
“next”, “pause” etc.

• configuring audio and video output

You need to know about the configurations for your system’s storage devices, but you
can leave a long list of responsibilities to the MME:

• device and mediastore insertion and removal — HDD, CD, DVD, USB key with
media, etc.

• mediastore synchronization — find, itemize, extract, and manage media content
and metadata

• input and output media connection management

• extensible support for specialized consumer devices, as well as for hardware
offload to digital signal processors (DSPs)

For a more in-depth description of the MME architecture, see Introduction to the
MME.

MME functional areas
The MME is designed to bring together media management and playback control,
providing a single, consistent interface for client applications. Internally, it has the
broad functional areas described below.

Mediastore access

Mediastores are any source for multimedia data, including hard drives, DVDs, CDs
and media devices such as iPods or MP3 players. The MME’s mediastore access
capabilities include:

• detection of devices, and integration of content from static and dynamic media
sources: drives, external players, USB stores, iPods, networks

• media stack and protocol implementations for diverse protocols: iPod Access
Protocol, MTP, etc., many with DRM requirements

• management of different media filesystem and stream formats: DOS FAT32, UDF
2.01, etc.
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Mediastore content management

The MME’s mediastore content-management capabilities include:

• media metadata extraction and storage — tags, third-party metadata, cover art, etc.

• media content browsing and searching

• playlist extraction and custom playlist creation

Media playback and recording

The MME’s media playback and recording capabilities include:

• media content recording, copying and ripping

• media stream processing:

- a flexible plugin architecture for filters that decrypt, parse, decode, encode and
encrypt media data streams

- a transparent communication mechanism to external codecs for flexible HW/SW
partitioning of filter functionality

• media stream rendering and deployment:

- route to output devices (displays, amplifiers, headphones, etc.)

- store registered and encoded media data to storage device (HDD)

The MME interface
The MME API includes a primary interface and a secondary interface. The primary
interface (mme) offers the media management functionality required of a multimedia
middleware platform, while the secondary interface (qdb) offers the required database
functionality. Together the primary and secondary interfaces offer multimedia
applications a consistent API that provides:

• media transport, rendering and control — control of playback, and of aspects of
media rendering such as volume, brightness, and playback modes (mme)

• notification — receiving information about the status of media, devices and
operations; and effecting changes to media library content (mme)

• navigation — browsing media devices that support internal navigation, such as a
DVD menu system or an iPod (mme, qdb, or both)

• database capabilities — searching, sorting, organizing, and updating of media
information and metadata (qdb)
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Component-based architecture
The MME is comprised of several independent components. Each MME component
executes independently as a Neutrino resource manager process. A resource manager
is a user-level server process that accepts messages from other programs and,
optionally, communicates with hardware.

The MME’s component-based architecture delivers:

• flexibility — developers using the MME to build multimedia products can easily
configure the MME and its individual resource managers to meet their specific
needs.

• easy deployment — multimedia applications build with the MME can be deployed
on a single processor, or on a distributed network of processors with no changes to
their application code.

• reliability — the MME’s resource managers all have their own failure and restart; a
resource manager failure doesn’t mean a system failure.

• portability — all MME components offer standard interfaces, such as POSIX or
SQL.

The MME resource managers
The MME resource managers can be placed into these groups:

• high-level resource managers that provide the interfaces to HMI client applications

• low-level resource managers that don’t normally interface with HMI client
applications

The resource managers that provide the interfaces to multimedia client applications
are:

• the qdb database engine

• the mme multimedia engine
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Both the mme and the qdb resource managers support device-specific functionality
within a POSIX framework. Together they make up the interface to HMI client
applications, providing them with an API to control, browse, copy or rip, and play
media, as well as the ability to monitor and manage multimedia processing. The mme
controls the low-level resource managers that directly access and process media data.

Multimedia client applications don’t normally interface with the MME’s lower-level
resource managers. You may nonetheless find it useful to know about these resource
managers and understand what they do, especially if you are tuning your system
configuration. The MME’s low-level resource managers include:

• the io-fs resource managers that provide access to media devices and mediastores

• the io-media resource managers that are responsible for media stream processing
and rendering, for managing complex media streams, and for performing tasks that
include CD and DVD playback, file playback, media copying, and media recording

Other low-level resource managers that are not specific to the MME, but which the
MME uses, include:

• the devb resource managers, such as devb-eide and devb-atapi, that provide
access to data on block-oriented devices and filesystems

• the io-usb resource manager that provides access to media on USB stores

• io-audio, io-display, and other resource managers that provide an abstraction
of media output devices
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A20 gate

On x86-based systems, a hardware component that forces the A20 address line on the
bus to zero, regardless of the actual setting of the A20 address line on the processor.
This component is in place to support legacy systems, but the QNX Neutrino OS
doesn’t require any such hardware. Note that some processors, such as the 386EX,
have the A20 gate hardware built right into the processor itself — our IPL will disable
the A20 gate as soon as possible after startup.

adaptive

Scheduling algorithm whereby a thread’s priority is decayed by 1. See also FIFO,
round robin, and sporadic.

adaptive partitioning

A method of dividing, in a flexible manner, CPU time, memory, file resources, or
kernel resources with some policy of minimum guaranteed usage.

asymmetric multiprocessing (AMP)

A multiprocessing system where a separate OS, or a separate instantiation of the same
OS, runs on each CPU.

atomic

Of or relating to atoms. :-)

In operating systems, this refers to the requirement that an operation, or sequence of
operations, be considered indivisible. For example, a thread may need to move a file
position to a given location and read data. These operations must be performed in an
atomic manner; otherwise, another thread could preempt the original thread and move
the file position to a different location, thus causing the original thread to read data
from the second thread’s position.

attributes structure

Structure containing information used on a per-resource basis (as opposed to the
OCB, which is used on a per-open basis).

This structure is also known as a handle. The structure definition is fixed
(iofunc_attr_t), but may be extended. See also mount structure.

bank-switched

A term indicating that a certain memory component (usually the device holding an
image) isn’t entirely addressable by the processor. In this case, a hardware component
manifests a small portion (or “window”) of the device onto the processor’s address
bus. Special commands have to be issued to the hardware to move the window to
different locations in the device. See also linearly mapped.
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base layer calls

Convenient set of library calls for writing resource managers. These calls all start with
resmgr_*(). Note that while some base layer calls are unavoidable (e.g.
resmgr_pathname_attach()), we recommend that you use the POSIX layer calls
where possible.

BIOS/ROM Monitor extension signature

A certain sequence of bytes indicating to the BIOS or ROM Monitor that the device is
to be considered an “extension” to the BIOS or ROM Monitor — control is to be
transferred to the device by the BIOS or ROM Monitor, with the expectation that the
device will perform additional initializations.

