

QNX Neutrino Realtime

Operating System
Library Reference

For QNX Neutrino 6.3

 2004, QNX Software Systems Ltd.

QNX Software Systems Ltd.
175 Terence Matthews Crescent
Kanata, Ontario
K2M 1W8
Canada
Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

 QNX Software Systems Ltd. 2004. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise without the prior written permission of QNX Software Systems Ltd.

Although every precaution has been taken in the preparation of this book, we assume no responsibility for any errors or omissions, nor
do we assume liability for damages resulting from the use of the information contained in this book.

Third-party copyright notices

All appropriate copyright notices for third-party software are published in this manual in an appendix called “Third-Party Copyright
Notices.”

Technical support options

To obtain technical support for any QNX product, visit the Technical Support section in the Support area on our website
(www.qnx.com). You’ll find a wide range of support options, including our free web-based QNX Developer’s Network.

QNX, Momentics, Neutrino, and Photon are registered trademarks of QNX Software Systems Ltd.

All other trademarks and registered trademarks belong to their respective owners.

Contents

About This Reference xlix
What’s new in QNX Neutrino 6.3.0 li

New content li

Changed content liii

Errata liii

What’s new in QNX Neutrino 6.2.1 liii

New content liii

Changed content liii

Errata liv

What’s new in QNX Neutrino 6.2 lvi

New Content lvi

Deprecated Content lix

Errata lix

What’s new in the QNX Neutrino 6.1.0 docs lix

New content lix

Deprecated content lxi

Summary of Functions 1
Summary of function categories 3

Asynchronous I/O functions 6

Atomic functions 7

Character manipulation functions 8

Conversion functions 9

Directory functions 12

Dispatch interface functions 13

May 31, 2004 Contents iii

 2004, QNX Software Systems Ltd.

File manipulation functions 17

IPC functions 19

Hardware functions 25

Math functions 26

Memory allocation functions 33

Memory manipulation functions 34

Message queue functions 36

Multibyte character functions 37

QNX Neutrino-specific IPC functions 37

Operating system I/O functions 40

PC Card functions 44

Platform-specific functions 44

Process environment functions 46

Process manipulation functions 49

Realtime timer functions 58

Resource manager functions 60

Searching and sorting functions 65

Shared memory functions 67

Signal functions 67

Stream I/O functions 69

String manipulation functions 72

System database functions 75

System message log functions 76

TCP/IP functions 77

Terminal control functions 84

Thread functions 85

Time functions 95

Variable-length argument list functions 97

Wide-character functions 97

What’s in a function description? 102

Synopsis: 102

Arguments: 102

iv Contents May 31, 2004

 2004, QNX Software Systems Ltd.

Library: 102

Description: 102

Returns: 102

Errors: 103

See also: 103

Examples: 103

Classification: 103

Function safety: 107

Manifests 109
abort() 113

abs() 115

accept() 117

access() 120

acos(), acosf() 123

acosh(), acoshf() 125

addrinfo 127

aio cancel() 129

aio error() 131

aio fsync() 133

aio read() 135

aio return() 136

aio suspend() 138

aio write() 140

alarm() 141

alloca() 144

alphasort() 147

amblksiz 149

argc 150

argv 151

asctime(), asctime r() 152

asin(), asinf() 154

asinh(), asinhf() 156

May 31, 2004 Contents v

 2004, QNX Software Systems Ltd.

assert() 158

atan(), atanf() 161

atan2(), atan2f() 163

atanh(), atanhf() 165

atexit() 167

atof() 170

atoh() 172

atoi() 174

atol(), atoll() 176

atomic add() 178

atomic add value() 180

atomic clr() 182

atomic clr value() 184

atomic set() 186

atomic set value() 188

atomic sub() 190

atomic sub value() 192

atomic toggle() 194

atomic toggle value() 196

auxv 198

basename() 199

bcmp() 202

bcopy() 204

bind() 206

bindresvport() 209

brk() 211

bsearch() 214

btext 217

btowc() 218

bzero() 220

cabs(), cabsf() 222

calloc() 224

vi Contents May 31, 2004

 2004, QNX Software Systems Ltd.

cbrt(), cbrtf() 226

ceil(), ceilf() 228

cfmakeraw() 230

cfgetispeed() 232

cfgetospeed() 234

cfgopen() 236

cfree() 240

cfsetispeed() 242

cfsetospeed() 245

ChannelCreate(), ChannelCreate r() 248

ChannelDestroy(), ChannelDestroy r() 255

chdir() 258

chmod() 261

chown() 265

chroot() 268

chsize() 271

clearenv() 274

clearerr() 277

clock() 279

ClockAdjust(), ClockAdjust r() 281

ClockCycles() 284

clock getcpuclockid() 286

clock getres() 288

clock gettime() 290

clock nanosleep() 293

clock settime() 297

ClockId(), ClockId r() 300

ClockPeriod(), ClockPeriod r() 303

ClockTime(), ClockTime r() 306

close() 309

closedir() 311

closelog() 314

May 31, 2004 Contents vii

 2004, QNX Software Systems Ltd.

cmdfd() 315

cmdname() 316

confstr() 318

connect() 323

ConnectAttach(), ConnectAttach r() 326

ConnectClientInfo(), ConnectClientInfo r() 331

ConnectDetach(), ConnectDetach r() 335

ConnectFlags(), ConnectFlags r() 337

ConnectServerInfo(), ConnectServerInfo r() 340

copysign(), copysignf() 343

cos(), cosf() 345

cosh(), coshf() 347

creat(), creat64() 349

crypt() 353

ctermid() 355

ctime(), ctime r() 357

daemon() 360

daylight 362

DebugBreak() 363

DebugKDBreak() 365

DebugKDOutput() 366

delay() 368

devctl() 370

difftime() 380

dircntl() 382

dirname() 385

dispatch block() 388

dispatch context alloc() 391

dispatch context free() 394

dispatch create() 396

dispatch destroy() 399

dispatch handler() 401

viii Contents May 31, 2004

 2004, QNX Software Systems Ltd.

dispatch timeout() 404

dispatch unblock() 406

div() 408

dladdr() 410

dlclose() 413

dlerror() 415

dlopen() 417

dlsym() 424

dn comp() 427

dn expand() 429

drand48() 431

drem(), dremf() 433

ds clear() 435

ds create() 437

ds deregister() 440

ds flags() 442

ds get() 444

ds register() 446

ds set() 448

dup() 450

dup2() 453

eaccess() 456

edata 459

encrypt() 460

end 462

endgrent() 463

endhostent() 464

ENDIAN BE16() 465

ENDIAN BE32() 467

ENDIAN BE64() 469

ENDIAN LE16() 471

ENDIAN LE32() 473

May 31, 2004 Contents ix

 2004, QNX Software Systems Ltd.

ENDIAN LE64() 475

ENDIAN RET16() 477

ENDIAN RET32() 479

ENDIAN RET64() 481

ENDIAN SWAP16() 483

ENDIAN SWAP32() 485

ENDIAN SWAP64() 487

endnetent() 489

endprotoent() 490

endpwent() 491

endservent() 492

endspent() 493

endutent() 494

environ 495

eof() 496

erand48() 498

erf(), erff() 500

erfc(), erfcf() 502

err(), errx() 504

errno 507

etext 515

execl() 516

execle() 522

execlp() 529

execlpe() 535

execv() 540

execve() 546

execvp() 552

execvpe() 558

exit() 563

exit() 566

exp(), expf() 569

x Contents May 31, 2004

 2004, QNX Software Systems Ltd.

expm1(), expm1f() 571

fabs(), fabsf() 574

fcfgopen() 576

fchmod() 578

fchown() 581

fclose() 584

fcloseall() 586

fcntl() 588

fdatasync() 597

fdopen() 599

feof() 602

ferror() 604

fflush() 606

ffs() 608

fgetc() 609

fgetchar() 611

fgetpos() 613

fgets() 615

fgetspent() 618

fgetwc() 621

fgetws() 623

fileno() 626

finite(), finitef() 629

flink() 631

flock() 634

flockfile() 637

floor(), floorf() 639

flushall() 641

fmod(), fmodf() 643

fnmatch() 646

fopen(), fopen64() 650

fork() 655

May 31, 2004 Contents xi

 2004, QNX Software Systems Ltd.

forkpty() 659

fp exception mask() 661

fp exception value() 664

fp precision() 667

fp rounding() 670

fpathconf() 673

fprintf() 676

fputc() 678

fputchar() 680

fputs() 682

fputwc() 684

fputws() 686

fread() 688

free() 691

freeaddrinfo() 693

freeifaddrs() 695

freopen(), freopen64() 697

frexp(), frexpf() 701

fscanf() 703

fseek(), fseeko() 705

fsetpos() 708

fstat(), fstat64() 710

fstatvfs(), fstatvfs64() 714

fsync() 718

ftell(), ftello() 720

ftime() 723

ftruncate(), ftruncate64() 726

ftrylockfile() 729

ftw(), ftw64() 731

funlockfile() 734

futime() 736

fwide() 739

xii Contents May 31, 2004

 2004, QNX Software Systems Ltd.

fwprintf() 741

fwrite() 743

fwscanf() 746

gai strerror() 748

gamma(), gamma r(), gammaf(), gammaf r() 750

getaddrinfo() 753

getc() 760

getc unlocked() 762

getchar() 764

getchar unlocked() 766

getcwd() 768

getdomainname() 771

getdtablesize() 773

getegid() 775

getenv() 777

geteuid() 779

getgid() 781

getgrent() 783

getgrgid() 786

getgrgid r() 788

getgrnam() 791

getgrnam r() 793

getgrouplist() 796

getgroups() 798

gethostbyaddr() 800

gethostbyaddr r() 803

gethostbyname(), gethostbyname2() 806

gethostbyname r() 809

gethostent() 812

gethostent r() 814

gethostname() 817

getifaddrs() 819

May 31, 2004 Contents xiii

 2004, QNX Software Systems Ltd.

GETIOVBASE() 821

GETIOVLEN() 823

getitimer() 825

getlogin() 827

getlogin r() 829

getnameinfo() 831

getnetbyaddr() 836

getnetbyname() 838

getnetent() 840

getopt() 842

getpass() 848

getpeername() 850

getpgid() 852

getpgrp() 854

getpid() 856

getppid() 858

getprio() 860

getprotobyname() 862

getprotobynumber() 864

getprotoent() 866

getpwent() 868

getpwnam() 871

getpwnam r() 873

getpwuid() 876

getpwuid r() 878

getrlimit(), getrlimit64() 881

getrusage() 884

gets() 889

getservbyname() 891

getservbyport() 893

getservent() 895

getsid() 897

xiv Contents May 31, 2004

 2004, QNX Software Systems Ltd.

getsockname() 899

getsockopt() 901

getspent(), getspent r() 911

getspnam(), getspnam r() 915

getsubopt() 918

gettimeofday() 923

getuid() 925

getutent() 927

getutid() 929

getutline() 932

getw() 934

getwc() 936

getwchar() 938

getwd() 940

glob() 942

globfree() 947

gmtime() 949

gmtime r() 951

h errno 953

hcreate() 955

hdestroy() 957

herror() 958

hostent 961

hsearch() 963

hstrerror() 967

htonl() 969

htons() 971

hwi find item() 973

hwi find tag() 975

hwi off2tag() 977

hwi tag2off() 979

hypot(), hypotf() 981

May 31, 2004 Contents xv

 2004, QNX Software Systems Ltd.

ICMP 983

ICMP6 985

if freenameindex() 989

if indextoname() 991

if nameindex() 993

if nametoindex() 995

ifaddrs 997

ilogb(), ilogbf() 999

in8() 1001

in8s() 1003

in16(), inbe16(), inle16() 1005

in16s() 1007

in32(), inbe32(), inle32() 1009

in32s() 1011

index() 1013

inet addr() 1015

inet aton() 1017

inet lnaof() 1019

inet makeaddr() 1021

inet net ntop() 1023

inet netof() 1026

inet net pton() 1028

inet network() 1030

inet ntoa() 1032

inet ntoa r() 1034

inet ntop() 1036

inet pton() 1039

inet6 option *() 1044

INET6 1051

inet6 rthdr *() 1055

initgroups() 1061

initstate() 1063

xvi Contents May 31, 2004

 2004, QNX Software Systems Ltd.

input line() 1066

InterruptAttach(), InterruptAttach r() 1068

InterruptAttachEvent(), InterruptAttachEvent r() 1077

InterruptDetach(), InterruptDetach r() 1083

InterruptDisable() 1085

InterruptEnable() 1087

InterruptHookIdle() 1089

InterruptHookTrace() 1093

InterruptLock() 1095

InterruptMask() 1097

InterruptUnlock() 1100

InterruptUnmask() 1102

InterruptWait(), InterruptWait r() 1104

intr v86() 1107

io connect 1111

io connect ftype reply 1118

io connect link reply 1120

ioctl() 1123

iofdinfo() 1125

iofunc attr init() 1127

iofunc attr lock() 1129

iofunc attr t 1131

iofunc attr trylock() 1137

iofunc attr unlock() 1139

iofunc check access() 1141

iofunc chmod() 1145

iofunc chmod default() 1148

iofunc chown() 1150

iofunc chown default() 1153

iofunc client info() 1155

iofunc close dup() 1157

iofunc close dup default() 1160

May 31, 2004 Contents xvii

 2004, QNX Software Systems Ltd.

iofunc close ocb() 1162

iofunc close ocb default() 1164

iofunc devctl() 1166

iofunc devctl default() 1170

iofunc fdinfo() 1172

iofunc fdinfo default() 1175

iofunc func init() 1179

iofunc link() 1182

iofunc lock() 1186

iofunc lock calloc() 1188

iofunc lock default() 1190

iofunc lock free() 1193

iofunc lock ocb default() 1195

iofunc lseek() 1197

iofunc lseek default() 1200

iofunc mknod() 1202

iofunc mmap() 1205

iofunc mmap default() 1209

iofunc notify() 1211

iofunc notify remove() 1218

iofunc notify trigger() 1220

iofunc ocb attach() 1223

iofunc ocb calloc() 1225

iofunc ocb detach() 1228

iofunc ocb free() 1231

iofunc ocb t 1233

iofunc open() 1236

iofunc open default() 1241

iofunc openfd() 1243

iofunc openfd default() 1247

iofunc pathconf() 1249

iofunc pathconf default() 1252

xviii Contents May 31, 2004

 2004, QNX Software Systems Ltd.

iofunc read default() 1254

iofunc read verify() 1256

iofunc readlink() 1260

iofunc rename() 1263

iofunc space verify() 1267

iofunc stat() 1271

iofunc stat default() 1273

iofunc sync() 1276

iofunc sync default() 1278

iofunc sync verify() 1280

iofunc time update() 1283

iofunc unblock() 1285

iofunc unblock default() 1287

iofunc unlink() 1290

iofunc unlock ocb default() 1293

iofunc utime() 1295

iofunc utime default() 1298

iofunc write default() 1301

iofunc write verify() 1303

ionotify() 1307

IP 1313

IPsec 1320

ipsec dump policy() 1328

ipsec get policylen() 1330

ipsec strerror() 1332

ipsec set policy() 1334

IP6 1338

isalnum() 1348

isalpha() 1350

isascii() 1352

isatty() 1354

iscntrl() 1356

May 31, 2004 Contents xix

 2004, QNX Software Systems Ltd.

isdigit() 1358

isfdtype() 1360

isgraph() 1362

isinf(), isinff() 1364

islower() 1366

isnan(), isnanf() 1368

isprint() 1370

ispunct() 1372

isspace() 1374

isupper() 1377

iswalnum() 1379

iswalpha() 1381

iswcntrl() 1383

iswctype() 1385

iswdigit() 1387

iswgraph() 1389

iswlower() 1391

iswprint() 1393

iswpunct() 1395

iswspace() 1397

iswupper() 1399

iswxdigit() 1401

isxdigit() 1403

itoa() 1405

j0(), j0f() 1408

j1(), j1f() 1410

jn(), jnf() 1412

jrand48() 1414

kill() 1416

killpg() 1419

labs() 1421

lchown() 1423

xx Contents May 31, 2004

 2004, QNX Software Systems Ltd.

lcong48() 1426

ldexp(), ldexpf() 1428

ldiv() 1430

lfind() 1432

lgamma(), lgamma r(), lgammaf(), lgammaf r() 1435

link() 1438

lio listio() 1442

listen() 1447

localeconv() 1449

localtime() 1454

localtime r() 1456

lockf() 1458

log(), logf() 1462

log1p(), log1pf() 1464

log10(), log10f() 1466

logb(), logbf() 1468

login tty() 1471

longjmp() 1473

lrand48() 1476

lsearch() 1478

lseek(), lseek64() 1481

lstat(), lstat64() 1485

ltoa(), lltoa() 1488

ltrunc() 1491

main() 1495

mallinfo() 1498

malloc() 1500

mallopt() 1502

max() 1504

mblen() 1506

mbrlen() 1509

mbrtowc() 1511

May 31, 2004 Contents xxi

 2004, QNX Software Systems Ltd.

mbsinit() 1514

mbsrtowcs() 1516

mbstowcs() 1518

mbtowc() 1521

mcheck() 1524

mem offset(), mem offset64() 1526

memalign() 1530

memccpy() 1532

memchr() 1534

memcmp() 1536

memcpy() 1538

memcpyv() 1540

memicmp() 1542

memmove() 1544

memset() 1546

message attach() 1548

message connect() 1555

message detach() 1558

min() 1561

mkdir() 1563

mkfifo() 1566

mknod() 1569

mkstemp() 1573

mktemp() 1575

mktime() 1577

mlock() 1580

mlockall() 1582

mmap(), mmap64() 1584

mmap device io() 1591

mmap device memory() 1593

modem open() 1597

modem read() 1601

xxii Contents May 31, 2004

 2004, QNX Software Systems Ltd.

modem script() 1604

modem write() 1612

modf(), modff() 1615

mount() 1617

mount parse generic args() 1620

mprobe() 1623

mprotect() 1625

mq close() 1628

mq getattr() 1630

mq notify() 1633

mq open() 1636

mq receive() 1640

mq send() 1643

mq setattr() 1646

mq timedreceive() 1648

mq timedsend() 1651

mq unlink() 1654

mrand48() 1656

msg info 1658

MsgDeliverEvent(), MsgDeliverEvent r() 1661

MsgError(), MsgError r() 1669

MsgInfo(), MsgInfo r() 1672

MsgKeyData(), MsgKeyData r() 1674

MsgRead(), MsgRead r() 1682

MsgReadv(), MsgReadv r() 1686

MsgReceive(), MsgReceive r() 1689

MsgReceivePulse(), MsgReceivePulse r() 1694

MsgReceivePulsev(), MsgReceivePulsev r() 1697

MsgReceivev(), MsgReceivev r() 1700

MsgReply(), MsgReply r() 1704

MsgReplyv(), MsgReplyv r() 1707

MsgSend(), MsgSend r() 1710

May 31, 2004 Contents xxiii

 2004, QNX Software Systems Ltd.

MsgSendnc(), MsgSendnc r() 1714

MsgSendPulse(), MsgSendPulse r() 1718

MsgSendsv(), MsgSendsv r() 1722

MsgSendsvnc(), MsgSendsvnc r() 1726

MsgSendv(), MsgSendv r() 1730

MsgSendvnc(), MsgSendvnc r() 1734

MsgSendvs(), MsgSendvs r() 1738

MsgSendvsnc(), MsgSendvsnc r() 1742

MsgVerifyEvent(), MsgVerifyEvent r() 1746

MsgWrite(), MsgWrite r() 1748

MsgWritev(), MsgWritev r() 1752

msync() 1755

munlock() 1758

munlockall() 1760

munmap() 1762

munmap device io() 1764

munmap device memory() 1766

name attach() 1768

name close() 1775

name detach() 1777

name open() 1779

nanosleep() 1782

nanospin() 1784

nanospin calibrate() 1786

nanospin count() 1789

nanospin ns() 1791

nanospin ns to count() 1793

nap() 1796

napms() 1797

nbaconnect() 1798

nbaconnect result() 1801

ND NODE CMP() 1803

xxiv Contents May 31, 2004

 2004, QNX Software Systems Ltd.

netent 1805

netmgr ndtostr() 1806

netmgr remote nd() 1812

netmgr strtond() 1814

nextafter(), nextafterf() 1816

nftw(), nftw64() 1819

nice() 1823

nrand48() 1825

nsec2timespec() 1827

ntohl() 1829

ntohs() 1831

offsetof() 1833

open(), open64() 1835

opendir() 1843

openfd() 1846

openlog() 1849

openpty() 1852

out8() 1854

out8s() 1856

out16(), outbe16(), outle16() 1858

out16s() 1860

out32(), outbe32(), outle32() 1862

out32s() 1864

pathconf() 1866

pathfind(), pathfind r() 1870

pathmgr symlink() 1874

pathmgr unlink() 1876

pause() 1878

pccard arm() 1880

pccard attach() 1884

pccard detach() 1886

pccard info() 1888

May 31, 2004 Contents xxv

 2004, QNX Software Systems Ltd.

pccard lock() 1891

pccard raw read() 1893

pccard unlock() 1895

pci attach() 1897

pci attach device() 1899

pci detach() 1908

pci detach device() 1910

pci find class() 1912

pci find device() 1914

pci irq routing options() 1916

pci map irq() 1919

pci present() 1921

pci read config() 1924

pci read config8() 1926

pci read config16() 1928

pci read config32() 1930

pci rescan bus() 1932

pci write config() 1934

pci write config8() 1937

pci write config16() 1939

pci write config32() 1941

pclose() 1943

perror() 1945

pipe() 1947

poll() 1949

popen() 1955

posix mem offset(), posix mem offset64() 1959

posix memalign() 1961

pow(), powf() 1963

pread(), pread64() 1965

printf() 1968

procmgr daemon() 1978

xxvi Contents May 31, 2004

 2004, QNX Software Systems Ltd.

procmgr event notify() 1980

procmgr event trigger() 1985

procmgr guardian() 1987

procmgr session() 1990

progname 1993

protoent 1994

pthread abort() 1995

pthread atfork() 1997

pthread attr destroy() 1999

pthread attr getdetachstate() 2001

pthread attr getguardsize() 2003

pthread attr getinheritsched() 2005

pthread attr getschedparam() 2007

pthread attr getschedpolicy() 2009

pthread attr getscope() 2011

pthread attr getstackaddr() 2013

pthread attr getstacklazy() 2015

pthread attr getstacksize() 2017

pthread attr init() 2019

pthread attr setdetachstate() 2022

pthread attr setguardsize() 2024

pthread attr setinheritsched() 2027

pthread attr setschedparam() 2029

pthread attr setschedpolicy() 2031

pthread attr setscope() 2033

pthread attr setstackaddr() 2035

pthread attr setstacklazy() 2037

pthread attr setstacksize() 2039

pthread barrier destroy() 2041

pthread barrier init() 2043

pthread barrier wait() 2045

pthread barrierattr destroy() 2047

May 31, 2004 Contents xxvii

 2004, QNX Software Systems Ltd.

pthread barrierattr getpshared() 2049

pthread barrierattr init() 2051

pthread barrierattr setpshared() 2053

pthread cancel() 2055

pthread cleanup pop() 2057

pthread cleanup push() 2059

pthread cond broadcast() 2062

pthread cond destroy() 2064

pthread cond init() 2066

pthread cond signal() 2068

pthread cond timedwait() 2070

pthread cond wait() 2074

pthread condattr destroy() 2077

pthread condattr getclock() 2079

pthread condattr getpshared() 2081

pthread condattr init() 2083

pthread condattr setclock() 2085

pthread condattr setpshared() 2087

pthread create() 2089

pthread detach() 2094

pthread equal() 2096

pthread exit() 2098

pthread getconcurrency() 2100

pthread getcpuclockid() 2102

pthread getschedparam() 2104

pthread getspecific() 2106

pthread join() 2108

pthread key create() 2110

pthread key delete() 2114

pthread kill() 2116

pthread mutex destroy() 2118

pthread mutex getprioceiling() 2120

xxviii Contents May 31, 2004

 2004, QNX Software Systems Ltd.

pthread mutex init() 2122

pthread mutex lock() 2124

pthread mutex setprioceiling() 2128

pthread mutex timedlock() 2130

pthread mutex trylock() 2133

pthread mutex unlock() 2135

pthread mutexattr destroy() 2137

pthread mutexattr getprioceiling() 2139

pthread mutexattr getprotocol() 2141

pthread mutexattr getpshared() 2143

pthread mutexattr getrecursive() 2145

pthread mutexattr gettype() 2147

pthread mutexattr init() 2150

pthread mutexattr setprioceiling() 2152

pthread mutexattr setprotocol() 2154

pthread mutexattr setpshared() 2156

pthread mutexattr setrecursive() 2158

pthread mutexattr settype() 2160

pthread once() 2163

pthread rwlock destroy() 2166

pthread rwlock init() 2168

pthread rwlock rdlock() 2171

pthread rwlock timedrdlock() 2173

pthread rwlock timedwrlock() 2176

pthread rwlock tryrdlock() 2179

pthread rwlock trywrlock() 2181

pthread rwlock unlock() 2183

pthread rwlock wrlock() 2185

pthread rwlockattr destroy() 2187

pthread rwlockattr getpshared() 2189

pthread rwlockattr init() 2191

pthread rwlockattr setpshared() 2193

May 31, 2004 Contents xxix

 2004, QNX Software Systems Ltd.

pthread self() 2195

pthread setcancelstate() 2196

pthread setcanceltype() 2198

pthread setconcurrency() 2200

pthread setschedparam() 2202

pthread setspecific() 2204

pthread sigmask() 2206

pthread sleepon broadcast() 2208

pthread sleepon lock() 2210

pthread sleepon signal() 2212

pthread sleepon timedwait() 2214

pthread sleepon unlock() 2218

pthread sleepon wait() 2220

pthread spin destroy() 2224

pthread spin init() 2226

pthread spin lock() 2228

pthread spin trylock() 2230

pthread spin unlock() 2232

pthread testcancel() 2234

pthread timedjoin() 2235

pulse 2238

pulse attach() 2240

pulse detach() 2244

putc() 2247

putc unlocked() 2249

putchar() 2251

putchar unlocked() 2253

putenv() 2255

puts() 2258

putspent() 2260

pututline() 2263

putw() 2266

xxx Contents May 31, 2004

 2004, QNX Software Systems Ltd.

putwc() 2268

putwchar() 2270

pwrite(), pwrite64() 2272

qnx crypt() 2275

qsort() 2277

Raccept() 2281

raise() 2283

rand() 2286

rand r() 2288

random() 2290

Rbind() 2293

rcmd() 2295

Rconnect() 2298

rdchk() 2300

re comp() 2302

re exec() 2304

read() 2306

read main config file() 2311

readblock() 2315

readcond() 2318

readdir() 2324

readdir r() 2328

readlink() 2331

readv() 2334

realloc() 2338

realpath() 2341

recv() 2343

recvfrom() 2346

recvmsg() 2350

regcomp() 2354

regerror() 2359

regexec() 2361

May 31, 2004 Contents xxxi

 2004, QNX Software Systems Ltd.

regfree() 2364

remainder(), remainderf() 2366

remove() 2368

rename() 2371

res init() 2374

res mkquery() 2377

res query() 2380

res querydomain() 2383

res search() 2386

res send() 2389

resmgr attach() 2392

resmgr block() 2401

resmgr connect funcs t 2404

resmgr context alloc() 2406

resmgr context free() 2409

resmgr context t 2411

resmgr detach() 2413

resmgr devino() 2417

resmgr handle tune() 2420

resmgr handle grow() 2423

resmgr handler() 2425

resmgr io func() 2428

resmgr io funcs t 2430

resmgr iofuncs() 2436

resmgr msgread() 2438

resmgr msgreadv() 2440

resmgr msgwrite() 2442

resmgr msgwritev() 2444

RESMGR NPARTS() 2446

resmgr ocb() 2448

resmgr open bind() 2450

resmgr pathname() 2453

xxxii Contents May 31, 2004

 2004, QNX Software Systems Ltd.

RESMGR PTR() 2456

RESMGR STATUS() 2458

resmgr unbind() 2460

rewind() 2462

rewinddir() 2465

Rgetsockname() 2468

rindex() 2470

rint(), rintf() 2472

Rlisten() 2475

rmdir() 2477

ROUTE 2480

Rrcmd() 2488

rresvport() 2490

Rselect() 2492

rsrcdbmgr attach() 2494

rsrcdbmgr create() 2501

rsrcdbmgr destroy() 2505

rsrcdbmgr detach() 2507

rsrcdbmgr devno attach() 2509

rsrcdbmgr devno detach() 2513

rsrcdbmgr query() 2515

ruserok() 2518

sbrk() 2520

scalb(), scalbf() 2523

scalbn(), scalbnf() 2526

scalloc() 2529

scandir() 2531

scanf() 2533

sched getparam() 2542

sched get priority adjust() 2545

sched get priority max() 2547

sched get priority min() 2549

May 31, 2004 Contents xxxiii

 2004, QNX Software Systems Ltd.

sched getscheduler() 2551

sched param 2553

sched rr get interval() 2559

sched setparam() 2561

sched setscheduler() 2564

sched yield() 2567

SchedGet(), SchedGet r() 2570

SchedInfo(), SchedInfo r() 2573

SchedSet(), SchedSet r() 2576

SchedYield(), SchedYield r() 2579

sctp bindx() 2581

sctp connectx() 2584

sctp freeladdrs() 2586

sctp freepaddrs() 2587

sctp getladdrs() 2588

sctp getpaddrs() 2590

sctp peeloff() 2592

SCTP 2594

sctp recvmsg() 2596

sctp sendmsg() 2598

searchenv() 2602

seed48() 2605

seekdir() 2607

select() 2609

select attach() 2615

select detach() 2619

select query() 2622

sem close() 2625

sem destroy() 2627

sem getvalue() 2629

sem init() 2631

sem open() 2634

xxxiv Contents May 31, 2004

 2004, QNX Software Systems Ltd.

sem post() 2639

sem timedwait() 2641

sem trywait() 2644

sem unlink() 2646

sem wait() 2648

send() 2650

sendmsg() 2653

sendto() 2656

servent 2659

setbuf() 2660

setbuffer() 2662

setdomainname() 2664

setegid() 2666

setenv() 2669

seteuid() 2672

setgid() 2675

setgrent() 2678

setgroups() 2680

sethostent() 2682

sethostname() 2684

SETIOV() 2686

setitimer() 2688

setjmp() 2691

setkey() 2694

setlinebuf() 2696

setlocale() 2698

setlogmask() 2701

setnetent() 2703

setpgid() 2705

setpgrp() 2708

setprio() 2709

setprotoent() 2711

May 31, 2004 Contents xxxv

 2004, QNX Software Systems Ltd.

setpwent() 2713

setregid() 2714

setreuid() 2717

setrlimit(), setrlimit64() 2719

setservent() 2725

setsid() 2727

setsockopt() 2729

setspent() 2732

setstate() 2733

settimeofday() 2735

setuid() 2737

setutent() 2740

setvbuf() 2742

sfree() 2745

shm ctl() 2747

shm open() 2753

shm unlink() 2760

shutdown() 2762

sigaction() 2764

sigaddset() 2770

sigblock() 2772

sigdelset() 2774

sigemptyset() 2776

sigevent 2778

sigfillset() 2783

sigismember() 2785

siglongjmp() 2787

sigmask() 2789

signal() 2791

SignalAction(), SignalAction r() 2795

SignalKill(), SignalKill r() 2803

SignalProcmask(), SignalProcmask r() 2809

xxxvi Contents May 31, 2004

 2004, QNX Software Systems Ltd.

SignalSuspend(), SignalSuspend r() 2813

SignalWaitinfo(), SignalWaitinfo r() 2816

significand(), significandf() 2819

sigpause() 2822

sigpending() 2824

sigprocmask() 2826

sigqueue() 2829

sigsetjmp() 2832

sigsetmask() 2834

sigsuspend() 2836

sigtimedwait() 2838

sigunblock() 2841

sigwait() 2843

sigwaitinfo() 2845

sin(), sinf() 2847

sinh(), sinhf() 2849

sleep() 2851

sleepon broadcast() 2853

sleepon destroy() 2855

sleepon init() 2857

sleepon lock() 2859

sleepon signal() 2861

sleepon unlock() 2863

sleepon wait() 2865

slogb() 2867

slogf() 2869

slogi() 2873

smalloc() 2875

snmp close() 2877

snmp free pdu() 2879

snmp open() 2881

snmp pdu 2883

May 31, 2004 Contents xxxvii

 2004, QNX Software Systems Ltd.

snmp pdu create() 2887

snmp read() 2889

snmp select info() 2891

snmp send() 2894

snmp session 2897

snmp timeout() 2901

snprintf() 2903

sockatmark() 2906

socket() 2908

socketpair() 2912

SOCKSinit() 2915

sopen() 2917

sopenfd() 2922

spawn() 2925

spawnl() 2933

spawnle() 2938

spawnlp() 2943

spawnlpe() 2947

spawnp() 2952

spawnv() 2960

spawnve() 2965

spawnvp() 2969

spawnvpe() 2973

sprintf() 2978

sqrt(), sqrtf() 2980

srand() 2982

srand48() 2984

srandom() 2986

srealloc() 2988

sscanf() 2991

stat(), stat64() 2993

statvfs(), statvfs64() 3001

xxxviii Contents May 31, 2004

 2004, QNX Software Systems Ltd.

stderr 3005

stdin 3006

stdout 3007

straddstr() 3008

strcasecmp() 3010

strcat() 3013

strchr() 3015

strcmp() 3017

strcmpi() 3019

strcoll() 3021

strcpy() 3023

strcspn() 3025

strdup() 3027

strerror() 3029

strftime() 3031

stricmp() 3037

strlen() 3039

strlwr() 3041

strncasecmp() 3043

strncat() 3046

strncmp() 3048

strncpy() 3050

strnicmp() 3052

strnset() 3054

strpbrk() 3056

strrchr() 3058

strrev() 3060

strsep() 3062

strset() 3064

strsignal() 3066

strspn() 3068

strstr() 3070

May 31, 2004 Contents xxxix

 2004, QNX Software Systems Ltd.

strtod() 3072

strtoimax(), strtoumax() 3075

strtok() 3077

strtok r() 3080

strtol(), strtoll() 3082

strtoul(), strtoull() 3085

strupr() 3088

strxfrm() 3090

swab() 3093

swprintf() 3095

swscanf() 3097

symlink() 3099

sync() 3102

SyncCondvarSignal(), SyncCondvarSignal r() 3104

SyncCondvarWait(), SyncCondvarWait r() 3107

SyncCtl(), SyncCtl r() 3111

SyncDestroy(), SyncDestroy r() 3114

SyncMutexEvent(), SyncMutexEvent r() 3117

SyncMutexLock(), SyncMutexLock r() 3119

SyncMutexRevive(), SyncMutexRevive r() 3122

SyncMutexUnlock(), SyncMutexUnlock r() 3124

SyncSemPost(), SyncSemPost r() 3127

SyncSemWait(), SyncSemWait r() 3129

SyncTypeCreate(), SyncTypeCreate r() 3132

sysconf() 3136

sysctl() 3139

syslog() 3147

sysmgr reboot() 3150

SYSPAGE CPU ENTRY() 3152

SYSPAGE ENTRY() 3154

syspage ptr 3157

system() 3158

xl Contents May 31, 2004

 2004, QNX Software Systems Ltd.

tan(), tanf() 3161

tanh(), tanhf() 3163

tcdrain() 3165

tcdropline() 3167

tcflow() 3170

tcflush() 3173

tcgetattr() 3176

tcgetpgrp() 3178

tcgetsid() 3180

tcgetsize() 3182

tcinject() 3184

tcischars() 3187

TCP 3189

tcsendbreak() 3192

tcsetattr() 3194

tcsetpgrp() 3197

tcsetsid() 3200

tcsetsize() 3202

tell(), tell64() 3204

telldir() 3207

tempnam() 3209

termios 3211

thread pool control() 3215

thread pool create() 3218

thread pool destroy() 3225

thread pool limits() 3228

thread pool start() 3231

ThreadCancel(), ThreadCancel r() 3234

ThreadCreate(), ThreadCreate r() 3238

ThreadCtl(), ThreadCtl r() 3245

ThreadDestroy(), ThreadDestroy r() 3249

ThreadDetach(), ThreadDetach r() 3252

May 31, 2004 Contents xli

 2004, QNX Software Systems Ltd.

ThreadJoin(), ThreadJoin r() 3254

time() 3257

timer create() 3259

timer delete() 3263

timer getexpstatus() 3265

timer getoverrun() 3267

timer gettime() 3269

timer settime() 3271

timer timeout(), timer timeout r() 3274

TimerAlarm(), TimerAlarm r() 3281

TimerCreate(), TimerCreate r() 3284

TimerDestroy(), TimerDestroy r() 3288

TimerInfo(), TimerInfo r() 3290

TimerSettime(), TimerSettime r() 3294

TimerTimeout(), TimerTimeout r() 3298

times() 3306

timespec 3309

timespec2nsec() 3310

timezone 3312

tm 3313

tmpfile(), tmpfile64() 3315

tmpnam() 3318

tolower() 3321

toupper() 3323

towctrans() 3325

towlower() 3327

towupper() 3329

TraceEvent() 3331

truncate() 3334

ttyname() 3337

ttyname r() 3339

tzname 3341

xlii Contents May 31, 2004

 2004, QNX Software Systems Ltd.

tzset() 3342

ualarm() 3345

UDP 3348

ultoa(), ulltoa() 3350

umask() 3353

umount() 3356

UNALIGNED PUT16() 3358

UNALIGNED PUT32() 3360

UNALIGNED PUT64() 3362

UNALIGNED RET16() 3364

UNALIGNED RET32() 3366

UNALIGNED RET64() 3368

uname() 3370

ungetc() 3373

ungetwc() 3375

UNIX 3377

unlink() 3380

unsetenv() 3383

usleep() 3385

utime() 3387

utimes() 3390

utmp 3393

utmpname() 3395

utoa() 3397

va arg() 3400

va copy() 3406

va end() 3408

va start() 3410

valloc() 3412

verr(), verrx() 3414

vfork() 3416

vfprintf() 3418

May 31, 2004 Contents xliii

 2004, QNX Software Systems Ltd.

vfscanf() 3421

vfwprintf() 3424

vfwscanf() 3426

vprintf() 3428

vscanf() 3430

vslogf() 3433

vsnprintf() 3435

vsprintf() 3438

vsscanf() 3441

vswprintf() 3444

vswscanf() 3446

vsyslog() 3448

vwarn(), vwarnx() 3450

vwprintf() 3452

vwscanf() 3454

wait() 3456

wait3() 3459

wait4() 3462

waitid() 3466

waitpid() 3469

warn(), warnx() 3472

wcrtomb() 3474

wcscat() 3476

wcschr() 3478

wcscmp() 3480

wcscoll() 3482

wcscpy() 3484

wcscspn() 3486

wcsftime() 3488

wcslen() 3490

wcsncat() 3492

wcsncmp() 3494

xliv Contents May 31, 2004

 2004, QNX Software Systems Ltd.

wcsncpy() 3496

wcspbrk() 3498

wcsrchr() 3500

wcsrtombs() 3502

wcsspn() 3504

wcsstr() 3506

wcstod(), wcstof(), wcstold() 3508

wcstoimax(), wcstoumax() 3511

wcstok() 3513

wcstol(), wcstoll() 3515

wcstombs() 3518

wcstoul(), wcstoull() 3521

wcscxfrm() 3524

wctob() 3526

wctomb() 3528

wctrans() 3531

wctype() 3533

wmemchr() 3535

wmemcmp() 3537

wmemcpy() 3539

wmemmove() 3541

wmemset() 3543

wordexp() 3545

wordfree() 3547

wprintf() 3548

write() 3550

writeblock() 3555

writev() 3558

wscanf() 3561

y0(), y0f() 3563

y1(), y1f() 3565

yn(), ynf() 3567

May 31, 2004 Contents xlv

 2004, QNX Software Systems Ltd.

SOCKS — A Basic Firewall 3569A
About SOCKS 3571

How to SOCKSify a client 3571

What SOCKS expects 3572

Third-Party Copyright Notices 3575B
BSD Stack 3577

BSD Stack and Various Utilities 3578

MINIX Operating System 3585

Regular Expression Handling 3586

Remote Procedure Call (RPC) 3587

SNMPv2 3587

SOCKS 3588

Summary of Safety Information 3591C
Cancellation points 3593

Interrupt handlers 3598

Signal handlers 3601

Multithreaded programs 3614

Glossary 3617

Index 3641

xlvi Contents May 31, 2004

List of Figures

A hierarchy of processes. 1662

A deadlock when sending messages improperly among processes.
1663

MsgSendv(), client to process manager. 1675

MsgReplyv(), process manager to client. 1675

MsgSendv(), client to filesystem manager 1676

Components of a fully qualified pathname. 1807

Specifying a guardian for child processes. 1987

Conditions that satisfy an input request. 2319

Most of the spawn*() functions do a lot of work before a message
is sent to procnto. 2929

May 31, 2004 List of Figures xlvii

About This Reference

May 31, 2004 About This Reference xlix

 2004, QNX Software Systems Ltd. What’s new in QNX Neutrino 6.3.0

The Library Reference describes the C functions, data types, and
protocols that are included as part of the QNX Neutrino RTOS.

The Library Reference also contains:

� Summary listings of the library, including a description of what
you’ll find in a function description

� Summary of safety information:

- functions that are cancellation points

- functions that you can safely call from an interrupt handler

- functions that you can safely call from a signal handler

- functions that you can’t safely call from a multithreaded
program.

� descriptions of manifests

� SOCKS — A Basic Firewall

� Third-Party Copyright Notices

� Glossary

What’s new in QNX Neutrino 6.3.0
New content

fopen64() Large-file support for fopen().

freopen64() Large-file support for freopen().

ftw64() Large-file support for ftw().

getnameinfo() Perform address-to-nodename translation.

inet6 option *() Manipulate IPv6 hop-by-hop and destination
options.

inet6 rthdr *() manipulate IPv6 Router header options.

May 31, 2004 About This Reference li

What’s new in QNX Neutrino 6.3.0 2004, QNX Software Systems Ltd.

ipsec dump policy()

Generate a readable string from an IPsec policy
specification.

ipsec get policylen()

Get the length of the IPsec policy.

ipsec set policy()

Generate an IPsec policy specification structure
from a readable string.

nftw(), nftw64() Walk a file tree and its large-file support.

poll() Input/output multiplexing.

resmgr handle tune()

Tune aspects of client fd-to-OCB mapping

sctp bindx() Add or remove one or more addresses from a given
association.

sctp connectx() Help associate an endpoint that is multi-homed.

sctp freeladdrs()

Free all resources allocated by sctp getladdrs().

sctp freepaddrs()

Free all resources allocated by sctp getpaddrs().

sctp getladdrs() Return all locally bound addresses on a socket.

sctp getpaddrs() Return all peer addresses in an association.

sctp peeloff() Branch off an association into a seperate socket.

SCTP Stream Control Transmission Protocol.

sctp recvmsg() Receive message using advanced SCTP features.

sctp sendmag() Send message using advanced SCTP features.

tmpfile64() Large-file support for tmpfile().

lii About This Reference May 31, 2004

 2004, QNX Software Systems Ltd. What’s new in QNX Neutrino 6.2.1

Changed content

Errata

What’s new in QNX Neutrino 6.2.1
New content

dispatch unblock()

Unblock all of the threads that are blocked on a
dispatch handle

errno Each thread in a multi-threaded program has its own
error value in its thread local storage. No matter which
thread you’re in, you can simply refer to errno — it’s
defined in such a way that it refers to the correct
variable for the thread. For more information, see
“Local storage for private data” in the documentation
for ThreadCreate().

pthread attr setschedpolicy().

Sporadic scheduling (SCHED SPORADIC) is a new
feature of QNX Neutrino 6.2.0.

sched param

Structure of scheduling parameters

va copy() Make a copy of a variable argument list

Changed content
bind(), bindresvport()

These functions aren’t cancellation points any more, because
this conflicted with POSIX.

htonl(), htons(), inet ntop(), inet pton(), isfdtype(), ntohl(), ntohs()
These functions have been moved from libsocket to libc.

May 31, 2004 About This Reference liii

What’s new in QNX Neutrino 6.2.1 2004, QNX Software Systems Ltd.

Errata
alphasort() This function compares two directory entries; it

doesn’t sort an array of entries.

execlpe(), execvpe()

You can now execute a shell script.

fgetc(), fgetchar(), fgets(), fgetwc(), fgetws(), getc(), getc unlocked(),
getchar(), getchar unlocked(), gets(), getw(), getwc(), getwchar()

Use feof() or ferror() to distinguish an end-of-file
condition from an error.

fstat(), fstat64() These functions return -1 if an error occurs.

iofunc mmap(), iofunc mmap default()

These functions return a nonpositive value on
success.

InterruptAttach(), InterruptAttachEvent()

You should always set
NTO INTR FLAGS TRK MSK.

mq getattr(), mq setattr()

The mq flags member of the mq attr structure
applies to the message-queue description (i.e.
locally), not to the queue as a whole.

mq open() Corrected the interpretation of the name argument.

MsgError(), MsgError r()

If the error argument is EOK, the MsgSend*() call
returns EOK; if error is any other value, the
MsgSend*() call returns -1.

MsgSendPulse(), MsgSendPulse r()

You can now send pulses across the network.

liv About This Reference May 31, 2004

 2004, QNX Software Systems Ltd. What’s new in QNX Neutrino 6.2.1

You can send a pulse to any process — not just to a
process in the same process group — if your
process has the appropriate permission.

name open() This function returns a nonnegative integer
representing a side-channel connection ID, or -1 if
an error occurred.

printf() The exponent produced for the e and E formats is
at least two digits long.

Clarified what happens if the format string includes
invalid multibyte characters.

pthread mutex timedlock(), pthread rwlock timedrdlock(),
pthread rwlock timedwrlock()

The timeout is based on the CLOCK REALTIME
clock.

resmgr ocb() Corrected the name.

select() This function and the associated macros are now
defined in <sys/select.h>, instead of
<sys/time.h> (which includes
<sys/select.h>).

sem open() Corrected the interpretation of the sem name
argument.

sem timedwait() The timeout is based on the CLOCK REALTIME
clock.

send() The list of errors now includes EPIPE.

shm open() Corrected the interpretation of the name argument.

sigaction() Corrected the example (it isn’t safe to call printf()
in a signal handler).

spawn(), spawnl(), spawnle(), spawnlp(), spawnlpe(), spawnp(),
spawnv(), spawnve(), spawnvp(), spawnvpe()

You can now execute a shell script.

May 31, 2004 About This Reference lv

What’s new in QNX Neutrino 6.2 2004, QNX Software Systems Ltd.

The child process’s tms utime, tms stime,
tms cutime, and tms cstime are now calculated.

timer create() Don’t use SIGEV INTR or SIGEV UNBLOCK for
the event type.

vsnprintf() Corrected the returned values.

What’s new in QNX Neutrino 6.2
Significant changes:

� New content

� Deprecated content

� Errata

New Content
addrinfo TCP/IP address information

dircntl() Control an open directory

freeaddrinfo() Free an address information structure

freeifaddrs() Free an address information structure

gai strerror() Return the getaddrinfo() error code

getaddrinfo() Get address information

getdomainname()

Get the domain name of the current host

gethostbyname2()

Get a network host entry, given a name

getifaddrs() Get a network interface address

hwi find item() Find an item in the hwi item structure

lvi About This Reference May 31, 2004

 2004, QNX Software Systems Ltd. What’s new in QNX Neutrino 6.2

hwi find tag() Find a tag in the hwi item structure

hwi off2tag() Return a pointer to the start of a tag in the hwinfo
area of the system page

hwi tag2off() Return the offset from the start of the hwinfo area
of the system page

ICMP6 Internet Control Message Protocol for IPv6

if freenameindex()

Free dynamic memory allocated by if nameindex()

if indextoname() Map an interface index to its name

if nameindex() Return a list of interfaces

if nametoindex() Map an interface name to its index

ifaddrs() Structure that describes an Internet host

INET6 Internet Protocol version 6 family

inet net ntop() Convert an Internet network number to CIDR
format

inet net pton() Convert an Internet network number from CIDR
format to network format

IPv6 Internet Protocol version 6

IPsec Internet security protocol

mallinfo() Get memory allocation information

mallopt() Control the memory allocation

mcheck() Enable memory allocation routine consistency
checks

memalign() Allocate aligned memory

mprobe() Perform consistency check on memory

May 31, 2004 About This Reference lvii

What’s new in QNX Neutrino 6.2 2004, QNX Software Systems Ltd.

posix memalign()

Allocate aligned memory

procmgr session()

Provide process manager session support

resmgr handle grow()

Expand the capacity of the device manager
database

resmgr io func()

Retrieve an I/O function from an I/O function table

resmgr iofuncs() Extract the I/O function pointers associated with c
connection

resmgr ocb() Retrieve an Open Control Block

sched get priority adjust()

Calculate the allowable priority for the scheduling
policy

seekdir() Set the position for the next read of the directory
stream

sleepon broadcast()

Wake up multiple threads

sleepon destroy()

Destroy a sleepon

sleepon init() Initialize a sleepon

sleepon lock() Lock a sleepon

sleepon signal()

Wake up a single thread

sleepon unlock()

Unlock a sleepon

lviii About This Reference May 31, 2004

 2004, QNX Software Systems Ltd. What’s new in the QNX Neutrino 6.1.0 docs

sleepon wait() Wait on a sleepon

tcsetsid() Make a terminal device a controlling device

strtoimax(), strtoumax()

Convert a string to an integer type

telldir() Get the location associated with the directory
stream

valloc() Allocate a heap block aligned on a page boundary

wcstoimax(), wcstoumax()

Convert a wide-character string to an integer type

Deprecated Content
� getpriority() — use getprio() or SchedGet() instead.

� setpriority() — use setprio() or SchedSet() instead.

Errata
snprintf() Corrected the Returns section and Classifications

What’s new in the QNX Neutrino 6.1.0 docs
Significant changes:

� New content

� Deprecated content

New content
The following functions have been added:

Wide-character functions

Wide-character versions of many functions

May 31, 2004 About This Reference lix

What’s new in the QNX Neutrino 6.1.0 docs 2004, QNX Software Systems Ltd.

InterruptHookTrace()

Attach the pseudo interrupt handler that’s used by
the instrumented module

iofdinfo() Retrieve server attributes

iofunc fdinfo() Handle an IO FDINFO message

iofunc fdinfo default()

Default handler for IO FDINFO messages

MsgVerifyEvent(), MsgVerifyEvent r()

Check the validity of a receive ID and an event
configuration

resmgr unbind()

Remove an OCB

straddstr() Concatenate one string on to the end of another

SyncCtl(), SyncCtl r()

Perform an operation on a synchronization object

SyncMutexEvent(), SyncMutexEvent r()

Attach an event to a mutex

SyncMutexRevive(), SyncMutexRevive r()

Revive a mutex

thread pool control()

Control the thread pool behavior

thread pool limits()

Wrapper function for thread pool control()

TraceEvent() Trace kernel events

lx About This Reference May 31, 2004

 2004, QNX Software Systems Ltd. What’s new in the QNX Neutrino 6.1.0 docs

Deprecated content
The following function has been deprecated:

matherr() Handle errors in math library functions

May 31, 2004 About This Reference lxi

Summary of Functions

May 31, 2004 Summary of Functions 1

 2004, QNX Software Systems Ltd. Summary of function categories

Summary of function categories
We’ve organized the functions in the C library into the following
categories:

Asynchronous I/O functions

Asynchronous read, write, and other I/O
operations.

Atomic functions

Thread-safe integer manipulation functions.

Character manipulation functions

Single-character functions for upper/lowercase
conversions.

Conversion functions

Convert values from one representation to another
(e.g. numeric values to strings).

Directory functions

Directory services (change, open, close, etc.).

Dispatch interface functions

Handle different event types, including messages,
pulse codes, and signals.

File manipulation functions

File operations (change permissions, delete,
rename, etc.)

IPC functions Traditional InterProcess Communication
functions.

Hardware functions

These functions work with PCI and other devices.

Math functions Perform computations such as the common
trigonometric calculations. These functions
operate with floating-point values.

May 31, 2004 Summary of Functions 3

Summary of function categories 2004, QNX Software Systems Ltd.

Memory allocation functions

Allocate and deallocate memory.

Memory manipulation functions

Manipulate blocks of memory.

Message queue functions

Nonblocking message-passing facilities.

Multibyte character functions

ANSI C functions for processing multibyte and
wide characters.

QNX Neutrino-specific IPC functions

Native message-passing and related functions.

Operating system I/O functions

POSIX functions for performing I/O at a lower
level than the C Language stream I/O functions
(e.g. fopen(), fread(), fwrite(), and fclose()).

PC Card functions

Native PC Card functions.

Platform-specific functions

Invoke Intel 80x86 and other processor-related
functions directly from a program.

Process environment functions

For process identification, user identification,
process groups, system identification, system time
and process time, environment variables, terminal
identification, and configurable system variables.

Process manipulation functions

For process creation, execution, and termination;
signal handling; and timer operations.

4 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

Realtime timer functions

Rich set of “inexpensive” timer functions that are
quick to create and manipulate.

Resource manager functions

These functions help you create resource
managers.

Searching and sorting functions

Perform various search and sort operations (do a
binary search on a sorted array, find one string
inside another, etc.).

Shared-memory functions

Create and manipulate shared-memory regions.

Signal functions Rich set of functions for handling and sending
signals.

Stream I/O functions

The “standard” functions to read and write files.
Data can be transmitted under format control or as
characters, strings, or blocks of memory.

String manipulation functions

Manipulate a character string, i.e. an array of zero
or more adjacent characters followed by a NUL
character (n0) that marks the end of the string.

System database functions

Allow an application to access group and user
database information.

System message log functions

This set of functions controls the system log.

TCP/IP functions

Handle TCP/IP network communications and the
TCP/IP database files.

May 31, 2004 Summary of Functions 5

Summary of function categories 2004, QNX Software Systems Ltd.

Terminal control functions

Set and control terminal attributes (baud rate, flow
control, etc.).

Thread functions

Operate on threads and the objects used to
synchronize threads.

Time functions Obtain and manipulate times and dates.

Variable-length argument list functions

Process a variable number of arguments to a
function.

Wide-character functions

Wide-character versions of functions from other
function summary categories.

The following subsections describe these function categories in more
detail. Each function is noted with a brief description of its purpose.

Asynchronous I/O functions
These functions perform asynchronous read, write, and other I/O
operations.

Asynchronous I/O operations aren’t currently supported.�

The following functions are defined:

aio cancel() Cancel an asynchronous I/O operation

aio error() Get the error status for an asynchronous I/O
operation

aio fsync() Asynchronously synchronize a file

aio read() Asynchronously read from a file

6 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

aio return() Get the return status for an asynchronous I/O
operation

aio suspend() Wait for asynchronous I/O operations to complete

aio write() Asynchronously write to a file

Atomic functions
These functions manipulate an integer in a thread-safe way. On a
multiprocessor system, even a simple:

/*
Assuming x is an unsigned variable shared between two
or more threads or a thread and an interrupt handler.

*/

x ˆ= 0xdeadbeef;

may cause x to be in an undefined state if multiple threads running
simultaneously on multiple processors execute this code at the same
time.

Use the atomic*() functions to ensure that your integer operations are
carried out properly:

atomic toggle(&x, 0xdeadbeef);

atomic add() Safely add to a variable

atomic add value()

Safely add to a variable, returning the previous
value

atomic clr() Safely clear a variable

atomic clr value()

Safely clear a variable, returning the previous value

atomic set() Safely set bits in a variable

May 31, 2004 Summary of Functions 7

Summary of function categories 2004, QNX Software Systems Ltd.

atomic set value()

Safely set bits in a variable, returning the previous
value

atomic sub() Safely subtract from a variable

atomic sub value()

Safely subtract from a variable, returning the
previous value

atomic toggle() Safely toggle a variable

atomic toggle value()

Safely toggle a variable, returning the previous
value

Character manipulation functions
These functions operate on single characters of type char. The
functions test characters in various ways and convert them between
upper and lowercase. (Some of these functions have wide-character
versions in the “Wide-character functions” section of the function
summary.)

isalnum() Test a character to see if it’s alphanumeric

isalpha() Test to see if a character is a letter

isascii() Test for a character in the range 0 to 127

iscntrl() Test a character to see if it’s a control character

isdigit() Test for any decimal digit

isgraph() Test for any printable character except space

islower() Test for any lowercase letter

isprint() Test for any printable character, including space

8 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

ispunct() Test for any punctuation character

isspace() Test for a whitespace character

isupper() Test for any uppercase letter

isxdigit() Test for any hexadecimal digit

tolower() Convert a character to lowercase

toupper() Convert a character to uppercase

Conversion functions
These functions perform conversions between objects of various types
and strings:

atof() Convert a string into a double

atoh() Convert a string containing a hexadecimal number
into an unsigned number

atoi() Convert a string into an integer

atol(), atoll() Convert a string into a long integer

ENDIAN BE16()

Return a big-endian 16-bit value in native format

ENDIAN BE32()

Return a big-endian 32-bit value in native format

ENDIAN BE64()

Return a big-endian 64-bit value in native format

ENDIAN LE16()

Return a little-endian 16-bit value in native format

ENDIAN LE32()

Return a little-endian 32-bit value in native format

May 31, 2004 Summary of Functions 9

Summary of function categories 2004, QNX Software Systems Ltd.

ENDIAN LE64()

Return a little-endian 64-bit value in native format

ENDIAN RET16()

Return an endian-swapped 16-bit value

ENDIAN RET32()

Return an endian-swapped 32-bit value

ENDIAN RET64()

Return an endian-swapped 64-bit value

ENDIAN SWAP16()

Endian-swap a 16-bit value in place

ENDIAN SWAP32()

Endian-swap a 32-bit value in place

ENDIAN SWAP64()

Endian-swap a 64-bit value in place

htonl() Convert a 32-bit value from host-byte order to
network-byte order

htons() Convert a 16-bit value from host-byte order to
network-byte order

itoa() Convert an integer into a string, using a given base

ltoa(), lltoa() Convert a long integer value into a string, using a
given base

nsec2timespec()

Convert nanoseconds to a timespec structure

ntohl() Convert network-byte order value

ntohs() Convert network-byte order value

strtod() Convert a string into a double

10 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

strtoimax(), strtoumax()

Convert a string into an integer

strtol(), strtoll()

Convert a string into a long integer

strtoul(), strtoull()

Convert a string into an unsigned long integer

timespec Time-specification structure

timespec2nsec()

Convert a timespec structure to nanoseconds

ultoa(), ulltoa() Convert an unsigned long integer into a string,
using a given base

UNALIGNED PUT16()

Write a misaligned 16-bit value safely

UNALIGNED PUT32()

Write a misaligned 32-bit value safely

UNALIGNED PUT64()

Write a misaligned 64-bit value safely

UNALIGNED RET16()

Access a misaligned 16-bit value safely

UNALIGNED RET32()

Access a misaligned 32-bit value safely

UNALIGNED RET64()

Access a misaligned 64-bit value safely

utoa() Convert an unsigned integer into a string, using a
given base

wordexp() Perform word expansions

May 31, 2004 Summary of Functions 11

Summary of function categories 2004, QNX Software Systems Ltd.

wordfree() Free a word expansion buffer

See also the following functions, which convert the cases of
characters and strings:

� strlwr()

� strupr()

� tolower()

� toupper()

Directory functions
These functions pertain to directory manipulation:

alphasort() Compare two directory entries

chdir() Change the current working directory

chroot() Change the root directory

closedir() Close a directory

dircntl() Control an open directory

dirname() Report the parent directory name of a file pathname

getcwd() Get the name of the current working directory

getwd() Get current working directory pathname

glob() Find paths matching a pattern

globfree() Free storage allocated by a call to glob()

mkdir() Create a subdirectory

mount() Mount a filesystem

mount parse generic args()

Strip off common mount arguments

12 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

opendir() Open a directory file

pathfind(), pathfind r()

Search for a file in a list of directories

readdir() Get information about the next matching filename

readdir r() Get information about the next matching filename

realpath() Resolve a pathname

rewinddir() Reset the position of a directory stream to the start of
the directory

rmdir() Delete an empty directory

scandir() Scan a directory

seekdir() Set the position for the next read of the directory
stream

telldir() Get the location associated with the directory stream

umount() Unmount a filesystem

Dispatch interface functions
These functions make up the dispatch interface where you can handle
different event types including messages, pulse codes, and signals.
The functions cover dispatch contexts, attaching events, attaching
pathnames and file descriptors to dispatch contexts, thread pools, etc.
For an overview of these functions, see “Components of a resource
manager” in the Writing a Resource Manager chapter of the QNX
Neutrino Programmer’s Guide.

dispatch block() Block while waiting for an event

dispatch context alloc()

Return a dispatch context

May 31, 2004 Summary of Functions 13

Summary of function categories 2004, QNX Software Systems Ltd.

dispatch context free()

Free a dispatch context

dispatch create()

Allocate a dispatch handle

dispatch destroy()

Destroy a dispatch handle

dispatch handler()

Handle events received by dispatch block()

dispatch timeout()

Set a timeout

dispatch unblock()

Unblock all of the threads that are blocked on a
dispatch handle

message attach()

Attach a message range

message connect()

Create a connection to a channel

message detach()

Detach a message range

name attach() Register a name in the namespace and create a
channel

name detach() Remove a name from the namespace and destroy
the channel

pulse Structure that describes a pulse

pulse attach() Attach a handler function to a pulse code

pulse detach() Detach a handler function from a pulse code

14 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

resmgr attach() Attach a path to a pathname space

resmgr block() Block while waiting for a message

resmgr connect funcs t

Table of POSIX-level connect functions

resmgr context alloc()

Allocate a resource-manager context

resmgr context free()

Free a resource-manager context

resmgr context t

Context information that’s passed between
resource-manager functions

resmgr detach() Remove a pathname from the pathname space

resmgr devino() Get the device and inode number

resmgr handle grow()

Expand the capacity of the device manager
database

resmgr handler()

Handle resource manager messages

resmgr io func()

Retrieve an I/O function from an I/O function table

resmgr io funcs t

Table of POSIX-level I/O functions

resmgr iofuncs() Extract the I/O function pointers associated with
client connections

resmgr msgread()

Read a message from a client

May 31, 2004 Summary of Functions 15

Summary of function categories 2004, QNX Software Systems Ltd.

resmgr msgreadv()

Read a message from a client

resmgr msgwrite()

Write a message to a client

resmgr msgwritev()

Write a message to a client

RESMGR NPARTS()

Get a given number of parts from the ctp->iov
structure

resmgr ocb() Retrieve an Open Control Block

resmgr open bind()

Associate an OCB with an open request

resmgr pathname()

Return the pathname associated with an ID

RESMGR PTR()

Get one part from the ctp->iov structure and fill in
its fields

RESMGR STATUS()

Set the status member of a resource-manager
context

resmgr unbind() Remove an OCB

select attach() Attach a file descriptor to a dispatch handle

select detach() Detach a file descriptor from a dispatch handle

select query() Decode the last select event

thread pool create()

Create a thread pool handle

16 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

thread pool control()

Control the thread pool behavior

thread pool destroy()

Free the memory allocated to a thread pool

thread pool limits()

Wrapper function for thread pool control()

thread pool start()

Start a thread pool

File manipulation functions
These functions operate directly with files. The following functions
are defined:

access() Check to see if a file or directory can be accessed

chmod() Change the permissions for a file

chown() Change the user ID and group ID of a file

eaccess() Check to see if a file or directory can be accessed
(extended version)

glob() Find paths matching a pattern

globfree() Free storage allocated by a call to glob()

fchmod() Change the permissions for a file

fchown() Change the user ID and group ID of a file

fpathconf() Return the value of a configurable limit associated
with a file or directory

ftruncate(), ftruncate64()

Truncate a file

futime() Record the modification time for a file

May 31, 2004 Summary of Functions 17

Summary of function categories 2004, QNX Software Systems Ltd.

lchown() Change the user ID and group ID of a file or
symbolic link

lstat(), lstat64()

Get information about a file or directory

ltrunc() Truncate a file at a given position

mkfifo() Create a FIFO special file

mkstemp() Make a unique temporary filename, and open the file

mktemp() Make a unique temporary filename

pathconf() Return the value of a configurable limit

pclose() Close a pipe

pwrite(), pwrite64()

Write into a file without changing the file pointer

remove() Remove a link to a file

rename() Rename a file

stat(), stat64()

Get information about a file or directory, given a path

statvfs(), statvfs64()

Get filesystem information, given a path

sync() Synchronize filesystem updates

tempnam() Create a name for a temporary file

truncate() Truncate a file to a specified length

tmpnam() Generate a unique string for use as a filename

unlink() Remove a link to a file

utime() Record the modification time for a file or directory

utimes() Set a file’s access and modification times

18 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

IPC functions
These functions deal with InterProcess Communications.

flock() Apply or remove an advisory lock on an open file

lockf() Record locking on files

mlock() Lock a buffer in physical memory

mlockall() Lock a process’s address space

mmap(), mmap64()

Map a memory region into a process address space

mprotect() Change memory protection

msync() Synchronize memory with physical storage

munlock() Unlock a buffer

munlockall() Unlock a process’s address space

munmap() Unmap previously mapped addresses

pthread barrier destroy()

Destroy a barrier object

pthread barrier init()

Initialize a barrier object

pthread barrier wait()

Synchronize at a barrier

pthread barrierattr destroy()

Destroy a barrier attributes object

pthread barrierattr getpshared()

Get the process-shared attribute of a barrier
attributes object

May 31, 2004 Summary of Functions 19

Summary of function categories 2004, QNX Software Systems Ltd.

pthread barrierattr init()

Initialize a barrier attributes object

pthread barrierattr setpshared()

Set the process-shared attribute of a barrier
attributes object

pthread cond broadcast()

Unblock threads waiting on a condition

pthread cond destroy()

Destroy a condition variable

pthread cond init()

Initialize a condition variable

pthread cond signal()

Unblock the thread waiting on a condition variable

pthread cond timedwait()

Wait on a condition variable, with a time limit

pthread cond wait()

Wait on a condition variable

pthread condattr destroy()

Destroy a condition variable attribute object

pthread condattr getclock()

Get the clock attribute from a condition-variable
attribute object

pthread condattr getpshared()

Get the process-shared attribute from a condition
variable attribute object

pthread condattr init()

Initialize a condition variable attribute object

20 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

pthread condattr setclock()

Set the clock attribute in a condition-variable
attribute object

pthread condattr setpshared()

Set the process-shared attribute in a
condition-variable attribute object

pthread mutex destroy()

Destroy a mutex

pthread mutex getprioceiling()

Get a mutex’s priority ceiling

pthread mutex init()

Initialize a mutex

pthread mutex lock()

Lock a mutex

pthread mutex setprioceiling()

Set a mutex’s priority ceiling

pthread mutex timedlock()

Lock a mutex

pthread mutex trylock()

Attempt to lock a mutex

pthread mutex unlock()

Unlock a mutex

pthread mutexattr destroy()

Destroy a mutex attribute object

pthread mutexattr getprioceiling()

Get the priority ceiling of a mutex attribute object

May 31, 2004 Summary of Functions 21

Summary of function categories 2004, QNX Software Systems Ltd.

pthread mutexattr getprotocol()

Get a mutex’s scheduling protocol

pthread mutexattr getpshared()

Get the process-shared attribute from a mutex
attribute object

pthread mutexattr getrecursive()

Get the recursive attribute from a mutex attribute
object

pthread mutexattr gettype()

Get a mutex type

pthread mutexattr init()

Initialize the mutex attribute object

pthread mutexattr setprioceiling()

Set the priority ceiling of a mutex attribute object

pthread mutexattr setprotocol()

Set a mutex’s scheduling protocol

pthread mutexattr setpshared()

Set the process-shared attribute in mutex attribute
object

pthread mutexattr setrecursive()

Set the recursive attribute in mutex attribute object

pthread mutexattr settype()

Set a mutex type

pthread once() Dynamic package initialization

pthread rwlock destroy()

Destroy a read/write lock

22 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

pthread rwlock init()

Initialize a read/write lock

pthread rwlock rdlock()

Acquire a shared read lock on a read/write lock

pthread rwlock timedrdlock()

Lock a read-write lock for writing

pthread rwlock timedwrlock()

Attempt to acquire an exclusive write lock on a
read/write lock

pthread rwlock tryrdlock()

Attempt to acquire a shared read lock on a
read/write lock

pthread rwlock trywrlock()

Attempt to acquire an exclusive write lock on a
read/write lock

pthread rwlock unlock()

Unlock a read/write lock

pthread rwlock wrlock()

Acquire an exclusive write lock on a read/write
lock

pthread rwlockattr destroy()

Destroy a read-write lock attribute object

pthread rwlockattr getpshared()

Get the process-shared attribute of a read-write
lock attribute object

pthread rwlockattr init()

Create a read-write lock attribute object

May 31, 2004 Summary of Functions 23

Summary of function categories 2004, QNX Software Systems Ltd.

pthread rwlockattr setpshared()

Set the process-shared attribute of a read-write
lock attribute object

pthread spin destroy()

Destroy a thread spinlock

pthread spin init()

Initialize a thread spinlock

pthread spin lock()

Lock a thread spinlock

pthread spin trylock()

Try locking a thread spinlock

pthread spin unlock()

Unlock a thread spinlock

readcond() Read data from a terminal device

sem close() Close a named semaphore

sem destroy() Destroy a semaphore

sem getvalue() Get the value of a semaphore (named or unnamed)

sem init() Initialize a semaphore

sem open() Create or access a named semaphore

sem post() Increment a semaphore

sem timedwait() Wait on a semaphore, with a timeout

sem trywait() Wait on a semaphore, but don’t block

sem unlink() Destroy a named semaphore

sem wait() Wait on a semaphore

sync() Synchronize filesystem updates

24 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

Hardware functions
These functions work with PCI and other devices for operations such
as determining whether or not a PCI BIOS is present, attaching a
driver to a PCI device, and so on.

The following functions are defined:

pci attach() Connect to the PCI server

pci attach device()

Attach a driver to a PCI device

pci detach() Disconnect from the PCI server

pci detach device()

Detach a driver from a PCI device

pci find class() Find devices that have a specific Class Code

pci find device() Find the PCI device with a given device ID and
vendor ID

pci irq routing options()

Retrieve PCI IRQ routing information

pci map irq() Map an interrupt pin to an IRQ

pci present() Determine whether or not PCI BIOS is present

pci read config()

Read from the configuration space of a PCI device

pci read config8()

Read a byte from the configuration space of a
device

pci read config16()

Read 16-bit values from the configuration space of
a device

May 31, 2004 Summary of Functions 25

Summary of function categories 2004, QNX Software Systems Ltd.

pci read config32()

Read 32-bit values from the configuration space of
a device

pci rescan bus() Rescan the PCI bus for added or removed devices

pci write config()

Write to the configuration space of a PCI device

pci write config8()

Write bytes to the configuration space of a PCI
device

pci write config16()

Write 16-bit values to the configuration space of a
device

pci write config32()

Write 32-bit values to the configuration space of a
device

hwi find item() Find an item in the hwi item structure

hwi find tag() Find a tag in the hwi item structure

hwi off2tag() Return a pointer to the start of a tag in the hwinfo
area of the system page

hwi tag2off() Return the offset from the start of the hwinfo area
of the system page

Math functions
The math functions are arranged in the following categories:

� Absolute values

� Bessel functions

� Divisions, remainders, and modular arithmetic

26 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

� Floating-point settings

� Gamma functions

� Logarithms and exponentials

� Miscellaneous

� Pseudo-random numbers

� Roots and powers

� Rounding

� Trigonometric and hyperbolic functions

Absolute values

abs() Return the absolute value of an integer

cabs(), cabsf() Compute the absolute value of a complex number

fabs(), fabsf() Compute the absolute value of a double number

labs() Calculate the absolute value of a long integer

Bessel functions

j0(), j0f() Compute a Bessel function of the first kind

j1(), j1f() Compute a Bessel function of the first kind

jn(), jnf() Compute a Bessel function of the first kind

y0(), y0f() Compute a Bessel function of the second kind

y1(), y1f() Compute a Bessel function of the second kind

yn(), ynf() Compute a Bessel function of the second kind

May 31, 2004 Summary of Functions 27

Summary of function categories 2004, QNX Software Systems Ltd.

Division, remainders, and modular arithmetic

div() Calculate the quotient and remainder of a division
operation

drem(), dremf()

Compute the remainder of two numbers

fmod(), fmodf()

Compute a residue, using floating-point modular arithmetic

ldiv() Perform division on long integers

modf(), modff()

Break a number into integral and fractional parts

remainder(), remainderf()

Compute the floating point remainder

Floating-point settings

These functions set or get attributes of floating-point operations:

fp exception mask()

Get or set the current exception mask

fp exception value()

Get the value of the current exception registers

fp precision() Set or get the current precision

fp rounding() Set or get the current rounding

Gamma functions

gamma(), gamma r(), gammaf(), gammaf r()

Log gamma function

lgamma(), lgamma r(), lgammaf(), lgammaf r()

Log gamma function

28 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

Logarithms and exponentials

The following routines calculate logarithms and exponentials:

exp(), expf() Compute the exponential function of a number

expm1(), expm1f()

Compute the exponential of a number, then
subtract 1

frexp(), frexpf() Break a floating-point number into a normalized
fraction and an integral power of 2

ilogb(), ilogbf() Compute the integral part of a logarithm

ldexp(), ldexpf() Multiply a floating-point number by an integral
power of 2

log(), logf() Compute the natural logarithm of a number

log10(), log10f() Compute the logarithm (base 10) of a number

log1p(), log1pf() Compute log(1+x)

logb(), logbf() Compute the radix-independent exponent

scalb(), scalbf() Load the exponent of a radix-independent
floating-point number

scalbn(), scalbnf()

Compute the exponent of a radix-independent
floating-point number

significand(), significandf()

Compute the “significant bits” of a floating-point
number

May 31, 2004 Summary of Functions 29

Summary of function categories 2004, QNX Software Systems Ltd.

Miscellaneous

copysign(), copysignf()

Copy the sign bit from one number to another

erf(), erff() Compute the error function of a number

erfc(), erfcf() Complementary error function

finite(), finitef() Determine if a number is finite

hypot(), hypotf() Calculate the length of the hypotenuse for a
right-angled triangle

isinf(), isinff() Test for infinity

isnan(), isnanf() Test for not-a-number (NAN)

max() Return the greater of two numbers

min() Return the lesser of two numbers

nextafter(), nextafterf()

Compute the next representable double-precision
floating-point number

Pseudo-random numbers

The math library includes several sets of functions that you can use to
generate pseudo-random numbers.

The simplest family consists of:

rand() Compute a sequence of pseudo-random integers

rand r() Compute a sequence of pseudo-random integers in a
thread-safe manner

srand() Start a new sequence of pseudo-random integers for
rand()

30 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

This set of functions uses a nonlinear additive feedback
random-number generator, using a state array:

initstate() Initialize a pseudo-random number generator

random() Generate a pseudo-random number from the default
state

setstate() Reset the state of a pseudo-random number generator

srandom() Set the seed for a pseudo-random number generator

This set of functions uses 48-bit arithmetic to produce pseudo-random
numbers of various types:

drand48() Generate a pseudo-random double

erand48() Generate a pseudo-random double in a thread-safe
manner

jrand48() Generate a pseudo-random signed long integer in a
thread-safe manner

lcong48() Initialize a sequence of pseudo-random numbers

lrand48() Generate a pseudo-random nonnegative long integer

mrand48() Generate a pseudo-random signed long integer

nrand48() Generate a pseudo-random nonnegative long integer
in a thread-safe manner

seed48() Initialize a sequence of pseudo-random numbers

srand48() Initialize a sequence of pseudo-random numbers

May 31, 2004 Summary of Functions 31

Summary of function categories 2004, QNX Software Systems Ltd.

Roots and powers

cbrt(), cbrtf() Compute the cube root of a number

pow(), powf() Raise a number to a given power

sqrt(), sqrtf() Calculate the nonnegative square root of a number

Rounding

ceil(), ceilf() Round up a value to the next integer

floor(), floorf() Round down a value to the next integer

rint(), rintf() Round to the nearest integral value

Trigonometric and hyperbolic functions

acos(), acosf() Compute the arccosine of an angle

acosh(), acoshf()

Compute the inverse hyperbolic cosine

asin(), asinf() Compute the arcsine of an angle

asinh(), asinhf() Compute the inverse hyperbolic sine

atan(), atanf() Compute the arctangent of an angle

atanh(), atanhf() Compute the inverse hyperbolic tangent

atan2(), atan2f() Compute the arctangent, determining the quadrant

cos(), cosf() Compute the cosine of an angle

cosh(), coshf() Compute the hyperbolic cosine

sin(), sinf() Calculate the sine of an angle

sinh(), sinhf() Compute the hyperbolic sine

tan(), tanf() Calculate the tangent of an angle

tanh(), tanhf() Calculate the hyperbolic tangent

32 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

Memory allocation functions
These functions allocate and deallocate blocks of memory:

alloca() Allocate automatic space from the stack

amblksiz The increment for the break pointer

btext The beginning of the text segment

calloc() Allocate space for an array

cfree() Free allocated memory

edata The end of the data segment, excluding BSS data

end The end of the data segment, including BSS data

etext The end of the text segment

free() Deallocate a block of memory

ftw() Walk a file tree

longjmp() Restore the environment saved by setjmp()

mallinfo() Get memory allocation information

malloc() Allocate memory

mallopt() Control the memory allocation

mcheck() Enable memory allocation routine consistency
checks

memalign() Allocate aligned memory

mprobe() Perform consistency check on memory

posix memalign()

Allocate aligned memory

realloc() Allocate, reallocate or free a block of memory

May 31, 2004 Summary of Functions 33

Summary of function categories 2004, QNX Software Systems Ltd.

sbrk() Set the allocation break value for a program

scalloc() Allocate space for an array

setjmp() Save the calling environment, for use by longjmp()

siglongjmp() Restore the signal mask for a process, if one was
saved

sigsetjmp() Save the environment, including the signal mask

sfree() Deallocate a block of memory

smalloc() Allocate memory in blocks

srealloc() Allocate, reallocate or free a block of memory

valloc() Allocate a heap block aligned on a page boundary

Memory manipulation functions
These functions manipulate blocks of memory. In each case, the
address of the memory block and its size is passed to the
function.(Some of these functions have wide-character versions in the
“Wide-character functions” section of the function summary.)

brk() Change the amount of space allocated for the
calling process’s data segment

bzero() Set the first part of an object to null bytes

ffs() Find the first bit set in a bit string

index() Find a character in a string

memccpy() Copy bytes until a given character is found

memchr() Find the first occurrence of a character in a buffer

memcmp() Compare a given number of characters in two
objects

34 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

memcpy() Copy a number of characters from one buffer to
another

memcpyv() Copy a given number of structures

memicmp() Compare a given number of characters of two
objects, without case sensitivity

mem offset(), mem offset64()

Find offset of a mapped typed memory block

memmove() Copy bytes from one buffer to another, handling
overlapping memory correctly

memset() Set the first part of an object to a given value

mlock() Lock a buffer in physical memory

mlockall() Lock a process’s address space

mmap(), mmap64()

Map a memory region into a process address space

mmap device io()

Gain access to a device’s registers

mmap device memory()

Map a device’s physical memory into a process’s
address space

msync() Synchronize memory with physical storage

munlock() Unlock a buffer

munlockall() Unlock a process’s address space

munmap device io()

Free access to a device’s registers

munmap device memory()

Unmap previously mapped addresses

May 31, 2004 Summary of Functions 35

Summary of function categories 2004, QNX Software Systems Ltd.

posix mem offset(), posix mem offset64()

Find offset and length of a mapped typed memory
block

rindex() Find the last occurrence of a character in a string

shm ctl() Give special attributes to a shared memory object

swab() Endian-swap a given number of bytes

See the section “String manipulation functions” for descriptions of
functions that manipulate strings of data.

Message queue functions
These functions deal with message queues:

mq close() Close a message queue

mq getattr() Get a message queues attributes

mq notify() Ask to be notified when there’s a message in the
queue

mq open() Open a message queue

mq receive() Receive a message from a queue

mq send() Send a message to a queue

mq setattr() Set a queue’s attributes

mq timedreceive()

Receive a message from a message queue

mq timedsend()

Send a message to a message queue

mq unlink() Remove a queue

36 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

Multibyte character functions
These ANSI C functions provide capabilities for processing multibyte
characters. (Some of these functions have wide-character versions in
the “Wide-character functions” section of the function summary.)

mblen() Count the bytes in a multibyte character

mbrlen() Count the bytes in a multibyte character (restartable)

mbrtowc() Convert a multibyte character into a wide character
(restartable)

mbsinit() Determine the status of the conversion object used
for restartable mb*() functions

mbsrtowcs() Convert a multibyte-character string into a
wide-character string (restartable)

mbstowcs() Convert a multibyte-character string into a
wide-character string

mbtowc() Convert a multibyte character into a wide character

QNX Neutrino-specific IPC functions
The following functions are defined:

ChannelCreate(), ChannelCreate r()

Create a communications channel

ChannelDestroy(), ChannelDestroy r()

Destroy a communications channel

msg info Information about a message

MsgDeliverEvent(), MsgDeliverEvent r()

Deliver an event through a channel

MsgError(), MsgError r()

Unblock a client and set its errno

May 31, 2004 Summary of Functions 37

Summary of function categories 2004, QNX Software Systems Ltd.

MsgInfo(), MsgInfo r()

Get additional information about a message

MsgKeyData(), MsgKeyData r()

Pass data through a common client

MsgRead(), MsgRead r()

Read data from a message

MsgReadv(), MsgReadv r()

Read data from a message

MsgReceive(), MsgReceive r()

Wait for a message or pulse on a channel

MsgReceivePulse(), MsgReceivePulse r()

Receive a pulse on a channel

MsgReceivePulsev(), MsgReceivePulsev r()

Receive a pulse on a channel

MsgReceivev(), MsgReceivev r()

Wait for a message or pulse on a channel

MsgReply(), MsgReply r()

Reply with a message

MsgReplyv(), MsgReplyv r()

Reply with a message

MsgSend(), MsgSend r()

Send a message to a channel

MsgSendnc(), MsgSendnc r()

Send a message to a channel (non-cancellation
point)

MsgSendPulse(), MsgSendPulse r()

Send a pulse to a channel

38 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

MsgSendsv(), MsgSendsv r()

Send a message to a channel

MsgSendsvnc(), MsgSendsvnc r()

Send a message to a channel (non-cancellation
point)

MsgSendv(), MsgSendv r()

Send a message to a channel

MsgSendvnc(), MsgSendvnc r()

Send a message to a channel (non-cancellation
point)

MsgSendvs(), MsgSendvs r()

Send a message to a channel

MsgSendvsnc(), MsgSendvsnc r()

Send a message to a channel (non-cancellation
point)

MsgVerifyEvent(), MsgVerifyEvent r()

Check the validity of a receive ID and an event
configuration

MsgWrite(), MsgWrite r()

Write a reply

MsgWritev(), MsgWritev r()

Write a reply

name close() Close the file descriptor returned by name open()

name open() Open a name for a server connection

sigevent Structure that describes an event

SyncTypeCreate(), SyncTypeCreate r()

Create a synchronization object

May 31, 2004 Summary of Functions 39

Summary of function categories 2004, QNX Software Systems Ltd.

Operating system I/O functions
These functions operate at the operating-system level, and are
included for compatibility with other C implementations. For new
programs, we recommended that you use the functions in the section
“File manipulation functions”, functions are defined portably and are
part of the ANSI standard for the C language.

The functions in this section reference opened files and devices using
a file descriptor that’s returned when the file is opened. The file
descriptor is passed to the other functions.

The following functions are defined:

chsize() Change the size of a file

cfgopen() Open a configuration file

close() Close a file at the operating system level

cmdfd() Return a file descriptor for the executable file

cmdname() Find the path used to invoke the current process

creat(), creat64()

Create and open a file at the operating system level

devctl() Control a device

dup() Duplicate a file descriptor

dup2() Duplicate a file descriptor, specifying the new
descriptor

eof() Determine if the end-of-file has been reached

fcfgopen() Open a configuration file

fcntl() Provide control over an open file

fdatasync() Write queued file data to disk

40 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

fileno() Return the number of the file descriptor for a
stream

flink() Assign a pathname to a file descriptor

flockfile() Acquire ownership of a file

fstat(), fstat64() Obtain information about an open file, given a file
descriptor

fstatvfs(), fstatvfs64()

Get filesystem information, given a file descriptor

fsync() Write queued file and filesystem data to disk

ftrylockfile() Acquire ownership of a file, without blocking

funlockfile() Release ownership of a file

GETIOVBASE() Get the base member of an iov t structure

GETIOVLEN() Get the length member of an iov t structure

getdtablesize() Get the size of the file descriptor table

getrusage() Get information about resource utilization

in8() Read an 8-bit value from a port

in8s() Read 8-bit values from a port

in16(), inbe16(), inle16()

Read a 16-bit value from a port

in16s() Read 16-bit values from a port

in32(), inbe32(), inle32()

Read a 32-bit value from a port

in32s() Read 32-bit values from a port

ioctl() Control device

May 31, 2004 Summary of Functions 41

Summary of function categories 2004, QNX Software Systems Ltd.

link() Create a link to an existing file

lseek(), lseek64()

Set the current file position at the OS level

lio listio() Initiate a list of I/O requests

mknod() Make a new filesystem entry point

modem open() Open a serial port

modem read() Read bytes from a file descriptor

modem script() Run a script on a device

modem write() Write a string to a device

name close() Close the file descriptor obtained with name open()

name open() Open a name for a server connection

open(), open64()

Open a file

openfd() Open for private access a file associated with a
given descriptor

out8() Write an 8-bit value to a port

out8s() Write 8-bit values to a port

out16(), outbe16(), outle16()

Write a 16-bit value to a port

out16s() Write 16-bit values to a port

out32(), outbe32(), outle32()

Write a 32-bit value to a port

out32s() Write 32-bit values to a port

42 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

pathmgr symlink()

Create a symlink in the process manager

pathmgr unlink()

Remove the link created by pathmgr symlink()

pipe() Create a pipe

popen() Execute a command, creating a pipe to it

pread(), pread64()

Read from a file without moving the file pointer

rdchk() Check to see if a read is likely to succeed

read() Read bytes from a file

readblock() Read blocks of data from a file

readcond() Read data from a terminal device

readlink() Place the contents of a symbolic link into a buffer

readv() Read bytes from a file

select() Check for files that are ready for reading or writing

SETIOV() Fill in the fields of an iov t structure

sopen() Open a file for shared access

sopenfd() Open for shared access a file associated with a
given descriptor

symlink() Create a symbolic link to a path

tcischars() Determine the number of characters waiting to be
read

tell(), tell64() Determine the current file position

umask() Set the file mode creation mask for the process

May 31, 2004 Summary of Functions 43

Summary of function categories 2004, QNX Software Systems Ltd.

uname() Get information about the operating system

unlink() Delete a file

write() Write bytes to a file

writeblock() Write blocks of data to a file

writev() Write bytes to a file

PC Card functions
The following functions are defined:

pccard arm() Arm the devp-pccard server

pccard attach() Attach to the devp-pccard server

pccard detach() Detach from the devp-pccard server

pccard info() Obtain socket information from the devp-pccard
server

pccard lock() Lock the window of the card in the selected socket

pccard raw read()

Read the raw CIS data from the PC Card

pccard unlock() Unlock the window of the card in the selected
socket

Platform-specific functions
These functions are for invoking Intel 80x86 and other
processor-related functions directly from a program. Functions that
apply to the Intel 8086 CPU apply to that family including the 80286,
80386, 80486 and Pentium processors.

You’ll also find endian-related functions listed here.

The following functions are defined:

44 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

ENDIAN BE16()

Return a big-endian 16-bit value in native format

ENDIAN BE32()

Return a big-endian 32-bit value in native format

ENDIAN BE64()

Return a big-endian 64-bit value in native format

ENDIAN LE16()

Return a little-endian 16-bit value in native format

ENDIAN LE32()

Return a little-endian 32-bit value in native format

ENDIAN LE64()

Return a little-endian 64-bit value in native format

ENDIAN RET16()

Return an endian-swapped 16-bit value

ENDIAN RET32()

Return an endian-swapped 32-bit value

ENDIAN RET64()

Return an endian-swapped 64-bit value

ENDIAN SWAP16()

Endian-swap a 16-bit value in place

ENDIAN SWAP32()

Endian-swap a 32-bit value in place

ENDIAN SWAP64()

Endian-swap a 64-bit value in place

intr v86() Execute a real-mode software interrupt

offsetof() Return the offset of an element within a structure

May 31, 2004 Summary of Functions 45

Summary of function categories 2004, QNX Software Systems Ltd.

sysmgr reboot()

Reboot a QNX Neutrino system

Process environment functions
These functions deal with process identification, user identification,
process groups, system identification, system time and process time,
environment variables, terminal identification, and configurable
system variables:

argc The number of arguments passed to main()

argv A pointer to the vector of arguments passed to
main()

auxv A pointer to a vector of auxiliary arguments to
main()

clearenv() Clear the process environment area

confstr() Get configuration-defined string values

ctermid() Generate the pathname of the current controlling
terminal

endutent() Close the current user-information file

environ Pointer to the process’s environment variables

err(), errx() Display a formatted error message, and then exit

errno Global error variable

getegid() Get the effective group ID

getenv() Get the value of an environment variable

geteuid() Get the effective user ID

getgid() Get the group ID

getgrouplist() Determine the group access list for a user

46 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

getgroups() Get the supplementary group IDs of the calling
process

getlogin() Get the user name associated with the calling
process

getlogin r() Get the user name associated with the calling
process

getopt() Parse options from a command line

getpgid() Get a process’s group ID

getpgrp() Get the process group

getpid() Get the process ID

getppid() Get the parent process ID

getsid() Get the session ID of a process

getuid() Get the user ID

getutent() Read the next entry from the user-information file

getutid() Search for an entry in the user-information file

getutline() Get an entry from the user-information file

initgroups() Initialize the supplementary group access list

isatty() Test to see if a file descriptor is associated with a
terminal

login tty() Prepare for a login in a tty

main() The function where program execution begins

ND NODE CMP()

Compare two node descriptor IDs

netmgr ndtostr() Convert a node descriptor into a string

May 31, 2004 Summary of Functions 47

Summary of function categories 2004, QNX Software Systems Ltd.

netmgr remote nd()

Get a node descriptor that’s relative to a remote
node

netmgr strtond() Convert a string into a node descriptor

progname The basename of the program being executed

putenv() Add, change, or delete an environment variable

pututline() Write an entry in the user-information file

searchenv() Search the directories listed in an environment
variable

setegid() Set the effective group ID for a process

setenv() Set one or more environment variables

seteuid() Set the effective user ID

setgid() Set the real, effective and saved group IDs

setgroups() Set supplementary group IDs

setlocale() Set a program’s locale.

setpgid() Join or create a process group

setpgrp() Set the process group

setregid() Set real and effective group IDs

setreuid() Set real and effect user IDs

setsid() Create a new session

setuid() Set the real, effective and saved user IDs

setutent() Return to the beginning of the user-information
file

strerror() Convert an error number into an error message

48 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

sysconf() Return the value of a configurable system limit

ttyname() Get a fully qualified pathname for a file

ttyname r() Get a fully qualified pathname for a file

unsetenv() Remove an environment variable

utmp Entry in a user-information file

utmpname() Change the name of the user-information file

verr(), verrx() Display a formatted error message, and then exit
(varargs)

vwarn(), vwarnx()

Formatted error message (varargs)

warn(), warnx() Formatted error message

Process manipulation functions
These functions deal with: process creation, execution, and
termination; signal handling; and timer operations.

When you start a new process, it replaces the existing process if:

� You specify P OVERLAY when calling one of the spawn*
functions.

� You call one of the exec* routines.

The existing process may be suspended while the new process
executes (control continues at the point following the place where the
new process was started) in the following situations:

� You specify P WAIT when calling one of the spawn* functions.

� You call system().

The following functions are defined:

May 31, 2004 Summary of Functions 49

Summary of function categories 2004, QNX Software Systems Ltd.

abort() Raise the SIGABRT signal to terminate program
execution

alarm() Schedule an alarm

assert() Print a diagnostic message and optionally
terminate the program

atexit() Register functions to be called when the program
terminates normally

ConnectAttach(), ConnectAttach r()

Establish a connection between a process and a
channel

ConnectClientInfo(), ConnectClientInfo r()

Store information about a client connection

ConnectDetach(), ConnectDetach r()

Break a connection between a process and a
channel

ConnectFlags(), ConnectFlags r()

Modify the flags associated with a connection

ConnectServerInfo(), ConnectServerInfo r()

Store information about a connection

daemon() Run a program in the background

DebugBreak() Enter the process debugger

DebugKDBreak()

Enter the kernel debugger

DebugKDOutput()

Print text with the kernel debugger

delay() Suspend a process for a given length of time

dladdr() Translate an address to symbolic information

50 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

dlclose() Close a shared object

dlerror() Get dynamic loading diagnostic information

dlopen() Gain access to an executable object file

dlsym() Get the address of a symbol in a shared object

execl() Execute a file

execle() Execute a file

execlp() Execute a file

execlpe() Execute a file

execv() Execute a file

execve() Execute a file

execvp() Execute a file

execvpe() Execute a file

exit() Terminate the program

exit() Terminate the program

fork() Create a new process

forkpty() Create a new process operating in a pseudo-tty

getrlimit(), getrlimit64()

Get the limit on a system resource

getprio() Get the priority of a given process

InterruptAttach(), InterruptAttach r()

Attach an interrupt handler to an interrupt source

InterruptAttachEvent(), InterruptAttachEvent r()

Attach an event to an interrupt source

May 31, 2004 Summary of Functions 51

Summary of function categories 2004, QNX Software Systems Ltd.

InterruptDetach(), InterruptDetach r()

Detach an interrupt handler by ID

InterruptDisable()

Disable hardware interrupts

InterruptEnable()

Enable hardware interrupts

InterruptHookIdle()

Attach an “idle” interrupt handler

InterruptHookTrace()

Attach the pseudo interrupt handler that the
instrumented module uses

InterruptLock() Protect critical sections of an interrupt handler

InterruptMask() Disable a hardware interrupt

InterruptUnlock()

Release a critical section locked with
InterruptLock()

InterruptUnmask()

Enable a hardware interrupt

InterruptWait(), InterruptWait r()

Wait for a hardware interrupt

intr v86() Execute a real-mode software interrupt

kill() Send a signal to a process or a group of processes

killpg() Send a signal to a process group

nap() Sleep for a given number of milliseconds

napms() Sleep for a given number of milliseconds

nice() Change the priority of a process

52 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

openpty() Find an available pseudo-tty

pause() Suspend the process until delivery of a signal

procmgr daemon()

Run a process in the background

procmgr event notify()

Ask to be notified of system-wide events

procmgr event trigger()

Trigger a global system event

procmgr guardian()

Let a daemon process takeover as parent =
guardian

procmgr session()

Provide process manager session support

raise() Signal an exceptional condition

SchedGet(), SchedGet r()

Get the scheduling policy for a thread

SchedInfo(), SchedInfo r()

Get scheduler information

SchedSet(), SchedSet r()

Set the scheduling policy for a thread

SchedYield(), SchedYield r()

Yield to other threads

setitimer() Set the value of an interval timer

setprio() Set the priority of a process

setrlimit(), setrlimit64()

Set the limit on a system resource

May 31, 2004 Summary of Functions 53

Summary of function categories 2004, QNX Software Systems Ltd.

sigaction() Examine or specify the action associated with a
signal

sigaddset() Add a signal to a set

sigblock() Add to the mask of signals to block

sigdelset() Delete a signal from a set

sigemptyset() Initialize a set to contain no signals

sigfillset() Initialize a set to contain all signals

sigismember() See if a given signal is in a given set

sigmask() Construct a mask for a signal number

signal() Set handling for exceptional conditions

SignalAction(), SignalAction r()

Examine and/or specify actions for signals

SignalKill(), SignalKill r()

Send a signal to a process group, process or thread

SignalProcmask(), SignalProcmask r()

Modify or examine the signal blocked mask of a
thread

SignalSuspend(), SignalSuspend r()

Suspend a process until a signal is received

SignalWaitinfo(), SignalWaitinfo r()

Select a pending signal

sigpause() Wait for a signal

sigpending() Examine the set of pending, masked signals for a
process

sigprocmask() Examine or change the signal mask for a process

54 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

sigqueue() Queue a signal to a process

sigsetmask() Set the mask of signals to block

sigsuspend() Replace the signal mask, and then suspend the
process

sigtimedwait() Wait for a signal or a timeout

sigunblock() Unblock signals

sigwait() Wait for a pending signal

sigwaitinfo() Wait for a pending signal and get its information

sleep() Suspend a process for a given length of time

spawn() Create and execute a new child process

spawnl() Create and execute a new child process

spawnle() Create and execute a new child process

spawnlp() Create and execute a new child process

spawnlpe() Create and execute a new child process

spawnp() Create and execute a new child process

spawnv() Create and execute a new child process

spawnve() Create and execute a new child process

spawnvp() Create and execute a new child process

spawnvpe() Create and execute a new child process

SyncCondvarSignal(), SyncCondvarSignal r()

Wake up any threads that are blocked on a
synchronization object

SyncCondvarWait(), SyncCondvarWait r()

Block a thread on a synchronization object

May 31, 2004 Summary of Functions 55

Summary of function categories 2004, QNX Software Systems Ltd.

SyncCtl(), SyncCtl r()

Perform an operation on a synchronization object

SyncDestroy(), SyncDestroy r()

Destroy a synchronization object

SyncMutexEvent(), SyncMutexEvent r()

Attach an event to a mutex

SyncMutexLock(), SyncMutexLock r()

Lock a mutex synchronization object

SyncMutexUnlock(), SyncMutexUnlock r()

Unlock a mutex synchronization object

SyncMutexRevive(), SyncMutexRevive r()

Revive a mutex that’s in the DEAD state

SyncSemPost(), SyncSemPost r()

Increment a semaphore

SyncSemWait(), SyncSemWait r()

Wait on a semaphore

system() Execute a system command

SYSPAGE CPU ENTRY()

Return a CPU-specific entry from the system page

SYSPAGE ENTRY()

Return an entry from the system page

syspage ptr A pointer to the system page

ThreadCancel(), ThreadCancel r()

Cancel a thread

ThreadCreate(), ThreadCreate r()

Create a new thread

56 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

ThreadCtl(), ThreadCtl r()

Control a thread

ThreadDestroy(), ThreadDestroy r()

Destroy a thread immediately

ThreadDetach(), ThreadDetach r()

Detach a thread from a process

ThreadJoin(), ThreadJoin r()

Block until a thread terminates

TraceEvent() Trace kernel events

ualarm() Schedule an alarm

usleep() Suspend a thread for a given number of
microseconds

vfork() Spawn a new process and block the parent

wait() Wait for the status of a terminated child process

wait3() Wait for a child process to change state

wait4() Wait for a child process to terminate or stop

waitid() Wait for a child process to change state

waitpid() Suspend the calling process

There are eight spawn*() and exec*() functions each. The * is one to
three letters, where:

� l or v (one is required) indicates the way the process parameters
are passed

� p (optional) indicates that the PATH environment variable is
searched to locate the program for the process

� e (optional) indicates that the environment variables are being
passed

May 31, 2004 Summary of Functions 57

Summary of function categories 2004, QNX Software Systems Ltd.

Realtime timer functions
These functions provide realtime timer capabilities:

clock getres() Get the resolution of the clock

clock gettime() Get the current time of a clock

clock nanosleep()

High resolution sleep with specifiable clock

clock settime() Set a clock

getitimer() Get the value of an interval timer

nanosleep() Suspend process until a timeout or signal occurs

nanospin() Busy-wait without thread blocking for a period of
time

nanospin calibrate()

Calibrate before calling nanospin*()

nanospin count()

Busy-wait without blocking for a number of
iterations

nanospin ns() Busy-wait without blocking for a period of time

nanospin ns to count()

Convert a time in nanoseconds into a number of
iterations

sched getparam()

Get the current priority of a process

sched get priority adjust()

Calculate the allowable priority for the scheduling
policy

58 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

sched get priority max()

Get the maximum value for the scheduling policy

sched get priority min()

Get the minimum value for the scheduling policy

sched getscheduler()

Get the current scheduling policy for a process

sched param Structure that describes scheduling parameters

sched rr get interval()

Get the execution time limit of a process

sched setparam()

Change the priority of a process

sched setscheduler()

Change the priority and scheduling policy of a
process

sched yield() Yield to other READY processes at the same
priority

timer create() Create a timer

timer delete() Delete a timer

timer getexpstatus()

Get the expiry status of a timer

timer getoverrun()

Return the number of timer overruns

timer gettime() Get the amount of time left on a timer

timer settime() Set the expiration time for a timer

May 31, 2004 Summary of Functions 59

Summary of function categories 2004, QNX Software Systems Ltd.

Resource manager functions
These functions help you create resource managers. For an overview
of these functions, see “Components of a resource manager” in the
Writing a Resource Manager chapter of the QNX Neutrino
Programmer’s Guide.

io connect Structure of a resource manager’s connect message

io connect ftype reply

Structure of a connect message giving a status and
a file type

io connect link reply

Structure of a connect message that redirects a
client to another resource

iofdinfo() Retrieve server attributes

iofunc attr init()

Initialize the default attribute structure

iofunc attr lock()

Lock the attribute structure

iofunc attr t

Attribute structure

iofunc attr trylock()

Try to lock the attribute structure

iofunc attr unlock()

Unlock the attribute structure

iofunc check access()

Check access permissions

iofunc chmod() Handle an IO CHMOD message

60 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

iofunc chmod default()

Default handler for IO CHMOD messages

iofunc chown() Handle an IO CHOWN message

iofunc chown default()

Default handler for IO CHOWN messages

iofunc client info()

Return information about a client connection

iofunc close dup()

Frees all locks allocated for the client process

iofunc close dup default()

Default handler for IO CLOSE messages

iofunc close ocb()

Return the memory allocated for an OCB

iofunc close ocb default()

Return the memory allocated for an OCB

iofunc devctl() Handle an IO DEVCTL message

iofunc devctl default()

Default handler for IO DEVCTL messages

iofunc fdinfo() Handle an IO FDINFO message

iofunc fdinfo default()

Default handler for IO FDINFO messages

iofunc func init()

Initialize the default POSIX-layer function tables

iofunc link() Link two directories

iofunc lock() Lock a resource

May 31, 2004 Summary of Functions 61

Summary of function categories 2004, QNX Software Systems Ltd.

iofunc lock calloc()

Allocate memory to lock structures

iofunc lock default()

Default handler for IO LOCK messages

iofunc lock free()

Return memory allocated for lock structures

iofunc lock ocb default()

Default handler for the lock ocb callout

iofunc lseek() Handle an IO LSEEK message

iofunc lseek default()

Default handler for IO LSEEK message

iofunc mknod() Verify a client’s ability to make a new filesystem
entry point

iofunc mmap() Handle an IO MMAP message

iofunc mmap default()

Default handler for IO MMAP messages

iofunc notify() Install, poll, or remove a notification handler

iofunc notify remove()

Remove notification entries from list

iofunc notify trigger()

Send notifications to queued clients

iofunc ocb attach()

Initialize an Open Control Block

iofunc ocb calloc()

Allocate an iofunc OCB

62 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

iofunc ocb detach()

Release OCB resources

iofunc ocb free()

Deallocate an iofunc OCBs memory

iofunc ocb t Open Control Block structure

iofunc open() Verify a client’s ability to open a resource

iofunc open default()

Default handler for IO CONNECT messages

iofunc openfd() Increment count and locking flags

iofunc openfd default()

Default handler for IO OPENFD messages

iofunc pathconf()

Support pathconf() requests

iofunc pathconf default()

Default handler for IO PATHCONF messages

iofunc read default()

Default handler for IO READ messages

iofunc readlink()

Verify a client’s ability to read a symbolic link

iofunc read verify()

Verify a client’s read access to a resource

iofunc rename() Do permission checks for a
IO CONNECT RENAME message

iofunc space verify()

Do permission checks for IO SPACE message

iofunc stat() Populate a stat structure

May 31, 2004 Summary of Functions 63

Summary of function categories 2004, QNX Software Systems Ltd.

iofunc stat default()

Default handler for IO STAT messages

iofunc sync() Indicate if synchronization is needed

iofunc sync default()

Default handler for IO SYNC messages

iofunc sync verify()

Verify permissions to sync

iofunc time update()

Update time stamps

iofunc unblock()

Unblock OCBs

iofunc unblock default()

Default unblock handler

iofunc unlink() Verify that an entry can be unlinked

iofunc unlock ocb default()

Default handler for the unlock ocb callout

iofunc utime() Update time stamps

iofunc utime default()

Default handler for IO UTIME messages

iofunc write default()

Default handler for IO WRITE messages

iofunc write verify()

Verify a client’s write access to a resource

ionotify() Arm a resource manager

mount() Mount a filesystem

64 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

mount parse generic args()

Strip off common mount arguments

resmgr devino() Get the device and inode number

resmgr open bind()

Associate an OCB with a process

rsrcdbmgr attach()

Reserve a system resource for a process

rsrcdbmgr create()

Create a system resource

rsrcdbmgr destroy()

Destroy a system resource

rsrcdbmgr detach()

Return a system resource to the resource database

rsrcdbmgr devno attach()

Get a major and minor number

rsrcdbmgr devno detach()

Detach a major and minor number

rsrcdbmgr query()

Query the resource database

umount() Unmount a filesystem

Searching and sorting functions
These functions provide searching and sorting capabilities (Some of
these functions have wide-character versions in the “Wide-character
functions” section of the function summary.):

alphasort() Compare two directory entries

May 31, 2004 Summary of Functions 65

Summary of function categories 2004, QNX Software Systems Ltd.

bsearch() Perform a binary search on a sorted array

ffs() Find the first bit set in a bit string

hcreate() Create a hash search table

hdestroy() Destroy the hash search table

hsearch() Search the hash search table

index() Find a character in a string

lfind() Find entry in a linear search table

lsearch() Linear search and update

pathfind(), pathfind r()

Search for a file in a list of directories

qsort() Sort an array, using a modified Quicksort algorithm

re comp() Compile a regular expression

re exec() Execute a regular expression

regcomp() Compile a regular expression

regerror() Explain a regular expression error code

regexec() Compare a string with a compiled regular expression

regfree() Release memory allocated for a regular expression

rindex() Find a character in a string

strcspn() Count the characters at the beginning of a string that
aren’t in a character set

strstr() Find one string inside another

66 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

Shared memory functions
These functions provide memory mapping capabilities:

mmap(), mmap64()

Map a memory region into a process address space

mprotect() Change memory protection

munmap() Unmap previously mapped addresses

shm ctl() Give special attributes to a shared memory object

shm open() Open a shared memory object

shm unlink() Remove a shared memory object

Signal functions
These functions deal with handling and sending signals.

DebugBreak() Enter the process debugger

DebugKDBreak()

Enter the kernel debugger

DebugKDOutput()

Print text with the kernel debugger

kill() Send a signal to a process or a group of processes

killpg() Send a signal to a process group

pause() Suspend the process until delivery of a signal

raise() Signal an exceptional condition

sigaction() Examine or specify the action associated with a
signal

sigaddset() Add a signal to a set

May 31, 2004 Summary of Functions 67

Summary of function categories 2004, QNX Software Systems Ltd.

sigdelset() Delete a signal from a set

sigemptyset() Initialize a set to contain no signals

sigfillset() Initialize a set to contain all signals

sigismember() See if a given signal is in a given set

signal() Set handling for exceptional conditions

SignalAction(), SignalAction r()

Examine and/or specify actions for signals

SignalKill(), SignalKill r()

Send a signal to a process group, process, or
thread

SignalProcmask(), SignalProcmask r()

Modify or examine the signal blocked mask of a
thread

SignalSuspend(), SignalSuspend r()

Suspend a process until a signal is received

SignalWaitinfo(), SignalWaitinfo r()

Select a pending signal

sigpending() Examine the set of pending, masked signals for a
process

sigprocmask() Examine or change the signal mask for a process

sigqueue() Queue a signal to a process

sigsuspend() Replace the signal mask, and then suspend the
process

sigtimedwait() Wait for a signal or a timeout

sigwait() Wait for a pending signal

sigwaitinfo() Wait for a pending signal and get its information

strsignal() Return the description of a signal

68 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

Stream I/O functions
A stream is the name given to a file or device that has been opened for
data transmission. When a stream is opened, a pointer to a FILE
structure is returned. This pointer is used to reference the stream
when other functions are subsequently invoked.