On the x86 architecture, the two bytes 0x55 and 0xAA must be present (in that order)
as the first two bytes in the device, with control being transferred to offset 0x0003.

block-integral

The requirement that data be transferred such that individual structure components are
transferred in their entirety — no partial structure component transfers are allowed.

In a resource manager, directory data must be returned to a client as block-integral
data. This means that only complete struct dirent structures can be returned —
it’s inappropriate to return partial structures, assuming that the next _IO_READ
request will “pick up” where the previous one left off.

bootable

An image can be either bootable or nonbootable. A bootable image is one that
contains the startup code that the IPL can transfer control to.

bootfile

The part of an OS image that runs the startup code and the Neutrino microkernel.

bound multiprocessing (BMP)

A multiprocessing system where a single instantiation of an OS manages all CPUs
simultaneously, but you can lock individual applications or threads to a specific CPU.

budget

In sporadic scheduling, the amount of time a thread is permitted to execute at its
normal priority before being dropped to its low priority.

buildfile

A text file containing instructions for mkifs specifying the contents and other details
of an image, or for mkefs specifying the contents and other details of an embedded
filesystem image.

280 Glossary October 16, 2008



© 2008, QNX Software Systems GmbH & Co. KG.

canonical mode

Also called edited mode or “cooked” mode. In this mode the character device library
performs line-editing operations on each received character. Only when a line is
“completely entered” — typically when a carriage return (CR) is received — will the
line of data be made available to application processes. Contrast raw mode.

channel

A kernel object used with message passing.

In QNX Neutrino, message passing is directed towards a connection (made to a
channel); threads can receive messages from channels. A thread that wishes to receive
messages creates a channel (using ChannelCreate()), and then receives messages from
that channel (using MsgReceive()). Another thread that wishes to send a message to
the first thread must make a connection to that channel by “attaching” to the channel
(using ConnectAttach()) and then sending data (using MsgSend()).

CIFS

Common Internet File System (aka SMB) — a protocol that allows a client
workstation to perform transparent file access over a network to a Windows 95/98/NT
server. Client file access calls are converted to CIFS protocol requests and are sent to
the server over the network. The server receives the request, performs the actual
filesystem operation, and sends a response back to the client.

CIS

Card Information Structure — a data block that maintains information about flash
configuration. The CIS description includes the types of memory devices in the
regions, the physical geometry of these devices, and the partitions located on the flash.

combine message

A resource manager message that consists of two or more messages. The messages are
constructed as combine messages by the client’s C library (e.g. stat(), readblock()),
and then handled as individual messages by the resource manager.

The purpose of combine messages is to conserve network bandwidth and/or to provide
support for atomic operations. See also connect message and I/O message.

connect message

In a resource manager, a message issued by the client to perform an operation based
on a pathname (e.g. an io_open message). Depending on the type of connect
message sent, a context block (see OCB) may be associated with the request and will
be passed to subsequent I/O messages. See also combine message and I/O message.

connection

A kernel object used with message passing.
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Connections are created by client threads to “connect” to the channels made available
by servers. Once connections are established, clients can MsgSendv() messages over
them. If a number of threads in a process all attach to the same channel, then the one
connection is shared among all the threads. Channels and connections are identified
within a process by a small integer.

The key thing to note is that connections and file descriptors (FD) are one and the
same object. See also channel and FD.

context

Information retained between invocations of functionality.

When using a resource manager, the client sets up an association or context within the
resource manager by issuing an open() call and getting back a file descriptor. The
resource manager is responsible for storing the information required by the context
(see OCB). When the client issues further file-descriptor based messages, the resource
manager uses the OCB to determine the context for interpretation of the client’s
messages.

cooked mode

See canonical mode.

core dump

A file describing the state of a process that terminated abnormally.

critical section

A code passage that must be executed “serially” (i.e. by only one thread at a time).
The simplest from of critical section enforcement is via a mutex.

deadlock

A condition in which one or more threads are unable to continue due to resource
contention. A common form of deadlock can occur when one thread sends a message
to another, while the other thread sends a message to the first. Both threads are now
waiting for each other to reply to the message. Deadlock can be avoided by good
design practices or massive kludges — we recommend the good design approach.

device driver

A process that allows the OS and application programs to make use of the underlying
hardware in a generic way (e.g. a disk drive, a network interface). Unlike OSs that
require device drivers to be tightly bound into the OS itself, device drivers for QNX
Neutrino are standard processes that can be started and stopped dynamically. As a
result, adding device drivers doesn’t affect any other part of the OS — drivers can be
developed and debugged like any other application. Also, device drivers are in their
own protected address space, so a bug in a device driver won’t cause the entire OS to
shut down.
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discrete (or traditional) multiprocessor system

A system that has separate physical processors hooked up in multiprocessing mode
over a board-level bus.

DNS

Domain Name Service — an Internet protocol used to convert ASCII domain names
into IP addresses. In QNX native networking, dns is one of Qnet’s builtin resolvers.

dynamic bootfile

An OS image built on the fly. Contrast static bootfile.

dynamic linking

The process whereby you link your modules in such a way that the Process Manager
will link them to the library modules before your program runs. The word “dynamic”
here means that the association between your program and the library modules that it
uses is done at load time, not at linktime. Contrast static linking. See also runtime
loading.

edge-sensitive

One of two ways in which a PIC (Programmable Interrupt Controller) can be
programmed to respond to interrupts. In edge-sensitive mode, the interrupt is
“noticed” upon a transition to/from the rising/falling edge of a pulse. Contrast
level-sensitive.

edited mode

See canonical mode.

EOI

End Of Interrupt — a command that the OS sends to the PIC after processing all
Interrupt Service Routines (ISR) for that particular interrupt source so that the PIC can
reset the processor’s In Service Register. See also PIC and ISR.

EPROM

Erasable Programmable Read-Only Memory — a memory technology that allows the
device to be programmed (typically with higher-than-operating voltages, e.g. 12V),
with the characteristic that any bit (or bits) may be individually programmed from a 1
state to a 0 state. To change a bit from a 0 state into a 1 state can only be accomplished
by erasing the entire device, setting all of the bits to a 1 state. Erasing is accomplished
by shining an ultraviolet light through the erase window of the device for a fixed
period of time (typically 10-20 minutes). The device is further characterized by having
a limited number of erase cycles (typically 10e5 - 10e6). Contrast flash and RAM.
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event

A notification scheme used to inform a thread that a particular condition has occurred.
Events can be signals or pulses in the general case; they can also be unblocking events
or interrupt events in the case of kernel timeouts and interrupt service routines. An
event is delivered by a thread, a timer, the kernel, or an interrupt service routine when
appropriate to the requestor of the event.

FD

File Descriptor — a client must open a file descriptor to a resource manager via the
open() function call. The file descriptor then serves as a handle for the client to use in
subsequent messages. Note that a file descriptor is the exact same object as a
connection ID (coid, returned by ConnectAttach()).