When a program begins execution, a number of streams are already
open for use:

stderr Standard Error: output to the console (used for error
messages)

stdin Standard Input: input from the console

stdout Standard Output: output to the console

You can redirect these standard streams by calling freopen().

See also the section “File manipulation functions” for other functions
that operate on files.

The functions in the section “Operating system I/O functions” may
also be invoked (use the fileno() function to get the file descriptor).
Since the stream functions may buffer input and output, use these
functions with caution to avoid unexpected results.

(Some of these functions have wide-character versions in the
“Wide-character functions” section of the function summary.)

clearerr() Clear the end-of-file and error indicators for a
stream

fclose() Close a stream

fcloseall() Close all open stream files, except stdin, stdout and
stderr

fdopen() Associate a stream with a file descriptor

feof() Test the end-of-file indicator

May 31, 2004 Summary of Functions 69

Summary of function categories 2004, QNX Software Systems Ltd.

ferror() Test the error indicator for a stream

fflush() Flush the input or output buffer for a stream

fgetc() Get the next character from a file stream

fgetchar() Get a character from stdin

fgetpos() Store the current position of a stream

fgets() Get a string of characters from a stream

flushall() Clear all input buffers and write all output buffers

fopen() Open a stream

fprintf() Write output to a stream

fputc() Write a character to an output stream

fputchar() Write a character to stdout

fputs() Write a character string to an output stream

fread() Read elements of a given size from a stream

freopen() Reopen a stream

fscanf() Scan input from a stream

fseek(), fseeko() Change the read/write position of a stream

fsetpos() Set the current stream position

ftell(), ftello() Return the current read/write position of a stream

fwrite() Write a number of elements into a stream

getc() Get the next character from a stream

getchar() Get a character from stdin

getchar unlocked()

Get a character from stdin

70 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

getc unlocked() Get the next character from a stream

gets() Get a string of characters from a stream

getw() Get a word from a stream

perror() Print, in stderr, the message associated with the
value of errno

printf() Write formatted output to stdout

putc() Write a character to an output stream

putchar() Write a character to stdout

putchar unlocked()

Write a character to stdout

putc unlocked() Write a character to an output stream

puts() Write a string to stdout

putw() Put a word on a stream

rewind() Set the file position indicator to the beginning of
the stream

scanf() Scan formatted input from a stream

setbuf() Associate a buffer with a stream

setbuffer() Assign block buffering to a stream

setlinebuf() Assign line buffering to a stream

setvbuf() Associate a buffer with a stream

snprintf() Write formatted output to a character array, up to a
given max number of characters

tmpfile() Create a temporary binary file

ungetc() Push a character back onto an input stream

May 31, 2004 Summary of Functions 71

Summary of function categories 2004, QNX Software Systems Ltd.

vfprintf() Write formatted output to a file stream (varargs)

vfscanf() Scan input from a file stream (varargs)

vprintf() Write formatted output to standard output (varargs)

vscanf() Scan input from standard input (varargs)

See the section “Directory functions” for functions that are related to
directories.

String manipulation functions
A string is an array of characters (with type char) that’s terminated
with an extra null character (n0). Functions are passed only the
address of the string, since the size can be determined by searching
for the terminating character. (Some of these functions have
wide-character versions in the “Wide-character functions” section of
the function summary.)

basename() Find the part of a string after the last slash (/)

bcmp() Compare a given number of characters in two
strings

bcopy() Copy a number of characters in one string to
another

fnmatch() Check to see if a file or path name matches a
pattern

getsubopt() Parse suboptions from a string

index() Find a character in a string

input line() Get a string of characters from a file

localeconv() Set numeric formatting according to the current
locale

re comp() Compile a regular expression

72 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

re exec() Execute a regular expression

regcomp() Compile a regular expression

regerror() Explain a regular expression error code

regexec() Compare a string with a compiled regular
expression

regfree() Release memory allocated for a regular expression

rindex() Find a character in a string

sprintf() Print formatted output into a string

sscanf() Scan input from a character string

straddstr() Concatenate one string on to the end of another

strcasecmp() Compare two strings, ignoring case

strcat() Concatenate two strings

strchr() Find the first occurrence of a character in a string

strcmp() Compare two strings

strcmpi() Compare two strings, ignoring case

strcoll() Compare two strings, using the locale’s collating
sequence

strcpy() Copy a string

strcspn() Count the characters at the beginning of a string
that aren’t in a given character set

strdup() Create a duplicate of a string

strerror() Map an error number to an error message

stricmp() Compare two strings, ignoring case

strlen() Compute the length of a string

May 31, 2004 Summary of Functions 73

Summary of function categories 2004, QNX Software Systems Ltd.

strlwr() Convert a string to lowercase

strncasecmp() Compare two strings, ignoring case, up to a given
length

strncat() Concatenate two strings, up to a maximum length

strncmp() Compare two strings, up to a given length

strncpy() Copy a string, to a maximum length

strnicmp() Compare two strings up to a given length,
ignoring case

strnset() Fill a string with a given character, to a given
length

strpbrk() Find the first character in a string that’s in a given
character set

strrchr() Find the last occurrence of a character in a string

strrev() Reverse a string

strsep() Separate a string into pieces marked by given
delimiters

strset() Fill a string with a given character

strspn() Count the characters at the beginning of a string
that are in a given character set

strstr() Find one string inside another

strtok() Break a string into tokens

strtok r() Break a string into tokens (reentrant)

strupr() Convert a string to uppercase

strxfrm() Transform one string into another, to a given
length

vsprintf() Write formatted output to a buffer (varargs)

74 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

vsnprintf() Write formatted output to a character array, up to a
given max number of characters (varargs)

vsscanf() Scan input from a string (varargs)

For related functions see these sections:

� “Conversion functions” — conversions to and from strings

� “Time functions” — formatting of dates and times

� “Memory manipulation functions” — operating on arrays without
a terminating NUL character.

System database functions
The following functions are defined:

crypt() Encrypt a password

encrypt() Encrypt a string

endgrent() Close the group database file

endpwent() Close the password database file

endspent() Close the shadow password database file

fgetspent() Get an entry from the shadow password database

getgrent() Return an entry from the group database

getgrgid() Get information about the group with a given ID

getgrgid r() Get information about the group with a given ID

getgrnam() Get information about the group with a given name

getgrnam r() Get information about the group with a given name

getpass() Prompt for and read a password

getpwent() Get an entry from the password database

May 31, 2004 Summary of Functions 75

Summary of function categories 2004, QNX Software Systems Ltd.

getpwnam() Get information about the user with a given name

getpwnam r() Get information about the user with a given name

getpwuid() Get information about the user with a given ID

getpwuid r() Get information about the user with a given ID

getspent(), getspent r()

Get an entry from the shadow password database

getspnam(), getspnam r()

Get information about a user with a given name

putspent() Put an entry into the shadow password database

qnx crypt() Encrypt a password (QNX 4)

setkey() Set the key used in encryption

setgrent() Rewind to the start of the group database file

setpwent() Rewind the password database file

setspent() Rewind the shadow password database file

System message log functions
The following functions are defined:

closelog() Close the system log

openlog() Open the system log

setlogmask() Set the system log priority mask

slogb() Send a message to the system logger

slogf() Send a formatted message to the system logger

slogi() Send a message to the system logger

syslog() Write a message to the system log

76 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

vslogf() Send a formatted message to the system logger
(varargs)

vsyslog() Control system log (varargs)

TCP/IP functions
These functions, prototypes and structures deal with TCP/IP network
communications, database files, and the data server.

accept() Accept a connection on a socket

addrinfo TCP/IP address information

bind() Bind a name to a socket

bindresvport() Bind a socket to a privileged IP port

connect() Initiate connection on a socket

dn comp() Compress an Internet domain name

dn expand() Expand a compressed Internet domain name

ds clear() Delete a data server variable

ds create() Create a data server variable

ds deregister() Deregister an application with the data server

ds flags() Set the flags for a data server variable

ds get() Retrieve a data server variable

ds register() Register an application with the data server

ds set() Set a data server variable

endhostent() Close the TCP connection and the hosts file

endnetent() Close the network database

endprotoent() Close protocol name database file

May 31, 2004 Summary of Functions 77

Summary of function categories 2004, QNX Software Systems Ltd.

endservent() Close network services database file

freeaddrinfo() Free an address information structure

freeifaddrs() Free an address information structure

gai strerror() Return the string associated with a getaddrinfo()
error code

getaddrinfo() Get address information

getdomainname()

Get the domain name of the current host

gethostbyaddr() Get a network host entry, given an Internet address

gethostbyaddr r()

Get a network host entry, in a thread-safe manner

gethostbyname() Get a network host entry, given a name

gethostbyname2()

Get a network host entry, given a name

gethostbyname r()

Get a network host entry by name

gethostent() Get the next entry from the host database

gethostent r() Get the next entry from the host database

gethostname() Get the name of the current host

getifaddrs() Get a network interface address

getnetbyaddr() Get network entry

getnetbyname() Get network entry

getnetent() Get an entry from the network database

getpeername() Get name of connected peer

78 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

getprotobyname()

Get protocol entry

getprotobynumber()

Get protocol entry by number

getprotoent() Read next line of protocol name database file

getservbyname() Get service entry

getservbyport() Get service entry for a port

getservent() Read the next line of network services database
file

getsockname() Get socket name

getsockopt() Get options on socket name

h errno Host error variable

herror() Print the message associated with the value of
h errno to standard error

hostent Structure that describes an Internet host

hstrerror() Get an error message string associated with the
error return status

htonl() Convert a 32-bit value from host-byte order to
network-byte order

htons() Convert a 16-bit value from host-byte order to
network-byte order

ICMP Internet Control Message Protocol

ICMP6 Internet Control Message Protocol for IPv6

if freenameindex()

Free dynamic memory allocated by if nameindex()

May 31, 2004 Summary of Functions 79

Summary of function categories 2004, QNX Software Systems Ltd.

if indextoname() Map an interface index to its name

if nameindex() Return a list of interfaces

if nametoindex() Map an interface name to its index

ifaddrs() Structure that describes an Internet host

inet addr() Convert a string into an Internet address

inet aton() Convert a string into an Internet address

inet lnaof() Convert an Internet address into a local network
address

inet makeaddr() Convert a network number and a local network
address into an Internet address

inet net ntop() Convert an Internet network number to CIDR
format

inet netof() Convert Internet address into a network number

inet net pton() Convert an Internet network number from CIDR
format to network format

inet network() Convert a string into an Internet network number

inet ntoa() Convert an Internet address into a string

inet ntoa r() Convert an Internet address into a string

inet ntop() Convert a numeric network address to a string

inet pton() Convert a text host address to a numeric network
address

INET6 Internet Protocol version 6 family

IP Internet Protocol

IPsec Internet security protocol

80 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

ipsec dump policy()

Generate readable string from IPsec policy
specification

ipsec get policylen()

Get length of the IPsec policy

ipsec strerror() Error code for IPsec policy manipulation library

ipsec set policy() Generate IPsec policy specification structure from
readable string

IPv6 Internet Protocol version 6

isfdtype() Determine whether a file descriptor refers to a
socket

listen() Listen for connections on a socket

nbaconnect() Initiate a connection on a socket (nonblocking)

nbaconnect result()

Get the status of the previous call to nbaconnect()

netent Structure for information from the network
database

ntohl() Convert network-byte order value

ntohs() Convert network-byte order value

protoent Structure for information from the protocol
database

Raccept() Accept a connection on a socket (via a SOCKS
server)

Rbind() Bind a name to a socket (via a SOCKS server)

rcmd() Execute a command on a remote host

May 31, 2004 Summary of Functions 81

Summary of function categories 2004, QNX Software Systems Ltd.

Rconnect() Initiate a connection on a socket (via a SOCKS
server)

read main config file()

Read the snmpd.conf file

recv() Receive a message from a socket

recvfrom() Receive a message from a socket

recvmsg() Receive a message from a socket

res init() Initialize the Internet domain name resolver
routines

res mkquery() Construct an Internet domain name query

res query() Make an Internet domain name query

res querydomain()

Query the local Internet domain name server

res search() Make an Internet domain name search

res send() Send a preformatted Internet domain name query

Rgetsockname() Get the name of a socket (via a SOCKS server)

Rlisten() Listen for connections on a socket (via a SOCKS
server)

ROUTE System packet forwarding database

Rrcmd() Execute a command on a remote host (via a
SOCKS server)

rresvport() Obtain a socket with a privileged address

Rselect() Check for descriptors that are ready for reading or
writing (via a SOCKS server)

ruserok() Check the identity of a remote host

82 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

send() Send a message to a socket

sendmsg() Send a message to a socket

sendto() Send a message to a socket

servent Structure for information from the services
database

setdomainname()

Set the domain name of the current host

sethostent() Set the local hosts entry

sethostname() Set the name of the current host

setnetent() Open the network database

setprotoent() Open protocol name database file

setservent() Open network services database file

setsockopt() Set options on socket name

shutdown() Shut down part of a full-duplex connection

snmp close() Close an SNMP session

snmp free pdu() Free an SNMP message structure

snmp open() Open an SNMP session

snmp pdu Structure that describes an SNMP Protocol Data
Unit (transaction)

snmp pdu create()

Create an SNMP Protocol Data Unit message
structure

snmp read() Read an SNMP message

snmp select info()

Get information that select() needs for SNMP

May 31, 2004 Summary of Functions 83

Summary of function categories 2004, QNX Software Systems Ltd.

snmp send() Send SNMP messages

snmp session Structure that defines a set of transactions with
similar transport characteristics

snmp timeout() Timeout during an SNMP session

sockatmark() Determine whether a socket is at the out-of-band
mark

socket() Create an endpoint for communication

socketpair() Create a pair of connected sockets or a
bi-directional pipe

SOCKSinit() Initialize a connection with a SOCKS server

sysctl() Get or set the system information

TCP Internet Transmission Control Protocol

UDP Internet User Datagram Protocol

UNIX UNIX-domain protocol family

Terminal control functions
The following functions are defined:

cfgetispeed() Return the input baud rate that’s stored in a
termios structure

cfgetospeed() Return the output baud rate that’s stored in a
termios structure

cfmakeraw() Set terminal attributes

cfsetispeed() Set the input baud rate in a termios structure

cfsetospeed() Set the output baud rate in a termios structure

tcdrain() Wait until all output has been transmitted to a
device

84 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

tcdropline() Disconnect a communications line

tcflow() Perform a flow-control operation on a data stream

tcflush() Flush the input and/or output stream

tcgetattr() Get the current terminal control settings

tcgetpgrp() Get the process group ID associated with a device

tcgetsid() Get the process group ID of the session leader for a
controlling terminal

tcgetsize() Get the size of a character device

tcinject() Inject characters into a devices input buffer

tcischars() Determine the number of characters waiting to be
read

tcsendbreak() Assert a break condition over a communications
line

tcsetattr() Change the terminal control settings for a device

tcsetpgrp() Set the process group ID for a device

tcsetsid() Make a terminal device a controlling device

tcsetsize() Set the size of a character device

termios Terminal control structure

Thread functions
These functions deal with threads and the objects used to synchronize
threads:

pthread abort() Unconditionally terminate the target thread

pthread atfork() Register fork handlers

May 31, 2004 Summary of Functions 85

Summary of function categories 2004, QNX Software Systems Ltd.

pthread attr destroy()

Destroy the thread attribute object

pthread attr getdetachstate()

Get the thread detach state attribute

pthread attr getguardsize()

Get the thread guardsize attribute

pthread attr getinheritsched()

Get the thread inherit scheduling attribute

pthread attr getschedparam()

Get the thread scheduling parameters attribute

pthread attr getschedpolicy()

Get the thread scheduling policy attribute

pthread attr getscope()

Get the thread contention scope attribute

pthread attr getstackaddr()

Get the thread stack address attribute

pthread attr getstacklazy()

Get thread stack attribute

pthread attr getstacksize()

Get the thread stack size attribute

pthread attr init()

Initialize thread attribute object

pthread attr setdetachstate()

Set the thread detach state attribute

pthread attr setguardsize()

Set the thread guardsize attribute

86 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

pthread attr setinheritsched()

Set the thread inherit scheduling attribute

pthread attr setschedparam()

Set the thread scheduling parameters attribute

pthread attr setschedpolicy()

Set the thread scheduling policy attribute

pthread attr setscope()

Set the thread contention scope attribute

pthread attr setstackaddr()

Set the thread stack address attribute

pthread attr setstacklazy()

Set thread stack attribute

pthread attr setstacksize()

Set the thread stack size attribute

pthread barrierattr destroy()

Destroy barrier attributes object

pthread barrierattr getpshared()

Get process-shared attribute of barrier attributes
object

pthread barrierattr init()

Initialize barrier attributes object

pthread barrierattr setpshared()

Set process-shared attribute of barrier attributes
object

pthread barrier destroy()

Destroy a barrier object

May 31, 2004 Summary of Functions 87

Summary of function categories 2004, QNX Software Systems Ltd.

pthread barrier init()

Initialize a barrier object

pthread barrier wait()

Synchronize at a barrier

pthread cancel() Cancel thread

pthread cleanup pop()

Pop the cancellation cleanup handler

pthread cleanup push()

Push the cancellation cleanup handler

pthread condattr destroy()

Destroy the condition variable attribute object

pthread condattr getclock()

Get the clock selection condition variable attribute

pthread condattr getpshared()

Get the process-shared attribute from a condition
variable attribute object

pthread condattr init()

Initialize the condition variable attribute object

pthread condattr setclock()

Set the clock selection condition variable attribute

pthread condattr setpshared()

Set the process-shared attribute in a condition
variable attribute object

pthread cond broadcast()

Unblock threads waiting on a condition

pthread cond destroy()

Destroy the condition variable

88 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

pthread cond init()

Initialize the condition variable

pthread cond signal()

Unblock the thread waiting on condition variable

pthread cond timedwait()

Timed wait on the condition variable

pthread cond wait()

Wait on the condition variable

pthread create() Create a thread

pthread detach() Detach a thread from a process

pthread equal() Compare two thread IDs

pthread exit() Terminate the thread

pthread getconcurrency()

Get the level of thread concurrency

pthread getcpuclockid()

Return the clock ID of the CPU-time clock from a
specified thread

pthread getschedparam()

Get the thread scheduling parameters

pthread getspecific()

Get the thread specific data value

pthread join() Join the thread

pthread key create()

Create the thread-specific data key

pthread key delete()

Delete the thread-specific data key

May 31, 2004 Summary of Functions 89

Summary of function categories 2004, QNX Software Systems Ltd.

pthread kill() Send a signal to a thread

pthread mutexattr destroy()

Destroy the mutex attribute object

pthread mutexattr getprioceiling()

Get the priority ceiling of a mutex attribute object

pthread mutexattr getprotocol()

Get a mutex’s scheduling protocol

pthread mutexattr getpshared()

Get the process-shared attribute from a mutex
attribute object

pthread mutexattr getrecursive()

Get the recursive attribute from a mutex attribute
object

pthread mutexattr gettype()

Get a mutex type

pthread mutexattr init()

Initialize a mutex attribute object

pthread mutexattr setprioceiling()

Set the priority ceiling of a mutex attribute object

pthread mutexattr setprotocol()

Set a mutex’s scheduling protocol

pthread mutexattr setpshared()

Set the process-shared attribute in a mutex
attribute object

pthread mutexattr setrecursive()

Set the recursive attribute in a mutex attribute
object

90 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

pthread mutexattr settype()

Set a mutex type

pthread mutex destroy()

Destroy a mutex

pthread mutex getprioceiling()

Get a mutex’s priority ceiling

pthread mutex init()

Initialize a mutex

pthread mutex lock()

Lock a mutex

pthread mutex setprioceiling()

Set a mutex’s priority ceiling

pthread mutex timedlock()

Lock a mutex

pthread mutex trylock()

Attempt to lock a mutex

pthread mutex unlock()

Unlock a mutex

pthread once() Dynamic package initialization

pthread sleepon timedwait()

Make a thread sleep while waiting

pthread timedjoin()

Join a thread, with a time limit

pthread rwlockattr destroy()

Destroy a read-write lock attribute object

May 31, 2004 Summary of Functions 91

Summary of function categories 2004, QNX Software Systems Ltd.

pthread rwlockattr getpshared()

Get the process-shared attribute of a read-write
lock attribute object

pthread rwlockattr init()

Create a read-write lock attribute object

pthread rwlockattr setpshared()

Set the process-shared attribute of a read-write
lock attribute object

pthread rwlock destroy()

Destroy a read/write lock

pthread rwlock init()

Initialize a read/write lock

pthread rwlock rdlock()

Acquire a shared read lock on a read/write lock

pthread rwlock timedrdlock()

Lock a read-write lock for writing

pthread rwlock timedwrlock()

Attempt to acquire an exclusive write lock on a
read/write lock

pthread rwlock tryrdlock()

Attempt to acquire a shared read lock on a
read/write lock

pthread rwlock trywrlock()

Attempt to acquire an exclusive write lock on a
read/write lock

pthread rwlock unlock()

Unlock a read/write lock

92 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

pthread rwlock wrlock()

Acquire an exclusive write lock on a read/write
lock

pthread self() Get the calling thread’s ID

pthread setcancelstate()

Set a thread’s cancellation state

pthread setcanceltype()

Set a thread’s cancellation type

pthread setconcurrency()

Set the concurrency level for a thread

pthread setschedparam()

Set the thread scheduling parameters

pthread setspecific()

Set a thread-specific data value

pthread sigmask()

Examine and change blocked signals

pthread sleepon broadcast()

Unblock waiting threads

pthread sleepon lock()

Lock the pthread sleepon*() functions

pthread sleepon signal()

Signal a sleeping thread

pthread sleepon unlock()

Unlock the pthread sleepon*() functions

pthread sleepon wait()

Make a thread sleep while waiting

May 31, 2004 Summary of Functions 93

Summary of function categories 2004, QNX Software Systems Ltd.

pthread spin destroy()

Destroy a thread spinlock

pthread spin init()

Initialize a thread spinlock

pthread spin lock()

Lock a thread spinlock

pthread spin trylock()

Try to lock a thread spinlock

pthread spin unlock()

Unlock a thread spinlock

pthread testcancel()

Test the thread cancellation

sleepon broadcast()

Wake up multiple threads

sleepon destroy()

Destroy a sleepon lock

sleepon init() Initialize a sleepon lock

sleepon lock() Lock a sleepon lock

sleepon signal()

Wake up a single thread

sleepon unlock()

Unlock a sleepon lock

sleepon wait() Wait on a sleepon lock

94 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

Time functions
These functions are concerned with dates and times. (Some of these
functions have wide-character versions in the “Wide-character
functions” section of the function summary.)

asctime(), asctime r()

Convert time information to a string

clock() Return the number of clock ticks used by the
program

ClockAdjust(), ClockAdjust r()

Adjust the time of a clock

ClockCycles() Get the number of clock cycles

clock getcpuclockid()

Return the clock ID of the CPU-time clock from a
specified process

ClockId(), ClockId r()

Get a clock ID for a given process and thread

ClockPeriod(), ClockPeriod r()

Get or set a clock period

ClockTime(), ClockTime r()

Get or set a clock

ctime(), ctime r()

Convert calendar time to local time

daylight Indicator of support for daylight saving time in the
locale

difftime() Calculate the difference between two times

ftime() Get the current time, and store it in a structure

May 31, 2004 Summary of Functions 95

Summary of function categories 2004, QNX Software Systems Ltd.

gettimeofday() Get the current time

gmtime() Convert calendar time to a broken-down time

gmtime r() Convert calendar time to a broken-down time

localtime() Convert calendar time to local time

localtime r() Convert calendar time to local time

mktime() Convert local time to calendar time

settimeofday() Set the time and date

strftime() Format a time into a string

time() Determine the current calendar time

TimerAlarm(), TimerAlarm r()

Send an alarm signal

TimerCreate(), TimerCreate r()

Create a timer for a process

TimerDestroy(), TimerDestroy r()

Destroy a process timer

TimerInfo(), TimerInfo r()

Get information about a timer

TimerSettime(), TimerSettime r()

Set the expiration time for a timer

timer timeout(), timer timeout r()

Set a timeout on a blocking state

TimerTimeout(), TimerTimeout r()

Set a timeout on a blocking state

times() Get time-accounting information

96 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

timezone The number of seconds by which the local time
zone is earlier than UTC

tm Structure that describes calendar time

tzname The abbreviations for the time zone for standard
and daylight savings time

tzset() Set the time according to the current time zone

Variable-length argument list functions
Variable-length argument lists are used when a function doesn’t have
a fixed number of arguments. These macros provide the capability to
access these arguments:

va arg() Get the next item in a list of variable arguments

va copy() Make a copy of a variable argument list

va end() Finish getting items from a variable argument list

va start() Start getting items from a variable argument list

Wide-character functions
If your application must use international characters, you’ll probably
need to work with Unicode and wide characters. The functions in this
section are wide-character versions of many functions from the
following function summary categories:

� Character manipulation functions

� Memory manipulation functions

� Stream I/O functions

� String manipulation functions

� Time functions

May 31, 2004 Summary of Functions 97

Summary of function categories 2004, QNX Software Systems Ltd.

� Multibyte character functions

� Searching and sorting functions

The functions are:

btowc() Convert a single-byte character to a wide character

fgetwc() Read a wide character from a stream

fgetws() Read a string of wide characters from a stream

fputwc() Write a wide character to a stream

fputws() Write a wide character string to an output stream

fwide() Set the stream orientation

fwprintf() Write wide-character output to a stream

fwscanf() Scan wide-character input from a stream

getwc() Read a wide character from stdin

getwchar() Read a wide character from a stream

iswalnum() Test for an alphabetic or a decimal digit wide
character

iswalpha() Test for an alphabetic wide character

iswcntrl() Test for a control wide character

iswctype() Test for an alphabetic or a decimal digit wide
character

iswdigit() Test for a decimal digit wide character

iswgraph() Test for any graphical wide character

iswlower() Test for a lowercase letter wide character

iswprint() Test for a printable wide character

98 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

iswpunct() Test for any punctuation wide character

iswspace() Test for a whitespace wide character

iswupper() Test for an uppercase wide character

iswxdigit() Test for any hexadecimal digit wide character

putwc() Write a wide character to a stream

putwchar() Write a wide character to a stdout

swprintf() Print formatted wide-character output into a string

swscanf() Scan input from a wide character string

towctrans() Convert a wide character in a specified manner

towlower() Convert a wide character to lowercase

towupper() Convert a wide character to uppercase

ungetwc() Push a wide character back onto an input stream

vfwprintf() Write formatted wide-character output to a file
(varargs)

vfwscanf() Scan input from a file (varargs)

vswprintf() Write formatted wide-character output to a buffer
(varargs)

vswscanf() Scan input from a string (varargs)

vwprintf() Write formatted wide-character output to standard
output (varargs)

vwscanf() Scan input from standard input (varargs)

wcrtomb() Convert a wide-character code into a multibyte
character (restartable)

wcscat() Concatenate two wide-character strings

May 31, 2004 Summary of Functions 99

Summary of function categories 2004, QNX Software Systems Ltd.

wcschr() Find the first occurrence of a wide character in a
string

wcscmp() Compare two wide-character strings

wcscoll() Compare two wide-character strings, using the
locale’s collating sequence

wcscpy() Copy a wide-character string

wcscspn() Count the wide characters at the beginning of a
string that aren’t in a given character set

wcsftime() Format the time into a wide-character string

wcslen() Compute the length of a wide-character string

wcsncat() Concatenate two wide-character strings, up to a
maximum length

wcsncmp() Compare two wide-character strings, up to a given
length

wcsncpy() Copy a wide-character string, to a maximum length

wcspbrk() Find the first wide character in a string that’s in a
given character set

wcsrtombs() Convert a wide-character string into a multibyte
character string (restartable)

wcsrchr() Find the last occurrence of a wide character in a
string

wcsspn() Count the wide characters at the beginning of a
string that are in a given character set

wcsstr() Find one wide-character string inside another

wcstod(), wcstof(), wcstold()

Convert a wide-character string into a double, float,
or long double

100 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. Summary of function categories

wcstoimax(), wcstoumax()

Convert a wide-character string into an integer

wcstok() Break a wide-character string into tokens

wcstol(), wcstoll()

Convert a wide-character string into a long or long
long

wcstombs() Convert a wide-character string into a multibyte
character string

wcstoul(), wcstoull()

Convert a wide-character string into an unsigned
long integer or unsigned long long

wcsxfrm() Transform one wide-character string into another,
to a given length

wctob() Convert a wide character into a single-byte code

wctomb() Convert a wide character into a multibyte character

wctrans() Define a wide-character mapping

wctype() Define a wide-character class

wmemchr() Locate the first occurrence of a wide character in a
buffer

wmemcmp() Compare wide characters in two buffers

wmemcpy() Copy wide characters from one buffer to another

wmemmove() Copy wide characters from one buffer to another

wmemset() Set wide characters in memory

wprintf() Write formatted wide-character output to standard
output

wscanf() Scan formatted wide-character input from standard
input

May 31, 2004 Summary of Functions 101

What’s in a function description? 2004, QNX Software Systems Ltd.

What’s in a function description?
Each description contains the following sections:

Synopsis:
This section gives the header files that should be included within a
source file that references the function or macro. It also shows an
appropriate declaration for the function or for a function that could be
substituted for a macro. This declaration isn’t included in your
program; only the header file(s) should be included.

When a pointer argument is passed to a function that doesn’t modify
the item indicated by that pointer, the argument is shown with const

before the argument. For example, the following indicates that the
array pointed at by string isn’t changed:

const char *string

Arguments:
This section gives a brief description of the arguments to the function.

Library:
The section indicates the library that you need to bind with your
application in order to use the function.

Description:
This section describes the function or macro.

Returns:
This section gives the return value (if any) for the function or macro.

102 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. What’s in a function description?

Errors:
This section describes the special values that the function might
assign to the global variable errno.

This section doesn’t necessarily list all of the values that the function
could set errno to.

�

See also:
This optional section provides a list of related functions or macros as
well as pertinent docs to look for more information.

Examples:
This optional section gives one or more examples of the use of the
function. The examples are often just code snippets, not complete
programs.

Classification:
This section tells where the function or macro is commonly found,
which may be helpful when porting code from one environment to
another. Here are the classes:

ANSI These functions or macros are defined by the
ANSI C standard.

Large-file support

These functions support 64-bit offsets.

POSIX 1003.1 These functions are specified in the document
Information technology — Portable Operating
System Interface (IEEE Std 1003.1, 1996 Edition).
This document is being replaced by POSIX Std.
1003.1-2001.

May 31, 2004 Summary of Functions 103

What’s in a function description? 2004, QNX Software Systems Ltd.

For an up-to-date status of the many POSIX drafts/standards
documents, see the PASC (Portable Applications Standards
Committee of the IEEE Computer Society) report at
http://www.pasc.org/standing/sd11.html.

�

POSIX 1003.1-2001

The standard incorporates the POSIX 1003.2-1992
and 1003.1-1996 standards, the approved drafts
(POSIX 1003.1a, POSIX 1003.1d, POSIX
1003.1g and POSIX 1003.1j) and the Standard
Unix specification. A joint technical working
group — the Austin Common Standards Revision
Group (CSRG) — was formed to merge these
standards.

POSIX 1003.1 (Realtime Extensions)

This portion of POSIX defines optional sets of
systems interfaces to support the source portability
of applications with realtime requirements.
Facilities include an efficient process creation
mechanism, additional realtime scheduling
policies, interfaces for execution time monitoring,
for interacting with special devices, for improving
I/O performance, and timeouts for blocking
functions. The scope is to take existing realtime
OS practice and add it to the base standard. The
document has been integrated into the IEEE
POSIX Std. 1003.1-2001 spec.

POSIX 1003.1 (Threads)

This portion provides the POSIX base standard
with interfaces and functionality to support the
multiple flows of control, called threads, within a
process. The facilities provided represent a small
set of syntactic and semantic extensions to
POSIX.1 in order to support a convenient interface
for multithreading functions. The document has

104 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. What’s in a function description?

been integrated into the IEEE POSIX Std.
1003.1-2001 spec.

POSIX 1003.1a Some of these functions are described in the
appendix to 1003.2 (Shell and Utilities), others are
in the System Application Program Interface (API)
[C Language] — Amendment (POSIX 1003.1a
Draft 15). The document has been integrated into
the IEEE POSIX Std. 1003.1-2001 spec.

POSIX 1003.1d (IEEE Approved Draft: Additional Realtime
Extensions)

This portion extends the system interfaces defined
by 1003.1 (Realtime Extensions). The document
has been integrated into the IEEE POSIX Std.
1003.1-2001 spec.

POSIX 1003.1g (Draft: Protocol Independent Interfaces)
This portion defines a programmatic interface for
network process-to-process communication, such
that the application may be independent of the
underlying protocols. The document has been
integrated into the IEEE POSIX Std. 1003.1-2001
spec.

POSIX 1003.1j (IEEE Approved Draft: Advanced Realtime
Extensions)

This portion extends the POSIX interfaces to
provide C-language bindings for additional
realtime functions for Typed Memory, Absolute
Nanosleep, Barrier Synchronization,
Reader/Writer Lock, Monotonic Clock, and
Synchronized Clock. The document has been
integrated into the IEEE POSIX Std. 1003.1-2001
spec.

QNX 4 These functions or macros are neither ANSI nor
POSIX. They perform a function related to the
QNX OS version 4. They may be found in other

May 31, 2004 Summary of Functions 105

What’s in a function description? 2004, QNX Software Systems Ltd.

implementations of C for personal computers with
the QNX 4 OS. Use these functions with caution if
portability is a consideration.

Any QNX 4 functions in the C library are provided only to make it
easier to port QNX 4 programs. Don’t use these in QNX Neutrino
programs.

�

QNX Neutrino These functions or macros are neither ANSI nor
POSIX. They perform a function related to the
QNX Neutrino OS. They may be found in other
implementations of C for personal computers with
the QNX OS. Use these functions with caution if
portability is a consideration.

SNMP Simple Network Management Protocol is a
network-management protocol whose base
document is RFC 1067. It’s used to query and
modify network device states.

SOCKS These functions are part of the SOCKS package
consisting of a proxy server, client programs
(rftp and rtelnet), and a library (libsocks)
for adapting other applications into new client
programs. For more information, see the appendix
SOCKS — A Basic Firewall.

Unix These Unix-class functions reside on some Unix
systems, but are outside of the POSIX or ANSI
standards.

We’ve created the following Unix categories to
differentiate:

Legacy Unix Functions included for
backwards compatibility only.
New applications shouldn’t
implement these functions.

106 Summary of Functions May 31, 2004

 2004, QNX Software Systems Ltd. What’s in a function description?

Standard Unix Functions that match XOPEN
specifications. These functions
are part of the IEEE POSIX Std.
1003.1-2001 spec.

Unix Unix functions that don’t fall into
the above two categories. ;-)

Function safety:
This section summarizes whether or not it’s safe to use the C library
functions in certain situations:

Cancellation point

Indicates whether calling a function may or may not
cause the thread to be terminated if a cancellation is
pending.

Interrupt handler

An interrupt-safe function behaves as documented even if
used in an interrupt handler. Functions flagged as
interrupt-unsafe shouldn’t be used in interrupt handlers.

Signal handler

A signal-safe function behaves as documented even if
called from a signal handler even if the signal interrupts a
signal-unsafe function.

Some of the signal-safe functions modify errno on
failure. If you use any of these in a signal handler,
asynchronous signals may have the side effect of
modifying errno in an unpredictable way. If any of the
code that can be interrupted checks the value of errno
(this also applies to library calls, so you should assume
that most library calls may internally check errno), make
sure that your signal handler saves errno on entry and
restores it on exit.

All of the above also applies to signal-unsafe functions,
with one exception: if a signal handler calls a

May 31, 2004 Summary of Functions 107

What’s in a function description? 2004, QNX Software Systems Ltd.

signal-unsafe function, make sure that signal doesn’t
interrupt a signal-unsafe function.

Thread A thread-safe function behaves as documented even if
called in a multi-threaded environment.

Most functions in the QNX Neutrino libraries are
thread-safe. Even for those that aren’t, there are still
ways to call them safely in a multi-threaded program
(e.g. by protecting the calls with a mutex). Such cases are
explained in each function’s description.

The “safety” designations documented in this manual are valid for the
this release and could change in future versions. Floating-point
functions aren’t safe to use in interrupt handlers or signal handlers.

�

For a summary, see the Summary of Safety Information appendix.

108 Summary of Functions May 31, 2004

Manifests

May 31, 2004 Manifests 109

 2004, QNX Software Systems Ltd.

Manifests are used by C/C++ for compile-time changes or inspection.
Here are the defined items:

Manifest Header file to include Description

BEGIN DECLS sys/platform.h Denotes start of C code for a
C++ compiled program.

BIGENDIAN sys/platform.h Code is compiled for a
big-endian target.

CHAR SIGNED sys/platform.h Code is compiled with the char
type defaulting to signed.

CHAR UNSIGNED sys/platform.h Code is compiled with the char
type defaulting to unsigned.

END DECLS sys/platform.h Denotes end of C code for a
C++ compiled program

INT BITS sys/platform.h The number of bits in the int
datatype.

LITTLEENDIAN sys/platform.h Code is compiled for a
little-endian target.

LONG BITS sys/platform.h The number of bits in the long
datatype.

NTO VERSION sys/neutrino.h A version number times 100
(e.g. 2.00 is 200).

PTR BITS sys/platform.h The number of bits in a void
pointer.

OPTIMIZE sys/platform.h Code is compiled for
optimization.

QNX N/A The target is for a QNX
operating system (QNX 4 or
QNX Neutrino).

continued. . .

May 31, 2004 Manifests 111

 2004, QNX Software Systems Ltd.

Manifest Header file to include Description

QNXNTO N/A The target is the QNX Neutrino
operating system.

112 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. abort()
Raise the SIGABRT signal to terminate program execution

Synopsis:
#include <stdlib.h>

void abort(void);

Library:
libc

Description:
The abort() function causes abnormal process termination to occur,
unless the signal SIGABRT is caught and the signal handler doesn’t
return. The status unsuccessful termination is returned to the invoking
process by means means of the function call raise(SIGABRT).

Under QNX Neutrino, the unsuccessful termination status value is 6.

Returns:
The abort() function doesn’t return to its caller.

Examples:
#include <stdlib.h>

int main(void)
{

int major error = 1;

if(major error)
abort();

/* You’ll never get here. */
return EXIT SUCCESS;

}

May 31, 2004 Manifests 113

abort() 2004, QNX Software Systems Ltd.

Classification:
ANSI, POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Read the Caveats

Thread Yes

Caveats:
A strictly-conforming POSIX application can’t assume that the
abort() function is safe to use in a signal handler on other platforms.

See also:
atexit(), close(), execl(), execle(), execlp(), execlpe(), execv(),
execve(), execvp(), execvpe(), exit(), exit(), getenv(), main(), putenv(),
sigaction(), signal(), spawn*() functions, system(), wait(), waitpid()

114 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. abs()
Return the absolute value of an integer

Synopsis:
#include <stdlib.h>

int abs(int j);

Arguments:
j The number you want the absolute value of.

Library:
libc

Description:
The abs() function returns the absolute value of the integer argument
j. If the result can’t be represented as an int, a warning occurs.

Returns:
The absolute value of its argument.

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

printf("%d %d %d\n", abs (-5), abs (0), abs (5));
return EXIT SUCCESS;

}

produces the following output:

5 0 5

May 31, 2004 Manifests 115

abs() 2004, QNX Software Systems Ltd.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
cabs(), fabs(), labs()

116 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. accept()
Accept a connection on a socket

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>

int accept(int s,
struct sockaddr * addr,
socklen t * addrlen);

Arguments:
s A socket that’s been created with socket().

addr A result parameter that’s filled in with the address of the
connecting entity, as known to the communications layer.
The exact format of the addr parameter is determined by
the domain in which the connection was made.

addrlen A value-result parameter. It should initially contain the
amount of space pointed to by addr; on return it contains
the actual length (in bytes) of the address returned. This
call is used with connection-based socket types,
currently with SOCK STREAM.

Library:
libsocket

Description:
The accept() function:

1 Extracts the first connection request on the queue of pending
connections.

2 Creates a new socket with the same properties of s, where s is a
socket that’s been created with socket(), bound to an address
with bind(), and is listening for connections after a listen().

May 31, 2004 Manifests 117

accept() 2004, QNX Software Systems Ltd.

3 Allocates a new file descriptor for the socket.

If no pending connections are present on the queue, and the socket
isn’t marked as nonblocking, accept() blocks the caller until a
connection is present. If the socket is marked as nonblocking and no
pending connections are present on the queue, accept() returns an
error as described below. The accepted socket may not be used to
accept more connections. The original socket s remains open.

If you do a select() for read on an unconnected socket (on which a
listen() has been done), the select() indicates when a connect request
has occurred. In this way, an accept() can be made that won’t block.
For more information, see select().

For certain protocols that require an explicit confirmation, accept()
can be thought of as merely dequeuing the next connection request
and not implying confirmation. Confirmation can be implied by a
normal read or write on the new file descriptor, and rejection can be
implied by closing the new socket.

You can obtain user-connection request data without confirming the
connection by:

� Issuing a recvmsg() call with a msg iovlen of 0 and a nonzero
msg controllen

Or

� Issuing a getsockopt() request.

Similarly, you can provide user-connection rejection information by
issuing a sendmsg() call with only the control information, or by
calling setsockopt().

Returns:
A descriptor for the accepted socket, or -1 if an error occurs (errno is
set).

118 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. accept()

Errors:
EAGAIN Insufficient resources to create the new socket.

EBADF Invalid descriptor s.

EFAULT The addr parameter isn’t in a writable part of the user
address space.

EOPNOTSUPP

The referenced socket isn’t a SOCK STREAM socket.

ESRCH Can’t find the socket manager (npm-ttcpip.so).

EWOULDBLOCK

The socket is marked nonblocking and no connections
are present to be accepted.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
bind(), close(), connect(), listen(), select(), socket()

May 31, 2004 Manifests 119

access() 2004, QNX Software Systems Ltd.

Check to see if a file or directory can be accessed

Synopsis:
#include <unistd.h>

int access(const char * path,
int amode);

Arguments:
path The path to the file or directory that you want to access.

amode The access mode you want to check. This must be either:

� F OK — test for file existence.

or a bitwise ORing of the following access permissions to
be checked, as defined in the header <unistd.h>:

� R OK — test for read permission.

� W OK — test for write permission.

� X OK — for a directory, test for search permission.
Otherwise, test for execute permission.

Library:
libc

Description:
The access() function checks to see if the file or directory specified by
path exists and if it can be accessed with the file access permissions
given by amode. However, unlike other functions (open() for
example), it uses the real user ID and real group ID in place of the
effective user and group IDs.

Returns:
0 The file or directory exists and can be accessed with the

specified mode.

-1 An error occurred (errno is set).

120 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. access()

Errors:
EACCES The permissions specified by amode are denied, or

search permission is denied on a component of the
path prefix.

EINVAL An invalid value was specified for amode.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of the path string exceeds PATH MAX, or a
pathname component is longer than NAME MAX.

ENOENT A component of the path isn’t valid.

ENOSYS The access() function isn’t implemented for the
filesystem specified in path.

ENOTDIR A component of the path prefix isn’t a directory.

EROFS Write access was requested for a file residing on a
read-only file system.

Examples:
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv)
{

if(argc!= 2) {
fprintf(stderr,

"use: readable <filename>\n");
return EXIT FAILURE;

}

if(!access(argv[1], R OK)) {
printf("ok to read %s\n", argv[1]);
return EXIT SUCCESS;

} else {
perror(argv[1]);
return EXIT FAILURE;

}
}

May 31, 2004 Manifests 121

access() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
chmod(), eaccess, errno, fstat(), open(), stat()

122 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. acos(), acosf()
Compute the arccosine of an angle

Synopsis:
#include <math.h>

double acos(double x);

float acosf(float x);

Arguments:
x The cosine for which you want to find the angle.

Library:
libm

Description:
These functions compute the arccosine (specified in radians) of x.

Returns:
The arccosine in the range (0, π).

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

int main(void)
{

printf("%f\n", acos(.5));

return EXIT SUCCESS;
}

May 31, 2004 Manifests 123

acos(), acosf() 2004, QNX Software Systems Ltd.

produces the output:

1.047197

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
asin(), atan(), atan2()

124 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. acosh(), acoshf()
Compute the inverse hyperbolic cosine

Synopsis:
#include <math.h>

double acosh(double x);

float acoshf(float x);

Arguments:
x The value for which you want to compute the inverse

hyperbolic cosine.

Library:
libm

Description:
These functions compute the inverse hyperbolic cosine (specified in
radians) of x.

Returns:
The inverse hyperbolic cosine of x (specified in radians).

Examples:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

int main(void)
{

printf("%f\n", acosh(1.5));

return EXIT SUCCESS;
}

produces the output:

0.962424

May 31, 2004 Manifests 125

acosh(), acoshf() 2004, QNX Software Systems Ltd.

Classification:
acosh() is standard Unix; acoshf() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
asinh(), atanh(), cosh(), errno

126 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. addrinfo
TCP/IP address information

Synopsis:
struct addrinfo {

int ai flags;
int ai family;
int ai socktype;
int ai protocol;
size t ai addrlen;
char * ai canonname;
struct sockaddr * ai addr;
struct addrinfo * ai next

};

Description:
The addrinfo structure describes address information for use with
TCP/IP. To get this information, call getaddrinfo(); to free a linked list
of these structures, call freeaddrinfo().

The addrinfo structure includes these members:

ai flags Flags. Includes AI PASSIVE, AI CANONNAME, and
AI NUMERICHOST. For a complete list, see
<netdb.h>.

ai family Protocol family. Includes PF UNSPEC and PF INET.
For a complete list, see <sys/socket.h>.

ai socktype Socket type. Includes SOCK STREAM and
SOCK DGRAM. For a complete list, see
<sys/socket.h>.

ai protocol Protocol. Includes IPPROTO TCP and IPPROTO UDP.
For a complete list, see <netinet/in.h>.

ai addrlen The length of the ai addr member.

ai canonname

The canonical name for nodename.

May 31, 2004 Manifests 127

addrinfo 2004, QNX Software Systems Ltd.

ai addr Binary socket address.

ai next A pointer to the next addrinfo structure in the
linked list.

Classification:
POSIX 1003.1-2001

See also:
freeaddrinfo(), gai strerror(), getaddrinfo()

128 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. aio cancel()
Cancel an asynchronous I/O operation

Synopsis:
#include <aio.h>

int aio cancel(int fd,
struct aiocb * aiocbptr);

Library:
libc

Description:
The aio cancel() function attempts to cancel one or more
asynchronous I/O requests currently outstanding against a file
descriptor.

Asynchronous I/O operations aren’t currently supported.�

Returns:
-1; errno is set.

Errors:
ENOSYS The aio cancel() function isn’t currently supported.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 129

aio cancel() 2004, QNX Software Systems Ltd.

130 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. aio error()
Get the error status for an asynchronous I/O operation

Synopsis:
#include <aio.h>

int aio error(const struct aiocb * aiocbptr);

Library:
libc

Description:
The aio error() function returns the error status associated with the
aiocb structure referenced by the aiocbptr argument. The error
status for an asynchronous I/O operation is the errno value that’s set
by the corresponding read(), write(), or fsync() operation.

Asynchronous I/O operations aren’t currently supported.�

Returns:
-1; errno is set.

Errors:
ENOSYS The aio error() function isn’t currently supported.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 131

aio error() 2004, QNX Software Systems Ltd.

132 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. aio fsync()
Asynchronously synchronize a file

Synopsis:
#include <aio.h>

int aio fsync(int op,
struct aiocb * aiocbptr);

Library:
libc

Description:
The aio fsync() function asynchronously forces all I/O operations
associated with the file indicated by the file descriptor to the
synchronized I/O completion state.

Asynchronous I/O operations aren’t currently supported.�

Returns:
-1; errno is set.

Errors:
ENOSYS The aio fsync() function isn’t currently supported.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 133

aio fsync() 2004, QNX Software Systems Ltd.

134 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. aio read()
Asynchronously read from a file

Synopsis:
#include <aio.h>

int aio read(struct aiocb * aiocbptr);

Library:
libc

Description:
Asynchronous I/O operations aren’t currently supported.�

Returns:
-1; errno is set.

Errors:
ENOSYS The aio read() function isn’t currently supported.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 135

aio return() 2004, QNX Software Systems Ltd.

Get the return status for an asynchronous I/O operation

Synopsis:
#include <aio.h>

ssize t aio return(struct aiocb * aiocbptr);

Library:
libc

Description:
The aio return() function returns the return status associated with the
aiocb structure referenced by the aiocbptr argument. The return
status for an asynchronous I/O operation is the value that’s returned
by the corresponding read(), write(), or fsync() operation.

Asynchronous I/O operations aren’t currently supported.�

Returns:
-1; errno is set.

Errors:
ENOSYS The aio return() function function isn’t currently

supported.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

continued. . .

136 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. aio return()

Safety

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 137

aio suspend() 2004, QNX Software Systems Ltd.

Wait for asynchronous I/O operations to complete

Synopsis:
#include <aio.h>

int aio suspend(const struct aiocb * const list[],
int nent,
const struct timespec * timeout);

Library:
libc

Description:
The aio suspend() function suspends the calling thread until at least
one of the asynchronous I/O operations referenced by the list
argument has completed, until a signal interrupts the function, or, if
timeout isn’t NULL, until the time interval specified by timeout has
passed.

Asynchronous I/O operations aren’t currently supported.�

Returns:
-1; errno is set.

Errors:
ENOSYS The aio suspend() function isn’t currently supported.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point Yes

continued. . .

138 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. aio suspend()

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 139

aio write() 2004, QNX Software Systems Ltd.

Asynchronously write to a file

Synopsis:
#include <aio.h>

int aio write(struct aiocb * aiocbptr);

Library:
libc

Description:
Asynchronous I/O operations aren’t currently supported.�

Returns:
-1; errno is set.

Errors:
ENOSYS The aio write() function isn’t currently supported.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

140 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. alarm()
Schedule an alarm

Synopsis:
#include <unistd.h>

unsigned int alarm(unsigned int seconds);

Arguments:
seconds The number of seconds of realtime to let elapse before

raising the alarm, or zero to cancel any previous alarm()
requests.

Library:
libc

Description:
The alarm() function causes the system to send the calling process a
SIGALRM signal after a specified number of realtime seconds have
elapsed. To add a handler for the signal, call signal() or
SignalAction().

Processor scheduling delays may cause the process to handle the
signal after the desired time.

�

The alarm() requests aren’t stacked; you can schedule only a single
SIGALRM generation in this manner. If the SIGALRM hasn’t yet been
generated, alarm() reschedules the time at which the SIGALRM is
generated.

Returns:
The number of seconds before the calling process is scheduled to
receive a SIGALRM from the system, or zero if there was no previous
alarm() request.

If an error occurs, an (unsigned)-1 is returned (errno is set).

May 31, 2004 Manifests 141

alarm() 2004, QNX Software Systems Ltd.

Errors:
EAGAIN All timers are in use. You’ll have to wait for a process

to release one.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main()
{

unsigned int timeleft;

printf("Set the alarm and sleep\n");
alarm(10);
sleep(5); /* go to sleep for 5 seconds */

/*
* To get the time left before the SIGALRM is
* to arrive, one must cancel the initial timer,
* which returns the amount of time it had
* remaining.
*/

timeleft = alarm(0);
printf("Time left before cancel, and rearm: %d\n",

timeleft);

/*
* Start a new timer that kicks us when timeleft
* seconds have passed.
*/

alarm(timeleft);

/*
* Wait until we receive the SIGALRM signal; any
* signal kills us, though, since we don’t have
* a signal handler.
*/

printf("Hanging around, waiting to die\n");
pause();
return EXIT SUCCESS;

}

142 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. alarm()

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
Requests from alarm(), TimerAlarm(), and ualarm() aren’t “stacked;”
only a single SIGALRM generator can be scheduled with these
functions. If the SIGALRM signal hasn’t been generated, the next call
to alarm(), TimerAlarm(), or ualarm() reschedules it.

See also:
errno, pause(), signal(), SignalAction(), sleep(), TimerAlarm(),
timer create(), timer delete(), timer gettime(), timer settime(),
ualarm()

May 31, 2004 Manifests 143

alloca() 2004, QNX Software Systems Ltd.

Allocate automatic space from the stack

Synopsis:
#include <alloca.h>

void* alloca(size t size);

Arguments:
size The number of bytes of memory to allocate.

Library:
libc

Description:
The alloca() function allocates space for an object of size bytes from
the stack. The allocated space is automatically discarded when the
current function exits.

Don’t use this function in an expression that’s an argument to a
function.

�

Returns:
A pointer to the start of the allocated memory, or NULL if an error
occurred (errno is set).

Examples:
#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <stdlib.h>

FILE *open err file(char *name)
{

char *buffer;

/* allocate temporary buffer for file name */
buffer = (char *)alloca(strlen(name) + 5);

144 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. alloca()

if(buffer) {
FILE *fp;

sprintf(buffer, "%s.err", name);
fp = fopen(buffer, "w");

return fp;
}

return (FILE *)NULL;
}

int main(void)
{

FILE *fp;

fp = open err file("alloca test");
if(fp == NULL) {

printf("Unable to open error file\n");
} else {

fprintf(fp, "Hello from the alloca test.\n");
fclose(fp);

}

return EXIT SUCCESS;
}

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 145

alloca() 2004, QNX Software Systems Ltd.

Caveats:
Don’t use alloca() as an argument to a function.

See also:
calloc(), malloc()

146 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. alphasort()
Compare two directory entries

Synopsis:
#include <sys/types.h>
#include <sys/dir.h>

struct direct {
unsigned long d fileno;
unsigned short d reclen;
unsigned short d namlen;
char d name[1];

};

int alphasort(struct direct **d1,
struct direct **d2);

Arguments:
d1, d2 Pointers to the directory entries that you want to compare.

Library:
libc

Description:
The alphasort() function alphabetically compares two directory
entries. You can use it as the compar argument to scandir().

Returns:
< 0 The d1 entry precedes the d2 entry alphabetically.

0 The entries are equivalent.

> 0 The d1 entry follows the d2 entry alphabetically.

May 31, 2004 Manifests 147

alphasort() 2004, QNX Software Systems Ltd.

Classification:
Legacy Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
closedir(), opendir(), readdir(), rewinddir(), scandir(), seekdir(),
telldir()

148 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. amblksiz
The increment for the break pointer

Synopsis:
#include <stdlib.h>

unsigned int amblksiz

Description:
The amblksiz global variable holds the increment by which the
“break” pointer for memory allocation is advanced when there’s no
freed block large enough to satisfy a request to allocate a block of
memory. You can change this at any time.

Classification:
QNX Neutrino

See also:
malloc()

May 31, 2004 Manifests 149

argc 2004, QNX Software Systems Ltd.

The number of arguments passed to main()

Synopsis:
int argc

Description:
This global variable holds the number of arguments passed to main().

This variable isn’t defined in any header file. If you want to refer to it,
you need to add your own extern statement.

�

Classification:
QNX Neutrino

See also:
argv, auxv, getopt(), main()

150 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. argv
A pointer to the vector of arguments passed to main()

Synopsis:
char ** argv;

Description:
This global variable holds a pointer to a vector containing the actual
arguments passed to main().

This variable isn’t defined in any header file. If you want to refer to it,
you need to add your own extern statement.

�

Classification:
QNX Neutrino

See also:
argc, auxv, getopt(), main()

May 31, 2004 Manifests 151

asctime(), asctime r() 2004, QNX Software Systems Ltd.

Convert time information to a string

Synopsis:
#include <time.h>

char* asctime(const struct tm* timeptr);

char* asctime r(const struct tm* timeptr,
char* buf);

Arguments:
timeptr A pointer to a tm structure that contains the time that you

want to convert to a string.

buf (asctime r() only) A buffer in which asctime r() can store
the resulting string. This buffer must be large enough to
hold at least 26 characters.

Library:
libc

Description:
The asctime() and asctime r() functions convert the time information
in the structure pointed to by timeptr into a string containing exactly
26 characters, in the form:

Tue May 7 10:40:27 2002\n\0

The asctime() function places the result string in a static buffer that’s
reused every time asctime() or ctime() is called. The result string for
asctime r() is contained in the buffer pointed to by buf .

All fields have a constant width. The newline character (’\n’) and a
NUL character (’\0’) occupy the last two positions of the string.

152 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. asctime(), asctime r()

Returns:
A pointer to the character string result, or NULL if an error occurred.

Classification:
asctime() is ANSI; asctime r() is POSIX 1003.1 (Threads)

asctime()

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

asctime r()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The asctime() and ctime() functions place their results in a static
buffer that’s reused for each call to asctime() or ctime().

See also:
clock(), ctime(), difftime(), gmtime(), localtime(), localtime r(),
mktime(), strftime(), time(), tm, tzset()

May 31, 2004 Manifests 153

asin(), asinf() 2004, QNX Software Systems Ltd.

Compute the arcsine of an angle

Synopsis:
#include <math.h>

double asin(double x);

float asinf(float x);

Arguments:
x The sine for which you want to find the angle.

Library:
libm

Description:
These functions compute the value of the arcsine (specified in
radians) of x.

Returns:
The arcsine, in the range (-π/2, π/2).

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

int main(void)
{

printf("%f\n", asin(.5));

return EXIT SUCCESS;
}

154 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. asin(), asinf()

produces the output:

0.523599

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
acos(), atan(), atan2(), errno

May 31, 2004 Manifests 155

asinh(), asinhf() 2004, QNX Software Systems Ltd.

Compute the inverse hyperbolic sine

Synopsis:
#include <math.h>

double asinh(double x);

float asinhf(float x);

Arguments:
x The value for which you want to compute the inverse

hyperbolic sine.

Library:
libm

Description:
These functions compute the inverse hyperbolic sine of x.

Returns:
The inverse hyperbolic sine (specified in radians) of x.

Examples:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

int main(void)
{

printf("%f\n", asinh(0.5));
return EXIT SUCCESS;

}

produces the output:

0.481212

156 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. asinh(), asinhf()

Classification:
asinh() is standard Unix; asinhf() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
acosh(), atanh(), sinh(), errno

May 31, 2004 Manifests 157

assert() 2004, QNX Software Systems Ltd.

Print a diagnostic message and optionally terminate the program

Synopsis:
#include <assert.h>

void assert(int expression);

Arguments:
expression Zero if you want to terminate the program; a nonzero

value if you don’t.

Library:
libc

Description:
The assert() macro prints a diagnostic message on the stderr stream,
and terminates the program, using abort(), if expression is false (0).

The diagnostic message includes the expression, the name of the
source file (the value of FILE) and the line number of the failed
assertion (the value of LINE).

No action is taken if expression is true (nonzero).

You typically use the assert() macro while developing a program, to
identify program logic errors. You should choose the expression so
that it’s true when the program is functioning as intended.

After the program has been debugged, you can use the special “no
debug” identifier, NDEBUG, to remove calls to assert() from the
program when it’s recompiled. If you use the -D option to qcc or a
#define directive to define NDEBUG (with any value), the C
preprocessor ignores all assert() calls in the program source.

158 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. assert()

To remove the calls to assert(), you must define NDEBUG in the code
before including the <assert.h> header file (i.e. #include
<assert.h>).

If you define NDEBUG, the preprocessor also ignores the expression
you pass to assert(). For example, if your code includes:

assert((fd = open("filename", O RDWR)) != -1);

and you define NDEBUG, the preprocessor ignores the entire call to
assert(), including the call to open().

�

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

void process string(char *string)
{

/* use assert to check argument */
assert(string != NULL);
assert(*string != ’\0’);
/* rest of code follows here */

}

int main(void)
{

process string("hello");
process string("");

return EXIT SUCCESS;
}

Classification:
ANSI

May 31, 2004 Manifests 159

assert() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
assert() is a macro.

See also:
abort(), stderr

160 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. atan(), atanf()
Compute the arctangent of an angle

Synopsis:
#include <math.h>

double atan(double x);

float atanf(float x);

Arguments:
x The tangent for which you want to find the angle.

Library:
libm

Description:
These functions compute the arctangent (specified in radians) of x.

Returns:
The arctangent, in the range (-π/2, π/2).

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

int main(void)
{

printf("%f\n", atan(.5));
return EXIT SUCCESS;

}

produces the output:

May 31, 2004 Manifests 161

atan(), atanf() 2004, QNX Software Systems Ltd.

0.463648

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
acos(), asin(), atan2()

162 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. atan2(), atan2f()
Compute the arctangent, determining the quadrant

Synopsis:
#include <math.h>

double atan2(double y,
double x);

float atan2f(float y,
float x);

Arguments:
x, y The value (y/x) for which you want to find the angle.

Library:
libm

Description:
These functions compute the value of the arctangent (specified in
radians) of y/x, using the signs of both arguments to determine the
quadrant of the return value. A domain error occurs if both arguments
are zero.

Returns:
The arctangent of y/x, in the range (-π, π).

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

May 31, 2004 Manifests 163

atan2(), atan2f() 2004, QNX Software Systems Ltd.

int main(void)
{

printf("%f\n", atan2(.5, 1.));

return EXIT SUCCESS;
}

produces the output:

0.463648

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
acos(), asin(), atan(), errno

164 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. atanh(), atanhf()
Compute an inverse hyperbolic tangent

Synopsis:
#include <math.h>

double atanh(double x);

float atanhf(float x);

Arguments:
x The value for which you want to compute the inverse

hyperbolic tangent.

Library:
libm

Description:
These functions compute the inverse hyperbolic tangent (specified in
radians) of x.

Returns:
The inverse hyperbolic tangent of x.

Examples:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

int main(void)
{

printf("%f\n", atanh(0.5));
return EXIT SUCCESS;

}

produces the output:

0.549306

May 31, 2004 Manifests 165

atanh(), atanhf() 2004, QNX Software Systems Ltd.

Classification:
atanh() is standard Unix; atanhf() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
acosh(), asinh(), errno, tanh()

166 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. atexit()
Register functions to be called during normal program termination

Synopsis:
#include <stdlib.h>

int atexit(register void (*func)(void));

Arguments:
func A pointer to the function you want to be called when the

program terminates normally. This function has no
arguments and doesn’t return a value; its prototype should
be:

void func(void);

Library:
libc

Description:
The atexit() function registers a function to be called when the
program terminates normally. If you register more than one function
with atexit(), they’re executed in a “last-in, first-out” order. Normal
termination occurs either by a call to exit() or a return from main().

You can register a total of 32 functions with atexit().

The functions registered with atexit() aren’t called when the program
terminates with a call to exit().

�

Returns:
0 for success, or nonzero if an error occurs.

May 31, 2004 Manifests 167

atexit() 2004, QNX Software Systems Ltd.

Examples:
#include <stdio.h>
#include <stdlib.h>

void func1(void)
{

printf("last.\n");
}

void func2(void)
{

printf("this ");
}

void func3(void)
{

printf("Do ");
}

int main(void)
{

atexit(func1);
atexit(func2);
atexit(func3);

printf("Do this first.\n");

return EXIT SUCCESS;
}

produces the output:

Do this first.
Do this last.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

continued. . .

168 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. atexit()

Safety

Signal handler No

Thread Yes

See also:
abort(), exit(), exit()

May 31, 2004 Manifests 169

atof() 2004, QNX Software Systems Ltd.

Convert a string into a double

Synopsis:
#include <stdlib.h>

double atof(const char* ptr);

Arguments:
ptr A pointer to the string to parse.

Library:
libc

Description:
The atof() function converts the string pointed to by ptr to a double.
Calling it is equivalent to calling strtod() like this:

strtod(ptr, (char**)NULL)

Returns:
The converted double, or 0.0 if an error occurs.

Errors:
If an error occurs, errno is set to ERANGE.

Examples:
#include <stdlib.h>
#include <stdio.h>

int main(void)
{

double x;

x = atof("3.1415926");
printf("x = %f\n", x);
return EXIT SUCCESS;

}

170 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. atof()

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, sscanf(), strtod()

May 31, 2004 Manifests 171

atoh() 2004, QNX Software Systems Ltd.

Convert a string containing a hexadecimal number into an unsigned number

Synopsis:
#include <stdlib.h>

unsigned atoh(const char* ptr);

Arguments:
ptr A pointer to the string to parse.

Library:
libc

Description:
The atoh() function converts the string pointed to by ptr to unsigned

representation, assuming the string contains a hexadecimal (base 16)
number.

Returns:
The converted value.

Examples:
#include <stdlib.h>
#include <stdio.h>

int main(void)
{

unsigned x;

x = atoh("F1A6");
printf("number is %x\n", x);
return EXIT SUCCESS;

}

172 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. atoh()

Classification:
QNX 4

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
sscanf()

May 31, 2004 Manifests 173

atoi() 2004, QNX Software Systems Ltd.

Convert a string into an integer

Synopsis:
#include <stdlib.h>

int atoi(const char* ptr);

Arguments:
ptr A pointer to the string to parse.

Library:
libc

Description:
The atoi() function converts the string pointed to by ptr to an int.

Returns:
The converted integer.

Examples:
#include <stdlib.h>
#include <stdio.h>

int main(void)
{

int x;

x = atoi("-289");
printf("x = %d\n", x);
return EXIT SUCCESS;

}

produces the output:

x = -289

174 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. atoi()

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
atol(), itoa(), ltoa(), sscanf(), strtol(), strtoul(), ultoa(), utoa()

May 31, 2004 Manifests 175

atol(), atoll() 2004, QNX Software Systems Ltd.

Convert a string into a long integer

Synopsis:
#include <stdlib.h>

long atol(const char* ptr);

int64 t atoll(const char* ptr);

Arguments:
ptr A pointer to the string to parse.

Library:
libc

Description:
The atol() function converts the string pointed to by ptr to a long
integer; atoll() converts the string pointed to by nptr to an int64 t

(long long) integer.

Returns:
atol() A long integer.

atoll() An int64 t integer.

Examples:
#include <stdlib.h>
#include <stdio.h>

int main(void)
{

long x;

x = atol("-289");
printf("x = %d\n", x);
return EXIT SUCCESS;

}

produces the output:

176 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. atol(), atoll()

x = -289

Classification:
atol() is ANSI; atoll() is Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
atoi(), itoa(), ltoa(), sscanf(), strtol(), strtoul(), ultoa(), utoa()

May 31, 2004 Manifests 177

atomic add() 2004, QNX Software Systems Ltd.

Safely add to a variable

Synopsis:
#include <atomic.h>

void atomic add(volatile unsigned * loc,
unsigned incr);

Arguments:
loc A pointer to the value that you want to add to.

incr The number that you want to add.

Library:
libc

Description:
The atomic add() function is a thread-safe way of doing an
(*loc) += incr operation, even in a symmetric-multiprocessing
system.

The atomic *() functions are guaranteed to complete without being
preempted by another thread.

When modifying a variable shared between a thread and an interrupt,
you must either disable interrupts or use the atomic *() functions.

The atomic *() functions are useful for modifying variables that are
referenced by more than one thread (that aren’t necessarily in the
same process) without having to use a mutex.

Examples:
To safely increment a counter shared between multiple threads:

#include <atomic.h>
...

volatile unsigned count;
...

178 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. atomic add()

atomic add(&count, 1);

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
atomic add value(), atomic clr(), atomic clr value(), atomic set(),
atomic set value(), atomic sub(), atomic sub value(),
atomic toggle(), atomic toggle value()

May 31, 2004 Manifests 179

atomic add value() 2004, QNX Software Systems Ltd.

Safely add to a variable, returning the previous value

Synopsis:
#include <atomic.h>

unsigned atomic add value(volatile unsigned * loc,
unsigned incr);

Arguments:
loc A pointer to the value that you want to add to.

incr The number that you want to add.

Library:
libc

Description:
The atomic add value() function is a thread-safe way of doing an
(*loc) += incr operation, even in a symmetric-multiprocessing
system.

The atomic *() functions are guaranteed to complete without being
preempted by another thread.

When modifying a variable shared between a thread and an interrupt,
you must either disable interrupts or use the atomic *() functions.

The atomic *() functions are also useful for modifying variables that
are referenced by more than one thread (that aren’t necessarily in the
same process) without having to use a mutex.

The atomic add value() function may be slower than atomic add().�

Returns:
The previous value of loc’s contents.

180 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. atomic add value()

Examples:
To safely increment a counter shared between multiple threads:

#include <atomic.h>
...

volatile unsigned count;
unsigned previous;
...

previous = atomic add value(&count, 1);

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
atomic add(), atomic clr(), atomic clr value(), atomic set(),
atomic set value(), atomic sub(), atomic sub value(),
atomic toggle(), atomic toggle value()

May 31, 2004 Manifests 181

atomic clr() 2004, QNX Software Systems Ltd.

Safely clear a variable

Synopsis:
#include <atomic.h>

void atomic clr(volatile unsigned * loc,
unsigned bits);

Arguments:
loc A pointer to the value that you want to clear bits in.

bits The bits that you want to clear.

Library:
libc

Description:
The atomic clr() function is a thread-safe way of doing an
(*loc) &= ˜bits operation.

The atomic *() functions are guaranteed to complete without being
preempted by another thread, even in a symmetric-multiprocessing
system.

When modifying a variable shared between a thread and an interrupt,
you must either disable interrupts or use the atomic *() functions.

The atomic *() functions are also useful for modifying variables that
are referenced by more than one thread (that aren’t necessarily in the
same process) without having to use a mutex.

Examples:
To safely clear the 0x10101010 bits in a flag:

#include <atomic.h>
...

volatile unsigned flags;
...

182 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. atomic clr()

atomic clr(&flags, 0x10101010);

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
atomic add(), atomic add value(), atomic set(), atomic set value(),
atomic sub(), atomic sub value(), atomic toggle(),
atomic toggle value()

May 31, 2004 Manifests 183

atomic clr value() 2004, QNX Software Systems Ltd.

Safely clear a variable, returning the previous value

Synopsis:
#include <atomic.h>

unsigned atomic clr value(volatile unsigned * loc,
unsigned bits);

Arguments:
loc A pointer to the value that you want to clear bits in.

bits The bits that you want to clear.

Library:
libc

Description:
The atomic clr value() function is a thread-safe way of doing an
(*loc) &= ˜bits operation.

The atomic *() functions are guaranteed to complete without being
preempted by another thread, even in a symmetric-multiprocessing
system.

When modifying a variable shared between a thread and an interrupt,
you must either disable interrupts or use the atomic *() functions.

The atomic *() functions are also useful for modifying variables that
are referenced by more than one thread (that aren’t necessarily in the
same process) without having to use a mutex.

The atomic clr value() function may be slower than atomic clr().�

Returns:
The previous value of loc’s contents.

184 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. atomic clr value()

Examples:
To safely clear the 0x10101010 bits in a flag:

#include <atomic.h>
...

volatile unsigned flags;
unsigned previous;
...

previous = atomic clr value(&flags, 0x10101010);

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
atomic add(), atomic add value(), atomic clr(), atomic set(),
atomic set value(), atomic sub(), atomic sub value(),
atomic toggle(), atomic toggle value()

May 31, 2004 Manifests 185

atomic set() 2004, QNX Software Systems Ltd.

Safely set bits in a variable

Synopsis:
#include <atomic.h>

void atomic set(volatile unsigned * loc,
unsigned bits);

Arguments:
loc A pointer to the location whose bits you want to toggle.

bits The bits that you want to set.

Library:
libc

Description:
The atomic set() function is a thread-safe way of doing an
(*loc) |= bits operation.

The atomic *() functions are guaranteed to complete without being
preempted by another thread, even in a symmetric-multiprocessing
system.

When modifying a variable shared between a thread and an interrupt,
you must either disable interrupts or use the atomic *() functions.

The atomic *() functions are also useful for modifying variables that
are referenced by more than one thread (that aren’t necessarily in the
same process) without having to use a mutex.

Examples:
To safely set the 1 bit in a flag:

#include <atomic.h>
...

volatile unsigned flags;
...

186 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. atomic set()

atomic set(&flags, 0x01);

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
atomic add(), atomic add value(), atomic clr(), atomic clr value(),
atomic sub(), atomic sub value(), atomic toggle(),
atomic toggle value()

May 31, 2004 Manifests 187

atomic set value() 2004, QNX Software Systems Ltd.

Safely set bits in a variable, returning the previous value

Synopsis:
#include <atomic.h>

unsigned atomic set value(volatile unsigned * loc,
unsigned bits);

Arguments:
loc A pointer to the location whose bits you want to toggle.

bits The bits that you want to set.

Library:
libc

Description:
The atomic set value() function is a thread-safe way of doing an
(*loc) |= bits operation.

The atomic *() functions are guaranteed to complete without being
preempted by another thread, even in a symmetric-multiprocessing
system.

When modifying a variable shared between a thread and an interrupt,
you must either disable interrupts or use the atomic *() functions.

The atomic *() functions are also useful for modifying variables that
are referenced by more than one thread (that aren’t necessarily in the
same process) without having to use a mutex.

The atomic set value() function may be slower than atomic set().�

Returns:
The previous value of loc’s contents.

188 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. atomic set value()

Examples:
To safely set the 1 bit in a flag:

#include <atomic.h>
...

volatile unsigned flags;
unsigned previous;
...

previous = atomic set value(&flags, 0x01);

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
atomic add(), atomic add value(), atomic clr(), atomic clr value(),
atomic set(), atomic sub(), atomic sub value(), atomic toggle(),
atomic toggle value()

May 31, 2004 Manifests 189

atomic sub() 2004, QNX Software Systems Ltd.

Safely subtract from a variable

Synopsis:
#include <atomic.h>

void atomic sub(volatile unsigned * loc,
unsigned decr);

Arguments:
loc A pointer to the value that you want to subtract from.

decr The number that you want to subtract.

Library:
libc

Description:
The atomic sub() function is a thread-safe way of doing a
(*loc) -= decr operation, even in a symmetric-multiprocessing
system.

The atomic *() functions are guaranteed to complete without being
preempted by another thread.

When modifying a variable shared between a thread and an interrupt,
you must either disable interrupts or use the atomic *() functions.

The atomic *() functions are also useful for modifying variables that
are referenced by more than one thread (that aren’t necessarily in the
same process) without having to use a mutex.

Examples:
Safely subtract 1 from a counter:

#include <atomic.h>
...

volatile unsigned count;
...

190 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. atomic sub()

atomic sub(&count, 1);

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
atomic add(), atomic add value(), atomic clr(), atomic clr value(),
atomic set(), atomic set value(), atomic sub value(), atomic toggle(),
atomic toggle value()

May 31, 2004 Manifests 191

atomic sub value() 2004, QNX Software Systems Ltd.

Safely subtract from a variable, returning the previous value

Synopsis:
#include <atomic.h>

unsigned atomic sub value(volatile unsigned * loc,
unsigned decr);

Arguments:
loc A pointer to the value that you want to subtract from.

decr The number that you want to subtract.

Library:
libc

Description:
The atomic sub value() function is a thread-safe way of doing a
(*loc) -= decr operation, even in a symmetric-multiprocessing
system.

The atomic *() functions are guaranteed to complete without being
preempted by another thread.

When modifying a variable shared between a thread and an interrupt,
you must either disable interrupts or use the atomic *() functions.

The atomic *() functions are also useful for modifying variables that
are referenced by more than one thread (that aren’t necessarily in the
same process) without having to use a mutex.

The atomic sub value() function may be slower than atomic sub().�

Returns:
The previous value of loc’s contents.

192 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. atomic sub value()

Examples:
Safely subtract 1 from a counter:

#include <atomic.h>
...

volatile unsigned count;
unsigned previous;
...

previous = atomic sub value(&count, 1);

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
atomic add(), atomic add value(), atomic clr(), atomic clr value(),
atomic set(), atomic set value(), atomic sub(), atomic toggle(),
atomic toggle value()

May 31, 2004 Manifests 193

atomic toggle() 2004, QNX Software Systems Ltd.

Safely toggle a variable

Synopsis:
#include <atomic.h>

void atomic toggle(volatile unsigned * loc,
unsigned bits);

Arguments:
loc A pointer to the location whose bits you want to toggle.

bits The bits that you want to change.

Library:
libc

Description:
The atomic toggle() function is a thread-safe way of doing an
(*loc) ˆ= bits operation.

The atomic *() functions are guaranteed to complete without being
preempted by another thread, even in a symmetric-multiprocessing
system.

When modifying a variable shared between a thread and an interrupt,
you must either disable interrupts or use the atomic *() functions.

The atomic *() functions are also useful for modifying variables that
are referenced by more than one thread (that aren’t necessarily in the
same process) without having to use a mutex.

Examples:
To safely toggle the 0xdeadbeef bits in a flag:

#include <atomic.h>
...

volatile unsigned flags;
...

194 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. atomic toggle()

atomic toggle(&flags, 0xdeadbeef);

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
atomic add(), atomic add value(), atomic clr(), atomic clr value(),
atomic set(), atomic set value(), atomic sub(), atomic sub value(),
atomic toggle value()

May 31, 2004 Manifests 195

atomic toggle value() 2004, QNX Software Systems Ltd.

Safely toggle a variable, returning the previous value

Synopsis:
#include <atomic.h>

unsigned atomic toggle value(
volatile unsigned * loc,
unsigned bits);

Arguments:
loc A pointer to the location whose bits you want to toggle.

bits The bits that you want to change.

Library:
libc

Description:
The atomic toggle value() function is a thread-safe way of doing an
(*loc) ˆ= bits operation.

The atomic *() functions are guaranteed to complete without being
preempted by another thread, even in a symmetric-multiprocessing
system.

When modifying a variable shared between a thread and an interrupt,
you must either disable interrupts or use the atomic *() functions.

The atomic *() functions are also useful for modifying variables that
are referenced by more than one thread (that aren’t necessarily in the
same process) without having to use a mutex.

The atomic toggle value() function may be slower than
atomic toggle().

�

196 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. atomic toggle value()

Returns:
The previous value of loc’s contents.

Examples:
To safely toggle the 0xdeadbeef bits in a flag:

#include <atomic.h>
...

volatile unsigned flags;
unsigned previous;
...

previous = atomic toggle value(&flags, 0xdeadbeef);

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
atomic add(), atomic add value(), atomic clr(), atomic clr value(),
atomic set(), atomic set value(), atomic sub(), atomic sub value(),
atomic toggle()

May 31, 2004 Manifests 197

auxv 2004, QNX Software Systems Ltd.

A pointer to a vector of auxiliary arguments to main()

Synopsis:
auxv t * auxv;

Description:
This global variable holds a pointer to a vector of auxiliary arguments
to main(). For more information, see <sys/auxv.h>.

This variable isn’t defined in any header file. If you want to refer to it,
you need to add your own extern statement.

�

Classification:
QNX Neutrino

See also:
argc, argv, getopt(), main()

198 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. basename()
Find the part of a string after the last slash (/)

Synopsis:
#include <libgen.h>

char* basename(char* path);

Arguments:
path The string to parse.

Library:
libc

Description:
The basename() function takes the pathname pointed to by path and
returns a pointer to the final component of the pathname, deleting any
trailing “/” characters.

The basename() function returns:

A pointer to the string “/”

If the string consists entirely of the “/” character

A pointer to the string “.”

If path is a NULL pointer, or points to an empty string

The basename() function modifies the string pointed to by path, and
returns a pointer to static storage.

Returns:
A pointer to the final component of path.

May 31, 2004 Manifests 199

basename() 2004, QNX Software Systems Ltd.

Examples:
#include <stdio.h>
#include <libgen.h>
#include <stdlib.h>

int main(int argc, char** argv)
{

int x;

for(x = 1; x < argc; x++) {
printf("%s\n", basename(argv[x]));

}

return EXIT SUCCESS;
}

The table below shows the output of the program, given the input:

Input Output

“/usr/lib” “lib”

“/usr/” “usr”

“/” “/”

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

200 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. basename()

See also:
dirname()

May 31, 2004 Manifests 201

bcmp() 2004, QNX Software Systems Ltd.

Compare a given number of characters in two strings

Synopsis:
#include <strings.h>

int bcmp(const void *s1,
const void *s2,
size t n);

Arguments:
s1, s2 The strings you want to compare.

n The number of bytes to compare.

Library:
libc

Description:
The bcmp() function compares the byte string pointed to by s1 to the
string pointed to by s2. The number of bytes to compare is specified
by n. NUL characters may be included in the comparison.

This function is similar to the ANSI memcmp() function, but tests
only for equality. New code should use the ANSI function.

�

Returns:
0 The byte strings are identical.

1 The byte strings aren’t identical.

Examples:
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)
{

202 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. bcmp()

if(bcmp("Hello there", "Hello world", 6)) {
printf("Not equal\n");

} else {
printf("Equal\n");

}
return EXIT SUCCESS;

}

produces the output:

Equal

Classification:
Legacy Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
bcopy(), bzero(), memcmp(), strcmp()

May 31, 2004 Manifests 203

bcopy() 2004, QNX Software Systems Ltd.

Copy a number of characters in one string to another

Synopsis:
#include <strings.h>

void bcopy(const void *src,
void *dst,
size t n);

Arguments:
src The string you want to copy.

dst An existing array into which you want to copy the string.

n The number of bytes to copy.

Library:
libc

Description:
The bcopy() function copies the byte string pointed to by src
(including any NUL characters) into the array pointed to by dst. The
number of bytes to copy is specified by n. Copying of overlapping
objects is guaranteed to work properly.

This function is similar to the ANSI memmove() function, but the
order of arguments is different. New code should use the ANSI
function.

�

Examples:
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)
{

auto char buffer[80];

204 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. bcopy()

bcopy("Hello ", buffer, 6);
bcopy("world", &buffer[6], 6);
printf("%s\n", buffer);
return EXIT SUCCESS;

}

produces the output:

Hello world

Classification:
Legacy Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
bcmp(), bzero(), memmove(), strcpy()

May 31, 2004 Manifests 205

bind() 2004, QNX Software Systems Ltd.

Bind a name to a socket

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>

int bind(int s,
const struct sockaddr * name,
socklen t namelen);

Arguments:
s The file descriptor to be bound.

name A pointer to the sockaddr structure that holds the
address to be bound to the socket. The socket length and
format depend upon its address family.

namelen The length of the sockaddr structure pointed to by
name.

Library:
libsocket

Description:
When a socket is created with socket(), it exists in a namespace
(address family) but has no name assigned to it. The bind() function
assigns a name to that unnamed socket.

The bind() function assigns a local address. Use connect() to assign a
remote address.

�

The rules used for binding names vary between communication
domains.

206 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. bind()

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EACCES The requested address is protected, and the current user

has inadequate permission to access it.

EADDRINUSE

The specified address is already in use.

EADDRNOTAVAIL

The specified address isn’t available from the local
machine.

EBADF Invalid descriptor s.

EFAULT The name parameter isn’t in a valid part of the user
address space.

EINVAL The socket is already bound to an address.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 207

bind() 2004, QNX Software Systems Ltd.

See also:
ICMP, IP, TCP, and UDP protocols

connect(), getsockname(), listen(), socket()

208 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. bindresvport()
Bind a socket to a privileged IP port

Synopsis:
#include <sys/types.h>
#include <netinet/in.h>

int bindresvport(int sd,
struct sockaddr in * sin);

Arguments:
sd The socket descriptor to bind to the port.

sin A pointer to a sockaddr in structure that specifies the
privileged IP port.

Library:
libsocket

Description:
The bindresvport() function binds a socket descriptor to a privileged
IP port (i.e. a port number in the range 0-1023).

Only root can bind to a privileged port; this call fails for any other
user.

�

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EACCES You must be root to call bindresvport().

EADDRINUSE

The specified address is already in use.

May 31, 2004 Manifests 209

bindresvport() 2004, QNX Software Systems Ltd.

EADDRNOTAVAIL

The specified address isn’t available from the local
machine.

EBADF Invalid descriptor sd.

EFAULT The sin parameter isn’t a valid pointer to a
sockaddr in structure.

EINVAL The socket is already bound to a port.

EPFNOSUPPORT

The protocol family isn’t supported.

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

See also:
connect(), getsockname(), listen(), socket()

210 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. brk()
Change the amount of space allocated for the calling process’s data segment

Synopsis:
#include <unistd.h>

int brk(void* endds);

Arguments:
endds A pointer to the new end of the data segment.

Library:
libc

Description:
The brk() function is used to change dynamically the amount of space
allocated for the calling process’s data segment (see the exec*
functions).

The change is made by resetting the process’s break value and
allocating the appropriate amount of space. The break value is the
address of the first location beyond the end of the data segment. The
amount of allocated space increases as the break value increases.
Newly allocated space is set to zero. If, however, the same memory
space is reallocated to the same process, its contents are undefined.

When a program begins execution using execve(), the break is set at
the highest location defined by the program and data storage areas.

You can call getrlimit() to determine the maximum permissible size of
the data segment; it isn’t possible to set the break beyond the
rlim max value returned from getrlimit(), i.e:

end + rlim.rlim max

May 31, 2004 Manifests 211

brk() 2004, QNX Software Systems Ltd.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
ENOMEM This could mean:

� The data segment size limit, as set by setrlimit(),
would be exceeded.

� The maximum possible size of a data segment
(compiled into the system) would be exceeded.

� Insufficient space exists in the swap area to support
the expansion.

� Out of address space; the new break value would
extend into an area of the address space defined by
some previously established mapping (see mmap()).

EAGAIN The total amount of system memory available for
private pages is temporarily insufficient. This may
occur even though the space requested was less than
the maximum data segment size.

Classification:
Legacy Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

212 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. brk()

Caveats:
The behavior of brk() is unspecified if an application also uses any
other memory functions (such as malloc(), mmap(), free()). The brk()
function has been used in specialized cases where no other memory
allocation function provided the same capability. Use mmap() instead
because it can be used portably with all other memory allocation
functions and with any function that uses other allocation functions.

The value of the argument to brk() is rounded up for alignment with
eight-byte boundaries.

Setting the break may fail due to a temporary lack of swap space. It
isn’t possible to distinguish this from a failure caused by exceeding
the maximum size of the data segment without consulting getrlimit().

See also:
btext, edata, end, etext, execl(), execle(), execlp(), execlpe(),

execv(), execve(), execvp(), execvpe(), free(), getrlimit(), malloc(),
mmap(), sbrk()

May 31, 2004 Manifests 213

bsearch() 2004, QNX Software Systems Ltd.

Perform a binary search on a sorted array

Synopsis:
#include <stdlib.h>

void *bsearch(const void *key,
const void *base,
size t num,
size t width,
int (*compar)(const void *pkey,

const void *pbase));

Arguments:
key The object to search for.

base A pointer to the first element in the array.

num The number of elements in the array.

width The size of an element, in bytes.

compare A pointer to a user-supplied function that lfind() calls to
compare an array element with the key.

The arguments to the comparison function are:

� pkey — the same pointer as key

� pbase — a pointer to an element in the array.

The comparison function must return an integer less
than, equal to, or greater than zero if the key object is less
than, equal to, or greater than the element in the array.

Library:
libc

214 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. bsearch()

Description:
The bsearch() function performs a binary search on the sorted array of
num elements pointed to by base, for an item that matches the object
pointed to by key.

Returns:
A pointer to a matching member of the array, or NULL if a matching
object couldn’t be found.

If there are multiple values in the array that match the key, the return
value could be any of these duplicate values.

�

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static const char *keywords[] = {
"auto",
"break",
"case",
"char",

/* ... */
"while"

};

#define NUM KW sizeof(keywords) / sizeof(char *)

int kw compare(const void *p1, const void *p2)
{

const char *p1c = (const char *) p1;
const char **p2c = (const char **) p2;

return(strcmp(p1c, *p2c));
}

int keyword lookup(const char *name)
{

const char **key;

key = (char const **) bsearch(name, keywords,
NUM KW, sizeof(char *), kw compare);

if(key == NULL) return(-1);

May 31, 2004 Manifests 215

bsearch() 2004, QNX Software Systems Ltd.

return key - keywords;
}

int main(void)
{

printf("%d\n", keyword lookup("case"));
printf("%d\n", keyword lookup("crigger"));
printf("%d\n", keyword lookup("auto"));

return EXIT SUCCESS;
}

This program produces the following output:

2
-1
0

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
lfind(), lsearch(), qsort()

216 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. btext
The beginning of the text segment

Synopsis:
N/A

Description:
This linker symbol defines the beginning of the text segment. This
variable isn’t defined in any header file.

Classification:
QNX Neutrino

See also:
brk(), edata, end, etext, sbrk()

May 31, 2004 Manifests 217

btowc() 2004, QNX Software Systems Ltd.

Convert a single-byte character to a wide character

Synopsis:
#include <wchar.h>

wint t btowc(int c);

Arguments:
c The single-byte character that you want to convert.

Library:
libc

Description:
The btowc() function converts the given character (if it’s a valid
one-byte character in the initial shift state) into a wide character.

This function is the single-byte version of mbtowc().

Returns:
The wide-character representation of the character, or WEOF if c has
the value EOF or (unsigned char) c isn’t a valid one-byte character
in the initial conversion state.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

218 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. btowc()

See also:
“Character manipulation functions” and “Wide-character functions”
in the summary of functions chapter.

May 31, 2004 Manifests 219

bzero() 2004, QNX Software Systems Ltd.

Set the first part of an object to null bytes

Synopsis:
#include <strings.h>

void bzero(void *dst,
size t n);

Arguments:
dst An existing object that you want to fill with zeroes.

n The number of bytes to fill.

Library:
libc

Description:
The bzero() function fills the first n bytes of the object pointed to by
dst with zero (NUL) bytes.

This function is similar to the ANSI memset() function. New code
should use the ANSI function.

�

Examples:
#include <stdlib.h>
#include <string.h>

int main(void)
{

char buffer[80];

bzero(buffer, 80);
return EXIT SUCCESS;

}

220 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. bzero()

Classification:
Legacy Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
bcmp(), bcopy(), memset(), strset()

May 31, 2004 Manifests 221

cabs(), cabsf() 2004, QNX Software Systems Ltd.

Compute the absolute value of a complex number

Synopsis:
#include <math.h>

struct cabsargs {
double x; /* real part */
double y; /* imaginary part */

};

double cabs(struct cabsargs value);

struct cabsfargs {
float x; /* real part */
float y; /* imaginary part */

};

float cabsf(struct cabsfargs value);

Arguments:
value The complex value that you want to get the absolute value

of.

Library:
libm

Description:
These functions compute the absolute value of the complex number
specified by value, using a calculation equivalent to:

sqrt((value.x * value.x) + (value.y * value.y));

Returns:
The absolute value of value.

222 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. cabs(), cabsf()

Examples:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

struct cabsargs c = { -3.0, 4.0 };

int main(void)
{

printf("%f\n", cabs(c));

return EXIT SUCCESS;
}

produces the output:

5.000000

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
abs(), fabs(), labs()

May 31, 2004 Manifests 223

calloc() 2004, QNX Software Systems Ltd.

Allocate space for an array

Synopsis:
#include <stdlib.h>

void* calloc (size t n,
size t size);

Arguments:
n The number of array elements to allocate.

size The size, in bytes, of one array element.

Library:
libc

Description:
The calloc() function allocates space from the heap for an array of n
objects, each of size bytes, and initializes them to 0.

A block of memory allocated with the calloc() function should be
freed using the free() function.

�

Returns:
A pointer to the start of the allocated memory, or NULL if an error
occurred (errno is set).

Errors:
ENOMEM Not enough memory.

EOK No error.

224 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. calloc()

Examples:
#include <stdlib.h>
#include <stdio.h>

int main(void)
{

char* buffer;

buffer = (char*)calloc(80, sizeof(char));
if(buffer == NULL) {

printf("Can’t allocate memory for buffer!\n");
return EXIT FAILURE;

}

free(buffer);

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
free(), malloc(), realloc(), sbrk()

May 31, 2004 Manifests 225

cbrt(), cbrtf() 2004, QNX Software Systems Ltd.

Compute the cube root of a number

Synopsis:
#include <math.h>

double cbrt (double x);

float cbrtf (float x);

Arguments:
x The number whose cube root you want to calculate.

Library:
libm

Description:
The cbrt() and cbrtf() functions compute the cube root of x.

Returns:
The cube root of x. If x is NAN, cbrt() returns NAN.

Examples:
#include <stdio.h>
#include <inttypes.h>
#include <math.h>
#include <fpstatus.h>

int main(int argc, char** argv) {
double a, b;

a = 27.0;
b = cbrt(a);
printf("The cube root of %f is %f \n", a, b);

return(0);
}

produces the output:

The cube root of 27.000000 is 3.000000

226 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. cbrt(), cbrtf()

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
sqrt()

May 31, 2004 Manifests 227

ceil(), ceilf() 2004, QNX Software Systems Ltd.

Round up a value to the next integer

Synopsis:
#include <math.h>

double ceil(double x);

float ceilf(float x);

Arguments:
x The value you want to round.

Library:
libm

Description:
The ceil() and ceilf() functions round the value of x up to the next
integer (rounding towards the “ceiling”).

Returns:
The smallest integer ≥ x.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

int main(void)
{

printf("%f %f %f %f %f\n", ceil(-2.1),
ceil(-2.), ceil(0.0), ceil(2.),
ceil(2.1));

228 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ceil(), ceilf()

return EXIT SUCCESS;
}

produces the output:

-2.000000 -2.000000 0.000000 2.000000 3.000000

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
floor()

May 31, 2004 Manifests 229

cfmakeraw() 2004, QNX Software Systems Ltd.

Set terminal attributes

Synopsis:
#include <termios.h>

int cfmakeraw(struct termios * termios p);

Arguments:
termios p A pointer to a termios structure that describes the

terminal’s control attributes.

Library:
libc

Description:
The cfmakeraw() function sets the terminal attributes as follows:

termios p->c iflag &= ˜(IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL|IXON);
termios p->c oflag &= ˜OPOST;

termios p->c lflag &= ˜(ECHO|ECHONL|ICANON|ISIG|IEXTEN);

termios p->c cflag &= ˜(CSIZE|PARENB);
termios p->c cflag |= CS8;

You can get a valid termios control structure for an opened device
by calling tcgetattr().

Returns:
0 Success.

-1 An error occurred (errno indicates the reason).

Classification:
Unix

230 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. cfmakeraw()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, cfgetispeed(), cfgetospeed(), cfsetispeed(), cfsetospeed(),
tcgetattr(), tcsetattr(), termios

May 31, 2004 Manifests 231

cfgetispeed() 2004, QNX Software Systems Ltd.

Return the input baud rate that’s stored in a termios structure

Synopsis:
#include <termios.h>

speed t cfgetispeed(
const struct termios* termios p);

Arguments:
termios p A pointer to a termios structure that describes the

terminal’s control attributes.

Library:
libc

Description:
The cfgetispeed() function returns the input baud rate that’s stored in
the termios structure pointed to by termios p.

You can get a valid termios control structure for an opened device
by calling tcgetattr().

Returns:
The input baud rate stored in *termios p, or -1 if an error occurs
(errno is set).

Errors:
EINVAL One of the arguments is invalid.

ENOTTY This function isn’t supported by the system.

Examples:
#include <termios.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

232 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. cfgetispeed()

int main(void)
{

int fd;
struct termios termios p;
speed t speed;

fd = open("/dev/ser1", O RDWR);
tcgetattr(fd, &termios p);

/*
* Get input baud rate
*/

speed = cfgetispeed(&termios p);
printf("Input baud: %ld\n", speed);

close(fd);
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, cfgetospeed(), cfsetispeed(), cfsetospeed(), tcgetattr(),
tcsetattr(), termios

May 31, 2004 Manifests 233

cfgetospeed() 2004, QNX Software Systems Ltd.

Return the output baud rate that’s stored in a termios structure

Synopsis:
#include <termios.h>

speed t cfgetospeed(
const struct termios* termios p);

Arguments:
termios p A pointer to a termios structure that describes the

terminal’s control attributes.

Library:
libc

Description:
The cfgetospeed() function returns the output baud rate that’s stored in
the termios structure pointed to by termios p.

You can get a valid termios control structure for an opened device
by calling tcgetattr().

Returns:
The output baud rate stored in *termios p, or -1 if an error occurs
(errno is set).

Errors:
EINVAL One of the arguments is invalid.

ENOTTY This function isn’t supported by the system.

Examples:
#include <termios.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

234 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. cfgetospeed()

int main(void)
{

int fd;
struct termios termios p;
speed t speed;

fd = open("/dev/ser1", O RDWR);
tcgetattr(fd, &termios p);

/*
* Get output baud rate
*/

speed = cfgetospeed(&termios p);
printf("Output baud: %ld\n", speed);

close(fd);
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, cfgetispeed(), cfsetispeed(), cfsetospeed(), tcgetattr(),
tcsetattr(), termios

May 31, 2004 Manifests 235

cfgopen() 2004, QNX Software Systems Ltd.

Open a configuration file

Synopsis:
#include <cfgopen.h>

int cfgopen(const char * path,
unsigned flags,
const char * historical,
char * namebuf,
int nblen);

Arguments:
path The name of the configuration file that you want to

open.

flags Flags that control the opening; see below.

historical A optional file to open as a last resort if none of the
criteria for finding the path is met. This string works
like a path search order, and lets you search more than
one location. You can also specify %H to substitute the
hostname value into the string. Specify NULL to ignore
this option.

namebuf A buffer to save the pathname in. Specify NULL to
ignore this option.

nblen The length of the buffer pointed to by namebuf .
Specify 0 to ignore this option.

Library:
libc

Description:
The cfgopen() function opens the configuration file named by path.
This function is a cover function for open() that searches several
default system locations for your files, based on specified
characteristics.

236 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. cfgopen()

The value of flags correspond to, and have similar limitations of, the
standard open() flags. The flags value is constructed by the bitwise
ORing of values from the following list, defined in the <cfgopen.h>
header file. Applications must specify exactly one of these file-access
modes in the value of flag:

CFGFILE RDONLY

Open for reading only.

CFGFILE RDWR

Open for reading and writing.

CFGFILE WRONLY

Open for writing only.

You can also include any combination of these bits in the value of flag:

CFGFILE APPEND

If set, the file offset is set to the end of the file prior to each
write.

CFGFILE CREAT

If the file doesn’t exist, it’s created with mode 0644, the file’s
user ID is set to the effective user ID of the process, and the
group ID is set to the effective group ID of the process or the
group ID of the file’s parent directory (see chmod()).

CFGFILE EXCL

If CFGFILE EXCL and CFGFILE CREAT are set, and the file
exists, cfgopen() fails. The check for the existence of the file
and the creation of the file if it doesn’t exist is atomic with
respect to other processes attempting the same operation with
the same filename. Specifying CFGFILE EXCL without
CFGFILE CREAT has no effect.

CFGFILE TRUNC

If the file exists and is a regular file, and the file is successfully
opened CFGFILE WRONLY or CFGFILE RDWR, the file length

May 31, 2004 Manifests 237

cfgopen() 2004, QNX Software Systems Ltd.

is truncated to zero and the mode and owner are left unchanged.
CFGFILE TRUNC has no effect on FIFO or block or character
special files or directories. Using CFGFILE TRUNC with
CFGFILE RDONLY has no effect.

Search condition flags

In order to hint to the function where it should access or construct (in
the case of CFGFILE CREAT) path, there are several bits that you can
specify and OR into flags. When specified, the bits are accessed using
the following search order:

1 CFGFILE USER NODE

$HOME/.cfg/node name/path

2 CFGFILE USER

$HOME/.cfg/path

3 CFGFILE NODE

/etc/host cfg/node name/path

4 CFGFILE GLOBAL

path

where node name is the value you get by calling confstr() for
CS HOSTNAME.

If the directory /etc/host cfg doesn’t exist on the system, the
following flags are transformed automatically:

� CFGFILE USER NODE becomes CFGFILE USER

� CFGFILE NODE becomes CFGFILE GLOBAL

�

When creating a file or opening a file for writing, you can specify
only one of the above location flags. Set CFGFILE NOFD when you
need only the pathname, not the file descriptor. If a directory path
doesn’t exist when a file is opened for creation, cfgopen() attempts to
create the path.

238 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. cfgopen()

Returns:
A valid file descriptor if CFGFILE NOFD isn’t specified, a nonnegative
value if CFGFILE NOFD is specified, or -1 if an error occurs.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
confstr(), fcfgopen(), open()

mib.txt, snmpd.conf in the Utilities Reference

May 31, 2004 Manifests 239

cfree() 2004, QNX Software Systems Ltd.

Free allocated memory

Synopsis:
#include <malloc.h>

int cfree(void *ptr);

Arguments:
ptr A pointer to the block of memory that you want to free. It’s

safe to call cfree() with a NULL pointer.

Library:
libc

Description:
The cfree() function deallocates the memory block specified by ptr,
which was previously returned by a call to calloc(), malloc() or
realloc().

Returns:
1

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

240 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. cfree()

Caveats:
Calling cfree() on a pointer already deallocated by a call to cfree(),
free(), or realloc() could corrupt the memory allocator’s data
structures.

See also:
alloca(), calloc(), free(), malloc(), realloc(), sbrk()

May 31, 2004 Manifests 241

cfsetispeed() 2004, QNX Software Systems Ltd.

Set the input baud rate in a termios structure

Synopsis:
#include <termios.h>

int cfsetispeed(struct termios* termios p,
speed t speed);

Arguments:
termios p A pointer to a termios structure that describes the

terminal’s control attributes.

speed The new speed. Valid values for speed are defined in
<termios.h>.

Library:
libc

Description:
The cfsetispeed() function sets the input baud rate within the
termios structure pointed to by termios p to be speed.

You can get a valid termios control structure for an opened device
by calling tcgetattr().

242 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. cfsetispeed()

� The new baud rate isn’t effective until you call tcsetattr() with this
modified termios structure.

� Attempts to set baud rates to values that aren’t supported by the
hardware are ignored, and cause tcsetattr() to return an error, but
cfsetispeed() doesn’t indicate an error.

� Attempts to set input baud rates to a value that’s different from the
output baud rate, when the hardware doesn’t support split baud
rates, cause the input baud rate to be ignored, but no error is
generated.

�

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EINVAL One of the arguments is invalid.

ENOTTY This function isn’t supported by the system.

Examples:
#include <termios.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{

int fd;
struct termios termios p;
speed t speed;

fd = open("/dev/ser1", O RDWR);
tcgetattr(fd, &termios p);

/*
* Set input baud rate

May 31, 2004 Manifests 243

cfsetispeed() 2004, QNX Software Systems Ltd.

*/
speed = 9600;
cfsetispeed(&termios p, speed);
tcsetattr(fd, TCSADRAIN, &termios p);

close(fd);
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, cfgetispeed(), cfgetospeed(), cfsetospeed(), tcgetattr(),
tcsetattr(), termios

244 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. cfsetospeed()
Set the output baud rate in a termios structure

Synopsis:
#include <termios.h>

int cfsetospeed(struct termios *termios p,
speed t speed);

Arguments:
termios p A pointer to a termios structure that describes the

terminal’s control attributes.

speed The new speed. Valid values for speed are defined in
<termios.h>.

Library:
libc

Description:
The cfsetospeed() function sets the output baud rate within the
termios structure pointed to by termios p to be speed.

You can get a valid termios control structure for an opened device
by calling tcgetattr().

� The new baud rate isn’t effective until you call tcsetattr(), with this
modified termios structure.

� Attempts to set baud rates to values that aren’t supported by the
hardware are ignored, and cause tcsetattr() to return an error, but
cfsetospeed() doesn’t indicate an error.

�

Setting the output baud rate to B0 causes the connection to be
dropped. If termios p represents a modem, the modem control lines
will be turned off.

May 31, 2004 Manifests 245

cfsetospeed() 2004, QNX Software Systems Ltd.

Returns:
0 Success.

-1 An error occurred (errno indicates the reason).

Errors:
EINVAL One of the arguments is invalid.

ENOTTY This function isn’t supported by the system.

Examples:
#include <termios.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{

int fd;
struct termios termios p;
speed t speed;

fd = open("/dev/ser1", O RDWR);
tcgetattr(fd, &termios p);

/*
* Set output baud rate
*/

speed = B9600;
cfsetospeed(&termios p, speed);
tcsetattr(fd, TCSADRAIN, &termios p);

close(fd);
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

246 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. cfsetospeed()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, cfgetispeed(), cfgetospeed(), cfsetispeed(), tcgetattr(),
tcsetattr(), termios

May 31, 2004 Manifests 247

ChannelCreate(), ChannelCreate r() 2004, QNX Software Systems

Ltd.

Create a communications channel

Synopsis:
#include <sys/neutrino.h>

int ChannelCreate(unsigned flags);

int ChannelCreate r(unsigned flags);

Arguments:
flags Flags that can be used to request notification pulses from the

kernel or request other changes in behavior; a combination
of the following:

� NTO CHF COID DISCONNECT

� NTO CHF DISCONNECT

� NTO CHF FIXED PRIORITY

� NTO CHF NET MSG

� NTO CHF REPLY LEN

� NTO CHF SENDER LEN

� NTO CHF THREAD DEATH

� NTO CHF UNBLOCK

For more information, see below.

Library:
libc

Description:
The ChannelCreate() and ChannelCreate r() kernel calls create a
channel that can be used to receive messages and pulses. Once
created, the channel is owned by the process and isn’t bound to the
creating thread.

These functions are identical, except in the way they indicate errors.
See the Returns section for details.

248 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ChannelCreate(),
ChannelCreate r()

Threads wishing to communicate with the channel attach to it by
calling ConnectAttach(). The threads may be in the same process, or
in another process on the same node (or a remote node if the network
manager is running). Once attached, these threads use MsgSendv() or
MsgSendPulse() to enqueue messages and pulses on the channel.
Messages and pulses are enqueued in priority order.

To dequeue and read messages and pulses from a channel, use
MsgReceivev(). Any number of threads may call MsgReceivev() at the
same time, in which case they block and queue (if no messages or
pulses are waiting) for a message or pulse to arrive. A multi-threaded
I/O manager typically creates multiple threads and has them all
RECEIVE-blocked on the channel.

The return value of ChannelCreate() is a channel ID, an int taken
from a channel vector on the process. Most managers use a single
channel for most, if not all, their communications with clients.
Additional channels can be used as special channels for information.

By default, when a message is received from a channel, the thread
priority of the receiver is set to match that of the thread that sent the
message. This basic priority inheritance prevents priority inversion. If
a message arrives at a channel and there’s no thread waiting to receive
it, the system boosts (if necessary) all threads in the process that have
received a message from the channel in the past. This boost prevents a
priority inversion of the client in the case where all threads are
currently working on behalf of other clients, perhaps at a lower
priority. When a thread is first created, it isn’t associated with a
channel until it does a MsgReceivev() on it. In the case of multiple
channels, a thread is associated with the last channel it received from.

After receiving a message, a thread can dissociate itself from the
channel by calling MsgReceivev() with a -1 for the channel ID.
Priority inheritance can be disabled by setting
NTO CHF FIXED PRIORITY in the flags argument. In this case a

thread’s priority isn’t be affected by messages it receives on a
channel.

May 31, 2004 Manifests 249

ChannelCreate(), ChannelCreate r() 2004, QNX Software Systems

Ltd.

A manager typically involves the following loop. There may be one
or more threads in the loop at a time. Note that your program (not
each thread) should call ChannelCreate() only once.

iov t iov;
...
SETIOV(&iov, &msg, sizeof(msg));
...
chid = ChannelCreate(flags);
...
for(;;) {

/*
Here’s a one-part message; you could just as
easily receive a 20-part message by filling in the
iov appropriately.

*/
rcvid = MsgReceivev(chid, &iov, 1, &info);

/* msg is filled in by MsgReceivev() */
switch(msg.type) {

...
}

/* iov could be filled in again to point to a new message */
MsgReplyv(rcvid, iov, 1);

}

Some of the channel flags in the flags argument request changes from
the default behavior; others request notification pulses from the
kernel. The pulses are received by MsgReceivev() on the channel and
are described by a pulse structure.

The channel flags and (where appropriate) associated values for the
pulse’s code and value are described below.

NTO CHF COID DISCONNECT

Pulse code: PULSE CODE COIDDEATH

Pulse value: Connection ID (coid) of a connection that was
attached to a destroyed channel.