FIFO

First In First Out — a scheduling algorithm whereby a thread is able to consume CPU
at its priority level without bounds. See also adaptive, round robin, and sporadic.

flash memory

A memory technology similar in characteristics to EPROM memory, with the
exception that erasing is performed electrically instead of via ultraviolet light, and,
depending upon the organization of the flash memory device, erasing may be
accomplished in blocks (typically 64k bytes at a time) instead of the entire device.
Contrast EPROM and RAM.

FQNN

Fully Qualified NodeName — a unique name that identifies a QNX Neutrino node on
a network. The FQNN consists of the nodename plus the node domain tacked together.

garbage collection

Aka space reclamation, the process whereby a filesystem manager recovers the space
occupied by deleted files and directories.

HA

High Availability — in telecommunications and other industries, HA describes a
system’s ability to remain up and running without interruption for extended periods of
time.

handle

A pointer that the resource manager base library binds to the pathname registered via
resmgr_attach(). This handle is typically used to associate some kind of per-device
information. Note that if you use the iofunc_*() POSIX layer calls, you must use a
particular type of handle — in this case called an attributes structure.
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hard thread affinity

A user-specified binding of a thread to a set of processors, done by means of a
runmask. Contrast soft thread affinity.

image

In the context of embedded QNX Neutrino systems, an “image” can mean either a
structure that contains files (i.e. an OS image) or a structure that can be used in a
read-only, read/write, or read/write/reclaim FFS-2-compatible filesystem (i.e. a flash
filesystem image).

inherit mask

A bitmask that specifies which processors a thread’s children can run on. Contrast
runmask.

interrupt

An event (usually caused by hardware) that interrupts whatever the processor was
doing and asks it do something else. The hardware will generate an interrupt whenever
it has reached some state where software intervention is required.

interrupt handler

See ISR.

interrupt latency

The amount of elapsed time between the generation of a hardware interrupt and the
first instruction executed by the relevant interrupt service routine. Also designated as
“Til”. Contrast scheduling latency.

interrupt service routine

See ISR.

interrupt service thread

A thread that is responsible for performing thread-level servicing of an interrupt.

Since an ISR can call only a very limited number of functions, and since the amount
of time spent in an ISR should be kept to a minimum, generally the bulk of the
interrupt servicing work should be done by a thread. The thread attaches the interrupt
(via InterruptAttach() or InterruptAttachEvent()) and then blocks (via
InterruptWait()), waiting for the ISR to tell it to do something (by returning an event of
type SIGEV_INTR). To aid in minimizing scheduling latency, the interrupt service
thread should raise its priority appropriately.

I/O message

A message that relies on an existing binding between the client and the resource
manager. For example, an _IO_READ message depends on the client’s having
previously established an association (or context) with the resource manager by

October 16, 2008 Glossary 285



© 2008, QNX Software Systems GmbH & Co. KG.

issuing an open() and getting back a file descriptor. See also connect message,
context, combine message, and message.

I/O privileges

A particular right, that, if enabled for a given thread, allows the thread to perform I/O
instructions (such as the x86 assembler in and out instructions). By default, I/O
privileges are disabled, because a program with it enabled can wreak havoc on a
system. To enable I/O privileges, the thread must be running as root, and call
ThreadCtl().

IPC

Interprocess Communication — the ability for two processes (or threads) to
communicate. QNX Neutrino offers several forms of IPC, most notably native
messaging (synchronous, client/server relationship), POSIX message queues and pipes
(asynchronous), as well as signals.

IPL

Initial Program Loader — the software component that either takes control at the
processor’s reset vector (e.g. location 0xFFFFFFF0 on the x86), or is a BIOS extension.
This component is responsible for setting up the machine into a usable state, such that
the startup program can then perform further initializations. The IPL is written in
assembler and C. See also BIOS extension signature and startup code.

IRQ

Interrupt Request — a hardware request line asserted by a peripheral to indicate that it
requires servicing by software. The IRQ is handled by the PIC, which then interrupts
the processor, usually causing the processor to execute an Interrupt Service Routine
(ISR).

ISR

Interrupt Service Routine — a routine responsible for servicing hardware (e.g. reading
and/or writing some device ports), for updating some data structures shared between
the ISR and the thread(s) running in the application, and for signalling the thread that
some kind of event has occurred.

kernel

See microkernel.

level-sensitive

One of two ways in which a PIC (Programmable Interrupt Controller) can be
programmed to respond to interrupts. If the PIC is operating in level-sensitive mode,
the IRQ is considered active whenever the corresponding hardware line is active.
Contrast edge-sensitive.
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linearly mapped

A term indicating that a certain memory component is entirely addressable by the
processor. Contrast bank-switched.

message

A parcel of bytes passed from one process to another. The OS attaches no special
meaning to the content of a message — the data in a message has meaning for the
sender of the message and for its receiver, but for no one else.

Message passing not only allows processes to pass data to each other, but also
provides a means of synchronizing the execution of several processes. As they send,
receive, and reply to messages, processes undergo various “changes of state” that
affect when, and for how long, they may run.

microkernel

A part of the operating system that provides the minimal services used by a team of
optional cooperating processes, which in turn provide the higher-level OS
functionality. The microkernel itself lacks filesystems and many other services
normally expected of an OS; those services are provided by optional processes.

mount structure

An optional, well-defined data structure (of type iofunc_mount_t) within an
iofunc_*() structure, which contains information used on a per-mountpoint basis
(generally used only for filesystem resource managers). See also attributes structure
and OCB.

mountpoint

The location in the pathname space where a resource manager has “registered” itself.
For example, the serial port resource manager registers mountpoints for each serial
device (/dev/ser1, /dev/ser2, etc.), and a CD-ROM filesystem may register a
single mountpoint of /cdrom.

multicore system

A chip that has one physical processor with multiple CPUs interconnected over a
chip-level bus.

mutex

Mutual exclusion lock, a simple synchronization service used to ensure exclusive
access to data shared between threads. It is typically acquired (pthread_mutex_lock())
and released (pthread_mutex_unlock()) around the code that accesses the shared data
(usually a critical section). See also critical section.
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name resolution

In a QNX Neutrino network, the process by which the Qnet network manager converts
an FQNN to a list of destination addresses that the transport layer knows how to get to.

name resolver

Program code that attempts to convert an FQNN to a destination address.

NDP

Node Discovery Protocol — proprietary QNX Software Systems protocol for
broadcasting name resolution requests on a QNX Neutrino LAN.

network directory

A directory in the pathname space that’s implemented by the Qnet network manager.

Neutrino

Name of an OS developed by QNX Software Systems.

NFS

Network FileSystem — a TCP/IP application that lets you graft remote filesystems (or
portions of them) onto your local namespace. Directories on the remote systems
appear as part of your local filesystem and all the utilities you use for listing and
managing files (e.g. ls, cp, mv) operate on the remote files exactly as they do on your
local files.