Deliver a pulse to this channel for each connection that belongs to the
calling process when the channel that the connection is attached to is
destroyed. Only one channel per process can have this flag set.

250 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ChannelCreate(),
ChannelCreate r()

If a channel has one or both of NTO CHF COID DISCONNECT or
NTO CHF THREAD DEATH set, neither flag may be set for any other

channel in the process.

�

NTO CHF DISCONNECT

Pulse code: PULSE CODE DISCONNECT

Pulse value: None

Deliver a pulse when all connections from a process are detached (e.g.
close(), ConnectDetach(), name close()). If a process dies without
detaching all its connections, the kernel detaches them from it. When
this flag is set, the server must call ConnectDetach(scoid) where
scoid is the server connection ID in the pulse message. Failure to do
so leaves an invalid server connection ID that can’t be reused. Over
time, the server may run out of available IDs. If this flag isn’t set, the
kernel removes the server connection ID automatically, making it
available for reuse.

NTO CHF FIXED PRIORITY

Suppress priority inheritance when receiving messages. Receiving
threads won’t change their priorities to those of the sending threads.

NTO CHF NET MSG

Reserved for the io net resource manager.

NTO CHF REPLY LEN

Request that the length of the reply be included in the dstmsglen
member of the msg info structure that MsgReceivev() fills in. The
dstmsglen member is valid only if you set this channel flag when you
create the channel.

May 31, 2004 Manifests 251

ChannelCreate(), ChannelCreate r() 2004, QNX Software Systems

Ltd.

NTO CHF SENDER LEN

Request that the length of the source message be included in the
srcmsglen member of the msg info, structure that MsgReceivev()
fills in. The srcmsglen member is valid only if you set this channel
flag when you create the channel.

NTO CHF THREAD DEATH

Pulse code: PULSE CODE THREADDEATH

Pulse value: Thread ID (tid)

Deliver a pulse on the death of any thread in the process that owns the
channel. Only one channel per process can have this flag set.

If a channel has one or both of NTO CHF COID DISCONNECT or
NTO CHF THREAD DEATH set, neither flag may be set for any other

channel in the process.

�

NTO CHF UNBLOCK

Pulse code: PULSE CODE UNBLOCK

Pulse value: Receive ID (rcvid)

In most cases, you’ll set the NTO CHF UNBLOCK flag.�

Deliver a pulse when a thread that’s REPLY-blocked on a channel
attempts to unblock before its message is replied to. This occurs
between the time of a MsgReceivev() and a MsgReplyv() by the server.
The sending thread may be unblocked because of a signal or a kernel
timeout.

If the sending thread unblocks, MsgReplyv() fails. The manager may
not be in a position to handle this failure. It’s also possible that the
client will die because of the signal and never send another message.
If the manager is holding onto resources for the client (such as an

252 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ChannelCreate(),
ChannelCreate r()

open file), it may want to receive notification that the client wants to
break out of its MsgSendv().

Setting the NTO CHF UNBLOCK bit in flags prevents a thread that’s
in the REPLY-blocked state from unblocking. Instead, a pulse is sent
to the channel, informing the manager that the client wishes to
unblock. In the case of a signal, the signal will be pending on the
client thread. When the manager replies, the client is unblocked and at
that point, any pending signals are acted upon. From the client’s point
of view, its MsgSendv() will have completed normally and any signal
will have arrived on the opcode following the successful kernel call.

When the manager receives the pulse, it can do one of these things:

� If it believes that it will be replying shortly, it can discard the
pulse, resulting in a small latency in the unblocking, or it can
signal the client. A short blocking request to a filesystem often
takes this approach.

� If the reply is going to take some time or an unknown amount of
time, the manager should cancel the current operation and reply
back with an error or whatever data is available at this time in the
reply message to the client thread. A request to a device manager
waiting for input would take this approach.

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

ChannelCreate()

The channel ID of the newly created channel. If an error occurs,
the function returns -1 and sets errno.

May 31, 2004 Manifests 253

ChannelCreate(), ChannelCreate r() 2004, QNX Software Systems

Ltd.

ChannelCreate r()

The channel ID of the newly created channel. This function
does NOT set errno. If an error occurs, the function returns the
negative of a value from the Errors section.

Errors:
EAGAIN All kernel channel objects are in use.

EBUSY The NTO CHF COID DISCONNECT or the
NTO CHF THREAD DEATH flag was given and another

channel belonging to this process already has the same
flag set.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ChannelDestroy(), close(), ConnectAttach(), ConnectDetach(),
msg info, MsgReceivev(), MsgReplyv(), MsgSendv(),

MsgSendPulse(), name close(), pulse

254 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ChannelDestroy(),
ChannelDestroy r()

Destroy a communications channel

Synopsis:
#include <sys/neutrino.h>

int ChannelDestroy(int chid);

int ChannelDestroy r(int chid);

Arguments:
chid The channel ID, returned by ChannelCreate(), of the channel

that you want to destroy.

Library:
libc

Description:
These kernel calls remove a channel specified by the channel ID chid
argument. Once destroyed, any attempt to receive messages or pulses
on the channel will fail. Any threads that are blocked on the channel
by calling MsgReceivev() or MsgSendv() will be unblocked and return
with an error.

The ChannelDestroy() and ChannelDestroy r() functions are identical
except in the way they indicate errors. See the Returns section for
details.

When the channel is destroyed, all server connection IDs become
invalid. The client connections are also marked invalid but remain in
existence until the client removes them by calling ConnectDetach().
An attempt by the client to use one of these invalid connections using
MsgSendv() or MsgSendPulse() will return with an error.

A server typically destroys its channels prior to its termination. If it
fails to do so, the kernel destroys them automatically when the
process dies.

May 31, 2004 Manifests 255

ChannelDestroy(), ChannelDestroy r() 2004, QNX Software

Systems Ltd.

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

ChannelDestroy()

If an error occurs, the function returns -1 and sets errno. Any
other value returned indicates success.

ChannelDestroy r()

EOK is returned on success. This function does NOT set errno.
If an error occurs, the function may return any value in the
Errors section.

Errors:
EINVAL The channel specified by chid doesn’t exist.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

256 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ChannelDestroy(),
ChannelDestroy r()

See also:
ChannelCreate(), MsgReceivev()

May 31, 2004 Manifests 257

chdir() 2004, QNX Software Systems Ltd.

Change the current working directory

Synopsis:
#include <unistd.h>

int chdir(const char* path);

Arguments:
path The new current working directory.

Library:
libc

Description:
The chdir() function changes the current working directory to path,
which can be relative to the current working directory or an absolute
path name.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EACCES Search permission is denied for a component of path.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The path argument is longer than PATH MAX, or a
pathname component is longer than NAME MAX.

ENOENT The specified path doesn’t exist, or path is an empty
string.

ENOMEM There wasn’t enough memory to allocate a control
structure.

258 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. chdir()

ENOSYS The chdir() function isn’t implemented for the
filesystem specified in path.

ENOTDIR A component of path is not a directory.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char* argv[])
{

if(argc != 2) {
fprintf(stderr, "Use: cd <directory>\n");
return EXIT FAILURE;

}

if(chdir(argv[1]) == 0) {
printf("Directory changed to %s\n", argv[1]);
return EXIT SUCCESS;

} else {
perror(argv[1]);
return EXIT FAILURE;

}
}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 259

chdir() 2004, QNX Software Systems Ltd.

Caveats:
There’s only one current working directory per process. In a
multithreaded application, any thread calling chdir() will change the
current working directory for all threads in that process.

See also:
errno, getcwd(), mkdir(), rmdir()

260 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. chmod()
Change the permissions for a file

Synopsis:
#include <sys/types.h>
#include <sys/stat.h>

int chmod(const char * path,
mode t mode);

Arguments:
path The name of the file whose permissions you want to change.

mode The new permissions for the file. For more information, see
“Access permissions” in the documentation for stat().

Library:
libc

Description:
The chmod() function changes S ISUID, S ISGID, S ISVTX and the file
permission bits of the file specified by the pathname pointed to by
path to the corresponding bits in the mode argument. The application
must ensure that the effective user ID of the process matches the
owner of the file or the process has appropriate privileges to do this.

If a directory is writable and the sticky bit (S ISVTX) is set on the
directory, a process can remove or rename a file within that directory
only if one or more of the following is also true:

� The effective user ID of the process matches the file’s owner ID.

� The effective user ID of the process matches the directory’s owner
ID.

� The file is writable by the effective user ID of the process.

� The user is a superuser (effective user ID of 0).

May 31, 2004 Manifests 261

chmod() 2004, QNX Software Systems Ltd.

If a directory has the set-group ID bit set, a file created in that
directory will have the same group ID as that directory. Otherwise,
the newly created file’s group ID is set to the effective group ID of the
creating process.

If the calling process doesn’t have appropriate privileges, and if the
group ID of the file doesn’t match the effective group ID, and the file
is a regular file, bit S ISGID (set-group-ID on execution) in the file’s
mode is cleared on a successful return from chmod().

If the effective user ID of the calling process is equal to the file owner,
or the calling process has appropriate privileges (for example, it
belongs to the superuser), chmod() sets S ISUID, S ISGID and the file
permission bits, defined in the <sys/stat.h> header file, from the
corresponding bits in the mode argument. These bits define access
permissions for the user associated with the file, the group associated
with the file and all others.

This call has no effect on file descriptors for files that are already
open.

If chmod() succeeds, the st ctime field of the file is marked for update.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EACCES Search permission is denied on a component of the

path prefix.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of the path string exceeds PATH MAX, or a
pathname component is longer than NAME MAX.

ENOTDIR A component of the path prefix isn’t a directory.

262 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. chmod()

ENOENT The file doesn’t exist, or the path arguments points to
an empty string.

ENOSYS The chmod() function isn’t implemented for the
filesystem specified in path.

EPERM The effective user ID doesn’t match the owner of the
file, and the calling process doesn’t have appropriate
privileges.

EROFS The file resides on a read-only filesystem.

Examples:
/*
* Change the permissions of a list of files
* to by read/write by the owner only
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>

int main(int argc, char **argv)
{

int i;
int ecode = 0;

for(i = 1; i < argc; i++) {
if(chmod(argv[i], S IRUSR | S IWUSR) == -1) {

perror(argv[i]);
ecode++;

}
}

return ecode;
}

Classification:
POSIX 1003.1

May 31, 2004 Manifests 263

chmod() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
chown(), errno, fchmod(), fchown(), fstat(), open(), stat()

264 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. chown()
Change the user ID and group ID of a file

Synopsis:
#include <sys/types.h>
#include <unistd.h>

int chown(const char * path,
uid t owner,
gid t group);

Arguments:
path The name of the file whose ownership you want to change.

owner The user ID of the new owner.

group The group ID of the new owner.

Library:
libc

Description:
The chown() function changes the user ID and group ID of the file
specified by path to be the numeric values contained in owner and
group, respectively.

If the named file is a symbolic link, chown() changes the ownership of
the file or directory to which the symbolic link refers; lchown()
changes the ownership of the symbolic link file itself.

Only processes with an effective user ID equal to the user ID of the
file or with appropriate privileges (for example, the superuser) may
change the ownership of a file.

In QNX Neutrino, the POSIX CHOWN RESTRICTED flag (tested via
the PC CHOWN RESTRICTED flag in pathconf()), is enforced for
path. This means that only the superuser may change the ownership
or the group of a file to anyone. Normal users can’t give a file away to
another user by changing the file ownership, nor to another group by
changing the group ownership.

May 31, 2004 Manifests 265

chown() 2004, QNX Software Systems Ltd.

If the path argument refers to a regular file, the set-user-ID (S ISUID)
and set-group-ID (S ISGID) bits of the file mode are cleared, if the
function is successful.

If chown() succeeds, the st ctime field of the file is marked for update.

Returns:
0 Success.

-1 (no changes were made in the user ID and group ID of the file).
An error occurred (errno is set).

Errors:
EACCES Search permission is denied on a component of the

path prefix.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of the path string exceeds PATH MAX, or a
pathname component is longer than NAME MAX.

ENOENT A component of the path prefix doesn’t exist, or the
path arguments points to an empty string.

ENOSYS The chown() function isn’t implemented for the
filesystem specified in path.

ENOTDIR A component of the path prefix isn’t a directory.

EPERM The effective user ID doesn’t match the owner of the
file, or the calling process doesn’t have appropriate
privileges.

EROFS The named file resides on a read-only filesystem.

266 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. chown()

Examples:
/*
* Change the ownership of a list of files
* to the current user/group
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int main(int argc, char** argv)
{

int i;
int ecode = 0;

for(i = 1; i < argc; i++) {
if(chown(argv[i], getuid(), getgid()) == -1) {

perror(argv[i]);
ecode++;

}
}
exit(ecode);

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
chmod(), errno, fchown(), fstat(), lchown(), open(), stat()

May 31, 2004 Manifests 267

chroot() 2004, QNX Software Systems Ltd.

Change the root directory

Synopsis:
#include <unistd.h>

int chroot(const char *path);

Arguments:
path The name of the new root directory.

Library:
libc

Description:
The chroot() function causes the path directory to become the root
directory, the starting point for path searches for path names
beginning with /. The user’s working directory is unaffected.

The effective user ID of the process must be superuser to change the
root directory. The .. entry in the root directory is interpreted to
mean the root directory itself. Thus, .. can’t be used to access files
outside the subtree rooted at the root directory.

Returns:
0 Success.

-1 An error occurred; errno is set.

Errors:
EACCES Search permission is denied for a component of

path.

EBADF The descriptor isn’t valid.

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during the chroot() function.

268 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. chroot()

EIO An I/O error occurred while reading from or writing
to the filesystem.

ELOOP Too many symbolic links were encountered in
translating path.

EMULTIHOP Components of path require hopping to multiple
remote machines, and the filesystem type doesn’t
allow it.

ENAMETOOLONG

The length of the path argument exceeds
{PATH MAX}, or the length of a path component
exceeds {NAME MAX} while
{ POSIX NO TRUNC} is in effect.

ENOENT The named directory doesn’t exist or is a null
pathname.

ENOLINK The path points to a remote machine and the link to
that machine is no longer active.

ENOTDIR Any component of the path name isn’t a directory.

EPERM The effective user of the calling process isn’t the
superuser.

Classification:
Legacy Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 269

chroot() 2004, QNX Software Systems Ltd.

See also:
chdir()

270 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. chsize()
Change the size of a file

Synopsis:
#include <unistd.h>

int chsize(int filedes,
long size);

Arguments:
filedes A file descriptor for the file whose size you want to change.

size The new size of the file, in bytes.

Library:
libc

Description:
The chsize() function extends or truncates the file specified by filedes
to size bytes The file is padded with NUL (’\0’) characters if it needs
to be extended.

The chsize() function ignores advisory locks that may have been set
with the fcntl() function.

�

Returns:
0 Success.

-1 An error occurred.

Errors:
EBADF The filedes argument isn’t a valid file descriptor, or the

file isn’t opened for writing.

ENOSPC There isn’t enough space left on the device to extend
the file.

May 31, 2004 Manifests 271

chsize() 2004, QNX Software Systems Ltd.

ENOSYS The chsize() function isn’t implemented for the
filesystem specified by filedes.

Examples:
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/stat.h>

int main(void)
{

int filedes;

filedes= open("file", O RDWR | O CREAT,
S IRUSR | S IWUSR | S IRGRP | S IWGRP);

if(filedes!= -1) {
if(chsize(filedes, 32 * 1024L) != 0) {

printf("Error extending file\n");
}
close(filedes);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

Classification:
QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

272 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. chsize()

See also:
close(), creat(), errno, ftruncate(), open()

May 31, 2004 Manifests 273

clearenv() 2004, QNX Software Systems Ltd.

Clear the environment

Synopsis:
#include <stdlib.h>

int clearenv(void);

Library:
libc

Description:
The clearenv() function clears the environment area; no environment
variables are defined immediately after the clearenv() call.

Note that clearenv() clears the following environment variables,
which may then affect the operation of other library functions such as
spawnp():

� PATH

� SHELL

� TERM

� TERMINFO

� LINES

� COLUMNS

� TZ

Returns:
0 Success.

-1 An error occurred (errno is set).

274 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. clearenv()

Errors:
ENOMEM Not enough memory to allocate a control structure.

Examples:
Clear the entire environment and set up a new TZ environment
variable:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

if(clearenv() != 0) {
puts("Unable to clear the environment");
return EXIT FAILURE;

}

setenv("TZ", "EST5EDT", 0);

return EXIT SUCCESS;
}

Classification:
QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 275

clearenv() 2004, QNX Software Systems Ltd.

Caveats:
The clearenv() function manipulates the environment pointed to by
the global environ variable.

See also:
environ, errno, execl(), execle(), execlp(), execlpe(), execv(), execve(),
execvp(), execvpe(), getenv(), putenv(), searchenv(), setenv(), spawn(),
spawnl(), spawnle(), spawnlp(), spawnlpe(), spawnp(), spawnv(),
spawnve(), spawnvp(), spawnvpe(), system(), unsetenv()

276 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. clearerr()
Clear a stream’s end-of-file and error flags

Synopsis:
#include <stdio.h>

void clearerr(FILE *fp);

Arguments:
fp The stream for which you want to clear the flags.

Library:
libc

Description:
The clearerr() function clears the end-of-file and error flags for the
stream specified by fp.

These indicators are also cleared when the file is opened, or by an
explicit call to clearerr() or rewind().

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;
int c;

c = ’J’;
fp = fopen("file", "w");
if(fp != NULL) {
fputc(c, fp);
if(ferror(fp)) { /* if error */

clearerr(fp); /* clear the error */
fputc(c, fp); /* and retry it */

}
}

fclose(fp);

return EXIT SUCCESS;
}

May 31, 2004 Manifests 277

clearerr() 2004, QNX Software Systems Ltd.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
feof(), ferror(), fopen(), perror(), rewind()

278 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. clock()
Return the number of clock ticks used by the program

Synopsis:
#include <time.h>

clock t clock(void);

Library:
libc

Description:
The clock() function returns the number of clock ticks of processor
time used by the program since it started executing. You can convert
the number of ticks into seconds by dividing by the value
CLOCKS PER SEC.

In a multithreaded program, clock() returns the time used by all
threads in the application; clock() returns the time since the program
started, not the time since a specific thread started.

�

Returns:
The number of clock ticks.

Examples:
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>

void compute(void)
{

int i, j;
double x;

x = 0.0;
for(i = 1; i <= 100; i++) {

for(j = 1; j <= 100; j++) {
x += sqrt((double) i * j);

}
}

May 31, 2004 Manifests 279

clock() 2004, QNX Software Systems Ltd.

printf("%16.7f\n", x);
}

int main(void)
{

clock t start time, end time;

start time = clock();
compute();
end time = clock();
printf("Execution time was %lu seconds\n",

(long) ((end time - start time) / CLOCKS PER SEC));

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
asctime(), asctime r(), ctime(), difftime(), gmtime(), localtime(),
localtime r(), mktime(), strftime(), time(), tzset()

280 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ClockAdjust(), ClockAdjust r()
Adjust the time of a clock

Synopsis:
#include <sys/neutrino.h>

int ClockAdjust(clockid t id,
const struct clockadjust * new,
struct clockadjust * old);

int ClockAdjust r(clockid t id,
const struct clockadjust * new,
struct clockadjust * old);

Arguments:
id The ID of the clock you want to adjust. This must be

CLOCK REALTIME; this clock maintains the system time.

new NULL or a pointer to a clockadjust structure that
specifies how to adjust the clock. Any previous adjustment is
replaced.

The clockadjust structure contains at least the following
members:

� long tick nsec inc — the adjustment to be made on each
clock tick, in nanoseconds.

� unsigned long tick count — the number of clock ticks
over which to apply the adjustment.

old If not NULL, a pointer to a clockadjust structure where
the function can store the current adjustment (before being
changed by a non-NULL new).

Library:
libc

May 31, 2004 Manifests 281

ClockAdjust(), ClockAdjust r() 2004, QNX Software Systems Ltd.

Description:
These kernel calls let you gradually adjust the time of the clock
specified by id. You can use these functions to speed up or slow down
the system clock to synchronize it with another time source – without
causing major discontinuities in the time flow.

The ClockAdjust() and ClockAdjust r() functions are identical except
in the way they indicate errors. See the Returns section for details.

The total time adjustment, in nanoseconds, is:

(new->tick count * new->tick nsec inc)

If the current clock is ahead of the desired time, you can specify a
negative tick nsec inc to slow down the clock. This is preferable to
setting the time backwards with the ClockTime() kernel call, since
some programs may malfunction if time goes backwards.

Picking small values for tick nsec inc and large values for tick count
adjusts the time slowly, while the opposite approach adjusts it rapidly.
As a rule of thumb, don’t try to set a tick nsec inc that exceeds the
basic clock tick as set by the ClockPeriod() kernel call. This would
change the clock rate by more than 100% and if the adjustment is
negative, it could make the clock go backwards.

You can cancel any adjustment in progress by setting tick count and
tick nsec inc to 0.

Superuser privileges are required to adjust the clock.

Blocking states:

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

ClockAdjust() If an error occurs, the function returns -1 and sets
errno. Any other value returned indicates success.

282 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ClockAdjust(), ClockAdjust r()

ClockAdjust r() EOK is returned on success. This function does
NOT set errno. If an error occurs, the function
may return any value in the Errors section.

Errors:
EFAULT A fault occurred when the kernel tried to access the

buffers provided.

EINVAL The clock id isn’t valid.

EPERM The process tried to adjust the time without having
superuser capabilities.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ClockPeriod(), ClockTime()

May 31, 2004 Manifests 283

ClockCycles() 2004, QNX Software Systems Ltd.

Get the number of clock cycles

Synopsis:
#include <sys/neutrino.h>
#include <inttypes.h>

uint64 t ClockCycles(void);

Library:
libc

Description:
The ClockCycles() kernel call returns the current value of a
free-running 64-bit cycle counter. This is implemented on each
processor as a high-performance mechanism for timing short
intervals.

Several CPU architectures have an instruction that reads such a
free-running counter (e.g. x86 has the RDTSC instruction). For
processors that don’t implement such an instruction in hardware (e.g.
a 386), the kernel emulates one. This provides a lower time resolution
than if the instruction is provided (838.095345 nanoseconds on an
IBM PC-compatible system).

In all cases, the SYSPAGE ENTRY(qtime)->cycles per sec field
gives the number of ClockCycles() increments in one second.

Symmetric MultiProcessing systems

This function, depending on the CPU architecture, returns a value
from a register that’s unique to each CPU in an SMP system — for
instance, the TSC (Time Stamp Counter) on an x86. These registers
aren’t synchronized between the CPUs. So if you call ClockCycles(),
and then the thread migrates to another CPU and you call
ClockCycles() again, you can’t subtract the two values to get a
meaningful time duration.

If you wish to use ClockCycles() on an SMP machine, you must use
the following call to “lock” the thread to a single CPU:

284 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ClockCycles()

ThreadCtl(NTO TCTL RUNMASK, ...)

Blocking states:

This call doesn’t block.

Examples:
See SYSPAGE ENTRY().

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
SYSPAGE ENTRY(), ThreadCtl()

May 31, 2004 Manifests 285

clock getcpuclockid() 2004, QNX Software Systems Ltd.

Return the clock ID of the CPU-time clock from a specified process

Synopsis:
#include <sys/types.h>
#include <time.h>

extern int clock getcpuclockid(
pid t pid,
clockid t* clock id);

Arguments:
pid The process ID for the process whose clock ID you want

to get.

clock id A pointer to a clockid t object where the function can
store the clock ID.

Library:
libc

Description:
The clock getcpuclockid() function returns the clock ID of the
CPU-time clock of the process specified by pid. If the process
described by pid exists and the calling process has permission, the
clock ID of this clock is stored in clock id.

If pid is zero, the clock ID of the CPU-time clock of the process
marking the call is returned in clock id.

A process always has permission to obtain the CPU-time clock ID of
another process.

Returns:
Zero for success, or an error value.

286 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. clock getcpuclockid()

Errors:
ESRCH No process can be found corresponding to the specified

pid.

Classification:
POSIX 1003.1d (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
clock getres(), clock gettime(), ClockId(), clock settime(),
pthread getcpuclockid(), timer create()

May 31, 2004 Manifests 287

clock getres() 2004, QNX Software Systems Ltd.

Get the resolution of the clock

Synopsis:
#include <time.h>

int clock getres(clockid t clock id,
struct timespec * res);

Arguments:
clock id The ID of the clock whose resolution you want to get.

res A pointer to a timespec structure in which
clock getres() can store the resolution. The function sets
the tv sec member to 0, and the tv nsec member to be the
resolution of the clock, in nanoseconds.

Library:
libc

Description:
The clock getres() function gets the resolution of the clock specified
by clock id and puts it into the buffer pointed to by res.

Returns:
0 Success

-1 An error occurred (errno is set).

Errors:
EFAULT A fault occurred trying to access the buffers provided.

EINVAL Invalid clock id.

288 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. clock getres()

Examples:
/*
* This program prints out the clock resolution.
*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(void)
{

struct timespec res;

if (clock getres(CLOCK REALTIME, &res) == -1) {
perror("clock get resolution");
return EXIT FAILURE;

}
printf("Resolution is %ld micro seconds.\n",

res.tv nsec / 1000);
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
clock gettime(), clock settime(), ClockPeriod(), timespec

May 31, 2004 Manifests 289

clock gettime() 2004, QNX Software Systems Ltd.

Get the current time of a clock

Synopsis:
#include <time.h>

int clock gettime(clockid t clock id,
struct timespec * tp);

Arguments:
clock id The ID of the clock whose time you want to get.

tp A pointer to a timespec structure where clock gettime()
can store the time. This function sets the members as
follows:

� tv sec — the number of seconds since 1970.

� tv nsec — the number of nanoseconds expired in the
current second. This value increases by some multiple
of nanoseconds, based on the system clock’s
resolution.

Library:
libc

Description:
The clock gettime() function gets the current time of the clock
specified by clock id, and puts it into the buffer pointed to by tp.

Returns:
0 Success.

-1 An error occurred (errno is set).

290 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. clock gettime()

Errors:
EFAULT A fault occurred trying to access the buffers provided.

EINVAL Invalid clock id.

ESRCH The process associated with this request doesn’t exist.

Examples:
/*
* This program calculates the time required to
* execute the program specified as its first argument.
* The time is printed in seconds, on standard out.
*/

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <time.h>

#define BILLION 1000000000L;

int main(int argc, char** argv)
{

struct timespec start, stop;
double accum;

if(clock gettime(CLOCK REALTIME, &start) == -1) {
perror("clock gettime");
return EXIT FAILURE;

}

system(argv[1]);

if(clock gettime(CLOCK REALTIME, &stop) == -1) {
perror("clock gettime");
return EXIT FAILURE;

}

accum = (stop.tv sec - start.tv sec)
+ (double)(stop.tv nsec - start.tv nsec)

/ (double)BILLION;
printf("%lf\n", accum);
return EXIT SUCCESS;

}

May 31, 2004 Manifests 291

clock gettime() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
clock getres(), clock settime(), errno, timespec

292 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. clock nanosleep()
High resolution sleep with specifiable clock

Synopsis:
#include <time.h>

int clock nanosleep(clockid t clock id,
int flags,
const struct timespec * rqtp,
struct timespec * rmtp);

Arguments:
clock id The ID of the clock to use to measure the time. The

possible clock types are:

CLOCK MONOTONIC

A clock that always increases at a constant rate and
can’t be adjusted.

CLOCK SOFTTIME

Same as CLOCK REALTIME, but if the CPU is in
powerdown mode, the clock stops running.

CLOCK REALTIME

A clock that maintains the system time.

The clock nanosleep() function fails if the clock id
argument refers to the CPU-time clock of the calling
thread.

flags Flags that specify when the current thread is to be
suspended from execution:

� when the time interval specified by the rqtp argument
has elapsed (TIMER ABSTIME is not set).

� when the time value of the clock specified by clock id
reaches the absolute time specified by the rqtp
argument (TIMER ABSTIME is set).

If, at the time of the call, the time value specified by
rqtp is less than or equal to the time value of the

May 31, 2004 Manifests 293

clock nanosleep() 2004, QNX Software Systems Ltd.

specified clock, then clock nanosleep() returns
immediately, and the calling process isn’t suspended.

� when a signal is delivered to the calling thread, and
the signal’s action is to invoke a signal-catching
function or terminate the process.

Calling clock nanosleep() with TIMER ABSTIME not set,
and clock id set to CLOCK REALTIME is the equivalent
to calling nanosleep() with the same rqtp and rmtp
arguments.

rqtp A pointer to a timespec structure that specifies the time
interval between the requested time and the time actually
slept.

rmtp NULL, or a pointer to a timespec in which the function
can store the amount of time remaining in an interval.

For the relative clock nanosleep() function, if rmtp isn’t
NULL, the timespec structure referenced by it is
updated to contain the amount of time remaining in the
interval (the requested time minus the time actually
slept). If it’s NULL, the remaining time isn’t returned.

The absolute clock nanosleep() function has no effect on
the structure referenced by rmtp.

Library:
libc

Description:
The clock nanosleep() function suspends the current thread from
execution until:

� If TIMER ABSTIME is set, the time value of the clock specified by
clock id reaches the absolute time specified by the rqtp argument.

Or:

294 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. clock nanosleep()

� If TIMER ABSTIME is not set, the time interval specified by the
rqtp argument has elapsed.

Or:

� A signal is delivered to the calling thread, and the signal’s action is
to invoke a signal-catching function or terminate the process.

The nanosleep() function always uses CLOCK REALTIME.

The suspension time may be longer than requested because the
argument value is rounded up to an integer multiple of the sleep
resolution, or because of scheduling and other system activity. Except
for the case of being interrupted by a signal, the suspension time for:

� the relative clock nanosleep() function (TIMER ABSTIME not set)
— isn’t less than the time interval specified by rqtp, as measured
by the corresponding clock

� the absolute clock nanosleep() function (TIMER ABSTIME set) —
is in effect at least until the value of the corresponding clock
reaches the absolute time specified by rqtp, except for the case of
being interrupted by a signal.

Using the clock nanosleep() function has no effect on the action or
blockage of any signal.

Returns:
Zero if the requested time has elapsed, or a corresponding error value
if clock nanosleep() has been interrupted by a signal, or fails.

Errors:
EINTR The call was interrupted by a signal.

EINVAL The rqtp argument specified a nanosecond value less
than zero or greater than or equal to 1000 million; or
TIMER ABSTIME is specified in flags and the rqtp
argument is outside the range for the clock specified
by clock id; or the clock id argument doesn’t specify a

May 31, 2004 Manifests 295

clock nanosleep() 2004, QNX Software Systems Ltd.

known clock, or specifies the CPU-time clock of the
calling thread.

ENOTSUP The clock id argument specifies a clock for which
clock nanosleep() isn’t supported, such as a CPU-time
clock.

Classification:
POSIX 1003.1j (draft)

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
clock settime(), nanosleep(), sleep(), timespec

296 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. clock settime()
Set a clock

Synopsis:
#include <time.h>

int clock settime(clockid t clock id,
const struct timespec * tp);

Arguments:
clock id The ID of the clock you want to set.

tp A pointer to a timespec structure containing at least the
following members:

� tv sec — the number of seconds since 1970.

� tv nsec — the number of nanoseconds in the current
second. This value increases by some multiple of
nanoseconds, based on the system clock’s resolution.

Library:
libc

Description:
The clock settime() function sets the clock specified by clock id, from
the buffer pointed to by tp.

Be careful if you set the date during the period that a time zone is
switching daylight saving time (DST) to standard time. When a time
zone changes to standard time, the local time goes back one hour (for
example, 2:00 a.m. becomes 1:00 a.m.). The local time during this
hour is ambiguous (e.g. 1:14 a.m. occurs twice in the morning that
the time zone switches to standard time). To avoid problems, use
UTC time to set the date in this period.

�

May 31, 2004 Manifests 297

clock settime() 2004, QNX Software Systems Ltd.

Returns:
0 Success

-1 An error occurred (errno is set).

Errors:
EINVAL Invalid clock id or the number of nanoseconds specified

by the tv nsec is less than zero or greater than or equal
to 1000 million.

EPERM You don’t have sufficient privilege to change the time.

Examples:
/* This program sets the clock forward 1 day. */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>

int main(void)
{

struct timespec stime;

if(clock gettime(CLOCK REALTIME, &stime) == -1) {
perror("getclock");
return EXIT FAILURE;

}

stime.tv sec += (60*60)*24L; /* Add one day */
stime.tv nsec = 0;
if(clock settime(CLOCK REALTIME, &stime) == -1) {

perror("setclock");
return EXIT FAILURE;

}
return EXIT SUCCESS;

}

298 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. clock settime()

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
clock getres(), clock gettime(), errno, timespec

May 31, 2004 Manifests 299

ClockId(), ClockId r() 2004, QNX Software Systems Ltd.

Get a clock ID for a given process and thread

Synopsis:
#include <sys/neutrino.h>
#include <inttypes.h>

extern int ClockId(pid t pid,
int tid);

extern int ClockId r(pid t pid,
int tid);

Arguments:
pid The ID of the process that you want to calculate the execution

time for. If this argument is zero, the ID of the process
making the call is assumed.

tid The ID of the thread that you want to calculate the execution
time for, or 0 to get the execution time for the process as a
whole.

Library:
libc

Description:
The ClockId() and ClockId r() kernel calls return an integer that you
can pass as a clockid t to ClockTime(). When you pass this clock
ID to ClockTime(), the function returns (in the location pointed to by
old) the number of nanoseconds that the specified thread of the
specified process has executed.

The ClockId() and ClockId r() functions are identical except in the
way they indicate errors. See the Returns section for details.

If the tid is zero, the number of nanoseconds that the process as a
whole has executed is returned. On an SMP box, this number may
exceed the realtime number of nanoseconds that have elapsed because
multiple threads in the process can run on several CPUs at the same
time.

300 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ClockId(), ClockId r()

Blocking states:

This call doesn’t block.

Returns:
ClockId() An integer that can be passed to ClockTime(). If an

error occurs, the function returns -1 and sets errno.

ClockId r() An integer that can be passed to ClockTime(). This
function does NOT set errno. If an error occurs, the
function returns the negative of a value from the
Errors section.

Errors:
ESRCH The pid and/or tid don’t exist.

Examples:
Here’s how you can determine how busy a system is:

id = ClockId(1, 1);

for(;;) {
ClockTime(id, NULL, &start);

sleep(1);

ClockTime(id, NULL, &stop);
printf("load = %f%%\n", (1000000000.0 - (stop-start)) / 10000000.0);

}

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 301

ClockId(), ClockId r() 2004, QNX Software Systems Ltd.

See also:
ClockTime(), clock getcpuclockid(), pthread getcpuclockid()

302 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ClockPeriod(), ClockPeriod r()
Get or set a clock period

Synopsis:
#include <sys/neutrino.h>

int ClockPeriod(clockid t id,
const struct clockperiod * new,
struct clockperiod * old,
int reserved);

int ClockPeriod r(clockid t id,
const struct clockperiod * new,
struct clockperiod * old,
int reserved);

Arguments:
id The clock ID of the clock. This must be

CLOCK REALTIME, which is the ID of the clock that
maintains the system time.

new NULL, or a pointer to a clockperiod structure that
contains the period to set the clock to. This structure
contains at least the following members:

� unsigned long nsec — the period of the clock, in
nanoseconds.

� long fract — reserved for future fractional
nanoseconds. Set this member to zero.

old NULL, or a pointer to a clockperiod structure where
the function can store the current period (before being
changed by a non-NULL new).

reserved Set this argument to 0.

Library:
libc

May 31, 2004 Manifests 303

ClockPeriod(), ClockPeriod r() 2004, QNX Software Systems Ltd.

Description:
You can use the ClockPeriod() and ClockPeriod r() kernel calls to get
or set the clock period of the clock.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

You need to have superuser privileges to set the clock period.�

All the timer *() calls operate with an accuracy no better than the
clock period. Every moment within the Neutrino microkernel is
referred to as a tick. A tick’s initial length is determined by the clock
rate of your processor:

CPU clock speed: Default value:

≥ 40MHz 1 millisecond

< 40MHz 10 milliseconds

Since a very small ticksize imposes an interrupt load on the system,
and can consume all available processor cycles, the kernel call limits
how small a period can be specified. The lowest clock period that can
currently be set on any machine is 10 microseconds.

If an attempt is made to set a value that the kernel believes to be
unsafe, the call fails with an EINVAL. The timeslice rate (for
“round-robin” and “other” scheduling policies) is always four times
the clock period (this isn’t changeable).

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

304 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ClockPeriod(), ClockPeriod r()

ClockPeriod() If an error occurs, this function returns -1 is and
sets errno. Any other value returned indicates
success.

ClockPeriod r() EOK is returned on success. This function does
NOT set errno. If an error occurs, the function can
return any value in the Errors section.

Errors:
EFAULT A fault occurred when the kernel tried to access the

buffers provided.

EINVAL Invalid clock ID. A period was set which wasn’t in a
range considered safe.

EPERM The process tried to change the period of the clock
without having superuser capabilities.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ClockAdjust()

May 31, 2004 Manifests 305

ClockTime(), ClockTime r() 2004, QNX Software Systems Ltd.

Get or set a clock

Synopsis:
#include <sys/neutrino.h>

int ClockTime(clockid t id,
const uint64 t * new,
uint64 t * old);

int ClockTime r(clockid t id,
const uint64 t * new,
uint64 t * old);

Arguments:
id The clock ID. This must be CLOCK REALTIME or

CLOCK MONOTONIC, which is the ID of the clock that
maintains the system time, or the clock ID that’s returned by
ClockId().

new NULL, or a pointer to the absolute time, in nanoseconds, to
set the clock to.

old NULL, or a pointer to a location where the function can store
the current time (before being changed by a non-NULL new).

Library:
libc

Description:
You can use these kernel calls to get or set the system clock specified
by id. The clock ID, CLOCK REALTIME or CLOCK MONOTONIC,
maintains the system time.

The ClockTime() and ClockTime r() functions are identical except in
the way they indicate errors. See the Returns section for details.

If new isn’t NULL, then it contains the absolute time, in nanoseconds,
to set the system clock to. This affects the software clock maintained

306 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ClockTime(), ClockTime r()

by the system. It won’t change any underlying hardware clock that
maintains the time when the system’s power is turned off.

Once set, the system time increments by some number of
nanoseconds, based on the resolution of the system clock. You can
query or change this resolution by using the ClockPeriod() kernel call.

You need to have superuser privileges to set the clock.�

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

ClockTime() If an error occurs, the function returns -1 and sets
errno. Any other value returned indicates success.

ClockTime r() EOK is returned on success. This function does
NOT set errno. If an error occurs, the function
returns a value in the Errors section.

Errors:
EFAULT A fault occurred when the kernel tried to access the

buffers provided.

EINVAL The clock ID isn’t CLOCK REALTIME or
CLOCK MONOTONIC.

EPERM The process tried to change the time without having
superuser capabilities.

ESRCH The process associated with this request doesn’t exist.

May 31, 2004 Manifests 307

ClockTime(), ClockTime r() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ClockAdjust(), ClockPeriod()

308 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. close()
Close a file

Synopsis:
#include <unistd.h>

int close(int filedes);

Arguments:
filedes The file descriptor of the file you want to close. This can

be a file descriptor returned by a successful call to
accept(), creat(), dup(), dup2(), fcntl(), modem open(),
open(), shm open(), socket() or sopen().

Library:
libc

Description:
The close() function closes the file specified by the given file
descriptor.

Returns:
Zero for success, or -1 if an error occurs (errno is set).

Errors:
EBADF Invalid file descriptor filedes.

EINTR The close() call was interrupted by a signal.

EIO An I/O error occurred while updating the directory
information.

ENOSPC A previous buffered write call has failed.

ENOSYS The close() function isn’t implemented for the
filesystem specified by filedes.

May 31, 2004 Manifests 309

close() 2004, QNX Software Systems Ltd.

Examples:
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{

int filedes;

filedes = open("file", O RDONLY);
if(filedes != -1) {

/* process file */
close(filedes);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
accept(), creat(), dup(), dup2(), errno, fcntl(), modem open(), open(),
shm open(), socket(), sopen()

310 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. closedir()
Close a directory

Synopsis:
#include <dirent.h>

int closedir(DIR * dirp);

Arguments:
dirp A directory pointer for the directory you want to close.

Library:
libc

Description:
The closedir() function closes the directory specified by dirp, and
frees the memory allocated by opendir().

The result of using a directory stream after calling one of the exec*()
or spawn*() family of functions is undefined. After a call to the fork()
function, either the parent or the child (but not both) may continue
processing the directory stream using the readdir() and rewinddir()
functions. If both the parent and child processes use these functions,
the result is undefined. Either or both processes may call the
closedir() function.

�

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF The dirp argument doesn’t refer to an open directory

stream.

EINTR The closedir() call was interrupted by a signal.

May 31, 2004 Manifests 311

closedir() 2004, QNX Software Systems Ltd.

Examples:
Get a list of files contained in the directory /home/kenny:

#include <stdio.h>
#include <dirent.h>
#include <stdlib.h>

int main(void)
{

DIR *dirp;
struct dirent *direntp;

dirp = opendir("/home/kenny");
if(dirp != NULL) {

for(;;) {
direntp = readdir(dirp);
if(direntp == NULL) {

break;
}

printf("%s\n", direntp->d name);
}

closedir(dirp);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

312 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. closedir()

See also:
errno, opendir(), readdir(), readdir r(), rewinddir(), seekdir(),
telldir()

May 31, 2004 Manifests 313

closelog() 2004, QNX Software Systems Ltd.

Close the system log

Synopsis:
#include <syslog.h>

void closelog(void);

Library:
libc

Description:
The closelog() function closes the connection to syslogd.

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
openlog(), setlogmask(), syslog(), vsyslog()

logger, syslogd in the Utilities Reference

314 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. cmdfd()
Return a file descriptor for the executable file

Synopsis:
#include <process.h>

int cmdfd(void);

Library:
libc

Description:
This function returns a file descriptor for the executable file.

Returns:
A file descriptor for the executable file.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
cmdname(), progname

May 31, 2004 Manifests 315

cmdname() 2004, QNX Software Systems Ltd.

Find the path used to invoke the current process

Synopsis:
#include <process.h>

char * cmdname(char * buff);

Arguments:
buff A pointer to a buffer in which the function can store the path.

To determine the size required for the buffer, call fpathconf()
or pathconf() with an argument of PC PATH MAX.

Library:
libc

Description:
The cmdname() function determines the full path that the current
process was invoked from, and stores it in the buffer specified by buff .

Returns:
0 Success.

-1 An error occurred.

Examples:
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <limits.h>
#include <process.h>

int main(void)
{

size t maximum path;
char *buff;

maximum path = (size t) pathconf("/", PC PATH MAX);
buff = (char*)malloc(maximum path);

316 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. cmdname()

if(cmdname(buff)) {
printf("I’m \"%s\".\n", buff);

} else {
perror(" cmdname() failed");
free (buff);
return EXIT FAILURE;

}

free (buff);
return EXIT SUCCESS;

}

If this code is compiled into an executable named foo:

ls -F /home/xyzzy/bin/foo
foo*
/home/xyzzy/bin/foo
I’m "/home/xyzzy/bin/foo".

Classification:
QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
basename(), cmdfd(), progname

May 31, 2004 Manifests 317

confstr() 2004, QNX Software Systems Ltd.

Get configuration-defined string values

Synopsis:
#include <unistd.h>

size t confstr(int name,
char * buf,
size t len);

Arguments:
name The system variable to query; see below.

buf A pointer to a buffer in which the function can store the
value of the system variable.

len The length of the buffer, in bytes.

Library:
libc

Description:
The confstr() functions lets applications get or set
configuration-defined string values. This is similar to the sysconf()
function, but you use it to get string values, rather than numeric
values. By default, the function queries and returns values in the
system.

The name argument represents the system variable to query. The
values are defined in <confname.h>; at least the following name
values are valid:

CS ARCHITECTURE

The name of the instruction set architecture for this
node’s CPU(s).

CS DOMAIN The domain name.

318 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. confstr()

CS HOSTNAME The name of this node in the network.

A hostname can consist only of letters, numbers, and hyphens, and
must not start or end with a hyphen. For more information, see RFC
952.

�

CS HW PROVIDER

The name of the hardware manufacturer.

CS HW SERIAL Serial number associated with the hardware.

CS LIBPATH A value similar to the LD LIBRARY PATH
environment variable that finds all standard
libraries.

CS MACHINE This node’s hardware type.

CS PATH A value similar to the PATH environment variable
that finds all standard utilities.

CS RELEASE The current OS release level.

CS RESOLVE The contents of the resolv.conf file, excluding
the domain name.

CS SRPC DOMAIN

The secure RPC domain.

CS SYSNAME The operating system name.

CS TIMEZONE Time zone string (TZ style)

CS VERSION The current OS version number.

The configuration-defined value is returned in the buffer pointed to by
buf , and will be ≤ len bytes long, including the terminating NULL.

To find out the length of a configuration-defined value, call confstr()
with buf set to NULL and len set to 0.

To set a configuration value:

May 31, 2004 Manifests 319

confstr() 2004, QNX Software Systems Ltd.

� OR your value to be defined (i.e. CS HOSTNAME) to CS SET

� put this value in a NULL-terminated string

� Set the value of len to 0

Returns:
A nonzero value (if a “get” is done, the value is the length of the
configuration-defined value), or 0 if an error occurs (errno is set).

You can compare the confstr() return value against len to see if the
configuration-defined value was truncated when retrieving a value,
(this can’t be done when setting a value).

Errors:
EINVAL The name argument isn’t a valid configuration-defined

value.

Examples:
Print information similar to that returned by the uname() function:

#include <unistd.h>
#include <stdio.h>
#include <limits.h>

#define BUFF SIZE (256 + 1)

int main(void)
{

char buff[BUFF SIZE];

if(confstr(CS SYSNAME, buff, BUFF SIZE) > 0) {
printf("System name: %s\n", buff);

}

if(confstr(CS HOSTNAME, buff, BUFF SIZE) > 0) {
printf("Host name: %s\n", buff);

}

if(confstr(CS RELEASE, buff, BUFF SIZE) > 0) {
printf("Release: %s\n", buff);

}

320 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. confstr()

if(confstr(CS VERSION, buff, BUFF SIZE) > 0) {
printf("Version: %s\n", buff);

}

if(confstr(CS MACHINE, buff, BUFF SIZE) > 0) {
printf("Machine: %s\n", buff);

}

if(confstr(CS SET | CS HOSTNAME, "myhostname", 0) != 0) {
printf("Hostname set to: %s\n", "myhostname");

}

return 0;
}

Classification:
POSIX 1003.1a

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The confstr() function is part of a draft standard; its interface and/or
behavior may change in the future.

See also:
pathconf(), sysconf()

getconf, setconf in the Utilities Reference

May 31, 2004 Manifests 321

confstr() 2004, QNX Software Systems Ltd.

“Configuration strings” in the Configuring Your Environment chapter
of the Neutrino User’s Guide

322 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. connect()
Initiate a connection on a socket

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>

int connect(int s,
const struct sockaddr * name,
socklen t namelen);

Arguments:
s The descriptor of the socket on which to initiate the

connection.

name The name of the socket to connect to for a
SOCK STREAM connection.

namelen The length of the name, in bytes.

Library:
libsocket

Description:
The connect() function establishes the connection according to the
socket type specified by s:

SOCK DGRAM

Specifies the peer that the socket is to be associated with. This
address is the one that datagrams are to be sent to, and the only
one that datagrams are to be received from.

SOCK STREAM

This call attempts to make a connection to another socket. The
other socket is specified by name, which is an address in the
communications space of that socket. Each communications
space interprets name in its own way.

May 31, 2004 Manifests 323

connect() 2004, QNX Software Systems Ltd.

Stream sockets may successfully connect only once, whereas
datagram sockets may use connect() multiple times to change their
association. Datagram sockets may dissolve the association by
connecting to an invalid address, such as a null address.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EADDRINUSE The address is already in use.

EADDRNOTAVAIL

The specified address isn’t available on this
machine.

EAFNOSUPPORT

Addresses in the specified address family cannot be
used with this socket.

EALREADY The socket is nonblocking; a previous connection
attempt hasn’t yet been completed.

EBADF Invalid descriptor s.

ECONNABORTED

The connect() was terminated under software
control.

ECONNREFUSED

The attempt to connect was forcefully rejected.

EFAULT The name parameter specifies an area outside the
process address space.

EHOSTUNREACH

No route to host; the host system can’t be reached.

324 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. connect()

EINPROGRESS The socket is nonblocking; the connection can’t be
completed immediately. It’s possible to do a
select() for completion by selecting the socket for
writing.

EISCONN The socket is already connected.

ENETUNREACH

The network isn’t reachable from this host.

ETIMEDOUT The attempt to establish a connection timed out; no
connection was made.

Protocols such as TCP do not allow further connection requests on a
socket after an ECONNREFUSED error. In such a situation, the socket
must be closed and a new one created before a subsequent attempt for
connection is made.

�

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
ICMP, IP, TCP, and UDP protocols

accept(), bind(), getsockname(), nbaconnect(), select(), socket()

May 31, 2004 Manifests 325

ConnectAttach(), ConnectAttach r() 2004, QNX Software Systems

Ltd.

Establish a connection between a process and a channel

Synopsis:
#include <sys/neutrino.h>

int ConnectAttach(uint32 t nd,
pid t pid,
int chid,
unsigned index,
int flags);

int ConnectAttach r(uint32 t nd,
pid t pid,
int chid,
unsigned index,
int flags);

Arguments:
nd The node descriptor of the node on which the process that

owns the channel is running; see “Node descriptors,” below.

pid The process ID of the owner of the channel. If pid is zero,
the calling process is assumed.

chid The channel ID, returned by ChannelCreate(), of the
channel to connect to the process.

index The lowest acceptable connection ID.

326 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ConnectAttach(),
ConnectAttach r()

Treating a connection as a file descriptor can lead to unexpected
behavior. Therefore, you should OR NTO SIDE CHANNEL into
index when you create a connection. If you do this, the connection ID
is returned from a different space than file descriptors; the ID is
greater than any valid file descriptor.

Once created there’s no difference in the use of the messaging
primitives on this ID. The C library creates connections at various
times without NTO SIDE CHANNEL (e.g. during open()), however,
it’s unlikely that any applications would want to call it this way.

�

flags If flags contains NTO COF CLOEXEC, the connection is
closed when your process calls an exec*() function to start a
new process.

Library:
libc

Description:
The ConnectAttach() and ConnectAttach r() kernel calls establish a
connection between the calling process and the channel specified by
chid owned by the process specified by pid on the node specified by
nd. Any function that passes a node descriptor can use either the
value 0 or the constant ND LOCAL NODE to refer to the local node.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

The return value is a connection ID, which is a small int
representing the connection. The system returns the first available
connection ID starting at the value specified by the index argument.
Any thread in the calling process can use either MsgSendv() to send
messages or MsgSendPulse() to send pulses over the connection. The
connection ID is used directly as a POSIX file descriptor (fd) when
communicating with I/O Resource managers such as a filesystem
manager.

May 31, 2004 Manifests 327

ConnectAttach(), ConnectAttach r() 2004, QNX Software Systems

Ltd.

If you don’t OR NTO SIDE CHANNEL into index, this behavior
might result:

� If file descriptor 0 is in use, file descriptor 1 isn’t in use, and you
call ConnectAttach() with 0 specified for index, a connection ID of
1 is returned.

File descriptor 1 (i.e. connection ID 1) is used as stdout, which is
what printf() writes to. If your process makes any calls to printf(),
NULL-terminated character strings are sent to the channel that
you’ve connected to. Similar situations can happen with
connection IDs 0 (stdin) and 2 (stderr).

� Depending on how a child process is created, it may inherit the
parent’s file descriptors.

Since connections are treated like file descriptors, a connection
created by the parent without NTO SIDE CHANNEL in index and
without NTO COF CLOEXEC in flags, causes a child process to
inherit that connection during process creation. This inheritance is
done during process creation by duplicating file descriptors.

During duplication, an IO DUP message (with 0x115) as the first
2 bytes) is sent to the receiver on the other side of the connection.
The receiver won’t be expecting this message.

If index has NTO SIDE CHANNEL set, the index is ignored and the
connection ID returned is the first available index in the
NTO SIDE CHANNEL space.

If a process creates multiple connections to the same channel, the
system maintains a link count and shares internal kernel object
resources for efficiency.

Connections are owned by the process and may be used
simultaneously by any thread in the process. You can detach a
connection by calling ConnectDetach(). If any threads are blocked on
the channel (via MsgSendv()) at the time the connection is detached,
the send fails and returns with an error.

328 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ConnectAttach(),
ConnectAttach r()

Connections and connection IDs persist until you call
ConnectDetach(), even if the other process dies.

�

The connection is strictly local (i.e. it doesn’t resolve across the
network) and is resolved on the first use of the connection ID.

Blocking states

These calls don’t block.

Node descriptors

The nd (node descriptor) is a temporary numeric description of a
remote node. For more information, see the Qnet Networking chapter
of the System Architecture guide.

To: Use this function:

Compare two nd objects ND NODE CMP()

Convert a nd to text netmgr ndtostr()

Convert text to a nd netmgr strtond()

Returns:
The only difference between these functions is the way they indicate
errors:

ConnectAttach()

A connection ID that’s used by the message primitives. If an
error occurs, the function returns -1 and sets errno.

ConnectAttach r()

A connection ID that’s used by the message primitives. This
function does NOT set errno. If an error occurs, the function
returns the negative of a value from the Errors section.

May 31, 2004 Manifests 329

ConnectAttach(), ConnectAttach r() 2004, QNX Software Systems

Ltd.

Errors:
EAGAIN All kernel connection objects are in use.

ESRCH The node indicated by nd, the process indicated by pid,
or the channel indicated by chid doesn’t exist.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ChannelCreate(), ConnectDetach(), execl(), execle(), execlp(),
execlpe(), execv(), execve(), execvp(), execvpe(), MsgSendPulse(),
MsgSendv(), netmgr remote nd()

330 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ConnectClientInfo(),
ConnectClientInfo r()

Store information about a client connection

Synopsis:
#include <sys/neutrino.h>

int ConnectClientInfo(int scoid,
struct client info * info
int ngroups);

int ConnectClientInfo r(int scoid,
struct client info * info
int ngroups);

Arguments:
scoid A server connection ID that identifies the client process

that you want to get information about. This client is
typically a process that’s made a connection to the server
to try to access a resource. You can get it from the
msg info argument to MsgReceivev() or MsgInfo().

info A pointer to a client info structure that the
function can fill with information about the client. For
more information, see below.

ngroups The size of the caller’s grouplist in the credential part of
the client info structure. If you make it smaller
than NGROUPS MAX, you might get information only
about a subset of the groups.