NMI

Nonmaskable Interrupt — an interrupt that can’t be masked by the processor. We
don’t recommend using an NMI!

Node Discovery Protocol

See NDP.

node domain

A character string that the Qnet network manager tacks onto the nodename to form an
FQNN.

nodename

A unique name consisting of a character string that identifies a node on a network.

nonbootable

A nonbootable OS image is usually provided for larger embedded systems or for small
embedded systems where a separate, configuration-dependent setup may be required.
Think of it as a second “filesystem” that has some additional files on it. Since it’s
nonbootable, it typically won’t contain the OS, startup file, etc. Contrast bootable.
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OCB

Open Control Block (or Open Context Block) — a block of data established by a
resource manager during its handling of the client’s open() function. This context
block is bound by the resource manager to this particular request, and is then
automatically passed to all subsequent I/O functions generated by the client on the file
descriptor returned by the client’s open().

package filesystem

A virtual filesystem manager that presents a customized view of a set of files and
directories to a client. The “real” files are present on some medium; the package
filesystem presents a virtual view of selected files to the client.

partition

A division of CPU time, memory, file resources, or kernel resources with some policy
of minimum guaranteed usage.

pathname prefix

See mountpoint.

pathname space mapping

The process whereby the Process Manager maintains an association between resource
managers and entries in the pathname space.

persistent

When applied to storage media, the ability for the medium to retain information across
a power-cycle. For example, a hard disk is a persistent storage medium, whereas a
ramdisk is not, because the data is lost when power is lost.

Photon microGUI

The proprietary graphical user interface built by QNX Software Systems.

PIC

Programmable Interrupt Controller — hardware component that handles IRQs. See
also edge-sensitive, level-sensitive, and ISR.

PID

Process ID. Also often pid (e.g. as an argument in a function call).

POSIX

An IEEE/ISO standard. The term is an acronym (of sorts) for Portable Operating
System Interface — the “X” alludes to “UNIX”, on which the interface is based.
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POSIX layer calls

Convenient set of library calls for writing resource managers. The POSIX layer calls
can handle even more of the common-case messages and functions than the base layer
calls. These calls are identified by the iofunc_*() prefix. In order to use these (and we
strongly recommend that you do), you must also use the well-defined POSIX-layer
attributes (iofunc_attr_t), OCB (iofunc_ocb_t), and (optionally) mount
(iofunc_mount_t) structures.

preemption

The act of suspending the execution of one thread and starting (or resuming) another.
The suspended thread is said to have been “preempted” by the new thread. Whenever
a lower-priority thread is actively consuming the CPU, and a higher-priority thread
becomes READY, the lower-priority thread is immediately preempted by the
higher-priority thread.

prefix tree

The internal representation used by the Process Manager to store the pathname table.

priority inheritance

The characteristic of a thread that causes its priority to be raised or lowered to that of
the thread that sent it a message. Also used with mutexes. Priority inheritance is a
method used to prevent priority inversion.

priority inversion

A condition that can occur when a low-priority thread consumes CPU at a higher
priority than it should. This can be caused by not supporting priority inheritance, such
that when the lower-priority thread sends a message to a higher-priority thread, the
higher-priority thread consumes CPU on behalf of the lower-priority thread. This is
solved by having the higher-priority thread inherit the priority of the thread on whose
behalf it’s working.

process

A nonschedulable entity, which defines the address space and a few data areas. A
process must have at least one thread running in it — this thread is then called the first
thread.

process group

A collection of processes that permits the signalling of related processes. Each process
in the system is a member of a process group identified by a process group ID. A
newly created process joins the process group of its creator.
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process group ID

The unique identifier representing a process group during its lifetime. A process group
ID is a positive integer. The system may reuse a process group ID after the process
group dies.

process group leader

A process whose ID is the same as its process group ID.

process ID (PID)

The unique identifier representing a process. A PID is a positive integer. The system
may reuse a process ID after the process dies, provided no existing process group has
the same ID. Only the Process Manager can have a process ID of 1.

pty

Pseudo-TTY — a character-based device that has two “ends”: a master end and a
slave end. Data written to the master end shows up on the slave end, and vice versa.
These devices are typically used to interface between a program that expects a
character device and another program that wishes to use that device (e.g. the shell and
the telnet daemon process, used for logging in to a system over the Internet).

pulses

In addition to the synchronous Send/Receive/Reply services, QNX Neutrino also
supports fixed-size, nonblocking messages known as pulses. These carry a small
payload (four bytes of data plus a single byte code). A pulse is also one form of event
that can be returned from an ISR or a timer. See MsgDeliverEvent() for more
information.

Qnet

The native network manager in QNX Neutrino.

QoS

Quality of Service — a policy (e.g. loadbalance) used to connect nodes in a
network in order to ensure highly dependable transmission. QoS is an issue that often
arises in high-availability (HA) networks as well as realtime control systems.

RAM

Random Access Memory — a memory technology characterized by the ability to read
and write any location in the device without limitation. Contrast flash and EPROM.

raw mode

In raw input mode, the character device library performs no editing on received
characters. This reduces the processing done on each character to a minimum and
provides the highest performance interface for reading data. Also, raw mode is used
with devices that typically generate binary data — you don’t want any translations of
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the raw binary stream between the device and the application. Contrast canonical
mode.

replenishment

In sporadic scheduling, the period of time during which a thread is allowed to
consume its execution budget.

reset vector

The address at which the processor begins executing instructions after the processor’s
reset line has been activated. On the x86, for example, this is the address 0xFFFFFFF0.

resource manager

A user-level server program that accepts messages from other programs and,
optionally, communicates with hardware. QNX Neutrino resource managers are
responsible for presenting an interface to various types of devices, whether actual (e.g.
serial ports, parallel ports, network cards, disk drives) or virtual (e.g. /dev/null, a
network filesystem, and pseudo-ttys).

In other operating systems, this functionality is traditionally associated with device
drivers. But unlike device drivers, QNX Neutrino resource managers don’t require
any special arrangements with the kernel. In fact, a resource manager looks just like
any other user-level program. See also device driver.

RMA

Rate Monotonic Analysis — a set of methods used to specify, analyze, and predict the
timing behavior of realtime systems.

round robin

Scheduling algorithm whereby a thread is given a certain period of time to run. Should
the thread consume CPU for the entire period of its timeslice, the thread will be placed
at the end of the ready queue for its priority, and the next available thread will be made
READY. If a thread is the only thread READY at its priority level, it will be able to
consume CPU again immediately. See also adaptive, FIFO, and sporadic.

runmask

A bitmask that indicates which processors a thread can run on. Contrast inherit mask.

runtime loading

The process whereby a program decides while it’s actually running that it wishes to
load a particular function from a library. Contrast static linking.

scheduling latency

The amount of time that elapses between the point when one thread makes another
thread READY and when the other thread actually gets some CPU time. Note that this
latency is almost always at the control of the system designer.
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Also designated as “Tsl”. Contrast interrupt latency.

session

A collection of process groups established for job control purposes. Each process
group is a member of a session. A process belongs to the session that its process group
belongs to. A newly created process joins the session of its creator. A process can alter
its session membership via setsid(). A session can contain multiple process groups.

session leader

A process whose death causes all processes within its process group to receive a
SIGHUP signal.

soft thread affinity

The scheme whereby the microkernel tries to dispatch a thread to the processor where
it last ran, in an attempt to reduce thread migration from one processor to another,
which can affect cache performance. Contrast hard thread affinity.

software interrupts

Similar to a hardware interrupt (see interrupt), except that the source of the interrupt
is software.

sporadic

Scheduling algorithm whereby a thread’s priority can oscillate dynamically between a
“foreground” or normal priority and a “background” or low priority. A thread is given
an execution budget of time to be consumed within a certain replenishment period.
See also adaptive, FIFO, and round robin.

startup code

The software component that gains control after the IPL code has performed the
minimum necessary amount of initialization. After gathering information about the
system, the startup code transfers control to the OS.

static bootfile

An image created at one time and then transmitted whenever a node boots. Contrast
dynamic bootfile.

static linking

The process whereby you combine your modules with the modules from the library to
form a single executable that’s entirely self-contained. The word “static” implies that
it’s not going to change — all the required modules are already combined into one.
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symmetric multiprocessing (SMP)

A multiprocessor system where a single instantiation of an OS manages all CPUs
simultaneously, and applications can float to any of them.

system page area

An area in the kernel that is filled by the startup code and contains information about
the system (number of bytes of memory, location of serial ports, etc.) This is also
called the SYSPAGE area.

thread

The schedulable entity under QNX Neutrino. A thread is a flow of execution; it exists
within the context of a process.

timer

A kernel object used in conjunction with time-based functions. A timer is created via
timer_create() and armed via timer_settime(). A timer can then deliver an event,
either periodically or on a one-shot basis.

timeslice

A period of time assigned to a round-robin or adaptive scheduled thread. This period
of time is small (on the order of tens of milliseconds); the actual value shouldn’t be
relied upon by any program (it’s considered bad design).
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A

abort() 69
accept() 213
actions (HA) 227
adaptive partitioning 237

debugging with 242
partitions 238
thread scheduler 242

affinity, processor 101, 103
alarm() 44
as_add_containing() 84
as_add() 83
Asymmetric Multiprocessing (AMP) 97
atomic operations 32, 40
attributes structure (resource manager) 147
autoconnect 216
AutoIP 215

B

background priority (sporadic scheduling) 28
barriers 16, 32

and threads 35
bind() 213
bindresvport() 213
block-oriented devices 177
boot processor 100
Bound Multiprocessing (BMP) 97, 103
budgets

CPU 237, 242
file space (not implemented) 237
memory (not implemented) 237

C

canonical input mode 181
cd command 125
CD-ROM filesystem 168
CGI (Common Gateway Interface) 216
ChannelCreate() 59, 62
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ChannelDestroy() 59
channels 59, 60
character devices 177
chmod() 148
chown() 148
CIFS filesystem 173
clipping (Photon) 250
clock_getcpuclockid() 42
clock_getres() 42
clock_gettime() 42
clock_settime() 42
clock services 41
ClockAdjust() 42
ClockCycles() 42
ClockId() 42
ClockPeriod() 42
ClockTime() 42
close() 74, 83, 148
COFF (Common Object File Format) 133
color model (Photon) 252
combine messages 146
Common Gateway Interface (CGI) 216
conditions (HA entity states) 226
CONDVAR (thread state) 22
condvars 16, 31, 32, 34

example 34
operations 34
SMP 102

confstr() 201
connect messages 143
connect() 213
ConnectAttach() 59
ConnectDetach() 59
consoles

physical 183
virtual 183

convenience functions (Photon widget toolkit)
265

conventions
typographical xvi

cooked input mode 181
cooperating processes

FIFOs 85
pipes 84

copy-on-write (COW) 162
CPU

affinity 101, 103
usage, budgeting 237, 242

CRC 160
critical section 34, 35, 39, 45

defined 31
SMP 102

D

data server 217
dates, valid range of 41
DEAD (thread state) 22
deadlock-free systems, rules for 63
debugging, using adaptive partitions for 242
design goals for QNX Neutrino 3, 16
devb

resource manager 275
devc-con, devc-con-hid 183
devctl() 148, 179
device control 179
device drivers See also resource managers

no need to link into kernel 49
similarity to standard processes 10

device names, creating 124
directories, changing 125
discrete multiprocessors 97
disks

corruption, avoiding 161
DOS disks, accessing 166
partitions 154

dladdr() 136
dlclose() 136
dlopen() 135, 136
dlsym() 135
DMA-safe region, defining 83
dn_comp() 213
dn_expand() 213
domains of authority 119
DOS filesystem manager 166
draw events (Photon) 248
DT_RPATH 135
dumper 20
dup() 83, 127, 144, 145
dup2() 83, 127
dynamic interpreter 134
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dynamic linking 131

E

edited input mode 181
editing capabilities (io-char) 182
ELF format 114, 132
Embedded Transaction Filesystem (ETFS) 157
embedded web server 216
endprotoent() 213
endservent() 213
entities (HA process) 225
environment variables

LD_LIBRARY_PATH 135
RESCONF 213

ETFS 157
event space (Photon) 247, 248
events 64

“unblock” 65
draw (Photon) 248
instrumented kernel 89

exclusive (QoS policy) 202
exec*() functions 109, 113
Executable and Linking Format See ELF
executable, partially bound 131
Ext2 filesystem 173
extensibility of OS 9
extensions to OS

user-written, won’t affect reliability of core
OS 6

F

fast emitting mode (instrumented kernel) 90
fcntl() 127
FIFO (scheduling method) 26, 27, 32
FIFOs 85, See also pipes

creating 85
removing 85

file descriptors (FDs)
duplicating 127
inheritance 127, 128
open control blocks (OCBs) 125

several FDs referring to the same OCB 127
typed memory and 82

files
DOS files, operating on 166
FIFOs 85
opened by different processes 126
opened twice by same process 126
pipes 84
space, budgeting (not implemented) 237

filesystems
accessing a filesystem on another node 123
CD-ROM 168
CIFS 173
DOS 166
Embedded Transaction (ETFS) 157
HAM 230
Image 156
Linux Ext2 173
NFS 172
Power-Safe (fs-qnx6) 161
QNX 119, 161
RAM 157
seek points 126
Universal Disk Format (UDF) 173

five nines (HA metric) 221
Flash 114
foreground priority (sporadic scheduling) 28
fork() 109, 112, 113