Library:
libc

Description:
These calls get information about a client connection identified by
scoid, and store it in the buffer that info points to.

The ConnectClientInfo() and ConnectClientInfo r() functions are
identical except in the way they indicate errors. See the Returns
section for details.

May 31, 2004 Manifests 331

ConnectClientInfo(), ConnectClientInfo r() 2004, QNX

Software Systems Ltd.

A server uses these functions to determine whether or not a client has
permission to access a resource. For example, in a resource manager,
it would be called on an open() connection request.

client info structure

The client info structure has at least the following members:

uint32 t nd The client’s node ID.

pid t pid The client’s process ID.

struct cred info cred

The user and group ID credentials; see below.

uint32 t nd

The nd (node descriptor) is a temporary numeric description of a
remote node. For more information, see the Qnet Networking chapter
of the System Architecture guide.

To: Use this function:

Compare two nd objects ND NODE CMP()

Convert a nd to text netmgr ndtostr()

Convert text to a nd netmgr strtond()

cred info structure

The cred member of the client info is a cred info structure
that includes at least the following members:

uid t ruid The real user ID of the sending process.

uid t euid The effective user ID of the sending process.

uid t suid The saved user ID of the sending process.

332 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ConnectClientInfo(),
ConnectClientInfo r()

gid t rgid The real group ID of the sending process.

gid t egid The effective group ID of the sending process.

gid t sgid The saved group ID of the sending process.

uint32 t ngroups

The number of groups actually stored in grouplist.

gid t grouplist[NGROUPS MAX]

The supplementary group IDs of the sending process.

The ngroups argument to ConnectClientInfo() indicates the size of the
grouplist array. If the group array size is zero, the ngroups member of
the cred info is set to the number of groups available.

Returns:
The only difference between these functions is the way they indicate
errors:

ConnectClientInfo()

If an error occurs, the function returns -1 and sets errno. Any
other value returned indicates success.

ConnectClientInfo r()

EOK is returned on success. This function does NOT set errno.
If an error occurs, the function can return any value in the
Errors section.

Errors:
EFAULT A fault occurred when the kernel tried to access the

buffers provided.

EINVAL Process doesn’t have a connection scoid.

May 31, 2004 Manifests 333

ConnectClientInfo(), ConnectClientInfo r() 2004, QNX

Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ConnectServerInfo(), msg info, MsgInfo(), MsgReceivev(),
ND NODE CMP(), netmgr ndtostr(), netmgr remote nd(),
netmgr strtond()

334 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ConnectDetach(),
ConnectDetach r()

Break a connection between a process and a channel

Synopsis:
#include <sys/neutrino.h>

int ConnectDetach(int coid);

int ConnectDetach r(int coid);

Arguments:
coid The connection ID of the connection you want to break.

Library:
libc

Description:
The ConnectDetach() and ConnectDetach r() kernel calls detach the
connection specified by the coid argument. If any threads are blocked
on the connection (MsgSendv()) at the time the connection is
detached, the send fails and returns with an error.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

ConnectDetach()

If an error occurs, the function returns -1 and sets errno. Any
other value returned indicates success.

May 31, 2004 Manifests 335

ConnectDetach(), ConnectDetach r() 2004, QNX Software

Systems Ltd.

ConnectDetach r()

EOK is returned on success. This function does NOT set errno.
If an error occurs, the function returns a value in the Errors
section.

Errors:
EINVAL The connection specified by coid doesn’t exist.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ConnectAttach(), MsgSendv()

336 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ConnectFlags(), ConnectFlags r()
Modify the flags associated with a connection

Synopsis:
#include <sys/neutrino.h>

int ConnectFlags(pid t pid,
int coid,
unsigned mask,
unsigned bits);

int ConnectFlags r(pid t pid,
int coid,
unsigned mask,
unsigned bits);

Arguments:
pid The ID of the process that the connection ID belongs to, or

0 for the current process.

coid The ID of the connection whose flags you want to modify.

mask A bitmap that indicates which bits are to be modified in the
flags.

bits The new value of the flags. The flags currently defined
include:

� NTO COF CLOEXEC — close the connection if the
process calls an exec*() function to start a new process.

Library:
libc

Description:
The ConnectFlags() and ConnectFlags r() kernel calls modify flags
associated with the specified connection. These kernel calls don’t
block.

May 31, 2004 Manifests 337

ConnectFlags(), ConnectFlags r() 2004, QNX Software Systems Ltd.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

You need to initialize the bits that correspond to the flag in both the
mask and bits arguments:

� If the bit in the mask is 1, and the bit in the bits is 1, the function
turns the flag on.

� If the bit in the mask is 1, and the bit in the bits is 0, the function
turns the flag off.

� If bit in the mask is 0, the function doesn’t change the current
value of the flag.

Returns:
The only difference between these functions is the way they indicate
errors:

ConnectFlags()

The previous value of the flags associated with the connection.
If an error occurs, the function returns -1 and sets errno.

ConnectFlags r()

The previous value of the flags associated with the connection.
This function does NOT set errno. If an error occurs, the
negative of a value from the Errors section is returned.

Errors:
ESRCH The process ID is invalid or the connection ID can’t be

found.

Classification:
QNX Neutrino

338 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ConnectFlags(), ConnectFlags r()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ConnectAttach(), fcntl()

May 31, 2004 Manifests 339

ConnectServerInfo(), ConnectServerInfo r() 2004, QNX

Software Systems Ltd.

Get information about a server connection

Synopsis:
#include <sys/neutrino.h>

int ConnectServerInfo(pid t pid,
int coid,
struct server info* info);

int ConnectServerInfo r(pid t pid,
int coid,
struct server info* info);

Arguments:
pid The process ID of the owner of the connection.

coid The connection ID of the connection.

info A pointer to a server info structure where the function
can store information about the connection. For more
information, see below.

Library:
libc

Description:
The ConnectServerInfo() and ConnectServerInfo r() kernel calls get
information about the connection coid owned by process pid, and
store it in the structure pointed to by info. If the process doesn’t have
a connection coid, the call scans for the next higher connection and
returns it if present. Otherwise, -1 is returned. If you wish to check
for the existence of an exact connection, you must compare the
returned connection with the coid you requested.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

340 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ConnectServerInfo(),
ConnectServerInfo r()

server info structure

The server info structure that info points to includes at least the
following members:

uint32 t nd The server’s node ID.

pid t pid The server’s process ID.

int32 t chid The server’s channel ID.

int32 t scoid The server’s connection ID.

uint32 t nd

The nd (node descriptor) is a temporary numeric description of a
remote node. For more information, see the Qnet Networking chapter
of the System Architecture guide.

To: Use this function:

Compare two nd objects ND NODE CMP()

Convert a nd to text netmgr ndtostr()

Convert text to a nd netmgr strtond()

Returns:
The only difference between these functions is the way they indicate
errors:

ConnectServerInfo()

A matched coid. If an error occurs, the function returns -1 and
sets errno.

May 31, 2004 Manifests 341

ConnectServerInfo(), ConnectServerInfo r() 2004, QNX

Software Systems Ltd.

ConnectServerInfo r()

A matched coid. This function does NOT set errno. If an error
occurs, the function returns the negative of a value from the
Errors section.

Errors:
EFAULT A fault occurred when the kernel tried to access the

buffers provided.

EINVAL Process pid doesn’t have a connection >= coid.

ESRCH The process indicated by pid doesn’t exist.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ConnectAttach(), ConnectClientInfo(), MsgInfo(), MsgReceivev(),
ND NODE CMP(), netmgr ndtostr(), netmgr remote nd(),
netmgr strtond()

342 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. copysign(), copysignf()
Copy the sign bit from one number to another

Synopsis:
#include <math.h>

double copysign (double x,
double y);

float copysignf (float x,
float y);

Arguments:
x The number to use the magnitude of.

y The number to use the sign of.

Library:
libm

Description:
The copysign() and copysignf() functions return the magnitude of x
and the sign bit of y.

If x is NAN, the function produces NAN with the sign of y.

Returns:
The magnitude of x and the sign bit of y.

Examples:
#include <stdio.h>
#include <errno.h>
#include <inttypes.h>
#include <math.h>
#include <fpstatus.h>

int main(int argc, char** argv)
{

double a, b, c;

a = 27.0;

May 31, 2004 Manifests 343

copysign(), copysignf() 2004, QNX Software Systems Ltd.

b = -5;
c = copysign(a, b);
printf("The magnitude of %f and sign of %f gives %f\n",

a, b, c);

return(0);
}

produces the output:

The magnitude of 27.000000 and sign of -5.000000 gives -27.000000

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
significand()

344 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. cos(), cosf()
Compute the cosine of an angle

Synopsis:
#include <math.h>

double cos(double x);

float cosf(float x);

Arguments:
x The angle, in radians, for which you want to compute the

cosine.

Library:
libm

Description:
These functions compute the cosine of x (specified in radians).

An argument with a large magnitude may yield results with little or
no significance.

�

Returns:
The cosine of x.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

May 31, 2004 Manifests 345

cos(), cosf() 2004, QNX Software Systems Ltd.

int main(void)
{

double value;

value = cos(M PI);
printf("value = %f\n", value);

return EXIT SUCCESS;
}

produces the output:

value = -1.000000

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
acos(), errno, sin(), tan()

346 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. cosh(), coshf()
Compute the hyperbolic cosine

Synopsis:
#include <math.h>

double cosh(double x);

float coshf(float x);

Arguments:
x The angle, in radians, for which you want to compute the

hyperbolic cosine.

Library:
libm

Description:
These functions compute the hyperbolic cosine (specified in radians)
of x. A range error occurs if the magnitude of x is too large.

Returns:
The hyperbolic cosine of x.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

int main(void)
{

printf("%f\n", cosh(.5));

May 31, 2004 Manifests 347

cosh(), coshf() 2004, QNX Software Systems Ltd.

return EXIT SUCCESS;
}

produces the output:

1.127626

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, sinh(), tanh()

348 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. creat(), creat64()
Create and open a file (low-level)

Synopsis:
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int creat(const char* path,
mode t mode);

int creat64(const char* path,
mode t mode);

Arguments:
path The path of the file you want to open.

mode The access permissions that you want to use. For more
information, see “Access permissions” in the
documentation for stat().

Library:
libc

Description:
The creat() and creat64() functions create and open the file specified
by path with the given mode.

Calling creat() is the same as:

open(path, O WRONLY | O CREAT | O TRUNC, mode);

Similarly, calling creat64() is the same as:

open64(path, O WRONLY | O CREAT | O TRUNC | O LARGEFILE, mode);

If path exists and is writable, it’s truncated to contain no data, and the
existing mode setting isn’t changed.

If path doesn’t exist, it’s created with the access permissions specified
by the mode argument. The access permissions for the file or directory
are specified as a combination of the bits defined in <sys/stat.h>.

May 31, 2004 Manifests 349

creat(), creat64() 2004, QNX Software Systems Ltd.

Returns:
A file descriptor on success, or -1 if an error occurs (errno is set).

Errors:
EACCES Indicates one of the following permission problems:

� Search permission is denied for one of the
components in the path.

� The file specified by path exists, and the
permissions specified by mode are denied.

� The file specified by path doesn’t exist, and the
file couldn’t be created because write permission
is denied for the parent directory.

EBADFSYS While attempting to open path, the file itself or a
component of its path prefix was found to be
corrupted. A system failure — from which no
automatic recovery is possible — occurred while the
file was being written to or while the directory was
being updated. The filesystem must be repaired
before proceeding.

EBUSY The file specified by path is a block special device
that’s already open for writing, or path names a file
on a filesystem mounted on a block special device
that is already open for writing.

EINTR The call to creat() was interrupted by a signal.

EISDIR The file specified by path is a directory and the file
creation flags specify write-only or read/write access.

ELOOP Too many levels of symbolic links.

EMFILE This process is using too many file descriptors.

ENAMETOOLONG

The length of path exceeds PATH MAX, or a
pathname component is longer than NAME MAX.

350 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. creat(), creat64()

ENFILE Too many files are currently open in the system.

ENOENT Either the path prefix doesn’t exist, or the path
argument points to an empty string.

ENOSPC The directory or filesystem that would contain the
new file doesn’t have enough space available to
create a new file.

ENOSYS The creat() function isn’t implemented for the
filesystem specified by path.

ENOTDIR A component of the path prefix isn’t a directory.

EROFS The file specified by path resides on a read-only
filesystem.

Examples:
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>

int main(void)
{

int filedes;

filedes = creat("file",
S IRUSR | S IWUSR | S IRGRP | S IWGRP);

if(filedes != -1) {
/* process file */

close(filedes);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

May 31, 2004 Manifests 351

creat(), creat64() 2004, QNX Software Systems Ltd.

Classification:
creat() is POSIX 1003.1; creat64() is for large-file support

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
chsize(), close(), dup(), dup2(), eof(), errno, execl(), execle(), execlp(),
execlpe(), execv(), execve(), execvp(), execvpe(), fcntl(), fileno(),
fstat(), isatty(), lseek(), open(), read(), sopen(), stat(), tell(), write(),
umask()

352 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. crypt()
Encrypt a password

Synopsis:
#include <unistd.h>

char * crypt(const char * key,
const char * salt);

Arguments:
key A NUL-terminated string (normally a password typed by a

user).

salt A two-character string chosen from the set [a-zA-Z0-9./].
This function doesn’t validate the values for salt, and values
outside this range may cause undefined behavior. This string
is used to perturb the algorithm in one of 4096 different ways.

Library:
libc

Description:
The crypt() function performs password encryption. It’s based on the
Data Encryption Standard algorithm, and also includes code to deter
key search attempts.

This function checks only the first eight characters of key.�

You can obtain a 56-bit key by taking the lowest 7 bits of key. The
56-bit key is used to repeatedly encrypt a constant string (usually all
zeroes).

Returns:
A pointer to the 13-character encrypted value, or NULL on failure.
The first two characters of the encrypted value are the salt itself.

May 31, 2004 Manifests 353

crypt() 2004, QNX Software Systems Ltd.

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

Caveats:
The return value points to static data that’s overwritten by each call to
crypt().

See also:
encrypt(), getpass(), qnx crypt(), setkey()

login in the Utilities Reference

Copyright MINIX Operating System

354 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ctermid()
Generate the path name of the current controlling terminal

Synopsis:
#include <stdio.h>

char * ctermid(char * s);

Arguments:
s NULL, or a pointer to a buffer in which the function can store

the path name of the controlling terminal. This string should be
at least L ctermid characters long (see <stdio.h>).

Library:
libc

Description:
The ctermid() function generates a string that contains the path name
of the current controlling terminal for the calling process.

If the argument s is NULL, the string is built in a static buffer, and the
function returns a pointer to the buffer.

�

Returns:
A pointer to the path name of the controlling terminal, or a pointer to
a null string if the function can’t locate the controlling terminal.

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
printf("Controlling terminal is %s\n", ctermid(NULL));
return EXIT SUCCESS;

}

May 31, 2004 Manifests 355

ctermid() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Read the Caveats

Caveats:
The ctermid() function isn’t thread-safe if the s argument is NULL.

See also:
setsid(), ttyname()

356 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ctime(), ctime r()
Convert calendar time to local time

Synopsis:
#include <time.h>

char* ctime(const time t* timer);

char* ctime r(const time t* timer,
char* buf);

Arguments:
timer A pointer to a time t object that contains the time that you

want to convert to a string.

buf (ctime r() only) A buffer in which ctime r() can store the
resulting string. This buffer must be large enough to hold at
least 26 characters.

Library:
libc

Description:
The ctime() and ctime r() functions convert the time pointed to by
timer to local time and formats it as a string containing exactly 26
characters in the form:

Tue May 7 10:40:27 2002\n\0

This function: Is equivalent to calling:

ctime() asctime(localtime (timer));

ctime r() asctime r(localtime (timer), buf)

May 31, 2004 Manifests 357

ctime(), ctime r() 2004, QNX Software Systems Ltd.

The ctime() function places the result string in a static buffer that’s
reused each time ctime() or asctime() is called. The result string for
ctime r() is contained in the buffer pointed to by buf .

All fields have a constant width. The newline character ’\n’ and
NUL character ’\0’ occupy the last two positions of the string.

Whenever the ctime() or ctime r() functions are called, the tzset()
function is also called.

The calendar time is usually obtained by using the time() function.
That time is Coordinated Universal Time (UTC) (formerly known as
Greenwich Mean Time (GMT)).

You typically set the time on the computer with the date command to
reflect Coordinated Universal Time (UTC), and then use the TZ
environment variable or CS TIMEZONE configuration string to
establish the local time zone. For more information, see “Setting the
time zone” in the Configuring Your Environment chapter of the
Neutrino User’s Guide.

Returns:
A pointer to the string containing the formatted local time, or NULL if
an error occurs.

Classification:
ctime() is ANSI, POSIX 1003.1; ctime r() is POSIX 1003.1

ctime()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread No

358 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ctime(), ctime r()

ctime r()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The asctime() and ctime() functions place their results in a static
buffer that’s reused for each call to asctime() or ctime().

See also:
asctime(), asctime r(), clock(), difftime(), gmtime(), localtime(),
localtime r(), mktime(), strftime(), time(), tzset()

“Setting the time zone” in the Configuring Your Environment chapter
of the Neutrino User’s Guide

May 31, 2004 Manifests 359

daemon() 2004, QNX Software Systems Ltd.

Run a process in the background

Synopsis:
#include <stdlib.h>

int daemon(int nochdir,
int noclose);

Arguments:
nochdir If this argument is 0 — the current working directory to

the root (/) is changed.

noclose If this argument is 0 — standard input, standard output
and standard error to /dev/null are redirected.

Library:
libc

Description:
The daemon() function allows programs to detach themselves from
the controlling terminal and run in the background as system
daemons.

This function calls fork() and setsid().

The controlling terminal behaves like the behavior intended in Unix
System Version, Release 4. An open() on a terminal device not
already associated with another session will cause the device to
become the controlling terminal for that process.

�

Returns:
Zero for success, or -1 if an error occurs (errno is set).

360 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. daemon()

Classification:
Legacy Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread No

Caveats:
Currently, daemon() is supported only in single-threaded applications.
If you create a thread and then call daemon(), the function returns -1
and sets errno to ENOSYS.

See also:
fork(), procmgr daemon(), setsid()

May 31, 2004 Manifests 361

daylight 2004, QNX Software Systems Ltd.

Indicator of support for daylight saving time in the locale

Synopsis:
#include <time.h>

unsigned int daylight;

Description:
This global variable has a value of 1 when daylight saving time is
supported in this locale, and 0 otherwise. Whenever you call a time
function, tzset() is called to set the variable, based on the current time
zone.

Classification:
QNX Neutrino

See also:
timezone, tzname, tzset()

“Setting the time zone” in the Configuring Your Environment chapter
of the Neutrino User’s Guide

362 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. DebugBreak()
Enter the process debugger

Synopsis:
#include <sys/neutrino.h>

void DebugBreak(void);

Library:
libc

Description:
The DebugBreak() kernel call activates the process debugger if you’re
debugging the calling process. If not, it sends a SIGTRAP signal to the
process.

Blocking states

None.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
If you call DebugBreak() from an interrupt handler, it’ll activate the
kernel debugger (if it’s present in your boot image) or send the
process a SIGTRAP signal.

May 31, 2004 Manifests 363

DebugBreak() 2004, QNX Software Systems Ltd.

See also:
DebugKDBreak(), DebugKDOutput()

364 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. DebugKDBreak()
Enter the kernel debugger

Synopsis:
#include <sys/neutrino.h>

void DebugKDBreak(void);

Library:
libc

Description:
The DebugKDBreak() kernel call activates the kernel debugger if it’s
present in your boot image. If not, nothing happens.

Blocking states

None.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
DebugBreak(), DebugKDOutput()

May 31, 2004 Manifests 365

DebugKDOutput() 2004, QNX Software Systems Ltd.

Print text with the kernel debugger

Synopsis:
#include <sys/neutrino.h>

void DebugKDOutput(const char* str,
size t size);

Arguments:
str The string that you want to print.

size The number of characters to print.

Library:
libc

Description:
The DebugKDBreak() kernel call causes the kernel debugger to print
size characters from str if the kernel debugger is present in your boot
image. If it isn’t in your boot image, nothing happens.

When, where, and how the kernel debugger displays this message
depends on which host debugger you’re using.

Blocking states

None.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

continued. . .

366 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. DebugKDOutput()

Safety

Signal handler Yes

Thread Yes

See also:
DebugBreak(), DebugKDBreak()

May 31, 2004 Manifests 367

delay() 2004, QNX Software Systems Ltd.

Suspends a calling thread for a given length of time

Synopsis:
#include <unistd.h>

unsigned int delay(unsigned int duration);

Arguments:
duration The number of milliseconds for which to suspend the

calling thread from execution.

Library:
libc

Description:
The delay() function suspends the calling thread for duration
milliseconds.

The suspension time may be greater than the requested amount, due
to the scheduling of other, higher-priority threads by the system.

�

Returns:
0 for success, or the number of unslept milliseconds if interrupted by
a signal.

Errors:
If an error occurs, errno is set to:

EAGAIN No timer resources were available to satisfy the request.

368 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. delay()

Examples:
#include <unistd.h>
#include <stdlib.h>

void play sound(void)
{

...
}

void stop sound(void)
{

...
}

int main(void)
{

play sound();
delay(500); /* delay for 1/2 second */
stop sound();

return EXIT SUCCESS;
}

Classification:
QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
alarm(), errno, nanosleep(), nap(), napms(), sleep()

May 31, 2004 Manifests 369

devctl() 2004, QNX Software Systems Ltd.

Control a device

Synopsis:
#include <sys/types.h>
#include <unistd.h>
#include <devctl.h>

int devctl(int filedes,
int dcmd,
void * dev data ptr,
size t n bytes,
int * dev info ptr);

Arguments:
filedes A file descriptor that you obtained by opening the

device.

dcmd A device-specific command for the process
managing the open device. The set of valid
device-control commands, the associated data
interpretation, the returned dev info ptr values, and
the effect of the command on the device all depend
on the device driver.

For specific commands, see the <sys/dcmd *.h>

header files; for general information, see
“Device-control commands,” below.

dev data ptr Depending on the command, this argument is one
of:

� a pointer to a buffer containing data to be passed
to the driver

� a receiving area for data coming from the driver

� both of the above

� NULL.

n bytes The size of the data to be sent to the driver, or the
maximum size of the data to be received from the
driver. MsgSend() is used to transfer the data.

370 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. devctl()

dev info ptr A pointer to a location that the device to can use to
return additional status information instead of just
success or failure. The data returned via
dev info ptr depends on the device driver.

Library:
libc

Description:
The devctl() function sends the device-specific command dcmd to the
process managing the device opened as filedes. For example, you can
send commands to specify properties for devices such as keyboards,
sound cards or serial ports.

Device-control commands

Use these macros to set up the device-control commands:

DIOF(class, cmd, data)

Get information from the device.

DION(class, cmd)

A command with no associated data.

DIOT(class, cmd, data)

Pass information to the device.

DIOTF(class, cmd, data)

Pass some information to the device, and get some from it.

The arguments to these macros are:

class The major category for the command. The device-control
commands are divided into the following classes to make
organization easier:

� DCMD ALL — Common (all I/O servers).

May 31, 2004 Manifests 371

devctl() 2004, QNX Software Systems Ltd.

� DCMD CAM — Low-level (Common Access Method)
devices, such as disks or CD-ROMs.

� DCMD CHR — Character devices.

� DCMD FSYS, DCMD BLK — Filesystem/block I/O
managers.

� DCMD INPUT — Input devices.

� DCMD IP — Internet Protocol.

� DCMD MEM — Memory card.

� DCMD MISC — Miscellaneous commands.

� DCMD MIXER — Mixer (Audio).

� DCMD NET — Network devices.

� DCMD PHOTON — Photon.

� DCMD PROC — Process manager.

cmd The specific command in the class.

data The type of data to pass to and/or from the device. The
dev data ptr argument to devctl() must be a pointer to this
type of data, and n bytes is usually the size of this type of
data.

The size of the structure that’s passed as the last field to the DIO*
macros must be less than 2ˆ14 == 16K. Anything larger than this
interferes with the upper two directional bits.

�

Resource managers can use the following macros, which are defined
in <devctl.h>, when handling commands:

get device command(cmd)

Extract the class and the specific device command from cmd
(i.e. strip off the data type and the direction).

get device direction(cmd)

Get the direction of the command (DEVDIR TO,
DEVDIR FROM, DEVDIR TOFROM, or DEVDIR NONE).

372 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. devctl()

Returns:
EOK Success.

EAGAIN The devctl() command couldn’t be completed because
the device driver was in use by another process, or the
driver was unable to carry out the request due to an
outstanding command in progress.

EBADF Invalid open file descriptor, filedes.

EINTR The devctl() function was interrupted by a signal.

EINVAL The device driver detected an error in dev data ptr or
n bytes.

EIO The devctl() function couldn’t complete because of a
hardware error.

ENOSYS The device doesn’t support the dcmd command.

ENOTTY The dcmd argument isn’t a valid command for this
device.

EPERM The process doesn’t have sufficient permission to carry
out the requested command.

Examples:
Example 1: Setting RTS on a serial port

Here’s a quick example of setting and unsetting RTS (Request to
Send) on a serial port:

/* For "devctl()" */
#include <devctl.h>

#include <sys/dcmd chr.h>

/* For "open()" */

#include <sys/types.h>

#include <sys/stat.h>
#include <fcntl.h>

/* For Errors */
#include <stdlib.h>

#include <stdio.h>

May 31, 2004 Manifests 373

devctl() 2004, QNX Software Systems Ltd.

int check RTS(int fd);

int main(void)
{

int data = 0, fd, error;

if((fd = open ("/dev/ser2", O RDONLY)) == -1)

{
fprintf(stderr, "Error with open() on /dev/ser2. Make sure exists.\n");

perror (NULL);

exit(EXIT FAILURE);
}

check RTS(fd);

/* Let’s turn ON RTS now. */

data = CTL RTS CHG | CTL RTS;

if (error = devctl (fd, DCMD CHR SERCTL, &data, sizeof(data), NULL))

{
fprintf(stderr, "Error setting RTS: %s\n",

strerror (error));

exit(EXIT FAILURE);
}

/* RTS should now be ON. */

check RTS(fd);

sleep (2);

/* Now let’s turn RTS OFF. */

data = CTL RTS CHG | 0;

if (error = devctl (fd, DCMD CHR SERCTL, &data, sizeof(data), NULL))

{

fprintf(stderr, "Error setting RTS: %s\n",
strerror (error));

exit(EXIT FAILURE);

}
/* RTS should now be OFF. */

check RTS(fd);

close(fd);

return (1);

}

int check RTS(int fd)
{

int data = 0, error;

/*

Let’s see if RTS is set, tell devctl() we’re requesting

line status information and devctl() then assigns data
the line status information for us. Too easy.

*/

374 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. devctl()

if (error = devctl (fd, DCMD CHR LINESTATUS, &data,
sizeof(data), NULL))

{

fprintf(stderr, "Error setting RTS: %s\n",
strerror (error));

exit(EXIT FAILURE);

}

if (data & LINESTATUS SER RTS)

printf("RTS is SET!\n");

else

printf("RTS is NOT set\n");

return(1);

}

The two main areas of interest are the setting of data and the devctl()
call. The data variable is used for both sending and receiving data.

When setting RTS, data is assigned a value that’s sent to the device
via devctl().

If data equals: RTS is turned:

CTL RTS CHG | CTL RTS ON

CTL RTS CHG OFF

When checking to see if RTS is set, we call devctl() with dcmd set to
the DCMD CHR LINESTATUS macro and data containing any value
(zero is clean). The devctl() function returns with data containing the
Line Status value. This then can be used to determine what lines are
set on that device. In our example, we check against
LINESTATUS SER RTS.

To find out what values to use with different DCMD * commands,
look in the appropriate <sys/dcmd *.h>header file. For example,
you’ll find macros for the following values under
DCMD CHR LINESTATUS in <sys/dcmd chr.h>:

� Serial Port (DTR, RTS, CTS, DSR, RI, CD)

May 31, 2004 Manifests 375

devctl() 2004, QNX Software Systems Ltd.

� Keyboard (Scroll/Caps/Num Lock, Shift, CTRL, ALT)

� Parallel Port (No Error, Selected, Paper Out, No Tack, Not Busy)

The value that’s in the header is a “bitwise &” with the value in data
to see if the value is high for that line.

Example 2: Cycling through Caps Lock, Num Lock, and Scroll Lock

In the following example, we open the device /dev/kbd and we start
applying changes to the Caps Lock, Scroll Lock, and Num Lock
properties.

The key lines in this example are the same as in the last example; they
focus around the data variable. This value is just a simple integer
value that’s passed into the devctl() function. The data variable is
assigned its values by simply performing a bitwise OR to the
predefined values in the </usr/include/sys/dcmd chr.h>

header. Note the values used in the bitwise OR:

� CONCTL NUM CHG (Console Control Num Lock Change) ORed
together with CONCTL NUM (Console Control Num Lock) turns
on Num Lock.

� CONCTL NUM CHG on its own turns off Num Lock.

If data equals: Num Lock is turned:

CONCTL NUM CHG | CONCTL NUM ON

CONCTL NUM CHG OFF

This also applies for the other either/or values in the <dcmd chr.h>

header.

/* For "devctl()" */

#include <devctl.h>

#include <sys/dcmd chr.h>

/* For "open()" */

#include <sys/types.h>
#include <sys/stat.h>

#include <fcntl.h>

376 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. devctl()

/* For Errors */

#include <stdlib.h>

#include <stdio.h>

int main(void)
{

int data, fd, toggle = 1, error;

/* Open the device we wish to manipulate. */

if((fd = open ("/dev/kbd", O RDONLY)) == -1)
{

fprintf(stderr, "Error with open() on /dev/kbd. Make sure exists.\n");

perror (NULL);
exit(EXIT FAILURE);

}

while(1)

{

switch(toggle)
{

case 1:

{
/*

Turn on Num Lock and make sure that
Caps and Scroll lock are turned off.

*/

data = (CONCTL NUM CHG | CONCTL NUM) | CONCTL CAPS CHG | CONCTL SCROLL CHG;
break;

}

case 2:
{

/*

Turn off Num Lock and now turn on Caps Lock
(Scroll lock is already off).

*/

data = CONCTL NUM CHG | (CONCTL CAPS CHG | CONCTL CAPS);
break;

}

case 3:
{

/*
Turn off Caps lock and turn on Scroll lock

(Num lock is already off).

*/
data = CONCTL CAPS CHG | (CONCTL SCROLL CHG | CONCTL SCROLL);

toggle = 0;

break;
}

}

/* Explanation below. */

if (error = devctl (fd, DCMD CHR SERCTL, &data,

sizeof(data), NULL))
{

fprintf(stderr, "Error setting KBD: %s\n",

strerror (error));
exit(EXIT FAILURE);

}

May 31, 2004 Manifests 377

devctl() 2004, QNX Software Systems Ltd.

sleep(1);

toggle++;

}

return (1);

}

Here’s a quick explanation of the above devctl() call:

devctl (fd, DCMD CHR SERCTL, &data, sizeof(data), NULL)

The first parameter, fd, is the file descriptor of the device that’s being
changed. The second parameter is the device class that’s being
changed. In this case, it’s a character device DCMD CHR, with a
“subclass” of SERCTL. The third parameter is the data variable; this
is the ORed value.

Example 3: Duration example

In this code, tcdropline(), which is used to disconnect a
communications line, uses devctl() (this is the actual source code,
tcdropline() is a standard library function):

#include <termios.h>

#include <devctl.h>
#include <errno.h>

#include <sys/dcmd chr.h>

int tcdropline(int fd, int duration) {

int error;

duration = ((duration ? duration : 300) << 16) |

SERCTL DTR CHG | 0;

if(error = devctl(fd, DCMD CHR SERCTL, &duration, sizeof duration, 0) == -1) {

if(error == ENOSYS) {
errno = ENOTTY;

}

return -1;
}

return 0;

}

378 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. devctl()

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
When devctl() fails, the effect of the failed command depends on the
device driver. The corresponding data might be transferred, partially
transferred, or not transferred at all.

The devctl() function was originally part of the POSIX 1003.1d draft
standard; but it was deprecated in the IEEE Approved Draft 10
standard.

See also:
close(), open(), read(), write()

May 31, 2004 Manifests 379

difftime() 2004, QNX Software Systems Ltd.

Calculate the difference between two times

Synopsis:
#include <time.h>

double difftime(time t time1,
time t time0);

Arguments:
time1, time0 The times to compare, expressed as time t objects.

Library:
libc

Description:
The difftime() function calculates the difference between the calendar
times specified by time1 and time0:

time1 - time0

Returns:
The difference between the two times (in seconds).

Examples:
#include <stdio.h>
#include <time.h>
#include <stdlib.h>

void compute(void)
{

int i, j;

for(i = 1; i <= 20; i++) {
for(j = 1; j <= 20; j++) {

printf("%3d ", i * j);
}
printf("\n");

}
}

380 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. difftime()

int main(void)
{

time t start time, end time;

start time = time(NULL);
compute();
end time = time(NULL);
printf("Elapsed time: %f seconds\n",

difftime(end time, start time));

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
asctime(), clock(), ctime(), gmtime(), localtime(), mktime(), strftime(),
time(), tzset()

May 31, 2004 Manifests 381

dircntl() 2004, QNX Software Systems Ltd.

Control an open directory

Synopsis:
#include <dirent.h>

int dircntl(DIR * dir,
int cmd,
...);

Arguments:
dir Provide control for this directory.

cmd At least the following values are defined in <dirent.h>:

� D GETFLAG — retrieve the flags associated with the
directory referenced by dir. For more information, see
“Flag values,” below.

� D SETFLAG — set the flags associated with the directory
referenced by dir to the value given as an additional
argument. The new value can be any combination of the
flags described in “Flag values,” below.

Library:
libc

Description:
The dircntl() function provides control over the open directory
referenced by the dir argument. This function behaves in a manner
similar to the file control function, fcntl().

Flag values

D FLAG FILTER

Filter out duplicate name entries that may occur due to the
union filesystem during a readdir() operation.

D FLAG STAT

Indicate to servers that they should attempt to return extra stat()
information as part of the readdir() operation.

382 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dircntl()

Returns:
The return value depends on the value of cmd:

D GETFLAG The flags associated with the directory, or -1 if an
error occurs (errno is set).

D SETFLAG 0 for success, or -1 if an error occurs (errno is set).

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <dirent.h>

int main(int argc, char **argv) {
DIR *dp;
int ret;

if(!(dp = opendir("/"))) {
exit(EXIT FAILURE);

}

/* Display the flags that are set on the
directory by default*/

if((ret = dircntl(dp, D GETFLAG)) == -1) {
exit(EXIT FAILURE);

}

if(ret & D FLAG FILTER) {
printf("Directory names are filtered\n");

} else {
printf("Directory names are not filtered\n");

}

if(ret & D FLAG STAT) {
printf("Servers asked for extra stat information\n");

} else {
printf("Servers not asked for extra stat information\n");

}

closedir(dp);

return 0;
}

May 31, 2004 Manifests 383

dircntl() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
fcntl(), opendir()

384 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dirname()
Find the parent directory part of a file pathname

Synopsis:
#include <libgen.h>

char *dirname(char *path);

Arguments:
path The string to parse.

Library:
libc

Description:
The dirname() function takes a pointer to a character string that
contains a pathname, and returns a pointer to a string that’s a
pathname of the parent directory of that file. Trailing “/” characters
in the path aren’t counted as part of the path.

If the path doesn’t contain a “/” character, or path is a NULL pointer
or points to an empty string, then dirname() function returns a pointer
to the string "." (dot).

Together the dirname() and basename() functions yield a complete
pathname. The expression dirname(path) obtains the pathname of the
directory where basename(path) is found.

Returns:
A pointer to a string that’s the parent directory of path. If path is a
NULL pointer or points to an empty string, a pointer to a string "." is
returned.

Examples:

May 31, 2004 Manifests 385

dirname() 2004, QNX Software Systems Ltd.

String input String output

“/usr/lib” “/usr”

“/usr/” “usr”

“/” “/”

“.” “.”

“..” “.”

The following code fragment reads a pathname, changes the current
working directory to the parent directory, and opens the file:

char path[BUFF SIZE], *pathcopy;
int fd;

fgets(path, BUFF SIZE, stdin);
pathcopy = strdup(path);
chdir(dirname(pathcopy));
fd = open(basename(path), O RDONLY);

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

386 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dirname()

See also:
basename()

May 31, 2004 Manifests 387

dispatch block() 2004, QNX Software Systems Ltd.

Block while waiting for an event

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

dispatch context t * dispatch block
(dispatch context t * ctp);

Arguments:
ctp A pointer to a dispatch context t structure that defines

the dispatch context.

Library:
libc

Description:
The dispatch block() function blocks while waiting for an event (e.g.
message or signal) that’s registered using one of the attach functions,
message attach(), pulse attach(), resmgr attach(), or select attach().
(The sigwait attach() function isn’t currently implemented.)

If the type of blocking is: dispatch block() does a:

message (resmgr, message, select) MsgReceive()

signal SignalWaitinfo()

Returns:
A dispatch context that’s passed in by dispatch context alloc(). or
NULL if an error occurs (errno is set).

Errors can occur when the blocking kernel call returns with an error,
for example, due to the delivery of a signal.

388 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dispatch block()

In the case of a timeout, a valid ctp is returned, but either the
ctp->message context.rcvid or ctp->sigwait context.signo is set to -1.

�

If a non-NULL context pointer is returned, it could be different from
the one passed in, as it’s possible for the ctp to be reallocated to a
larger size. In this case, the old ctp is no longer valid. However, if
NULL is returned (for example, because a signal interrupted the
MsgReceive()), the old context pointer is still valid. Typically, a
resource manager would target signals to a thread dedicated to
handling signals. However, if a signal can be targeted to the thread
doing dispatch block(), you could use the following code in this
situation:

dispatch context t *ctp, *new ctp;

ctp = dispatch context alloc(...);
while (1) {

new ctp = dispatch block(ctp);
if (new ctp) {

ctp = new ctp
}

else {
/* handle the error condition */
...
}

}

Errors:
EFAULT A fault occurred when the kernel tried to access the

buffers.

EINTR The call was interrupted by a signal.

EINVAL Invalid arguments passed to dispatch block().

ENOMEM Insufficient memory to allocate internal data
structures.

May 31, 2004 Manifests 389

dispatch block() 2004, QNX Software Systems Ltd.

See also the error constants returned in MsgReceive() and
SignalWaitinfo().

Examples:
#include <sys/dispatch.h>

int main(int argc, char **argv) {
dispatch context t *ctp;

...

for(;;) {
if(ctp = dispatch block(ctp)) {
dispatch handler(ctp);

}
}

}

For examples using the dispatch interface, see dispatch create(),
message attach(), resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
dispatch context alloc(), dispatch handler(), dispatch timeout(),
dispatch unblock()

“Components of a Resource Manager” section of the Writing a
Resource Manager chapter in the Programmer’s Guide.

390 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dispatch context alloc()
Return a dispatch context

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

dispatch context t * dispatch context alloc
(dispatch t * dpp);

Arguments:
dpp A dispatch handle created by dispatch create().

Library:
libc

Description:
The dispatch context alloc() function returns a dispatch context
pointer. The function is passed in the handle dpp from
dispatch create(). The dispatch context is used by dispatch to do its
work. It’s passed as an argument to dispatch block() and
dispatch handler().

The dispatch context alloc() function fails if you haven’t attached any
events to dispatch yet (e.g. you didn’t call message attach(),
resmgr attach(), or select attach()). The dispatch library can’t
allocate a proper context until it knows what kind of events you want
to block.

�

Returns:
A pointer to a dispatch context, or NULL if an error occurs (errno is
set).

May 31, 2004 Manifests 391

dispatch context alloc() 2004, QNX Software Systems Ltd.

Errors:
EINVAL No events were attached.

ENOMEM Insufficient memory to allocate context.

Examples:
#include <sys/dispatch.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv) {
dispatch t *dpp;
dispatch context t *ctp;

if((dpp = dispatch create()) == NULL) {
fprintf(stderr, "%s: Unable to allocate \

dispatch handle.\n",argv[0]);
return EXIT FAILURE;

}

⋮

ctp = dispatch context alloc(dpp);

⋮

return EXIT SUCCESS;
}

For examples using the dispatch interface, see dispatch create(),
message attach(), resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

continued. . .

392 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dispatch context alloc()

Safety

Thread Yes

See also:
dispatch block(), dispatch context free(), dispatch create(),
dispatch handler(), dispatch unblock()

“Components of a Resource Manager” section of the Writing a
Resource Manager chapter in the Programmer’s Guide.

May 31, 2004 Manifests 393

dispatch context free() 2004, QNX Software Systems Ltd.

Free a dispatch context

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

void dispatch context free(
dispatch context t * ctp);

Arguments:
ctp A pointer to a dispatch context t structure that was

allocated by dispatch context alloc().

Library:
libc

Description:
The dispatch context free() function frees the given dispatch context.

Examples:
#include <sys/dispatch.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv) {
dispatch t *dpp;
dispatch context t *ctp;

if((dpp = dispatch create()) == NULL) {
fprintf(stderr, "%s: Unable to allocate

dispatch handle.\n",argv[0]);
return EXIT FAILURE;

}

...

ctp = dispatch context alloc(dpp);

...

dispatch context free (ctp);

394 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dispatch context free()

return EXIT SUCCESS;
}

See dispatch create(), message attach(), resmgr attach(), and
thread pool create() for examples using the dispatch interface.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
dispatch context alloc()

“Components of a Resource Manager” section of the Writing a
Resource Manager chapter in the Programmer’s Guide.

May 31, 2004 Manifests 395

dispatch create() 2004, QNX Software Systems Ltd.

Allocate a dispatch handle

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

dispatch t *dispatch create(void);

Library:
libc

Description:
The dispatch create() function allocates and initializes a dispatch
handle. The attach functions are:

� message attach()

� pulse attach()

� resmgr attach()

� select attach()

If you wish, you can do a resmgr attach() with a NULL path. This has
the effect of initializing dispatch to receive messages and creates the
channel among other things.

A channel is created only when you first attach something that
requires a channel (indicating you will block receiving messages).

�

Returns:
A handle to a dispatch structure, or NULL if an error occurs.

The dispatch structure, dispatch t, is an opaque data type; you
can’t access its contents directly.

�

396 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dispatch create()

Errors:
ENOMEM Insufficient memory to allocate context.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <fcntl.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int my func(select context t *ctp, int fd,
unsigned flags, void *handle) {

int i, c;

/* Do some useful stuff with data */
i = read(fd, &c, 1);
fprintf(stderr, "activity on fd %d: read char %c,

return code %d\n", fd, c, i);
}

int main(int argc, char **argv) {
dispatch t *dpp;
dispatch context t *ctp;
select attr t attr;
int fd, fd2;

if((dpp = dispatch create()) == NULL) {
fprintf(stderr, "%s: Unable to allocate \

dispatch handle.\n",argv[0]);
return EXIT FAILURE;

}

if(argc ≤ 2 || (fd = open(argv[1],
O RDWR | O NONBLOCK)) == -1) {

return EXIT FAILURE;
}

if(argc ≤ 2 || (fd2 = open(argv[2],
O RDWR | O NONBLOCK)) == -1) {

return EXIT FAILURE;
}

select attach(dpp, &attr, fd,
SELECT FLAG READ | SELECT FLAG REARM, my func, NULL);

select attach(dpp, &attr, fd2,
SELECT FLAG READ | SELECT FLAG REARM, my func, NULL);

ctp = dispatch context alloc(dpp);

May 31, 2004 Manifests 397

dispatch create() 2004, QNX Software Systems Ltd.

for(;;) {
if(ctp = dispatch block(ctp)) {
dispatch handler(ctp);

}
}
return EXIT SUCCESS;

}

For more examples using the dispatch interface, see message attach(),
resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
dispatch block(), dispatch context alloc(), dispatch destroy(),
dispatch handler(), dispatch timeout(), dispatch unblock()
message attach(), pulse attach(), resmgr attach(), select attach()

398 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dispatch destroy()
Destroy a dispatch handle

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int dispatch destroy(dispatch t *dpp);

Arguments:
dpp A dispatch handle created by dispatch create().

Library:
libc

Description:
The function dispatch destroy() destroys the given dispatch handle.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EINVAL The dispatch handle, dpp, is invalid.

Examples:
#include <sys/dispatch.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv) {
dispatch t *dpp;
int destroyed;

if((dpp = dispatch create()) == NULL) {
fprintf(stderr, "%s: Unable to allocate \

dispatch handle.\n",argv[0]);
return EXIT FAILURE;

May 31, 2004 Manifests 399

dispatch destroy() 2004, QNX Software Systems Ltd.

}

...

if ((destroyed = dispatch destroy (dpp)) == -1) {
fprintf (stderr, "Dispatch wasn’t destroyed, \

bad dispatch handle %d.\n", dpp);
return EXIT FAILURE;

}
/* else dispatch was destroyed */

...
return EXIT SUCCESS;

}

For examples using the dispatch interface, see dispatch create(),
message attach(), resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
dispatch create()

400 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dispatch handler()
Handle events received by dispatch block()

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int dispatch handler(dispatch context t * ctp);

Arguments:
ctp A pointer to a dispatch context t structure that was

allocated by dispatch context alloc().

Library:
libc

Description:
The dispatch handler() function handles events received by
dispatch block(). Depending on the blocking type, dispatch handler()
does one of the following:

� Calls the message * subsystem. A search is made (based upon the
message type or pulse code) for a matching function (that was
attached with message attach() or pulse attach()). If a match is
found, the attached function is called.

� If the message type is in the range handled by the resource
manager (e.g. I/O messages) and pathnames were attached using
resmgr attach(), then the resmgr * subsystem is called and handles
the resource manager messages.

� If a pulse is received, it may be dispatched to the resmgr *
subsystem if it’s one of the codes (unblock and disconnect pulses)
handled by the resource manager. If a select attach() was done and
the pulse matches the one used by select attach(), then the select *
subsystem is called and dispatches that event.

� If a message is received, and no matching handler is found for that
message type, MsgError() returns ENOSYS to the sender.

May 31, 2004 Manifests 401

dispatch handler() 2004, QNX Software Systems Ltd.

� If a SignalWaitinfo() blocking type is used, then a search is made
based upon the signal number for a matching function attached by
the program (using the sigwait attach() function, not currently
implemented). If a match is found, that function is called.

Returns:
0 Success.

-1 One of the following occurred:

� The message was a PULSE CODE THREADDEATH pulse
message (see ChannelCreate()) for which there’s no default
handler function.

� The message length was less than 2 bytes. A 2-byte
message type is required at the beginning of the message so
that a handler function can be found or identified.

� The message wasn’t in native endian format and there were
no handler functions that specified
MSG FLAG CROSS ENDIAN on this range, even though a
handler was registered for it using message attach(). The
MSG FLAG CROSS ENDIAN flag wasn’t given to
message attach().

� A handler was found for the message, but the handler
determined that there was a problem.

In any case, if the message wasn’t a pulse, then the client will
be replied to with an appropriate errno.

Examples:
#include <stdlib.h>
#include <sys/dispatch.h>

int main(int argc, char **argv) {
dispatch context t *ctp;

...

for(;;) {
if(ctp = dispatch block(ctp)) {

402 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dispatch handler()

dispatch handler(ctp);
}

}
return EXIT SUCCESS;

}

For examples using the dispatch interface, see dispatch create(),
message attach(), resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

Safety

Cancellation point Read the Caveats

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
This function might or might not be a cancellation point, depending
on the implementation of the handler.

See also:
dispatch block(), dispatch create(), dispatch timeout()

“Components of a Resource Manager” section of the Writing a
Resource Manager chapter in the Programmer’s Guide.

May 31, 2004 Manifests 403

dispatch timeout() 2004, QNX Software Systems Ltd.

Set a timeout

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int dispatch timeout(dispatch t *dpp,
struct timespec *reltime);

Arguments:
dpp A dispatch handle created by dispatch create().

reltime A pointer to a timespec structure that specifies the
relative time of the timeout.

Library:
libc

Description:
The function dispatch timeout() sets a timeout that’s used when
blocking with dispatch block().

Returns:
0 Success.

-1 An error occurred.

Examples:
#include <sys/dispatch.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv) {
dispatch t *dpp;
struct timespec time out;
int timedout;
time out.tv sec = 1;
time out.tv nsec = 2;

404 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dispatch timeout()

if((dpp = dispatch create()) == NULL) {
fprintf(stderr, "%s: Unable to allocate \

dispatch handle.\n",argv[0]);
return EXIT FAILURE;

}

...

if ((timedout = dispatch timeout (dpp, &time out))
== -1) {

fprintf (stderr, "Couldn’t set timeout);
return EXIT FAILURE;

}
/* else successful timeout set */

...
return EXIT SUCCESS;

}

For examples using the dispatch interface, see dispatch create(),
message attach(), resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
dispatch block(), dispatch create(), dispatch handler(),
dispatch unblock() timespec

May 31, 2004 Manifests 405

dispatch unblock() 2004, QNX Software Systems Ltd.

Unblock all of the threads that are blocked on a dispatch handle

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

void dispatch unblock(dispatch context t * ctp);

Arguments:
ctp A pointer to a dispatch context t structure that defines

the dispatch context.

Library:
libc

Description:
This routine tries to unblock all of the threads that are blocked on the
given dispatch handle. You should use this function in the thread pool
structure as the unblock function pointer so that thread pool control()
will behave properly.

Currently, this function unblocks only channel resources.

Examples:
For examples using the dispatch interface, see dispatch create(),
message attach(), resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

continued. . .

406 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dispatch unblock()

Safety

Signal handler Yes

Thread Yes

See also:
dispatch block(), dispatch context alloc(), dispatch handler(),
dispatch timeout()

“Components of a Resource Manager” section of the Writing a
Resource Manager chapter in the Programmer’s Guide.

May 31, 2004 Manifests 407

div() 2004, QNX Software Systems Ltd.

Calculate a quotient and remainder

Synopsis:
#include <stdlib.h>

div t div(int numer,
int denom);

Arguments:
numer The numerator in the division.

denom The denominator.

Library:
libc

Description:
The div() function calculates the quotient and remainder of the
division of numer by denom.

Returns:
A div t structure containing the quotient and remainder:

typedef struct {
int quot; /* quotient */
int rem; /* remainder */

} div t;

Examples:
#include <stdio.h>
#include <stdlib.h>

void print time(int seconds)
{

div t min sec;

min sec = div(seconds, 60);
printf("It took %d minutes and %d seconds\n",

408 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. div()

min sec.quot, min sec.rem);
}

int main(void)
{

print time(130);

return EXIT SUCCESS;
}

produces the output:

It took 2 minutes and 10 seconds

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
ldiv()

May 31, 2004 Manifests 409

dladdr() 2004, QNX Software Systems Ltd.

Translate an address to symbolic information

Synopsis:
#include <dlfcn.h>

int dladdr(void *address,
Dl info *dlip);

Arguments:
address The address for which you want symbolic information.

dlip A pointer to a Dl info structure where the function can
store the symbolic information. Your application must
allocate the space for this structure; dladdr() fills in the
members, based on the specified address.

The Dl info structure includes the following members:

� const char * dli fname — a pointer to the filename
of the object containing address.

� void *dli fbase — the base address of the object
containing address.

� const char *dli sname — a pointer to the symbol
name nearest the specified address. This symbol is
either at address, or is the nearest symbol with a lower
address.

� void *dli saddr — the actual address of the
dli sname symbol.

If dladdr() can’t find a symbol that describes the specified
address, the function sets dli sname and dli saddr to
NULL.

Library:
libc

410 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dladdr()

Description:
The dladdr() function determines whether the specified address is
located within one of the objects that make up the calling
application’s address space.

The dladdr() function is available only to dynamically linked
processes.

�

Returns:
0 if the specified address can’t be matched, or nonzero if it could be
matched.

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
The Dl info pointers may become invalid if objects are removed via
dlclose().

There’s no way to determine which symbol you’ll get if multiple
symbols are mapped to the same address.

May 31, 2004 Manifests 411

dladdr() 2004, QNX Software Systems Ltd.

See also:
dlclose(), dlerror(), dlopen(), dlsym()

412 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dlclose()
Close a shared object

Synopsis:
#include <dlfcn.h>

int dlclose(void *handle);

Arguments:
handle A handle for a shared object, returned by dlopen().

Library:
libc

Description:
The dlclose() function disassociates a shared object opened by
dlopen() from the calling process. An object’s symbols are no longer
available after it’s been closed with dlclose(). All objects loaded as a
result of the closed objects dependencies are also closed.

The handle argument is the value returned by a previous call to
dlopen().

The dlclose() function is available only to dynamically linked
processes.

�

Returns:
0 for success, or a nonzero value if an error occurs.

Errors:
If an error occurs, more detailed diagnostic information is available
from dlerror().

May 31, 2004 Manifests 413

dlclose() 2004, QNX Software Systems Ltd.

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
An object won’t be removed from the address space until all
references to that object (via dlopen() or dependencies from other
objects) have been closed.

Referencing a symbol in a closed object can cause undefined behavior.

See also:
dladdr(), dlerror(), dlopen(), dlsym()

414 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dlerror()
Get dynamic loading diagnostic information

Synopsis:
#include <dlfcn.h>

char *dlerror(void);

Library:
libc

Description:
The dlerror() function returns a NULL-terminated string (with no
trailing newline) describing the last error that occurred during a call to
one of the dl*() functions. If no errors have occurred, dlerror() returns
NULL.

The dlopen() function is available only to dynamically linked
processes.

�

Returns:
A pointer to an error description, or NULL.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 415

dlerror() 2004, QNX Software Systems Ltd.

See also:
dladdr(), dlclose(), dlopen(), dlsym()

416 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dlopen()
Gain access to an executable object file

Synopsis:
#include <dlfcn.h>

void * dlopen(const char * pathname,
int mode);

Arguments:
pathname NULL, or the path to the executable object file that you

want to access.

mode Flags that control how dlopen() operates; see “The
mode,” below.