POSIX process model and 7
fpathconf() 148
FQNN (fully qualified node name) 202
fs-cd.so 168
fs-cifs 173
fs-dos.so 166
fs-ext2.so 173
fs-nfs2, fs-nfs3 172
fs-qnx4.so 119, 161
fs-qnx6.so 161
fs-udf.so 173
fseek() 148
fstat() 83, 148
fsync() (expensive on Power-Safe filesystems)

165
ftruncate() 74
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G

gethostbyaddr() 213
gethostbyname() 213
getpeername() 213
getprotobyname() 213
getprotobynumber() 213
getprotoent() 213
getservbyname() 213
getservent() 213
getsockname() 213
getsockopt() 213
global list 136
GNS (Global Name Service) 201
graphical microkernel 247
graphics drivers 251

multiple 252
Guardian (HAM “stand-in”) 225

H

h_errlist() 213
h_errno() 213
h_nerr() 213
HA 221–233

client-side library 222
microkernel architecture inherently suited

for 221
recovery example 223

HAM 225
API 231
hierarchy 225

herror() 213
high availability See HA
High Availability Manager See HAM
hstrerror() 213
htonl() 213
htons() 213
Hyper-Threading 99

I

I/O messages 143

I/O resources 119
i8259 interrupt control hardware 49
idle thread 25, 50
ifconfig 193
Image filesystem 156
inet_addr() 213
inet_aton() 213
inet_lnaof() 213
inet_makeaddr() 213
inet_netof() 213
inet_network() 213
inet_ntoa() 213
inheritance structure 104
initial budget (sporadic scheduling) 28
inodes 162
input mode

edited 181
raw 180

input, redirecting 84
instrumentation

interrupts can be traced 89
kernel can be used in prototypes or final

products 89
works on SMP systems 89

interprocess communication See IPC
interprocessor interrupts (IPIs) 101
INTERRUPT (thread state) 22
interrupt control hardware (i8259 on a PC) 49
interrupt handlers 16, 44, See also ISR

SMP 102
interrupt latency 45
Interrupt Service Routine See ISR
InterruptAttach() 47
InterruptAttachEvent() 47
InterruptDetach() 47
InterruptDisable() 47

problem on SMP systems 102
InterruptEnable() 47

problem on on SMP systems 102
InterruptHookIdle() 50
InterruptHookTrace() 50
InterruptLock() 47, 102
InterruptMask() 47

problem on SMP systems 102
interrupts

masking, automatically by the kernel 48

298 Index October 16, 2008



© 2008, QNX Software Systems GmbH & Co. KG. Index

nested 46
priorities 46

InterruptUnlock() 47, 102
InterruptUnmask() 47

problem on SMP systems 102
InterruptWait() 22, 47
intr_timed_wait() 44
io-audio

resource manager 275
io-blk 153
io-fs

resource manager 275
io-media

resource manager 275
io-pkt* 189
io-usb

resource manager 275
ioctl() 213
iofunc_*() shared library 146
ionotify() 65
IP filtering 214
IPC 10, 53

forms of 53
term qualified to apply to “threads” 19

ISR 48, 50, See also interrupt handlers
attaching to PC timer interrupt 48

J

JOIN (thread state) 22

K

kill() 66

L

languages 253
latency

interrupt 45, 49
scheduling 45, 49

layers, display 254
LD_LIBRARY_PATH 135
link() 166
linking

dynamically 131
sections 132
statically 131

Linux Ext2 filesystem 173
listen() 213
loadbalance (QoS policy) 202
lock() 148
lseek() 148
lsm-pf-*.so 214
lsm-qnet.so 198, 200–202

tx_retries option 204

M

malloc() 131
MAP_ANON 76
MAP_BELOW16M 76
MAP_FIXED 76
MAP_NOINIT 76, 78
MAP_NOX64K 76
MAP_PHYS 76
MAP_PRIVATE 76
MAP_SHARED 76
memory

DMA-safe region, defining 83
initializing 78
protection, advantage of for embedded

systems 114
shared 31, 39, 58, 72–77
typed 78

Memory Management Units (MMUs) 115
message copying 56
message passing 10, 16, 53

API 62
as means of synchronization 10
network-wide 197

message queues 70
messages

contents of 10
multipart 56, 57
tend to be tiny 31
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metadata 162
microkernel 15

comparable to a realtime executive 6
defined 6
general responsibilities 8
instrumentation 89
instrumented 89
locking 101
managing team of cooperating processes 8
modularity as key aspect 6
services 8
SMP 99, 101
version of, determining 15

mkfifo 85
mkfifo() 85
mkqnx6fs 162
mmap() 74, 75, 78, 79, 148
mme

introduction 274
resource manager 274

MME See multimedia
MMU 57, 58, 115
mount structure (resource manager) 147
mountpoints 119, 151

order of resolution 120
mprotect() 74, 77
mq_close() 71, 72
mq_getattr() 72
mq_notify() 65, 72
mq_open() 71, 72
mq_receive() 71, 72
mq_send() 71, 72
mq_setattr() 72
mq_unlink() 71, 72
mq server 71
mqueue resource manager 71
MsgDeliverEvent() 23, 62, 65
MsgError() 55, 56
MsgInfo() 62
MsgKeyData() 62
MsgRead() 62
MsgReadv() 58
MsgReceive() 23, 53, 62
MsgReceivePulse() 62
MsgReceivePulsev() 58
MsgReceivev() 58

MsgReply() 53, 56, 58, 62
MsgReply*() 23
MsgReplyv() 58
MsgSend() 23, 53, 56, 58, 62
MsgSendPulse() 23, 62
MsgSendsv() 58
MsgSendv() 58, 109
MsgSendvs() 58
MsgWrite() 62
msync() 74
multicore processors 97
multimedia 271

overview 271
multiprocessing 97
munmap_flags() 78
munmap() 74, 78
MUTEX (thread state) 22
mutexes 16, 31–33

attributes 34
priority inheritance 34
SMP 102

N

name resolution
network 199

name resolver 202
NAND flash 157
NANOSLEEP (thread state) 23
nanosleep() 23, 44
NAT 214
ND_LOCAL_NODE 199
nested interrupts 46
NET_REPLY (thread state) 23
NET_SEND (thread state) 23
network

as homogeneous set of resources 11
flexibility 11
message passing 197
name resolution 199
pathnames 125
protocol

Qnet 197
transparency 11, 142

Neutrino
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microkernel 6
NFS filesystem 172
NMI 50
node descriptor

network 199
node domain 201
node name 201
non-Ethernet interconnect 207
ntohl() 213
ntohs() 213
NTP 214

O

O_SYNC(ignored by Power-Safe filesystems)
165

object files, sections of 132
on 104
opaque bitmask (Photon) 249
open control blocks (OCBs) 125, 126
open resources

active information contained in OCBs 126
open() 74, 148
operations, atomic 40
output, redirecting 84

P

pages 115
parallel devices 184
partially bound executable 131
partitions

adaptive 238
static 237
thread scheduler 237

partitions (disk) 154
partitions (thread scheduler) 237
pathconf() 148
pathname

converting relative to network 125
pathname delimiter in QNX documentation xvii
pathname space 119, 199

mapping 139

pause() 66
performance

context-switch 32
realtime 44

Photon
architecture differs from X Window System

247
architecture similar to that of OS

microkernel 247
event space 248
event types 250
graphics drivers 251, 252
microkernel runs as tiny process 247
regions 249
widgets 255–267
window manager 255

pidin 20
pipe manager 84
pipe() 84
pipes 84

creating 84
Point-to-Point Protocol (PPP) 212
Point-to-Point Protocol over Ethernet (PPPoE)

215
popen() 84
POSIX

defines interface, not implementation 3
message queues 70
profiles 4
realtime extensions 4
standards of interest to embedded systems

developers 4
suitable for embedded systems 4, 5
threads 4

library calls not involving kernel calls 18
library calls with corresponding kernel

calls 18
UNIX and 3

posix_mem_offset() 83
posix_spawn()

family of functions 109, 110
posix_typed_mem_get_info() 79
posix_typed_mem_open() 79
Power-Safe (fs-qnx6) filesystem 161
PPP (Point-to-Point Protocol) 212
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PPPoE (Point-to-Point Protocol over Ethernet)
215

preferred (QoS policy) 202
prefix 119
prefix tree 119
printf() 131
priority 24

background and foreground (sporadic
scheduling) 28

inheritance 112
messages 61
mutexes 34

inversion 25, 34
range 25

process groups
membership, inheriting 111
remote node 112

Process Manager
capabilities of 109
required when creating multiple POSIX

processes 109
processes

as container for threads 18
cooperating

via pipes and FIFOs 84
loading 114
management 109
model, required for POSIX compliance 16
opening the same file twice 126
OS as team of cooperating 8
primitives 109
system 9

processors
locking processes to 101, 103
multiple 97
number of, determining 97

procnto* See also microkernel, process
manager

image filesystem 152
instrumented 89
RAM filesystem 157
SMP 99

product line, using a single OS for 3
PROT_EXEC 75
PROT_NOCACHE 75
PROT_NONE 75

PROT_READ 75
PROT_WRITE 75
protocols 214
pthread_attr_destroy() 18
pthread_attr_getdetachstate() 18
pthread_attr_getinheritsched() 18
pthread_attr_getschedparam() 18
pthread_attr_getschedpolicy() 18
pthread_attr_getscope() 18
pthread_attr_getstackaddr() 18
pthread_attr_getstacksize() 18
pthread_attr_init() 18
pthread_attr_setdetachstate() 18
pthread_attr_setinheritsched() 18
pthread_attr_setschedparam() 18
pthread_attr_setschedpolicy() 18
pthread_attr_setscope() 18
pthread_attr_setstackaddr() 18
pthread_attr_setstacksize() 18
pthread_barrier_destroy() 37
pthread_barrier_init() 35
pthread_barrier_wait() 35
pthread_barrierattr_destroy() 37
pthread_barrierattr_getpshared() 37
pthread_barrierattr_init() 37
pthread_barrierattr_setpshared() 37
pthread_cancel() 18
pthread_cleanup_pop() 18
pthread_cleanup_push() 18
pthread_cond_broadcast() 18, 40
pthread_cond_destroy() 18, 40
pthread_cond_init() 18, 40
pthread_cond_signal() 18, 40
pthread_cond_timedwait() 40, 44
pthread_cond_wait() 18, 22, 40
pthread_create() 18
pthread_detach() 18
pthread_equal() 18
pthread_exit() 18
pthread_getcpuclockid() 42
pthread_getname_np() 20
pthread_getschedparam() 18, 30
pthread_getspecific() 18, 21
pthread_join() 18, 22
pthread_key_create() 18, 21
pthread_key_delete() 18
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pthread_kill() 18, 66
pthread_mutex_destroy() 18, 40
pthread_mutex_init() 18, 40
pthread_mutex_lock() 18, 22, 33, 40, 98
pthread_mutex_timedlock() 33
pthread_mutex_trylock() 18, 34, 40, 44
pthread_mutex_unlock() 18, 33, 40, 98
pthread_mutexattr_init() 34
pthread_mutexattr_setprotocol() 34
pthread_mutexattr_setrecursive() 34
PTHREAD_PRIO_INHERIT 34
pthread_rwlock_rdlock() 38
pthread_rwlock_tryrdlock() 38
pthread_rwlock_trywrlock() 38
pthread_rwlock_unlock() 38
pthread_rwlock_wrlock() 38
pthread_self() 18
pthread_setname_np() 20
pthread_setschedparam() 18, 30
pthread_setspecific() 18
pthread_sigmask() 18
pthread_sleepon_lock() 38
pthread_spin_lock() 98
pthread_spin_unlock() 98
pty (pseudo terminal)

as pair of character devices 184
pulses 61, 64

Q

qdb

resource manager 274
QDB

introduction 274
Qnet 192, 197–206

limiting transmission retries 204
redundant 202

QNX 4 filesystem 119, 161
QNX 6 filesystem See Power-Safe filesystem
QNX Neutrino

design goals 3, 16
extensibility 9
flexibility 6
network as homogeneous set of resources

11

network flexibility 11
network transparency 11
preemptible even during message pass 16
realtime applications, suitability for 5
services 16
single-computer model 11

QoS (Quality of Service) 202
policies 202

R

raise() 66
RAM 114
RAM “filesystem” 157
RAM disk 154
RapidIO 207
rate monotonic analysis (RMA) 28
raw input mode 180

conditions for input request 180
FORWARD qualifier 181
MIN qualifier 180
TIME qualifier 180
TIMEOUT qualifier 180

read() 65
readblock() 146
readdir() 123, 151
reader/writer locks 32, 38
READY (thread state) 23
realtime performance 44

interrupt latency and 45
nested interrupts and 46
scheduling latency and 45

RECEIVE (thread state) 23
rectangle list (Photon) 250
recv() 213
recvfrom() 213
redirecting

input 84
output 84

redundant Qnet 202
regions (Photon) 247, 249
relative pathnames, converting to network

pathnames 125
remove() 85
replenishment period (sporadic scheduling) 28
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REPLY (thread state) 23
res_init() 213
res_mkquery() 213
res_query() 213
res_querydomain() 213
res_search() 213
res_send() 213
RESCONF 213
resolv.conf 213
resource managers 151

atomic operations 146
attributes structure 147
can be started and stopped dynamically

139
communicate with clients via IPC 142
context for client requests 144
defined 139
devb 275
don’t require any special arrangements with

the kernel 139
io-audio 275
io-fs 275
io-media 275
io-usb 275
iofunc_*() shared library 146
message types 143
mme 274
mount structure 147
qdb 274
shared library 144
similarity to traditional device drivers 139
similarity to user-level servers 139
thread management 145
unique features of 142

resources
accessing on other machines 11
no real difference between local and remote