Library:
libc

Description:
The dlopen() function gives you direct access to the dynamic linking
facilities by making the executable object file specified in pathname
available to the calling process. It returns a handle that you can use in
subsequent calls to dlsym() and dlclose().

The dlopen/() function is available only to a dynamically-linked
process. A statically-linked process (one where libc is linked
statically) can’t call dlopen() because a statically-linked executable:

� doesn’t export any of its symbols

� can’t export the required structure for libraries to link against

� can’t fill structures at startup needed to load subsequent shared
objects.

�

Any dependencies recorded within pathname are loaded as part of the
dlopen() call. These dependencies are searched in load-order to locate

May 31, 2004 Manifests 417

dlopen() 2004, QNX Software Systems Ltd.

any additional dependencies. This process continues until all of the
dependencies for pathname have been satisfied. This dependency tree
is called a group.

If pathname is NULL, dlopen() provides a handle to the running
process’s global symbol object. This provides access to the symbols
from the original program image file, the dependencies it loaded at
startup, plus any objects opened with dlopen() calls using the
RTLD GLOBAL flag. This set of symbols can change dynamically if
the application subsequently calls dlopen() using RTLD GLOBAL.

You can use dlopen() any number of times to open objects whose
names resolve to the same absolute or relative path name; the object is
loaded into the process’s address space only once.

In order to find the shared objects, the following directories or paths
are searched in order:

� RPATH

� LD LIBRARY PATH

� CS LIBPATH.

Note that LD LIBRARY PATH is igonored if the binary is setuid,
and where the euid is not the same as the uid of the user running the
binary. This is done for security purposes.

418 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dlopen()

The above directories are set as follows:

� The RPATH value is set up when binary is linked, using the ld
command line option -rpath. See ld for details.

� The LD LIBRARY PATH is generally set up by other startup
script, either in the boot image or by a secondary script. For
example, on self hosted QNX system, it is setup by ph script. It is
not part of any default environment.

� CS LIBPATH is populated by the kernel, and the default value is
based on the LD LIBRARY PATH value of the procnto
command line in the boot image. Note that, you may use getconf
utility to inspect this value and setconf to set this value. For
example:
setconf CS LIBPATH ’getconf CS LIBPATH’:/new/path

�

When loading shared objects, the application should open a specific
version instead of relying on the version pointed to by a symbolic link.

The mode

The mode argument indicates how dlopen() operates on pathname
when handling relocations, and controls the visibility of symbols
found in pathname and its dependencies.

The mode argument is a bitwise-OR of the constants described below.
Note that the relocation and visibility constants are mutually
exclusive.

When you load an object by calling dlopen(), the object may containRelocation

references to symbols whose addresses aren’t known until the object
has been loaded; these references must be relocated before accessing
the symbols. The mode controls when relocations take place, and can
be one of:

May 31, 2004 Manifests 419

dlopen() 2004, QNX Software Systems Ltd.

RTLD LAZY References to data symbols are relocated when the
object is loaded. References to functions aren’t
relocated until that function is invoked. This
improves performance by preventing unnecessary
relocations.

RTLD NOW All references are relocated when the object is
loaded. This may waste cycles if relocations are
performed for functions that never get called, but
this behavior could be useful for applications that
need to know that all symbols referenced during
execution are available as soon as the object is
loaded.

RTLD LAZY isn’t currently supported.�

The following mode bits determine the scope of visibility for symbolsVisibility

loaded with dlopen():

RTLD GLOBAL

Make the object’s global symbols available to any other object.
Symbol lookup using dlopen(0, mode) and an associated
dlsym() are also able to find the object’s symbols.

RTLD LOCAL

Make the object’s global symbols available only to objects in
the same group.

The program’s image and any objects loaded at program startup have
a mode of RTLD GLOBAL; the default mode for objects acquired with
dlopen() is RTLD LOCAL. A local object may be part of the
dependencies for more than one group; any object with a
RTLD LOCAL mode referenced as a dependency of an object with a
RTLD GLOBAL mode is promoted to RTLD GLOBAL.

Objects loaded with dlopen() that require relocations against global
symbols can reference the symbols in any RTLD GLOBAL object.

420 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dlopen()

You can OR the mode with the following values to affect symbol
scope:

RTLD GROUP

Only symbols from the associated group are available. All
dependencies between group members must be satisfied by the
objects in the group.

RTLD WORLD

Only symbols from RTLD GLOBAL objects are available.

The default mode is RTLD WORLD | RTLD GROUP.

If you specify RTLD WORLD without RTLD GROUP, dlopen() doesn’t
load any of the DLL’s dependencies.

�

Symbol Resolution

When resolving the symbols in the shared object, the runtime linker
searches for them in the dynamic symbol table using the following
order:

By default: 1 main executable

2 the shared object being loaded

3 all other loaded shared objects that were loaded
with the RTLD GLOBAL flag.

When -Bsymbolic is specified:

1 the shared object being loaded

2 main executable

3 all other loaded shared objects that were loaded
with the RTLD GLOBAL flag.

For executables, the dynamic symbol table typically contains only
those symbols that are known to be needed by any shared libraries.

May 31, 2004 Manifests 421

dlopen() 2004, QNX Software Systems Ltd.

This is determined by the linker when the executable is linked against
a shared library.

Since you don’t link your executable against a shared object that you
load with dlopen(), the linker can’t determine which executable
symbols need to be made available to the shared object.

If your shared object needs to resolve symbols in the executable, then
you may force the linker to make all of the symbols in the executable
available for dynamic linking by specifying the -E linker option. For
example:

qcc -Vgcc ntox86 -Wl,-E -o main main.o

Shared objects always place all their symbols in dynamic symbol
tables, so this option isn’t needed when linking a shared object.

Returns:
A handle to the object, or NULL if an error occurs.

Don’t interpret the value of this handle in any way. For example, if
you open the same object repeatedly, don’t assume that dlopen()
returns the same handle.

�

Errors:
If an error occurs, more detailed diagnostic information is available
from dlerror().

Environment variables:
DL DEBUG Display debugging information about the libraries

as they’re opened.

LD LIBRARY PATH

The LD LIBRARY PATH environment variable is
searched for any dependencies required by
pathname.

422 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dlopen()

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
Some symbols defined in executables or shared objects might not be
available to the runtime linker. The symbol table created by ld for
use by the runtime linker might contain a subset of the symbols
defined in the object.

See also:
dladdr(), dlclose(), dlerror(), dlsym()

ld, qcc in the Utilities Reference

May 31, 2004 Manifests 423

dlsym() 2004, QNX Software Systems Ltd.

Get the address of a symbol in a shared object

Synopsis:
#include <dlfcn.h>

void* dlsym(void* handle,
const char* name);

Arguments:
handle Either a handle for a shared object, returned by dlopen(),

or the special flag, RTLD DEFAULT.

name The name of the symbol that you want to find in the
shared object.

Library:
libc

Description:
The dlsym() function lets a process obtain the address of the symbol
specified by name defined in a shared object.

The dlsym() function is available only to dynamically linked
processes.

�

If handle is a handle returned by dlopen(), you must not have closed
that shared object by calling dlclose(). The dlsym() functions also
searches for the named symbol in the objects loaded as part of the
dependencies for that object.

If handle is RTLD DEFAULT, dlsym() searches all objects in the
current process, in load-order.

In the case of RTLD DEFAULT, if the objects being searched were
loaded with dlopen(), dlsym() searches the object only if the caller is
part of the same dependency hierarchy, or if the object was loaded
with global search access (using the RTLD GLOBAL mode).

424 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dlsym()

Returns:
A pointer to the named symbol for success, or NULL if an error
occurs.

Errors:
If an error occurs, more detailed diagnostic information is available
from dlerror().

Examples:
Use dlsym() to find a function pointer and a pointer to a global
variable in a shared library:

typedef int (*foofunc)(int);

void* handle;
int* some global int;
foofunc brain;

/* Open a shared library. */
handle = dlopen("/usr/nto/x86/lib/libfoo.so.1", RTLD NOW);

/* Find the address of a function and a global integer. */
brain = (foofunc)dlsym(handle, "takeover world");
some global int = (int*)dlsym(handle, "my global int");

/* Invoke the function and print the int. */
x = (*brain)(5);
printf("that global is %d\n", *some global int);

Check to see if a function is defined, and call it if it is:

typedef int (*funcptr)(void);

funcptr funk = NULL;

funk = (funcptr)dlsym(RTLD DEFAULT, "get funky");
if(funk != NULL) {

(*funk)();
}

May 31, 2004 Manifests 425

dlsym() 2004, QNX Software Systems Ltd.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
Function pointers are a pain; use typedefs to help preserve your
sanity.

See also:
dladdr(), dlclose(), dlerror(), dlopen()

426 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dn comp()
Compress an Internet domain name

Synopsis:
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

int dn comp(const char * exp dn,
u char * comp dn,
int length,
u char ** dnptrs,
u char ** lastdnptr);

Arguments:
exp dn The Internet domain name you want to compress.

comp dn A buffer where the function can store the compressed
name.

length The size of the array that comp dn points to.

dnptrs NULL, or an array of pointers to previously compressed
names in the current message; see below.

lastdnptr NULL, or the limit of the array specified by dnptrs.

Library:
libsocket

Description:
The dn comp() routine is a low-level routine used by res query() to
compress an Internet domain name. This routine compresses the
domain name exp dn and stores it in comp dn.

The compression uses an array of pointers, dnptrs, to previously
compressed names in the current message. The first pointer points to
the beginning of the message and the list ends with NULL. The limit
to the array is specified by lastdnptr. As a side effect, dn comp()

May 31, 2004 Manifests 427

dn comp() 2004, QNX Software Systems Ltd.

updates the list of pointers for labels inserted into the message as the
name is compressed. If dnptrs is NULL, names aren’t compressed. If
lastdnptr is NULL, the list of labels isn’t updated.

Returns:
The size of the compressed domain name, in bytes, or -1 if an error
occurs.

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
dn expand(), gethostbyname(), res init(), res mkquery(), res query(),
res search(), res send()

/etc/resolv.conf, hostname in the Utilities Reference

RFC 974, RFC 1032, RFC 1033, RFC 1034, RFC 1035

428 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dn expand()
Expand a compressed Internet domain name

Synopsis:
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

int dn expand(const u char * msg,
const u char * eomorig,
const u char * comp dn,
char * exp dn,
int length);

Arguments:
msg A pointer to the beginning of the message that contains

the compressed name.

eomorig A pointer to the first location after the message.

comp dn The compressed name that you want to expand.

exp dn A buffer where the function can store the expanded
name.

length The length of the array specified by exp dn.

Library:
libsocket

Description:
The dn expand() function is a low-level routine used by res query() to
expand the compressed domain name, comp dn, to a full domain
name.

The compressed name is contained in a query or reply message.

May 31, 2004 Manifests 429

dn expand() 2004, QNX Software Systems Ltd.

Returns:
The size of the compressed domain name (not the expanded name), in
bytes, or -1 if an error occurs.

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
dn comp(), gethostbyname(), res init(), res mkquery(), res query(),
res search(), res send()

/etc/resolv.conf, hostname in the Utilities Reference

RFC 974, RFC 1032, RFC 1033, RFC 1034, RFC 1035

430 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. drand48()
Generate a pseudo-random double

Synopsis:
#include <stdlib.h>

double drand48(void);

Library:
libc

Description:
The drand48() function uses a linear congruential algorithm and
48-bit integer arithmetic to generate a nonnegative double uniformly
distributed over the interval [0.0, 1.0].

Call one of lcong48(), seed48(), or srand48() to initialize the
random-number generator before calling drand48(), lrand48(), or
mrand48().

The erand48() function is a thread-safe version of drand48().

Returns:
A pseudo-random double.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

May 31, 2004 Manifests 431

drand48() 2004, QNX Software Systems Ltd.

See also:
erand48(), jrand48(), lcong48(), lrand48(), mrand48(), nrand48(),
seed48(), srand48()

432 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. drem(), dremf()
Compute the remainder of two numbers

Synopsis:
#include <math.h>

double drem (double x,
double y);

float dremf (float x,
float y);

Arguments:
x The numerator of the division.

y The denominator.

Library:
libm

Description:
The drem() and dremf() functions compute the remainder r = x - n * y,
when y is nonzero. The value n is the integral value nearest the exact
value x/y.

When |n - x/y| = 1

2
, the value n is chosen to be even. But

remainder(x, 0) and remainder(infinity,0) are invalid operations
that produce a NAN.

The behavior of drem() is independent of the rounding mode.

Returns:
The remainder, r = x - n * y, when y is nonzero.

Classification:
Unix

May 31, 2004 Manifests 433

drem(), dremf() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
remainder()

434 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ds clear()
Delete a data server variable

Synopsis:
#include <ds.h>

int ds clear(ds t dsdes,
const char* variable name);

Arguments:
dsdes A data server descriptor returned by ds register().

variable name The name of the variable that you want to delete.

Library:
libds

Description:
The ds clear() function deletes variable name from the data server
identified by dsdes.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Invalid file descriptor dsdes.

ESRCH The variable doesn’t exist in the data server.

Examples:
See slinger in the Utilities Reference.

May 31, 2004 Manifests 435

ds clear() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ds deregister(), ds flags()

436 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ds create()
Create a data server variable

Synopsis:
#include <ds.h>

int ds create(ds t dsdes,
const char * variable name,
char flags,
struct sigevent * sigevent);

Arguments:
dsdes A data server descriptor returned by ds register().

variable name The name of the variable that you want to create.

All variables are global, so only one instance of
the variable can exist in the data server process.
The maximum length of a variable name is 60
characters.

flags Flags that specify the variable’s behavior:

� DS PERM — don’t delete the variable when the
application that created it terminates. The
variable is removed when the data server
process terminates, or if the flag is turned off
after the application that created the variable
terminates.

If flags is 0, the variable is removed if you call
ds deregister(), or the process terminates.

sigevent A pointer to a sigevent structure that describes a
proxy or signal to be sent to the external
application that created the variable if the data
referenced by the variable changes; see below.

May 31, 2004 Manifests 437

ds create() 2004, QNX Software Systems Ltd.

Library:
libds

Description:
The ds create() function creates a variable, whose name is given by
variable name, on the data server identified by dsdes.

If the data referenced by variable name changes, a proxy or signal,
described in the sigevent structure, can be sent to the external
application that created variable name (see ds set()).

We recommend the following event types for use with this function:

� SIGEV SIGNAL

� SIGEV SIGNAL CODE

� SIGEV SIGNAL THREAD

� SIGEV PULSE

� SIGEV INTR

To display the current value of a variable on an HTML page, use the
qnxvar token with the read tag. See the description of slinger in
the Utilities Reference.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Invalid file descriptor dsdes.

EEXIST The variable name already exists in the data server.

ENOMEM Not enough memory to create the variable or initialize
the data.

438 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ds create()

Examples:
See slinger in the Utilities Reference.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ds flags(), ds get(), ds register(), ds set(), sigevent

May 31, 2004 Manifests 439

ds deregister() 2004, QNX Software Systems Ltd.

Deregister an application with the data server

Synopsis:
#include <ds.h>

int ds deregister(ds t dsdes);

Arguments:
dsdes A data server descriptor returned by ds register().

Library:
libds

Description:
The ds deregister() function deregisters your application with the data
server, dsdes, and deletes any variables that the data server process
created, except those with the DS PERM flag set (see ds flags()).

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Invalid file descriptor, dsdes.

Examples:
See slinger in the Utilities Reference.

Classification:
QNX Neutrino

440 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ds deregister()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ds flags(), ds register()

May 31, 2004 Manifests 441

ds flags() 2004, QNX Software Systems Ltd.

Set the flags for a data server variable

Synopsis:
#include <ds.h>

int ds flags(ds t dsdes,
const char* variable name,
char flags);

Arguments:
dsdes A data server descriptor returned by ds register().

variable name The name of the data server variable.

flags The new flags for the variable. The flags include:

� DS PERM — don’t delete the variable when the
application that created it terminates. The
variable is removed when the data server
process terminates, or if the flag is turned off
after the application that created the variable
terminates.

Library:
libds

Description:
The ds flags() function changes the state of the flags belonging to the
variable called variable name on the data server identified by dsdes.

Returns:
0 for success, or -1 if an error occurs (errno is set).

442 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ds flags()

Errors:
EBADF Invalid file descriptor dsdes.

ESRCH The variable doesn’t exist in the data server.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ds clear(), ds create(), ds deregister(), ds set()

May 31, 2004 Manifests 443

ds get() 2004, QNX Software Systems Ltd.

Retrieve a data server variable

Synopsis:
#include <ds.h>

int ds get(ds t dsdes,
const char* variable name,
const char* variable data,
size t data len);

Arguments:
dsdes A data server descriptor returned by ds register().

variable name The name of the data server variable that you want
to get.

variable data A buffer where the function can store the data
associated with the variable.

data len The size of the buffer, in bytes.

Library:
libds

Description:
The ds get() function retrieves the data corresponding to
variable name from the data server dsdes, and places it in the buffer
pointed to by variable data.

Returns:
The amount of data written to the buffer variable data, or -1 if an
error occurs (errno is set).

444 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ds get()

Errors:
EBADF Invalid file descriptor dsdes.

EMSGSIZE The buffer isn’t big enough for the data.

ESRCH The variable doesn’t exist in the data server.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ds create(), ds set()

May 31, 2004 Manifests 445

ds register() 2004, QNX Software Systems Ltd.

Register an application with the data server

Synopsis:
#include <ds.h>

ds t ds register(void);

Library:
libds

Description:
The ds register() function registers your application with the data
server. The data server must reside on the same node as your
application.

Returns:
A data server descriptor, or -1 if an error occurs (errno is set).

Errors:
ENOENT No such file or directory; the data server isn’t started.

ENOMEM Insufficient memory is available to communicate with
the data server.

Examples:
See slinger in the Utilities Reference.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

continued. . .

446 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ds register()

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ds deregister()

May 31, 2004 Manifests 447

ds set() 2004, QNX Software Systems Ltd.

Set a data server variable

Synopsis:
#include <ds.h>

int ds set(ds t dsdes,
const char* variable name,
const char* variable data,
size t data len);

Arguments:
dsdes A data server descriptor returned by ds register().

variable name The name of the data server variable that you want
to set.

variable data A pointer to the data you want to associate with
the variable.

data len The size of the data, in bytes.

Library:
libds

Description:
The ds set() function passes the data variable data to the data server
identified by dsdes. The data server stores the data in the variable
whose name is given by variable name, overwriting any existing
value.

To display the modified data on an HTML page, use the qnxvar
token with the read tag. See the description of slinger in the
Utilities Reference.

448 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ds set()

Returns:
0 for success, or -1 if an error occurs (errno is set).

Errors:
EBADF Invalid file descriptor dsdes.

ENOMEM Not enough memory to store the data.

ESRCH The variable doesn’t exist in the data server.

Examples:
See slinger in the Utilities Reference.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ds create(), ds flags(), ds get()

May 31, 2004 Manifests 449

dup() 2004, QNX Software Systems Ltd.

Duplicate a file descriptor

Synopsis:
#include <unistd.h>

int dup(int filedes);

Arguments:
filedes The file descriptor that you want to duplicate.

Library:
libc

Description:
The dup() function duplicates the file descriptor specified by filedes.
The new file descriptor refers to the same open file descriptor as the
original, and shares any locks. The new file descriptor also:

� references the same file or device

� has the same open mode (read and/or write)

� has an identical file position to the original (changing the position
with one descriptor results in a changed position in the other).

Changing the file position with one descriptor results in a changed
position for the other.

Calling:

dup filedes = dup(filedes);

is the same as:

dup filedes = fcntl(filedes, F DUPFD, 0);

450 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dup()

Returns:
The new file descriptor for success, or -1 if an error occurs (errno is
set).

Errors:
EBADF The file descriptor, filedes, isn’t a valid.

EMFILE There are already OPEN MAX file descriptors in use.

ENOSYS The dup() function isn’t implemented for the filesystem
specified by filedes.

Examples:
#include <fcntl.h>
#include <unistd.h>
#include <sys/stat.h>
#include <stdlib.h>

int main(void)
{

int filedes, dup filedes;

filedes= open("file",
O WRONLY | O CREAT | O TRUNC,
S IRUSR | S IWUSR | S IRGRP | S IWGRP);

if(filedes != -1) {
dup filedes = dup(filedes);
if(dup filedes != -1) {

/* process file */
/* ... */

close(dup filedes);
}
close(filedes);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

May 31, 2004 Manifests 451

dup() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
chsize(), close(), creat(), dup2(), eof(), errno, execl(), execle(),
execlp(), execlpe(), execv(), execve(), execvp(), execvpe(), fcntl(),
fileno(), fstat(), isatty(), lseek(), open(), read(), sopen(), stat(), tell(),
umask(), write()

452 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dup2()
Duplicate a file descriptor, specifying the new descriptor

Synopsis:
#include <unistd.h>

int dup2(int filedes,
int filedes2);

Arguments:
filedes The file descriptor that you want to duplicate.

filedes The number that you want to use for the new file
descriptor.

Library:
libc

Description:
The dup2() function duplicates the file descriptor specified by filedes.
The number of the new file descriptor will be filedes2. If a file already
is opened with this descriptor, the file is closed before the duplication
is attempted.

The new file descriptor:

� references the same file or device

� has the same open mode (read and/or write)

� has an identical file position to the original (changing the position
with one descriptor results in a changed position in the other).

Calling:

dup filedes = dup2(filedes, filedes2);

Is the same as:

close(filedes2);
dup filedes = fcntl(filedes , F DUPFD, filedes2);

May 31, 2004 Manifests 453

dup2() 2004, QNX Software Systems Ltd.

Returns:
The value of filedes2 for success, or -1 if an error occurs (errno is set).

Errors:
EBADF The file descriptor, filedes isn’t a valid open file

descriptor, or filedes2 is out of range.

EMFILE There are already OPEN MAX file descriptors in use.

ENOSYS The dup2() function isn’t implemented for the
filesystem specified by filedes.

Examples:
#include <fcntl.h>
#include <unistd.h>
#include <sys/stat.h>
#include <stdlib.h>

int main(void)
{

int filedes , dup filedes ;

filedes = open("file",
O WRONLY | O CREAT | O TRUNC,
S IRUSR | S IWUSR | S IRGRP | S IWGRP);

if(filedes != -1) {
dup filedes = 4;
if(dup2(filedes, dup filedes) != -1) {

/* process file */
/* ... */

close(dup filedes);
}
close(filedes);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

454 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. dup2()

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
chsize(), close(), creat(), dup(), eof(), errno, execl(), execle(), execlp(),
execlpe(), execv(), execve(), execvp(), execvpe(), fcntl(), fileno(),
fstat(), isatty(), lseek(), open(), read(), sopen(), stat(), tell(), umask(),
write()

May 31, 2004 Manifests 455

eaccess() 2004, QNX Software Systems Ltd.

Check to see if a file or directory can be accessed (extended version)

Synopsis:
#include <libgen.h>
#include <unistd.h>

int eaccess(const char * path,
int amode);

Arguments:
path The path to the file or directory that you want to access.

amode The access mode you want to check. This must be either:

� F OK — test for file existence.

or a bitwise ORing of the following access permissions to
be checked, as defined in the header <unistd.h>:

� R OK — test for read permission.

� W OK — test for write permission.

� X OK — for a directory, test for search permission.
Otherwise, test for execute permission.

Library:
libc

Description:
The eaccess() function is an extended version of access(). It checks if
the file or directory specified by path exists and if it can be accessed
with the file access permissions given by amode. However, unlike
access(), it uses the effective user ID and effective group ID.

Returns:
0 The file or directory exists and can be accessed with the

specified mode.

-1 An error occurred (errno is set.)

456 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. eaccess()

Errors:
EACCES The permissions specified by amode are denied, or

search permission is denied on a component of the
path prefix.

EINVAL An invalid value was specified for amode.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of the path string exceeds PATH MAX, or a
pathname component is longer than NAME MAX.

ENOENT A component of the path isn’t valid.

ENOSYS The eaccess() function isn’t implemented for the
filesystem specified in path.

ENOTDIR A component of the path prefix isn’t a directory.

EROFS Write access was requested for a file residing on a
read-only file system.

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 457

eaccess() 2004, QNX Software Systems Ltd.

See also:
access(), chmod(), errno, fstat(), open(), stat()

458 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. edata
The end of the data segment, excluding BSS data

Synopsis:
N/A

Description:
This linker symbol defines the end of the data segment, excluding
BSS data. This variable isn’t defined in any header file.

Classification:
QNX Neutrino

See also:
brk(), btext, end, etext, sbrk()

May 31, 2004 Manifests 459

encrypt() 2004, QNX Software Systems Ltd.

Encrypt a string

Synopsis:
#include <unistd.h>

void encrypt(char block[64],
int flag);

Arguments:
block A 64-character array of binary values to encrypt. The

function stores the encrypted value in the same array.

flag If the value of flag is 0, the function encrypts block;
otherwise, encrypt() fails.

Library:
libc

Description:
The encrypt() function uses the NBS Data Encryption Standard (DES)
algorithm and the key you specify by calling setkey() to encrypt the
given block of data.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

460 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. encrypt()

See also:
crypt(), setkey()

May 31, 2004 Manifests 461

end 2004, QNX Software Systems Ltd.

The end of the data segment, including BSS data

Synopsis:
N/A

Description:
This linker symbol defines the end of the data segment, including BSS
data. This variable isn’t defined in any header file.

Classification:
QNX Neutrino

See also:
brk(), btext, edata, etext, sbrk()

462 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. endgrent()
Close the group database file

Synopsis:
#include <grp.h>

int endgrent(void);

Library:
libc

Description:
The endgrent() routine closes the group name database file, so all
group access routines behave as if setgrent() had never been called.

Returns:
Zero.

Classification:
Standard Unix, POSIX 1003.1g (draft)

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
getgrent(), setgrent()

May 31, 2004 Manifests 463

endhostent() 2004, QNX Software Systems Ltd.

Close the TCP connection and the hosts file

Synopsis:
#include <netdb.h>

void endhostent(void);

Library:
libsocket

Description:
The endhostent() routine closes the TCP connection and the hosts file.

Files:
/etc/hosts Host database file.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
gethostbyaddr(), gethostbyname(), gethostent(), hostent,
sethostent()

/etc/hosts, /etc/resolv.conf in the Utilities Reference

464 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ENDIAN BE16()
Return a big-endian 16-bit value in native format

Synopsis:
#include <gulliver.h>

uint16 t ENDIAN BE16(uint16 t num);

Arguments:
num The big-endian number you want to convert.

Library:
libc

Description:
The ENDIAN BE16() macro returns the native version of the
big-endian value num.

Returns:
The native-endian value of num.

Examples:
Convert a big-endian value to native-endian:

#include <stdio.h>
#include <stdlib.h>
#include <gulliver.h>
#include <inttypes.h>

int main(void)
{

uint16 t val = 0x1234;

printf("0x%04x = 0x%04x\n",
val, ENDIAN BE16(val));

return EXIT SUCCESS;
}

On a little-endian system, this prints:

May 31, 2004 Manifests 465

ENDIAN BE16() 2004, QNX Software Systems Ltd.

0x1234 = 0x3412

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
ENDIAN BE16() is implemented as a macro.

See also:
ENDIAN BE32(), ENDIAN BE64(), ENDIAN LE16(),
ENDIAN LE32(), ENDIAN LE64(), ENDIAN RET16(),
ENDIAN RET32(), ENDIAN RET64(), ENDIAN SWAP16(),
ENDIAN SWAP32(), ENDIAN SWAP64(), htonl(), htons(), ntohl(),
ntohs(), UNALIGNED RET16(), UNALIGNED RET32(),
UNALIGNED RET64(), UNALIGNED PUT16(),
UNALIGNED PUT32(), UNALIGNED PUT64()

466 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ENDIAN BE32()
Return a big-endian 32-bit value in native format

Synopsis:
#include <gulliver.h>

uint32 t ENDIAN BE32(uint32 t num);

Arguments:
num The big-endian number you want to convert.

Library:
libc

Description:
The ENDIAN BE32() macro returns the native version of the
big-endian value num.

Returns:
The native-endian value of num.

Examples:
Convert a big-endian value to native-endian:

#include <stdio.h>
#include <stdlib.h>
#include <gulliver.h>
#include <inttypes.h>

int main(void)
{

uint32 t val = 0xdeadbeef;

printf("0x%08x = 0x%08x\n",
val, ENDIAN BE32(val));

return EXIT SUCCESS;
}

On a little-endian system, this prints:

May 31, 2004 Manifests 467

ENDIAN BE32() 2004, QNX Software Systems Ltd.

0xdeadbeef = 0xefbeadde

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
ENDIAN BE32() is implemented as a macro.

See also:
ENDIAN BE16(), ENDIAN BE64(), ENDIAN LE16(),
ENDIAN LE32(), ENDIAN LE64(), ENDIAN RET16(),
ENDIAN RET32(), ENDIAN RET64(), ENDIAN SWAP16(),
ENDIAN SWAP32(), ENDIAN SWAP64(), htonl(), htons(), ntohl(),
ntohs(), UNALIGNED RET16(), UNALIGNED RET32(),
UNALIGNED RET64(), UNALIGNED PUT16(),
UNALIGNED PUT32(), UNALIGNED PUT64()

468 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ENDIAN BE64()
Return a big-endian 64-bit value in native format

Synopsis:
#include <gulliver.h>

uint64 t ENDIAN BE64(uint64 t num);

Arguments:
num The big-endian number you want to convert.

Library:
libc

Description:
The ENDIAN BE64() macro returns the native version of the
big-endian value num.

Returns:
The native-endian value of num.

Examples:
Convert a big-endian value to native-endian:

#include <stdio.h>
#include <stdlib.h>
#include <gulliver.h>
#include <inttypes.h>

int main(void)
{

uint64 t val = 0x1234deadbeef5678;

printf("0x%016Lx = 0x%016Lx\n",
val, ENDIAN BE64(val));

return EXIT SUCCESS;
}

On a little-endian system, this prints:

May 31, 2004 Manifests 469

ENDIAN BE64() 2004, QNX Software Systems Ltd.

0x1234deadbeef5678 = 0x7856efbeadde3412

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
ENDIAN BE64() is implemented as a macro.

See also:
ENDIAN BE16(), ENDIAN BE32(), ENDIAN LE16(),
ENDIAN LE32(), ENDIAN LE64(), ENDIAN RET16(),
ENDIAN RET32(), ENDIAN RET64(), ENDIAN SWAP16(),
ENDIAN SWAP32(), ENDIAN SWAP64(), htonl(), htons(), ntohl(),
ntohs(), UNALIGNED RET16(), UNALIGNED RET32(),
UNALIGNED RET64(), UNALIGNED PUT16(),
UNALIGNED PUT32(), UNALIGNED PUT64()

470 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ENDIAN LE16()
Return a little-endian 16-bit value in native format

Synopsis:
#include <gulliver.h>

uint16 t ENDIAN LE16(uint16 t num);

Arguments:
num The little-endian number you want to convert.

Library:
libc

Description:
The ENDIAN LE16() macro returns the native version of the
little-endian value num.

Returns:
The native-endian value of num.

Examples:
Convert a little-endian value to native-endian:

#include <stdio.h>
#include <stdlib.h>
#include <gulliver.h>
#include <inttypes.h>

int main(void)
{

uint16 t val = 0x1234;

printf("0x%04x = 0x%04x\n",
val, ENDIAN LE16(val));

return EXIT SUCCESS;
}

On a big-endian system, this prints:

May 31, 2004 Manifests 471

ENDIAN LE16() 2004, QNX Software Systems Ltd.

0x1234 = 0x3412

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
ENDIAN LE16() is implemented as a macro.

See also:
ENDIAN BE16(), ENDIAN BE32(), ENDIAN BE64(),
ENDIAN LE32(), ENDIAN LE64(), ENDIAN RET16(),
ENDIAN RET32(), ENDIAN RET64(), ENDIAN SWAP16(),
ENDIAN SWAP32(), ENDIAN SWAP64(), htonl(), htons(), ntohl(),
ntohs(), UNALIGNED RET16(), UNALIGNED RET32(),
UNALIGNED RET64(), UNALIGNED PUT16(),
UNALIGNED PUT32(), UNALIGNED PUT64()

472 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ENDIAN LE32()
Return a little-endian 32-bit value in native format

Synopsis:
#include <gulliver.h>

uint32 t ENDIAN LE32(uint32 t num);

Arguments:
num The little-endian number you want to convert.

Library:
libc

Description:
The ENDIAN LE32() macro returns the native version of the
little-endian value num.

Returns:
The native-endian value of num.

Examples:
Convert a little-endian value to native-endian:

#include <stdio.h>
#include <stdlib.h>
#include <gulliver.h>
#include <inttypes.h>

int main(void)
{

uint32 t val = 0xdeadbeef;

printf("0x%08x = 0x%08x\n",
val, ENDIAN LE32(val));

return EXIT SUCCESS;
}

On a big-endian system, this prints:

May 31, 2004 Manifests 473

ENDIAN LE32() 2004, QNX Software Systems Ltd.

0xdeadbeef = 0xefbeadde

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
ENDIAN LE32() is implemented as a macro.

See also:
ENDIAN BE16(), ENDIAN BE32(), ENDIAN BE64(),
ENDIAN LE16(), ENDIAN LE64(), ENDIAN RET16(),
ENDIAN RET32(), ENDIAN RET64(), ENDIAN SWAP16(),
ENDIAN SWAP32(), ENDIAN SWAP64(), htonl(), htons(), ntohl(),
ntohs(), UNALIGNED RET16(), UNALIGNED RET32(),
UNALIGNED RET64(), UNALIGNED PUT16(),
UNALIGNED PUT32(), UNALIGNED PUT64()

474 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ENDIAN LE64()
Return a little-endian 64-bit value in native format

Synopsis:
#include <gulliver.h>

uint64 t ENDIAN LE64(uint64 t num);

Arguments:
num The little-endian number you want to convert.

Library:
libc

Description:
The ENDIAN LE64() macro returns the native version of the
little-endian value num.

Returns:
The native-endian value of num.

Examples:
Convert a little-endian value to native-endian:

#include <stdio.h>
#include <stdlib.h>
#include <gulliver.h>
#include <inttypes.h>

int main(void)
{

uint64 t val = 0x1234deadbeef5678;

printf("0x%016Lx = 0x%016Lx\n",
val, ENDIAN LE64(val));

return EXIT SUCCESS;
}

On a big-endian system, this prints:

May 31, 2004 Manifests 475

ENDIAN LE64() 2004, QNX Software Systems Ltd.

0x1234deadbeef5678 = 0x7856efbeadde3412

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
ENDIAN LE64() is implemented as a macro.

See also:
ENDIAN BE16(), ENDIAN BE32(), ENDIAN BE64(),
ENDIAN LE16(), ENDIAN LE32(), ENDIAN RET16(),
ENDIAN RET32(), ENDIAN RET64(), ENDIAN SWAP16(),
ENDIAN SWAP32(), ENDIAN SWAP64(), htonl(), htons(), ntohl(),
ntohs(), UNALIGNED RET16(), UNALIGNED RET32(),
UNALIGNED RET64(), UNALIGNED PUT16(),
UNALIGNED PUT32(), UNALIGNED PUT64()

476 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ENDIAN RET16()
Return an endian-swapped 16-bit value

Synopsis:
#include <gulliver.h>

uint16 t ENDIAN RET16(uint16 t num);

Arguments:
num The number you want to convert.

Library:
libc

Description:
The ENDIAN RET16() macro returns the endian-swapped value of
num.

Returns:
The endian-swapped value of num.

Examples:
Swap the endianness of a value:

#include <stdio.h>
#include <stdlib.h>
#include <gulliver.h>
#include <inttypes.h>

int main(void)
{

uint16 t val = 0x1234;

printf("0x%04x = 0x%04x\n",
val, ENDIAN RET16(val));

return EXIT SUCCESS;
}

This prints:

May 31, 2004 Manifests 477

ENDIAN RET16() 2004, QNX Software Systems Ltd.

0x1234 = 0x3412

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
ENDIAN RET16() is implemented as a macro.

See also:
ENDIAN BE16(), ENDIAN BE32(), ENDIAN BE64(),
ENDIAN LE16(), ENDIAN LE32(), ENDIAN LE64(),
ENDIAN RET32(), ENDIAN RET64(), ENDIAN SWAP16(),
ENDIAN SWAP32(), ENDIAN SWAP64(), htonl(), htons(), ntohl(),
ntohs(), UNALIGNED RET16(), UNALIGNED RET32(),
UNALIGNED RET64(), UNALIGNED PUT16(),
UNALIGNED PUT32(), UNALIGNED PUT64()

478 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ENDIAN RET32()
Return an endian-swapped 32-bit value

Synopsis:
#include <gulliver.h>

uint32 t ENDIAN RET32(uint32 t num);

Arguments:
num The number you want to convert.

Library:
libc

Description:
The ENDIAN RET32() macro returns the endian-swapped value of
num.

Returns:
The endian-swapped value of num.

Examples:
Swap the endianness of a value:

#include <stdio.h>
#include <stdlib.h>
#include <gulliver.h>
#include <inttypes.h>

int main(void)
{

uint32 t val = 0xdeadbeef;

printf("0x%08x = 0x%08x\n",
val, ENDIAN RET32(val));

return EXIT SUCCESS;
}

This prints:

May 31, 2004 Manifests 479

ENDIAN RET32() 2004, QNX Software Systems Ltd.

0xdeadbeef = 0xefbeadde

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
ENDIAN RET32() is implemented as a macro.

See also:
ENDIAN BE16(), ENDIAN BE32(), ENDIAN BE64(),
ENDIAN LE16(), ENDIAN LE32(), ENDIAN LE64(),
ENDIAN RET16(), ENDIAN RET64(), ENDIAN SWAP16(),
ENDIAN SWAP32(), ENDIAN SWAP64(), htonl(), htons(), ntohl(),
ntohs(), UNALIGNED RET16(), UNALIGNED RET32(),
UNALIGNED RET64(), UNALIGNED PUT16(),
UNALIGNED PUT32(), UNALIGNED PUT64()

480 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ENDIAN RET64()
Return an endian-swapped 64-bit value

Synopsis:
#include <gulliver.h>

uint64 t ENDIAN RET64(uint64 t num);

Arguments:
num The number you want to convert.

Library:
libc

Description:
The ENDIAN RET64() macro returns the endian-swapped value of
num.

Returns:
The endian-swapped value of num.

Examples:
Swap the endianness of a value:

#include <stdio.h>
#include <stdlib.h>
#include <gulliver.h>
#include <inttypes.h>

int main(void)
{

uint64 t val = 0x1234deadbeef5678;

printf("0x%016Lx = 0x%016Lx\n",
val, ENDIAN RET64(val));

return EXIT SUCCESS;
}

This prints:

May 31, 2004 Manifests 481

ENDIAN RET64() 2004, QNX Software Systems Ltd.

0x1234deadbeef5678 = 0x7856efbeadde3412

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
ENDIAN RET64() is implemented as a macro.

See also:
ENDIAN BE16(), ENDIAN BE32(), ENDIAN BE64(),
ENDIAN LE16(), ENDIAN LE32(), ENDIAN LE64(),
ENDIAN RET16(), ENDIAN RET32(), ENDIAN SWAP16(),
ENDIAN SWAP32(), ENDIAN SWAP64(), htonl(), htons(), ntohl(),
ntohs(), UNALIGNED RET16(), UNALIGNED RET32(),
UNALIGNED RET64(), UNALIGNED PUT16(),
UNALIGNED PUT32(), UNALIGNED PUT64()

482 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ENDIAN SWAP16()
Endian-swap a 16-bit value in place

Synopsis:
#include <gulliver.h>

void ENDIAN SWAP16(uint16 t * num);

Arguments:
num A pointer to the number you want to convert.

Library:
libc

Description:
The ENDIAN SWAP16() macro endian-swaps the value pointed to by
num in place.

Examples:
Swap the endianness of a value:

#include <stdio.h>
#include <stdlib.h>
#include <gulliver.h>
#include <inttypes.h>

int main(void)
{

uint16 t val = 0x1234;
ENDIAN SWAP16(&val);

printf("val = 0x%04x\n", val);

return EXIT SUCCESS;
}

This prints:

val = 0x3412

May 31, 2004 Manifests 483

ENDIAN SWAP16() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
ENDIAN SWAP16() is implemented as a macro.

See also:
ENDIAN BE16(), ENDIAN BE32(), ENDIAN BE64(),
ENDIAN LE16(), ENDIAN LE32(), ENDIAN LE64(),
ENDIAN RET16(), ENDIAN RET32(), ENDIAN RET64(),
ENDIAN SWAP32(), ENDIAN SWAP64(), htonl(), htons(), ntohl(),
ntohs(), UNALIGNED RET16(), UNALIGNED RET32(),
UNALIGNED RET64(), UNALIGNED PUT16(),
UNALIGNED PUT32(), UNALIGNED PUT64()

484 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ENDIAN SWAP32()
Endian-swap a 32-bit value in place

Synopsis:
#include <gulliver.h>

void ENDIAN SWAP32(uint32 t * num);

Arguments:
num A pointer to the number you want to convert.

Library:
libc

Description:
The ENDIAN SWAP32() macro endian-swaps the value pointed to by
num in place.

Examples:
Swap the endianness of a value:

#include <stdio.h>
#include <stdlib.h>
#include <gulliver.h>
#include <inttypes.h>

int main(void)
{

uint32 t val = 0xdeadbeef;
ENDIAN SWAP32(&val);

printf("val = 0x%08x\n", val);

return EXIT SUCCESS;
}

This prints:

val = 0xefbeadde

May 31, 2004 Manifests 485

ENDIAN SWAP32() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
ENDIAN SWAP32() is implemented as a macro.

See also:
ENDIAN BE16(), ENDIAN BE32(), ENDIAN BE64(),
ENDIAN LE16(), ENDIAN LE32(), ENDIAN LE64(),
ENDIAN RET16(), ENDIAN RET32(), ENDIAN RET64(),
ENDIAN SWAP16(), ENDIAN SWAP64(), htonl(), htons(), ntohl(),
ntohs(), UNALIGNED RET16(), UNALIGNED RET32(),
UNALIGNED RET64(), UNALIGNED PUT16(),
UNALIGNED PUT32(), UNALIGNED PUT64()

486 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ENDIAN SWAP64()
Endian-swap a 64-bit value in place

Synopsis:
#include <gulliver.h>

void ENDIAN SWAP64(uint64 t * num);

Arguments:
num A pointer to the number you want to convert.

Library:
libc

Description:
The ENDIAN SWAP64() macro endian-swaps the value pointed to by
num in place.

Examples:
Swap the endianness of a value:

#include <stdio.h>
#include <stdlib.h>
#include <gulliver.h>
#include <inttypes.h>

int main(void)
{

uint64 t val = 0x1234deadbeef5678LL;
ENDIAN SWAP16(&val);

printf("val = 0x%016x\n", val);

return EXIT SUCCESS;
}

This prints:

val = 0x7856efbeadde3412

May 31, 2004 Manifests 487

ENDIAN SWAP64() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
ENDIAN SWAP64() is implemented as a macro.

See also:
ENDIAN BE16(), ENDIAN BE32(), ENDIAN BE64(),
ENDIAN LE16(), ENDIAN LE32(), ENDIAN LE64(),
ENDIAN RET16(), ENDIAN RET32(), ENDIAN RET64(),
ENDIAN SWAP16(), ENDIAN SWAP32(), htonl(), htons(), ntohl(),
ntohs(), UNALIGNED PUT16(), UNALIGNED PUT32(),
UNALIGNED PUT64() UNALIGNED RET16(),
UNALIGNED RET32(), UNALIGNED RET64(),

488 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. endnetent()
Close the network name database file

Synopsis:
#include <netdb.h>

void endnetent(void);

Library:
libsocket

Description:
The endnetent() routine closes the network name database file.

Files:
/etc/networks

Network name database file.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
getnetbyaddr(), getnetbyname(), getnetent(), netent, setnetent()

/etc/networks in the Utilities Reference

May 31, 2004 Manifests 489

endprotoent() 2004, QNX Software Systems Ltd.

Close the protocol name database file

Synopsis:
#include <netdb.h>

void endprotoent(void);

Library:
libsocket

Description:
The endprotoent() routine closes the protocol name database file.

Files:
/etc/protocols

Protocol name database file.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
getprotobyname() getprotobynumber(), getprotoent(), protoent,
setprotoent()

/etc/protocols in the Utilities Reference

490 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. endpwent()
Close the password database file

Synopsis:
#include <sys/types.h>
#include <pwd.h>

int endpwent(void);

Library:
libc

Description:
The endpwent() function closes the password name database file, so
all password access routines behave as if setpwent() had never been
called.

Returns:
Zero.

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
getpwent(), setpwent()

May 31, 2004 Manifests 491

endservent() 2004, QNX Software Systems Ltd.

Close the network services database file

Synopsis:
#include <netdb.h>

void endservent(void);

Library:
libsocket

Description:
The endservent() routine closes the network services database file.

Files:
/etc/services

Network services database file.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
getservbyname(), getservbyport(), getservent(), servent, setservent()

/etc/services in the Utilities Reference

492 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. endspent()
Close the shadow password database file

Synopsis:
#include <sys/types.h>
#include <shadow.h>

void endspent(void);

Library:
libc

Description:
The endspent() function closes the shadow password database file, so
all password access routines behave as if setspent() had never been
called.

Returns:
Zero.

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
getspent(), setspent()

May 31, 2004 Manifests 493

endutent() 2004, QNX Software Systems Ltd.

Close the current user-information file

Synopsis:
#include <utmp.h>

void endutent(void);

Library:
libc

Description:
The endutent() function closes the currently open file specified in
PATH UTMP.

Files:
PATH UTMP The name of the user information file.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
getutent(), getutid(), getutline(), pututline(), setutent(), utmp,
utmpname()

login in the Utilities Reference

494 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. environ
Pointer to the process’s environment variables

Synopsis:
#include <unistd.h>

extern char ** environ;

Library:
libc

Description:
When a process begins, an array of strings called the environment is
made available. This array is pointed to by the external variable
environ. The strings in the array have the form:

variable=value

and are terminated by a NULL pointer.

Classification:
POSIX 1003.1

Caveats:
Don’t modify environ directly; use clearenv(), getenv(), putenv(),
searchenv(), setenv(), and unsetenv().

Changes to the environment affect all threads in a multithreaded
process.

See also:
clearenv(), getenv(), putenv(), searchenv(), setenv(), unsetenv()

May 31, 2004 Manifests 495

eof() 2004, QNX Software Systems Ltd.

Test if the end-of-file has been reached

Synopsis:
#include <unistd.h>

int eof(int filedes);

Arguments:
filedes A file descriptor for the file that you want to check.

Library:
libc

Description:
The eof() function is a low-level function that determines if the end of
the file specified by filedes has been reached.

Input operations set the current file position; you can call the eof()
function to detect the end of the file before more input operations to
prevent attempts at reading beyond the end of the file.

Returns:
1 The end-of-file has been reached.

0 The end-of-file hasn’t been reached.

-1 An error occurred (errno is set).

Errors:
EBADF The file descriptor, filedes, isn’t valid.

Examples:
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>

496 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. eof()

int main(void)
{

int filedes , len;
char buffer[100];

filedes = open("file", O RDONLY);
if(filedes != -1) {

while(! eof(filedes)) {
len = read(filedes , buffer, sizeof(buffer) - 1);
buffer[len] = ’\0’;
printf("%s", buffer);

}
close(filedes);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

Classification:
QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, feof(), open(), read()

May 31, 2004 Manifests 497

erand48() 2004, QNX Software Systems Ltd.

Generate a pseudo-random double in a thread-safe manner

Synopsis:
#include <stdlib.h>

double erand48(unsigned short int xsubi[3]);

Arguments:
xsubi An array that comprises the 48 bits of the initial value that

you want to use.

Library:
libc

Description:
The erand48() function uses a linear congruential algorithm and
48-bit integer arithmetic to generate a nonnegative double uniformly
distributed over the interval [0.0, 1.0]. It’s a thread-safe version of
drand48().

The xsubi array should contain the desired initial value; this makes
erand48() thread-safe, and lets you start a sequence of random
numbers at any known value.

Returns:
A pseudo-random double.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

continued. . .

498 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. erand48()

Safety

Signal handler No

Thread Yes

See also:
drand48(), jrand48(), lcong48(), lrand48(), mrand48(), nrand48(),
seed48(), srand48()

May 31, 2004 Manifests 499

erf(), erff() 2004, QNX Software Systems Ltd.

Compute the error function of a number

Synopsis:
#include <math.h>

double erf (double x);

float erff (float x);

Arguments:
x The number for which you want to compute the error function.

Library:
libm

Description:
The erf() and erff() functions compute the following:

e
-t 2

dt

0

x
2

π

If x is large and the result of erf() is subtracted from 1.0, the results
aren’t very accurate; use erfc() instead.

This equality is true: erf (-x) = -erf (x)

Returns:
The value of the error function, or NAN if x is NAN.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

500 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. erf(), erff()

Classification:
erf() is Standard Unix; erff() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
erfc()

May 31, 2004 Manifests 501

erfc(), erfcf() 2004, QNX Software Systems Ltd.

Complementary error function

Synopsis:
#include <math.h>

double erfc (double x);

float erfcf (float x);

Arguments:
x The number for which you want to compute the complementary

error function.

Library:
libm

Description:
The erfc() and erfcf() functions calculate the complementary error
function of x (i.e. the result of the error function, erf(), subtracted
from 1.0). This is useful because the error function isn’t very
accurate when x is large.

The erf() function computes:

e
-t 2

dt

0

x
2

π

This equality is true: erfc(-x) = 2 - erfc(x)

Returns:
The value of the error function, or NAN if x is NAN.

502 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. erfc(), erfcf()

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Classification:
erfc() is standard Unix; erfcf() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
erf()

May 31, 2004 Manifests 503

err(), errx() 2004, QNX Software Systems Ltd.

Display a formatted error message, and then exit

Synopsis:
#include <err.h>

void err(int eval,
const char *fmt, ...);

void errx(int eval,
const char *fmt, ...);

Arguments:
eval The value to use as the exit code of the process.

fmt NULL, or a printf()-style string used to format the message.

Additional arguments

As required by the format string.

Library:
libc

Description:
The err() and warn() family of functions display a formatted error
message on stderr:

� The functions without an x in their names display the string
associated with the current value of errno.

� Those with a v are “varargs” functions.

� Those with err exit instead of returning.

504 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. err(), errx()

Function errno string? Varargs? Exits?

err() Yes No Yes

errx() No No Yes

verr() Yes Yes Yes

verrx() No Yes Yes

vwarn() Yes Yes No

vwarnx() No Yes No

warn() Yes No No

warnx() No No No

The err() function produces a message that consists of:

� the last component of the program name, followed by a colon and
a space

� the formatted message, followed by a colon and a space, if the fmt
argument isn’t NULL

� the string associated with the current value of errno

� a newline character.

The errx() function produces a similar message, except that it doesn’t
include the string associated with errno. The message consists of:

� the last component of the program name, followed by a colon and
a space

� the formatted message, if the fmt argument isn’t NULL

� a newline character.

The err() and errx() functions don’t return, but exit with the value of
the argument eval.

May 31, 2004 Manifests 505

err(), errx() 2004, QNX Software Systems Ltd.

Examples:
Display the current errno information string and exit:

if ((p = malloc(size)) == NULL)
err(1, NULL);

if ((fd = open(file name, O RDONLY, 0)) == -1)
err(1, "%s", file name);

Display an error message and exit:

if (tm.tm hour < START TIME)
errx(1, "too early, wait until %s", start time string);

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
printf(), stderr, strerror(), verr(), verrx(), vwarn(), vwarnx(), warn(),
warnx()

506 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. errno
Global error variable

Synopsis:
#include <errno.h>

extern int errno;

char * const sys errlist[];
int sys nerr;

Library:
libc

Description:
The errno variable is set to certain error values by many functions
whenever an error has occurred.

You can’t assume that the value of errno is valid unless the function
that you’ve called indicates that an error has occurred. The runtime
library never resets errno to 0.

The documentation for a function might list special meanings for
certain values of errno, but this doesn’t mean that these are the only
values that the function might set.

�

The errno variable may be implemented as a macro, but you can
always examine or set it as if it were a simple integer variable.

Each thread in a multi-threaded program has its own error value in its
thread local storage. No matter which thread you’re in, you can
simply refer to errno — it’s defined in such a way that it refers to the
correct variable for the thread. For more information, see “Local
storage for private data” in the documentation for ThreadCreate().

�

The following variables are also defined in <errno.h>:

sys errlist An array of error messages corresponding to errno.

May 31, 2004 Manifests 507

errno 2004, QNX Software Systems Ltd.

sys nerr The number of entries in the sys errlist array.

The values for errno include at least the following values:

Value Meaning

E2BIG Argument list is too long

EACCES Permission denied

EADDRINUSE Address is already in use

EADDRNOTAVAIL Can’t assign requested address

EADV Advertise error

EAFNOSUPPORT Address family isn’t supported by
protocol family

EAGAIN Resource is temporarily unavailable; try
again

EALREADY Operation is already in progress

EBADE Invalid exchange

EBADF Bad file descriptor

EBADFD FD is invalid for this operation

EBADFSYS Corrupted filesystem detected

EBADMSG Bad message (1003.1b-1993)

EBADR Invalid request descriptor

EBADRPC RPC struct is bad

EBADRQC Invalid request code

EBADSLT Invalid slot

EBFONT Bad font-file format

EBUSY Device or resource is busy

continued. . .

508 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. errno

Value Meaning

ECANCELED Operation canceled (1003.1b-1993)

ECHILD No child processes

ECHRNG Channel number is out of range

ECOMM Communication error occurred on send

ECONNABORTED Software caused connection to abort

ECONNREFUSED Connection refused

ECONNRESET Connection reset by peer

ECTRLTERM Remap to the controlling terminal

EDEADLK Resource deadlock avoided

EDEADLOCK File locking deadlock

EDESTADDRREQ Destination address is required

EDOM Math argument is out of domain for the
function

EDQUOT Disk quota exceeded

EEXIST File exists

EFAULT Bad address

EFBIG File is too large

EHOSTDOWN Host is down

EHOSTUNREACH Unable to communicate with remote node

EIDRM Identifier removed

EILSEQ Illegal byte sequence

EINPROGRESS Operation now in progress

EINTR Interrupted function call

EINVAL Invalid argument

continued. . .