11
open 126

RLIMIT_AS 82
RLIMIT_DATA 82
RLIMIT_VMEM 82
rm 85
robustness

improved via memory protection 114

of application architectures via
Send/Receive/Reply 63

of implementations with
Send/Receive/Reply 62

of IPC 53
of signal handlers 64

ROM 114
round-robin scheduling 26, 27
runmask 103

inheriting 103
RUNNING (thread state) 23
runtime linker 134

S

scaling
advantages of 3
of applications 3

scatter/gather DMA 56
sched_yield() 24
SchedGet() 18
SchedSet() 18
scheduling

FIFO 26, 27
latency 45
method

determining 26
setting 26

round-robin 26, 27
SMP systems 101
sporadic 26, 28
threads 24

seek points 126, 127
segments 132
select() 65, 213
SEM (thread state) 23
sem_destroy() 40
sem_init() 40
sem_post() 40
sem_trywait() 40
sem_wait() 40
semaphores 16, 31, 32, 38

named 39
SMP 102

SEND (thread state) 23
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send() 213
sendto() 213
sensitivity bitmask (Photon) 249
serial

devices 183
drivers 184

Server Side Includes (SSI) 217
services 214
services, handled by system processes 9
sessions, remote node 112
setprotoent() 213
setrlimit() 82
setservent() 213
setsockopt() 213
shared libraries (.so files) 15, 109, 134
shared memory 31, 39, 58, 72–77
shm_ctl() 74
shm_open() 74
shm_unlink() 74
shutdown() 213
SIGABRT 69
sigaction() 66
SIGALRM 69
SIGBUS 69
SIGCHLD 69
SIGCONT 69
SIGDEADLK 69
SIGEMT 69
SIGFPE 69
SIGHUP 69
SIGILL 69
SIGINT 69
SIGIOT 69
SIGKILL 69
signal() 68
SignalAction() 66
SignalKill() 18, 23, 66
SignalProcmask() 18, 66
signals 16

POSIX and UNIX 66
queuing of 67
rules for a multithreaded process 66
similarity to pulses 67
targeted at specific threads 66

SignalSuspend() 66
SignalWaitinfo() 66

SIGPIPE 69
SIGPOLL 69
sigprocmask() 66
sigqueue() 66
SIGQUIT 69
SIGSEGV 69
SIGSTOP 69
SIGSUSPEND (thread state) 23
sigsuspend() 23, 66
SIGSYS 69
SIGTERM 69
sigtimedwait() 44
SIGTRAP 69
SIGTSTP 69
SIGTTIN 69
SIGTTOU 69
SIGURG 69
SIGUSR1 69
SIGUSR2 69
SIGWAITINFO (thread state) 23
sigwaitinfo() 23, 66
SIGWINCH 69
single-computer model 11
slay 104
sleep() 44
sleepon locks 32, 38
slinger 216
SMP (Symmetric Multiprocessing) 97, 98
snapshot (Power-Safe filesystem) 164
socket() 213
sockets (logical flash drives) 169
software interrupt See signals
SPAWN_EXPLICIT_CPU 104
SPAWN_SETGROUP 111
SPAWN_SETSIGDEF 111
SPAWN_SETSIGMASK 111
spawn() 104

family of functions 109–111
spinlocks 102
SPOF 225
sporadic scheduling 26, 28
SSI (Server Side Includes) 217
STACK (thread state) 23
startup code (startup-*) 100
stat() 148
states
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CONDVAR 22
DEAD 22
INTERRUPT 22
JOIN 22
MUTEX 22
NANOSLEEP 23
NET_REPLY 23
NET_SEND 23
READY 23
RECEIVE 23
REPLY 23
RUNNING 23
SEM 23
SEND 23
SIGSUSPEND 23
SIGWAITINFO 23
STACK 23
STOPPED 23
WAITCTX 23
WAITPAGE 23
WAITTHREAD 23

static linking 131
static partitions 237
STOPPED (thread state) 23
stty 182
superblocks 163
symbol names, resolving 136
symbolic links

cd command and 125
symbolic prefixes 123
Symmetric Multiprocessing See SMP
SyncCondvarSignal() 18, 40
SyncCondvarWait() 18, 40
SyncDestroy() 18, 40
synchronization services 32, 40
SyncMutexEvent() 18
SyncMutexLock() 18, 40
SyncMutexUnlock() 18, 40
SyncSemPost() 40
SyncSemWait() 23, 40
SyncTypeCreate() 18, 40
system

emergency access to 242
page 41
processes 9

similarity to user-written processes 9

T

tcdropline() 179
tcgetattr() 179
tcgetpgrp() 179
tcinject() 179
TCP/IP 211–217

resource manager (io-pkt*) 212
stack configurations 211

tcsendbreak() 179
tcsetattr() 179
tcsetpgrp() 179
terminal emulation 183
textto 166
thread scheduler 237
ThreadCancel() 18
ThreadCreate() 18, 23
ThreadCtl() 18, 104
ThreadDestroy() 18
ThreadDetach() 18
ThreadJoin() 18
threads 16, 145

all share same kernel interface 109
and barriers 35
attributes of 20
cancellation handlers 20
concurrency advantages 32
defined 18
life cycle 21
migration, reducing 101
names 20
priority 20, 24
priority inversion 25
process must contain one or more 18
register set 20
scheduling 24

FIFO 27
round-robin 27
sporadic 28

signal mask 20
stack 20
states 21
synchronization 31
tid 20
TLS (thread local storage) 20

time_t 41
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timeout service 43
timer_create() 44
timer_delete() 44
timer_getoverrun() 44
timer_gettime() 44
timer_settime() 44
TimerAlarm() 44
TimerCreate() 44
TimerDestroy() 44
TimerInfo() 44
timers 16, 42

cyclical mode 43
TimerSettime() 44
TimerTimeout() 43, 44
timeslice 27
TLB (translation look-aside buffer) 115, 118
TLS (thread local storage) 20
TraceEvent() 93
transactions 157
transparency of network 11
typed memory 78
typographical conventions xvi

U

UART 49
UDF (Universal Disk Format) filesystem 173
umount 193
uname 15
Unicode 253
Universal Disk Format (UDF) filesystem 173
unlink() 85
UNMAP_INIT_OPTIONAL 78
UNMAP_INIT_REQUIRED 78
UTF-8 encoding 253
utime() 148

V

variable page size 118
vfork() 109, 113
virtual addresses 115
virtual consoles 183

W

WAITCTX (thread state) 23
WAITPAGE (thread state) 23
WAITTHREAD (thread state) 23
watchdog 116
web server 216
wide emitting mode (instrumented kernel) 90
widgets (Photon) 255–267
window manager 255
windows, dragging across network links 252
write() 65, 131

Z

zero-copy architecture (io-pkt*) 189
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