May 31, 2004 Manifests 509

errno 2004, QNX Software Systems Ltd.

Value Meaning

EIO I/O error

EISCONN Socket is already connected

EISDIR Is a directory

EL2HLT Level 2 halted

EL2NSYNC Level 2 not synchronized

EL3HLT Level 3 halted

EL3RST Level 3 reset

ELIBACC Can’t access shared library

ELIBBAD Accessing a corrupted shared library

ELIBEXEC Attempting to exec a shared library

ELIBMAX Attempting to link in too many libraries

ELIBSCN The .lib section in a.out is corrupted

ELNRNG Link number is out of range

ELOOP Too many levels of symbolic links or
prefixes

EMFILE Too many open files

EMLINK Too many links

EMORE More to do, send message again

EMSGSIZE Inappropriate message buffer length

EMULTIHOP Multihop attempted

ENAMETOOLONG Filename is too long

ENETDOWN Network is down

ENETRESET Network dropped connection on reset

ENETUNREACH Network is unreachable

continued. . .

510 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. errno

Value Meaning

ENFILE Too many open files in the system

ENOANO No anode

ENOBUFS No buffer space available

ENOCSI No CSI structure available

ENODATA No data (for no-delay I/O)

ENODEV No such device

ENOENT No such file or directory

ENOEXEC Exec format error

ENOLCK No locks available

ENOLIC No license available

ENOLINK The link has been severed

ENOMEM Not enough memory

ENOMSG No message of desired type

ENONDP Need an NDP (8087...) to run

ENONET Machine isn’t on the network

ENOPKG Package isn’t installed

ENOPROTOOPT Protocol isn’t available

ENOREMOTE Must be done on local machine

ENOSPC No space left on device

ENOSR Out of streams resources

ENOSTR Device isn’t a stream

ENOSYS Function isn’t implemented

ENOTBLK Block device is required

continued. . .

May 31, 2004 Manifests 511

errno 2004, QNX Software Systems Ltd.

Value Meaning

ENOTCONN Socket isn’t connected

ENOTDIR Not a directory

ENOTEMPTY Directory isn’t empty

ENOTSOCK Socket operation on nonsocket

ENOTSUP Not supported (1003.1b-1993)

ENOTTY Inappropriate I/O control operation

ENOTUNIQ Given name isn’t unique

ENXIO No such device or address

EOK No error

EOPNOTSUPP Operation isn’t supported

EOVERFLOW Value too large to be stored in data type

EPERM Operation isn’t permitted

EPFNOSUPPORT Protocol family isn’t supported

EPIPE Broken pipe

EPROCUNAVAIL Bad procedure for program

EPROGMISMATCH Program version wrong

EPROGUNAVAIL RPC program isn’t available

EPROTO Protocol error

EPROTONOSUPPORT Protocol isn’t supported

EPROTOTYPE Protocol is wrong type for socket

ERANGE Result is too large

EREMCHG Remote address changed

EREMOTE The object is remote

continued. . .

512 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. errno

Value Meaning

ERESTART Restartable system call

EROFS Read-only filesystem

ERPCMISMATCH RPC version is wrong

ESHUTDOWN Can’t send after socket shutdown

ESOCKTNOSUPPORT Socket type isn’t supported

ESPIPE Illegal seek

ESRCH No such process

ESRMNT Server mount error

ESRVRFAULT The receive side of a message transfer
encountered a memory fault accessing the
receive/reply buffer.

ESTALE Potentially recoverable I/O error

ESTRPIPE If pipe/FIFO, don’t sleep in stream head

ETIME Timer expired

ETIMEDOUT Connection timed out

ETOOMANYREFS Too many references: can’t splice

ETXTBSY Text file is busy

EUNATCH Protocol driver isn’t attached

EUSERS Too many users (for UFS)

EWOULDBLOCK Operation would block

EXDEV Cross-device link

EXFULL Exchange full

May 31, 2004 Manifests 513

errno 2004, QNX Software Systems Ltd.

Examples:
/*
* The following program makes an illegal call
* to the write() function, then prints the
* value held in errno.
*/

#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>

int main(void)
{

int errvalue;

errno = EOK;
write(-1, "hello, world\n",

strlen("hello, world\n"));
errvalue = errno;
printf("The error generated was %d\n", errvalue);
printf("That means: %s\n", strerror(errvalue));

}

Classification:
POSIX 1003.1

See also:
h errno, perror(), stderr, strerror()

514 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. etext
The end of the text segment

Synopsis:

Description:
This linker symbol defines the end of the text segment. This variable
isn’t defined in any header file.

Classification:
QNX Neutrino

See also:
brk(), btext, edata, end, sbrk()

May 31, 2004 Manifests 515

execl() 2004, QNX Software Systems Ltd.

Execute a file

Synopsis:
#include <process.h>

int execl(const char * path,
const char * arg0,
const char * arg1,
...
const char * argn,
NULL);

Arguments:
path The path of the file to execute.

arg0, . . . , argn Pointers to NULL-terminated character strings.
These strings constitute the argument list available
to the new process image. You must terminate the
list with a NULL pointer. The arg0 argument must
point to a filename that’s associated with the
process being started.

Library:
libc

Description:
The execl() function replaces the current process image with a new
process image specified by path. The new image is constructed from a
regular, executable file called the new process image file. No return is
made because the calling process image is replaced by the new
process image.

When a C-language program is executed as a result of this call, it’s
entered as a C-language function call as follows:

int main (int argc, char *argv[]);

516 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execl()

where argc is the argument count and argv is an array of character
pointers to the arguments themselves. In addition, the following
variable:

extern char **environ;

is initialized as a pointer to an array of character pointers to the
environment strings. The argv and environ arrays are each terminated
by a null pointer. The null pointer terminating the argv array isn’t
counted in argc.

Multithreaded applications shouldn’t use the environ variable to
access or modify any environment variable while any other thread is
concurrently modifying any environment variable. A call to any
function dependent on any environment variable is considered a use
of the environ variable to access that environment variable.

The arguments specified by a program with one of the exec* functions
are passed on to the new process image in the corresponding main()
arguments.

The number of bytes available for the new process’s combined
argument and environment lists is ARG MAX.

File descriptors open in the calling process image remain open in the
new process image, except for when fcntl()’s FD CLOEXEC flag is set.
For those file descriptors that remain open, all attributes of the open
file description, including file locks remain unchanged. If a file
descriptor is closed for this reason, file locks are removed as described
by close() while locks not affected by close() aren’t changed.

Directory streams open in the calling process image are closed in the
new process image.

Signals set to SIG DFL in the calling process are set to the default
action in the new process image. Signals set to SIG IGN by the calling
process images are ignored by the new process image. Signals set to
be caught by the calling process image are set to the default action in
the new process image. After a successful call, alternate signal stacks
aren’t preserved and the SA ONSTACK flag is cleared for all signals.

May 31, 2004 Manifests 517

execl() 2004, QNX Software Systems Ltd.

After a successful call, any functions previously registered by atexit()
are no longer registered.

If the path is on a filesystem mounted with the ST NOSUID flag set,
the effective user ID, effective group ID, saved set-user ID and saved
set-group ID are unchanged for the new process. Otherwise, if the
set-user ID mode bit is set, the effective user ID of the new process
image is set to the user ID of path. Similarly, if the set-group ID mode
bit is set, the effective group ID of the new process is set to the group
ID of path. The real user ID, real group ID, and supplementary group
IDs of the new process remain the same as those of the calling
process. The effective user ID and effective group ID of the new
process image are saved (as the saved set-user ID and the saved
set-group ID used by setuid()).

Any shared memory segments attached to the calling process image
aren’t attached to the new process image.

The new process also inherits at least the following attributes from the
calling process image:

� process ID

� parent process ID

� process group ID

� session membership

� real user ID

� real group ID

� supplementary group IDs

� time left until an alarm clock signal (see alarm())

� current working directory

� root directory

� file mode creation mask (see umask())

518 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execl()

� process signal mask (see sigprocmask())

� pending signal (see sigpending())

� tms utime, tms stime, tms cutime, and tms cstime (see times())

� resource limits

� controlling terminal

� interval timers.

If you call this function from a process with more than one thread, all
of the threads are terminated and the new executable image is loaded
and executed. No destructor functions are called.

Upon successful completion, the st atime field of the file is marked
for update. If the exec* function failed but was able to locate the
process image file, whether the st atime field is marked for update is
unspecified. On success, the process image file is considered to be
opened with open(). The corresponding close() is considered to occur
at a time after this open, but before process termination or successful
completion of a subsequent call to one of the exec* functions.

exec*() summary

Function Description POSIX?

execl() NULL-terminated argument list Yes

execle() NULL-terminated argument list, specify
the new process environment

Yes

execlp() NULL-terminated argument list, search
for the new process in PATH

Yes

execlpe() NULL-terminated argument list, search
for the new process in PATH, specify the
new process environment

No

execv() NULL-terminated array of arguments Yes

continued. . .

May 31, 2004 Manifests 519

execl() 2004, QNX Software Systems Ltd.

Function Description POSIX?

execve() NULL-terminated array of arguments,
specify the new process environment

Yes

execvp() NULL-terminated array of arguments,
search for the new process in PATH

Yes

execvpe() NULL-terminated array of arguments,
search for the new process in PATH,
specify the new process environment

No

Returns:
When execl() is successful, it doesn’t return; otherwise, it returns -1
(errno is set).

Errors:
E2BIG The argument list and the environment is larger than

the system limit of ARG MAX bytes.

EACCESS The calling process doesn’t have permission to search
a directory listed in path, or it doesn’t have
permission to execute path, or path’s filesystem was
mounted with the ST NOEXEC flag.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of path or an element of the PATH
environment variable exceeds PATH MAX.

ENOENT One or more components of the pathname don’t exist,
or the path argument points to an empty string.

ENOEXEC The new process image file has the correct access
permissions, but isn’t in the proper format.

ENOMEM There’s insufficient memory available to create the
new process.

520 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execl()

ENOTDIR A component of path isn’t a directory.

Examples:
Replace the current process with myprog as if a user had typed:

myprog ARG1 ARG2

at the shell:

#include <stddef.h>
#include <process.h>

execl("myprog", "myprog", "ARG1", "ARG2", NULL);

In this example, myprog will be found if it exists in the current
working directory.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
abort(), atexit(), errno, execle(), execlp(), execlpe(), execv(), execve(),
execvp(), execvpe(), exit(), exit(), getenv(), main(), putenv(), spawn(),
spawnl(), spawnle(), spawnlp(), spawnlpe(), spawnp(), spawnv(),
spawnve(), spawnvp(), spawnvpe(), system()

May 31, 2004 Manifests 521

execle() 2004, QNX Software Systems Ltd.

Execute a file

Synopsis:
#include <process.h>

int execle(const char * path,
const char * arg0,
const char * arg1,
...
const char * argn,
NULL,
const char * envp[]);

Arguments:
path The path of the file to execute.

arg0, . . . , argn Pointers to NULL-terminated character strings.
These strings constitute the argument list available
to the new process image. You must terminate the
list with a NULL pointer. The arg0 argument must
point to a filename that’s associated with the
process being started.

envp An array of character pointers to NULL-terminated
strings. These strings constitute the environment
for the new process image. Terminate the envp
array with a NULL pointer.

Library:
libc

Description:
The execle() function replaces the current process image with a new
process image specified by path. The new image is constructed from a
regular, executable file called the new process image file. No return is
made because the calling process image is replaced by the new
process image.

522 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execle()

When a C-language program is executed as a result of this call, it’s
entered as a C-language function call as follows:

int main (int argc, char *argv[]);

where argc is the argument count and argv is an array of character
pointers to the arguments themselves. In addition, the following
variable:

extern char **environ;

is initialized as a pointer to an array of character pointers to the
environment strings. The argv and environ arrays are each terminated
by a null pointer. The null pointer terminating the argv array isn’t
counted in argc.

Multithreaded applications shouldn’t use the environ variable to
access or modify any environment variable while any other thread is
concurrently modifying any environment variable. A call to any
function dependent on any environment variable is considered a use
of the environ variable to access that environment variable.

The arguments specified by a program with one of the exec functions
are passed on to the new process image in the corresponding main()
arguments.

The number of bytes available for the new process’s combined
argument and environment lists is ARG MAX.

File descriptors open in the calling process image remain open in the
new process image, except for when fcntl()’s FD CLOEXEC flag is set.
For those file descriptors that remain open, all attributes of the open
file description, including file locks remain unchanged. If a file
descriptor is closed for this reason, file locks are removed as described
by close() while locks not affected by close() aren’t changed.

Directory streams open in the calling process image are closed in the
new process image.

Signals set to SIG DFL in the calling process are set to the default
action in the new process image. Signals set to SIG IGN by the calling

May 31, 2004 Manifests 523

execle() 2004, QNX Software Systems Ltd.

process images are ignored by the new process image. Signals set to
be caught by the calling process image are set to the default action in
the new process image. After a successful call, alternate signal stacks
aren’t preserved and the SA ONSTACK flag is cleared for all signals.

After a successful call, any functions previously registered by atexit()
are no longer registered.

If the path is on a filesystem mounted with the ST NOSUID flag set,
the effective user ID, effective group ID, saved set-user ID and saved
set-group ID are unchanged for the new process. Otherwise, if the
set-user ID mode bit is set, the effective user ID of the new process
image is set to the user ID of path. Similarly, if the set-group ID mode
bit is set, the effective group ID of the new process is set to the group
ID of path. The real user ID, real group ID, and supplementary group
IDs of the new process remain the same as those of the calling
process. The effective user ID and effective group ID of the new
process image are saved (as the saved set-user ID and the saved
set-group ID used by setuid()).

Any shared memory segments attached to the calling process image
aren’t attached to the new process image.

The new process also inherits at least the following attributes from the
calling process image:

� process ID

� parent process ID

� process group ID

� session membership

� real user ID

� real group ID

� supplementary group IDs

� time left until an alarm clock signal (see alarm())

� current working directory

524 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execle()

� root directory

� file mode creation mask (see umask())

� process signal mask (see sigprocmask())

� pending signal (see sigpending())

� tms utime, tms stime, tms cutime, and tms cstime (see times())

� resource limits

� controlling terminal

� interval timers.

A call to this function from a process with more than one thread
results in all threads being terminated and the new executable image
being loaded and executed. No destructor functions are called.

Upon successful completion, the st atime field of the file is marked
for update. If the exec* function failed but was able to locate the
process image file, whether the st atime field is marked for update is
unspecified. On success, the process image file is considered to be
opened with open(). The corresponding close() is considered to occur
at a time after this open, but before process termination or successful
completion of a subsequent call to one of the exec* functions.

exec*() summary

Function Description POSIX?

execl() NULL-terminated argument list Yes

execle() NULL-terminated argument list, specify
the new process’s environment

Yes

execlp() NULL-terminated argument list, search
for the new process in PATH

Yes

continued. . .

May 31, 2004 Manifests 525

execle() 2004, QNX Software Systems Ltd.

Function Description POSIX?

execlpe() NULL-terminated argument list, search
for the new process in PATH, specify the
new process’s environment

No

execv() NULL-terminated array of arguments Yes

execve() NULL-terminated array of arguments,
specify the new process’s environment

Yes

execvp() NULL-terminated array of arguments,
search for the new process in PATH

Yes

execvpe() NULL-terminated array of arguments,
search for the new process in PATH,
specify the new process’s environment

No

Returns:
When execle() is successful, it doesn’t return; otherwise, it returns -1
and sets errno.

Errors:
E2BIG The argument list and the environment is larger than

the system limit of ARG MAX bytes.

EACCESS The calling process doesn’t have permission to search
a directory listed in path, or it doesn’t have
permission to execute path, or path’s filesystem was
mounted with the ST NOEXEC flag.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of path or an element of the PATH
environment variable exceeds PATH MAX.

ENOENT One or more components of the pathname don’t exist,
or the path argument points to an empty string.

526 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execle()

ENOEXEC The new process’s image file has the correct access
permissions, but isn’t in the proper format.

ENOMEM There’s insufficient memory available to create the
new process.

ENOTDIR A component of path isn’t a directory.

Examples:
Replace the current process with myprog as if a user had typed:

myprog ARG1 ARG2

at the shell:

#include <stddef.h>
#include <process.h>

char* env list[] = { "SOURCE=MYDATA",
"TARGET=OUTPUT",
"lines=65",
NULL

};

execle("myprog",
"myprog", "ARG1", "ARG2", NULL,
env list);

In this example, myprog will be found if it exists in the current
working directory. The environment for the invoked program consists
of the three environment variables SOURCE, TARGET and lines.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

continued. . .

May 31, 2004 Manifests 527

execle() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

See also:
abort(), atexit(), errno, execl(), execlp(), execlpe(), execv(), execve(),
execvp(), execvpe(), exit(), exit(), getenv(), main(), putenv(), spawn(),
spawnl(), spawnle(), spawnlp(), spawnlpe(), spawnp(), spawnv(),
spawnve(), spawnvp(), spawnvpe(), system()

528 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execlp()
Execute a file

Synopsis:
#include <process.h>

int execlp(const char * file,
const char * arg0,
const char * arg1,
...
const char * argn,
NULL);

Arguments:
file Used to construct a pathname that identifies the

new process image file. If the file argument
contains a slash character, the file argument is used
as the pathname for the file. Otherwise, the path
prefix for this file is obtained by a search of the
directories passed as the environment variable
PATH.

arg0, . . . , argn Pointers to NULL-terminated character strings.
These strings constitute the argument list available
to the new process image. Terminate the list
terminated with a NULL pointer. The arg0
argument must point to a filename that’s
associated with the process.

Library:
libc

Description:
The execlp() function replaces the current process image with a new
process image specified by file. The new image is constructed from a
regular, executable file called the new process image file. No return is
made because the calling process image is replaced by the new
process image.

May 31, 2004 Manifests 529

execlp() 2004, QNX Software Systems Ltd.

When a C-language program is executed as a result of this call, it’s
entered as a C-language function call as follows:

int main (int argc, char *argv[]);

where argc is the argument count and argv is an array of character
pointers to the arguments themselves. In addition, the following
variable:

extern char **environ;

is initialized as a pointer to an array of character pointers to the
environment strings. The argv and environ arrays are each terminated
by a null pointer. The null pointer terminating the argv array isn’t
counted in argc.

Multithreaded applications shouldn’t use the environ variable to
access or modify any environment variable while any other thread is
concurrently modifying any environment variable. A call to any
function dependent on any environment variable is considered a use
of the environ variable to access that environment variable.

The arguments specified by a program with one of the exec functions
are passed on to the new process image in the corresponding main()
arguments.

If the process image file isn’t a valid executable object, the contents of
the file are passed as standard input to a command interpreter
conforming to the system() function. In this case, the command
interpreter becomes the new process image.

The number of bytes available for the new process’s combined
argument and environment lists is ARG MAX.

File descriptors open in the calling process image remain open in the
new process image, except for when fcntl()’s FD CLOEXEC flag is set.
For those file descriptors that remain open, all attributes of the open
file description, including file locks remain unchanged. If a file
descriptor is closed for this reason, file locks are removed as described
by close() while locks not affected by close() aren’t changed.

530 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execlp()

Directory streams open in the calling process image are closed in the
new process image.

Signals set to SIG DFL in the calling process are set to the default
action in the new process image. Signals set to SIG IGN by the calling
process images are ignored by the new process image. Signals set to
be caught by the calling process image are set to the default action in
the new process image. After a successful call, alternate signal stacks
aren’t preserved and the SA ONSTACK flag is cleared for all signals.

After a successful call, any functions previously registered by atexit()
are no longer registered.

If the file is on a filesystem mounted with the ST NOSUID flag set, the
effective user ID, effective group ID, saved set-user ID and saved
set-group ID are unchanged for the new process. Otherwise, if the
set-user ID mode bit is set, the effective user ID of the new process
image is set to the user ID of file. Similarly, if the set-group ID mode
bit is set, the effective group ID of the new process is set to the group
ID of file. The real user ID, real group ID, and supplementary group
IDs of the new process remain the same as those of the calling
process. The effective user ID and effective group ID of the new
process image are saved (as the saved set-user ID and the saved
set-group ID used by setuid()).

Any shared memory segments attached to the calling process image
aren’t attached to the new process image.

The new process also inherits at least the following attributes from the
calling process image:

� process ID

� parent process ID

� process group ID

� session membership

� real user ID

� real group ID

May 31, 2004 Manifests 531

execlp() 2004, QNX Software Systems Ltd.

� supplementary group IDs

� time left until an alarm clock signal (see alarm())

� current working directory

� root directory

� file mode creation mask (see umask())

� process signal mask (see sigprocmask())

� pending signal (see sigpending())

� tms utime, tms stime, tms cutime, and tms cstime (see times())

� resource limits

� controlling terminal

� interval timers.

A call to this function from a process with more than one thread
results in all threads being terminated and the new executable image
being loaded and executed. No destructor functions are called.

Upon successful completion, the st atime field of the file is marked
for update. If the exec* failed but was able to locate the process image
file, whether the st atime field is marked for update is unspecified. On
success, the process image file is considered to be opened with
open(). The corresponding close() is considered to occur at a time
after this open, but before process termination or successful
completion of a subsequent call to one of the exec* functions.

exec*() summary

Function Description POSIX?

execl() NULL-terminated argument list Yes

execle() NULL-terminated argument list, specify
the new process’s environment

Yes

continued. . .

532 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execlp()

Function Description POSIX?

execlp() NULL-terminated argument list, search
for the new process in PATH

Yes

execlpe() NULL-terminated argument list, search
for the new process in PATH, specify the
new process’s environment

No

execv() NULL-terminated array of arguments Yes

execve() NULL-terminated array of arguments,
specify the new process’s environment

Yes

execvp() NULL-terminated array of arguments,
search for the new process in PATH

Yes

execvpe() NULL-terminated array of arguments,
search for the new process in PATH,
specify the new process’s environment

No

Returns:
When execlp() is successful, it doesn’t return; otherwise, it returns -1
and sets errno.

Errors:
E2BIG The argument list and the environment is larger than

the system limit of ARG MAX bytes.

EACCESS The calling process doesn’t have permission to search
a directory listed in file, or it doesn’t have permission
to execute file, or file’s filesystem was mounted with
the ST NOEXEC flag.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of file or an element of the PATH
environment variable exceeds PATH MAX.

May 31, 2004 Manifests 533

execlp() 2004, QNX Software Systems Ltd.

ENOENT One or more components of the pathname don’t exist,
or the file argument points to an empty string.

ENOMEM There’s insufficient memory available to create the
new process.

ENOTDIR A component of file isn’t a directory.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
abort(), atexit(), errno, execl(), execle(), execlpe(), execv(), execve(),
execvp(), execvpe() exit(), exit(), getenv(), main(), putenv(), spawn(),
spawnl(), spawnle(), spawnlp(), spawnlpe(), spawnp(), spawnv(),
spawnve(), spawnvp(), spawnvpe(), system()

534 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execlpe()
Execute a file

Synopsis:
#include <process.h>

int execlpe(const char * file,
const char * arg0,
const char * arg1,
...
const char * argn,
NULL,
const char * envp[]);

Arguments:
file Used to construct a pathname that identifies the new

process image file. If the file argument contains a
slash character, the file argument is used as the
pathname for the file. Otherwise, the path prefix for
this file is obtained by a search of the directories
passed as the environment variable PATH.

arg0. . . argn Pointers to NULL-terminated character strings.
These strings constitute the argument list available to
the new process image. Terminate the list terminated
with a NULL pointer. The arg0 argument must point
to a filename that’s associated with the process.

envp An array of character pointers to NULL-terminated
strings. These strings constitute the environment for
the new process image. Terminate the envp array
with a NULL pointer.

Library:
libc

May 31, 2004 Manifests 535

execlpe() 2004, QNX Software Systems Ltd.

Description:
See execl() for further information on the exec*() family of functions.�

The execlpe() function replaces the current process image with a new
process image specified by file. The new image is constructed from a
regular, executable file called the new process image file. No return is
made because the calling process image is replaced by the new
process image.

If the new process is a shell script, the first line must start with #!,
followed by the path and arguments of the shell to be run to interpret
the script. The script must also be marked as executable.

�

The execlpe() function uses the paths listed in the PATH environment
variable to locate the program to be loaded, provided that the
following conditions are met:

� The argument file identifies the name of program to be loaded.

� If no path character (/) is included in the name, an attempt is made
to load the program from one of the paths in the PATH
environment variable.

� If PATH isn’t defined, the current working directory is used.

� If a path character (/) is included in the name, the program is
loaded from the path specified in file.

The process is started with the arguments specified in the
NULL-terminated arguments arg1. . . argn. arg0 should point to a
filename associated with the program being loaded. Only arg0 is
required, arg1. . . argn are optional.

The new process’s environment is specified in envp, a
NULL-terminated array of NULL-terminated strings. envp cannot be
NULL, but envp[0] can be a NULL pointer if no environment strings
are passed.

Each pointer in envp points to a string in the form:

536 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execlpe()

variable=value

that is used to define an environment variable.

The environment is the collection of environment variables whose
values have been defined with the export shell command, the env
utility, or by the successful execution of the putenv() or setenv()
functions.

A program may read these values with the getenv() function.

An error is detected when the program cannot be found.

If the file is on a filesystem mounted with the ST NOSUID flag set, the
effective user ID, effective group ID, saved set-user ID and saved
set-group ID are unchanged for the new process. Otherwise, if the
set-user ID mode bit is set, the effective user ID of the new process is
set to the owner ID of file. Similarly, if the set-group ID mode bit is
set, the effective group ID of the new process is set to the group ID of
file. The real user ID, real group ID and supplementary group IDs of
the new process remain the same as those of the calling process. The
effective user ID and effective group ID of the new process are saved
as the saved set-user ID and the saved set-group ID used by setuid().

exec*() summary

Function Description POSIX?

execl() NULL-terminated argument list Yes

execle() NULL-terminated argument list, specify
the new process’s environment

Yes

execlp() NULL-terminated argument list, search
for the new process in PATH

Yes

execlpe() NULL-terminated argument list, search
for the new process in PATH, specify the
new process’s environment

No

execv() NULL-terminated array of arguments Yes

continued. . .

May 31, 2004 Manifests 537

execlpe() 2004, QNX Software Systems Ltd.

Function Description POSIX?

execve() NULL-terminated array of arguments,
specify the new process’s environment

Yes

execvp() NULL-terminated array of arguments,
search for the new process in PATH

Yes

execvpe() NULL-terminated array of arguments,
search for the new process in PATH,
specify the new process’s environment

No

Returns:
When execlpe() is successful, it doesn’t return; otherwise, it returns -1
and sets errno.

Errors:
E2BIG The argument list and the environment is larger than

the system limit of ARG MAX bytes.

EACCESS The calling process doesn’t have permission to search
a directory listed in file, or it doesn’t have permission
to execute file, or file’s filesystem was mounted with
the ST NOEXEC flag.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of file or an element of the PATH
environment variable exceeds PATH MAX.

ENOENT One or more components of the pathname don’t exist,
or the file argument points to an empty string.

ENOMEM There’s insufficient memory available to create the
new process.

ENOTDIR A component of file isn’t a directory.

538 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execlpe()

Classification:
QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
abort(), atexit(), errno, execl(), execle(), execlp(), execv(), execve(),
execvp(), execvpe(), exit(), exit(), getenv(), main(), putenv(), spawn(),
spawnl(), spawnle(), spawnlp(), spawnlpe(), spawnp(), spawnv(),
spawnve(), spawnvp(), spawnvpe(), system()

May 31, 2004 Manifests 539

execv() 2004, QNX Software Systems Ltd.

Execute a file

Synopsis:
#include <process.h>

int execv(const char * path,
char * const argv[]);

Arguments:
path A path name that identifies the new process image file.

argv An array of character pointers to NULL-terminated strings.
Your application must ensure that the last member of this
array is a NULL pointer. These strings constitute the
argument list available to the new process image. The value
in argv[0] must point to a filename that’s associated with the
process being started.

Library:
libc

Description:
The execv() function replaces the current process image with a new
process image specified by path. The new image is constructed from a
regular, executable file called the new process image file. No return is
made because the calling process image is replaced by the new
process image.

When a C-language program is executed as a result of this call, it’s
entered as a C-language function call as follows:

int main (int argc, char *argv[]);

where argc is the argument count and argv is an array of character
pointers to the arguments themselves. In addition, the following
variable:

extern char **environ;

540 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execv()

is initialized as a pointer to an array of character pointers to the
environment strings. The argv and environ arrays are each terminated
by a null pointer. The null pointer terminating the argv array isn’t
counted in argc.

Multithreaded applications shouldn’t use the environ variable to
access or modify any environment variable while any other thread is
concurrently modifying any environment variable. A call to any
function dependent on any environment variable is considered a use
of the environ variable to access that environment variable.

The arguments specified by a program with one of the exec functions
are passed on to the new process image in the corresponding main()
arguments.

The environment for the new process image is taken from the external
variable environ in the calling process.

The number of bytes available for the new process’s combined
argument and environment lists is ARG MAX.

File descriptors open in the calling process image remain open in the
new process image, except for when fcntl()’s FD CLOEXEC flag is set.
For those file descriptors that remain open, all attributes of the open
file description, including file locks remain unchanged. If a file
descriptor is closed for this reason, file locks are removed as described
by close() while locks not affected by close() aren’t changed.

Directory streams open in the calling process image are closed in the
new process image.

Signals set to SIG DFL in the calling process are set to the default
action in the new process image. Signals set to SIG IGN by the calling
process images are ignored by the new process image. Signals set to
be caught by the calling process image are set to the default action in
the new process image. After a successful call, alternate signal stacks
aren’t preserved and the SA ONSTACK flag is cleared for all signals.

After a successful call, any functions previously registered by atexit()
are no longer registered.

May 31, 2004 Manifests 541

execv() 2004, QNX Software Systems Ltd.

If the path is on a filesystem mounted with the ST NOSUID flag set,
the effective user ID, effective group ID, saved set-user ID and saved
set-group ID are unchanged for the new process. Otherwise, if the
set-user ID mode bit is set, the effective user ID of the new process
image is set to the user ID of path. Similarly, if the set-group ID mode
bit is set, the effective group ID of the new process is set to the group
ID of path. The real user ID, real group ID, and supplementary group
IDs of the new process remain the same as those of the calling
process. The effective user ID and effective group ID of the new
process image are saved (as the saved set-user ID and the saved
set-group ID used by setuid()).

Any shared memory segments attached to the calling process image
aren’t attached to the new process image.

The new process also inherits at least the following attributes from the
calling process image:

� process ID

� parent process ID

� process group ID

� session membership

� real user ID

� real group ID

� supplementary group IDs

� time left until an alarm clock signal (see alarm())

� current working directory

� root directory

� file mode creation mask (see umask())

� process signal mask (see sigprocmask())

� pending signal (see sigpending())

542 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execv()

� tms utime, tms stime, tms cutime, and tms cstime (see times())

� resource limits

� controlling terminal

� interval timers.

A call to this function from a process with more than one thread
results in all threads being terminated and the new executable image
being loaded and executed. No destructor functions are called.

Upon successful completion, the st atime field of the file is marked
for update. If the exec* failed but was able to locate the process image
file, whether the st atime field is marked for update is unspecified. On
success, the process image file is considered to be opened with
open(). The corresponding close() is considered to occur at a time
after this open, but before process termination or successful
completion of a subsequent call to one of the exec* functions.

exec*() summary

Function Description POSIX?

execl() NULL-terminated argument list Yes

execle() NULL-terminated argument list, specify
the new process’s environment

Yes

execlp() NULL-terminated argument list, search
for the new process in PATH

Yes

execlpe() NULL-terminated argument list, search
for the new process in PATH, specify the
new process’s environment

No

execv() NULL-terminated array of arguments Yes

execve() NULL-terminated array of arguments,
specify the new process’s environment

Yes

continued. . .

May 31, 2004 Manifests 543

execv() 2004, QNX Software Systems Ltd.

Function Description POSIX?

execvp() NULL-terminated array of arguments,
search for the new process in PATH

Yes

execvpe() NULL-terminated array of arguments,
search for the new process in PATH,
specify the new process’s environment

No

Returns:
When execv() is successful, it doesn’t return; otherwise, it returns -1
and sets errno.

Errors:
E2BIG The argument list and the environment is larger than

the system limit of ARG MAX bytes.

EACCESS The calling process doesn’t have permission to search
a directory listed in path, or it doesn’t have
permission to execute path, or path’s filesystem was
mounted with the ST NOEXEC flag.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of path or an element of the PATH
environment variable exceeds PATH MAX.

ENOENT One or more components of the pathname don’t exist,
or the path argument points to an empty string.

ENOEXEC The new process’s image file has the correct access
permissions, but isn’t in the proper format.

ENOMEM There’s insufficient memory available to create the
new process.

ENOTDIR A component of path isn’t a directory.

544 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execv()

Examples:
#include <stddef.h>
#include <process.h>

char* arg list[] = { "myprog", "ARG1", "ARG2", NULL };

execv("myprog", arg list);

The preceding invokes myprog as if the user entered:

myprog ARG1 ARG2

as a command at the shell. The program will be found if myprog
exists in the current working directory.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
abort(), atexit(), errno, execl(), execle(), execlp(), execlpe(), execve(),
execvp(), execvpe(), exit(), exit(), getenv(), main(), putenv(), spawn(),
spawnl(), spawnle(), spawnlp(), spawnlpe(), spawnp(), spawnv(),
spawnve(), spawnvp(), spawnvpe(), system()

May 31, 2004 Manifests 545

execve() 2004, QNX Software Systems Ltd.

Execute a file

Synopsis:
#include <process.h>

int execve(const char * path,
char * const argv[],
char * const envp[]);

Arguments:
path A path name that identifies the new process image file.

argv An array of character pointers to NULL-terminated strings.
Your application must ensure that the last member of this
array is a NULL pointer. These strings constitute the
argument list available to the new process image. The value
in argv[0] must point to a filename that’s associated with the
process being started.

envp An array of character pointers to NULL-terminated strings.
These strings constitute the environment for the new process
image. Terminate the envp array with a NULL pointer.

Library:
libc

Description:
The execve() function replaces the current process image with a new
process image specified by path. The new image is constructed from a
regular, executable file called the new process image file. No return is
made because the calling process image is replaced by the new
process image.

When a C-language program is executed as a result of this call, it’s
entered as a C-language function call as follows:

int main (int argc, char *argv[]);

546 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execve()

where argc is the argument count and argv is an array of character
pointers to the arguments themselves. In addition, the following
variable:

extern char **environ;

is initialized as a pointer to an array of character pointers to the
environment strings. The argv and environ arrays are each terminated
by a null pointer. The null pointer terminating the argv array isn’t
counted in argc.

Multithreaded applications shouldn’t use the environ variable to
access or modify any environment variable while any other thread is
concurrently modifying any environment variable. A call to any
function dependent on any environment variable is considered a use
of the environ variable to access that environment variable.

The arguments specified by a program with one of the exec functions
are passed on to the new process image in the corresponding main()
arguments.

The number of bytes available for the new process’s combined
argument and environment lists is ARG MAX.

File descriptors open in the calling process image remain open in the
new process image, except for when fcntl()’s FD CLOEXEC flag is set.
For those file descriptors that remain open, all attributes of the open
file description, including file locks remain unchanged. If a file
descriptor is closed for this reason, file locks are removed as described
by close() while locks not affected by close() aren’t changed.

Directory streams open in the calling process image are closed in the
new process image.

Signals set to SIG DFL in the calling process are set to the default
action in the new process image. Signals set to SIG IGN by the calling
process images are ignored by the new process image. Signals set to
be caught by the calling process image are set to the default action in
the new process image. After a successful call, alternate signal stacks
aren’t preserved and the SA ONSTACK flag is cleared for all signals.

May 31, 2004 Manifests 547

execve() 2004, QNX Software Systems Ltd.

After a successful call, any functions previously registered by atexit()
are no longer registered.

If the path is on a filesystem mounted with the ST NOSUID flag set,
the effective user ID, effective group ID, saved set-user ID and saved
set-group ID are unchanged for the new process. Otherwise, if the
set-user ID mode bit is set, the effective user ID of the new process
image is set to the user ID of path. Similarly, if the set-group ID mode
bit is set, the effective group ID of the new process is set to the group
ID of path. The real user ID, real group ID, and supplementary group
IDs of the new process remain the same as those of the calling
process. The effective user ID and effective group ID of the new
process image are saved (as the saved set-user ID and the saved
set-group ID used by setuid()).

Any shared memory segments attached to the calling process image
aren’t attached to the new process image.

The new process also inherits at least the following attributes from the
calling process image:

� process ID

� parent process ID

� process group ID

� session membership

� real user ID

� real group ID

� supplementary group IDs

� time left until an alarm clock signal (see alarm())

� current working directory

� root directory

� file mode creation mask (see umask())

548 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execve()

� process signal mask (see sigprocmask())

� pending signal (see sigpending())

� tms utime, tms stime, tms cutime, and tms cstime (see times())

� resource limits

� controlling terminal

� interval timers.

A call to this function from a process with more than one thread
results in all threads being terminated and the new executable image
being loaded and executed. No destructor functions are called.

Upon successful completion, the st atime field of the file is marked
for update. If the exec* failed but was able to locate the process image
file, whether the st atime field is marked for update is unspecified. On
success, the process image file is considered to be opened with
open(). The corresponding close() is considered to occur at a time
after this open, but before process termination or successful
completion of a subsequent call to one of the exec* functions.

exec*() summary

Function Description POSIX?

execl() NULL-terminated argument list Yes

execle() NULL-terminated argument list, specify
the new process’s environment

Yes

execlp() NULL-terminated argument list, search
for the new process in PATH

Yes

execlpe() NULL-terminated argument list, search
for the new process in PATH, specify the
new process’s environment

No

execv() NULL-terminated array of arguments Yes

continued. . .

May 31, 2004 Manifests 549

execve() 2004, QNX Software Systems Ltd.

Function Description POSIX?

execve() NULL-terminated array of arguments,
specify the new process’s environment

Yes

execvp() NULL-terminated array of arguments,
search for the new process in PATH

Yes

execvpe() NULL-terminated array of arguments,
search for the new process in PATH,
specify the new process’s environment

No

Returns:
When execve() is successful, it doesn’t return; otherwise, it returns -1
and sets errno.

Errors:
E2BIG The argument list and the environment is larger than

the system limit of ARG MAX bytes.

EACCESS The calling process doesn’t have permission to search
a directory listed in path, or it doesn’t have
permission to execute path, or path’s filesystem was
mounted with the ST NOEXEC flag.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of path or an element of the PATH
environment variable exceeds PATH MAX.

ENOENT One or more components of the pathname don’t exist,
or the path argument points to an empty string.

ENOEXEC The new process’s image file has the correct access
permissions, but isn’t in the proper format.

ENOMEM There’s insufficient memory available to create the
new process.

550 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execve()

ENOTDIR A component of path isn’t a directory.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
abort(), atexit(), errno, execl(), execle(), execlp(), execlpe(), execv(),
execvp(), execvpe(), exit(), exit(), getenv(), main(), putenv(), spawn(),
spawnl(), spawnle(), spawnlp(), spawnlpe(), spawnp(), spawnv(),
spawnve(), spawnvp(), spawnvpe(), system()

May 31, 2004 Manifests 551

execvp() 2004, QNX Software Systems Ltd.

Execute a file

Synopsis:
#include <process.h>

int execvp(const char * file,
char * const argv[]);

Arguments:
file Used to construct a pathname that identifies the new process

image file. If the file argument contains a slash character, the
file argument is used as the pathname for the file. Otherwise,
the path prefix for this file is obtained by a search of the
directories passed as the environment variable PATH.

argv An array of character pointers to NULL-terminated strings.
Your application must ensure that the last member of this
array is a NULL pointer. These strings constitute the
argument list available to the new process image. The value
in argv[0] must point to a filename that’s associated with the
process being started.

Library:
libc

Description:
The execvp() function replaces the current process image with a new
process image specified by file. The new image is constructed from a
regular, executable file called the new process image file. No return is
made because the calling process image is replaced by the new
process image.

When a C-language program is executed as a result of this call, it’s
entered as a C-language function call as follows:

int main (int argc, char *argv[]);

552 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execvp()

where argc is the argument count and argv is an array of character
pointers to the arguments themselves. In addition, the following
variable:

extern char **environ;

is initialized as a pointer to an array of character pointers to the
environment strings. The argv and environ arrays are each terminated
by a null pointer. The null pointer terminating the argv array isn’t
counted in argc.

Multithreaded applications shouldn’t use the environ variable to
access or modify any environment variable while any other thread is
concurrently modifying any environment variable. A call to any
function dependent on any environment variable is considered a use
of the environ variable to access that environment variable.

The arguments specified by a program with one of the exec functions
are passed on to the new process image in the corresponding main()
arguments.

If the process image file isn’t a valid executable object, the contents of
the file are passed as standard input to a command interpreter
conforming to the system() function. In this case, the command
interpreter becomes the new process image.

The environment for the new process image is taken from the external
variable environ in the calling process.

The number of bytes available for the new process’s combined
argument and environment lists is ARG MAX.

File descriptors open in the calling process image remain open in the
new process image, except for when fcntl()’s FD CLOEXEC flag is set.
For those file descriptors that remain open, all attributes of the open
file description, including file locks remain unchanged. If a file
descriptor is closed for this reason, file locks are removed as described
by close() while locks not affected by close() aren’t changed.

Directory streams open in the calling process image are closed in the
new process image.

May 31, 2004 Manifests 553

execvp() 2004, QNX Software Systems Ltd.

Signals set to SIG DFL in the calling process are set to the default
action in the new process image. Signals set to SIG IGN by the calling
process images are ignored by the new process image. Signals set to
be caught by the calling process image are set to the default action in
the new process image. After a successful call, alternate signal stacks
aren’t preserved and the SA ONSTACK flag is cleared for all signals.

After a successful call, any functions previously registered by atexit()
are no longer registered.

If the file is on a filesystem mounted with the ST NOSUID flag set, the
effective user ID, effective group ID, saved set-user ID and saved
set-group ID are unchanged for the new process. Otherwise, if the
set-user ID mode bit is set, the effective user ID of the new process
image is set to the user ID of file. Similarly, if the set-group ID mode
bit is set, the effective group ID of the new process is set to the group
ID of file. The real user ID, real group ID, and supplementary group
IDs of the new process remain the same as those of the calling
process. The effective user ID and effective group ID of the new
process image are saved (as the saved set-user ID and the saved
set-group ID used by setuid()).

Any shared memory segments attached to the calling process image
aren’t attached to the new process image.

The new process also inherits at least the following attributes from the
calling process image:

� process ID

� parent process ID

� process group ID

� session membership

� real user ID

� real group ID

� supplementary group IDs

554 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execvp()

� time left until an alarm clock signal (see alarm())

� current working directory

� root directory

� file mode creation mask (see umask())

� process signal mask (see sigprocmask())

� pending signal (see sigpending())

� tms utime, tms stime, tms cutime, and tms cstime (see times())

� resource limits

� controlling terminal

� interval timers.

A call to this function from a process with more than one thread
results in all threads being terminated and the new executable image
being loaded and executed. No destructor functions are called.

Upon successful completion, the st atime field of the file is marked
for update. If the exec function failed but was able to locate the
process image file, whether the st atime field is marked for update is
unspecified. On success, the process image file is considered to be
opened with open(). The corresponding close() is considered to occur
at a time after this open, but before process termination or successful
completion of a subsequent call to one of the exec* functions.

exec*() summary

Function Description POSIX?

execl() NULL-terminated argument list Yes

execle() NULL-terminated argument list, specify
the new process’s environment

Yes

continued. . .

May 31, 2004 Manifests 555

execvp() 2004, QNX Software Systems Ltd.

Function Description POSIX?

execlp() NULL-terminated argument list, search
for the new process in PATH

Yes

execlpe() NULL-terminated argument list, search
for the new process in PATH, specify the
new process’s environment

No

execv() NULL-terminated array of arguments Yes

execve() NULL-terminated array of arguments,
specify the new process’s environment

Yes

execvp() NULL-terminated array of arguments,
search for the new process in PATH

Yes

execvpe() NULL-terminated array of arguments,
search for the new process in PATH,
specify the new process’s environment

No

Returns:
When execvp() is successful, it doesn’t return; otherwise, it returns -1
and sets errno.

Errors:
E2BIG The argument list and the environment is larger than

the system limit of ARG MAX bytes.

EACCESS The calling process doesn’t have permission to search
a directory listed in file, or it doesn’t have permission
to execute file, or file’s filesystem was mounted with
the ST NOEXEC flag.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of file or an element of the PATH
environment variable exceeds PATH MAX.

556 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execvp()

ENOENT One or more components of the pathname don’t exist,
or the file argument points to an empty string.

ENOMEM There’s insufficient memory available to create the
new process.

ENOTDIR A component of file isn’t a directory.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
abort(), atexit(), errno, execl(), execle(), execlp(), execlpe(), execv(),
execve(), execvpe(), exit(), exit(), getenv(), main(), putenv(), spawn(),
spawnl(), spawnle(), spawnlp(), spawnlpe(), spawnp(), spawnv(),
spawnve(), spawnvp(), spawnvpe(), system()

May 31, 2004 Manifests 557

execvpe() 2004, QNX Software Systems Ltd.

Execute a file

Synopsis:
#include <process.h>

int execvpe(const char * file,
char * const argv[],
char * const envp[]);

Arguments:
file Used to construct a pathname that identifies the new process

image file. If the file argument contains a slash character, the
file argument is used as the pathname for the file. Otherwise,
the path prefix for this file is obtained by a search of the
directories passed as the environment variable PATH.

argv An array of character pointers to NULL-terminated strings.
Your application must ensure that the last member of this
array is a NULL pointer. These strings constitute the
argument list available to the new process image. The value
in argv[0] must point to a filename that’s associated with the
process being started.

envp An array of character pointers to NULL-terminated strings.
These strings constitute the environment for the new process
image. Terminate the envp array with a NULL pointer.

Library:
libc

Description:
See execl() for further information on the exec*() family of functions.�

The execvpe() function replaces the current process image with a new
process image specified by file. The new image is constructed from a
regular, executable file called the new process image file. No return is

558 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execvpe()

made because the calling process image is replaced by the new
process image.

If the new process is a shell script, the first line must start with #!,
followed by the path and arguments of the shell to be run to interpret
the script. The script must also be marked as executable.

�

The execvpe() function uses the paths listed in the PATH environment
variable to locate the program to be loaded, provided that the
following conditions are met:

� The file argument identifies the name of program to be loaded.

� If no path character (/) is included in the name, an attempt is made
to load the program from one of the paths in the PATH
environment variable.

� If PATH isn’t defined, the current working directory is used.

� If a path character (/) is included in the name, the program is
loaded from the path specified in file.

The process is started with the argument specified in argv, a
NULL-terminated array of NULL-terminated strings. The argv[0]
entry should point to a filename associated with the program being
loaded. The argv argument can’t be NULL but argv[0] can be NULL if
no arguments are required.

The new process’s environment is specified in envp, a
NULL-terminated array of NULL-terminated strings. envp cannot be
NULL, but envp[0] can be a NULL pointer if no environment strings
are passed.

Each pointer in envp points to a string in the form:

variable=value

that is used to define an environment variable.

The environment is the collection of environment variables whose
values have been defined with the export shell command, the env

May 31, 2004 Manifests 559

execvpe() 2004, QNX Software Systems Ltd.

utility, or by the successful execution of the putenv() or setenv()
functions.

A program may read these values with the getenv() function.

An error is detected when the program cannot be found.

If the file is on a filesystem mounted with the ST NOSUID flag set, the
effective user ID, effective group ID, saved set-user ID and saved
set-group ID are unchanged for the new process. Otherwise, if the
set-user ID mode bit is set, the effective user ID of the new process is
set to the owner ID of file. Similarly, if the set-group ID mode bit is
set, the effective group ID of the new process is set to the group ID of
file. The real user ID, real group ID and supplementary group IDs of
the new process remain the same as those of the calling process. The
effective user ID and effective group ID of the new process are saved
as the saved set-user ID and the saved set-group ID used by setuid().

exec*() summary

Function Description POSIX?

execl() NULL-terminated argument list Yes

execle() NULL-terminated argument list, specify
the new process’s environment

Yes

execlp() NULL-terminated argument list, search
for the new process in PATH

Yes

execlpe() NULL-terminated argument list, search
for the new process in PATH, specify the
new process’s environment

No

execv() NULL-terminated array of arguments Yes

execve() NULL-terminated array of arguments,
specify the new process’s environment

Yes

execvp() NULL-terminated array of arguments,
search for the new process in PATH

Yes

continued. . .

560 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. execvpe()

Function Description POSIX?

execvpe() NULL-terminated array of arguments,
search for the new process in PATH,
specify the new process’s environment

No

Returns:
When execvpe() is successful, it doesn’t return; otherwise, it returns
-1 and sets errno.

Errors:
E2BIG The argument list and the environment is larger than

the system limit of ARG MAX bytes.

EACCESS The calling process doesn’t have permission to search
a directory listed in file, or it doesn’t have permission
to execute file, or file’s filesystem was mounted with
the ST NOEXEC flag.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of file or an element of the PATH
environment variable exceeds PATH MAX.

ENOENT One or more components of the pathname don’t exist,
or the file argument points to an empty string.

ENOMEM There’s insufficient memory available to create the
new process.

ENOTDIR A component of file isn’t a directory.

May 31, 2004 Manifests 561

execvpe() 2004, QNX Software Systems Ltd.

Classification:
QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
abort(), atexit(), errno, execl(), execle(), execlp(), execlpe(), execv(),
execve(), execvp(), exit(), exit(), getenv(), main(), putenv(), spawn(),
spawnl(), spawnle(), spawnlp(), spawnlpe(), spawnp(), spawnv(),
spawnve(), spawnvp(), spawnvpe(), system()

562 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. exit()
Terminate the program

Synopsis:
#include <stdlib.h>

void exit(int status);

Arguments:
status The exit status to use for the program.

Library:
libc

Description:
The exit() function causes normal program termination to occur.

The functions registered with atexit() aren’t called when you use
exit() to terminate a program. If you want those functions to be

called, use exit() instead.

�

The exit() function does the following when a process terminates for
any reason:

1 Closes all open file descriptors and directory streams in the
calling process.

2 Notifies the parent process of the calling process if the parent
called wait() or waitpid(). The low-order 8 bits of status are
made available to the parent via wait() or waitpid().

3 Saves the exit status if the parent process of the calling process
isn’t executing a wait() or waitpid() function. If the parent calls
wait() or waitpid() later, this status is returned immediately.

4 Sends a SIGHUP signal to the calling process’s children; this
can indirectly cause the children to exit if they don’t handle
SIGHUP. Children of a terminated process are assigned a new
parent process.

May 31, 2004 Manifests 563

exit() 2004, QNX Software Systems Ltd.

5 Sends a SIGCHLD signal to the parent process.

6 Sends a SIGHUP signal to each process in the foreground
process group if the calling process is the controlling process
for the controlling terminal of that process group.

7 Disassociates the controlling terminal from the calling
process’s session if the process is a controlling process,
allowing it to be acquired by a new controlling process.

8 If the process exiting causes a process group to become
orphaned, and if any member of the newly-orphaned process
group is stopped, then a SIGHUP signal followed by a SIGCONT
signal is sent to each process in the newly-orphaned process
group.

Returns:
The exit() function doesn’t return.

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

FILE *fp;

if(argc <= 1) {
fprintf(stderr, "Missing argument\n");
exit(EXIT FAILURE);

}

fp = fopen(argv[1], "r");
if(fp == NULL) {

fprintf(stderr, "Unable to open ’%s’\n", argv[1]);
exit(EXIT FAILURE);

}
fclose(fp);

/*
At this point, calling exit() is the same as calling
return EXIT SUCCESS;...

*/
exit(EXIT SUCCESS);

564 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. exit()

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
abort(), atexit(), close(), execl(), execle(), execlp(), execlpe(), execv(),
execve(), execvp(), execvpe(), exit(), getenv(), main(), putenv(),
sigaction(), signal(), spawn(), spawnl(), spawnle(), spawnlp(),
spawnlpe(), spawnp(), spawnv(), spawnve(), spawnvp(), spawnvpe(),
system(), wait(), waitpid()

May 31, 2004 Manifests 565

exit() 2004, QNX Software Systems Ltd.

Exit the calling program

Synopsis:
#include <stdlib.h>

void exit(int status);

Arguments:
status The exit status to use for the program.

Library:
libc

Description:
The exit() function causes the calling program to exit normally. When
a program exits normally:

1 All functions registered with the atexit() function are called.

2 All open file streams (those opened by fopen(), fdopen(),
freopen(), or popen()) are flushed and closed.

3 All temporary files created by the tmpfile() function are
removed.

4 The return status is made available to the parent process; status
is typically set to EXIT SUCCESS to indicate successful
termination and set to EXIT FAILURE or some other value to
indicate an error.

Returns:
The exit() function doesn’t return.

566 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. exit()

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

FILE *fp;

if(argc <= 1) {
fprintf(stderr, "Missing argument\n");
exit(EXIT FAILURE);

}

fp = fopen(argv[1], "r");
if(fp == NULL) {

fprintf(stderr, "Unable to open ’%s’\n", argv[1]);
exit(EXIT FAILURE);

}
fclose(fp);
exit(EXIT SUCCESS);

/*
You’ll never get here; this prevents compiler
warnings about "function has no return value".

*/
return EXIT SUCCESS;

}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 567

exit() 2004, QNX Software Systems Ltd.

See also:
abort(), atexit(), exit(), main()

568 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. exp(), expf()
Compute the exponential function of a number

Synopsis:
#include <math.h>

double exp(double x);

float expf(float x);

Arguments:
x The number for which you want to calculate the exponential.

Library:
libm

Description:
The exp() function computes the exponential function of x (ex).

A range error occurs if the magnitude of x is too large.

Returns:
The exponential value of x.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

int main(void)
{

printf("%f\n", exp(.5));

return EXIT SUCCESS;
}

May 31, 2004 Manifests 569

exp(), expf() 2004, QNX Software Systems Ltd.

produces the output:

1.648721

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
The value of expm1(x) may be more accurate than exp(x) - 1.0 for
small values of x.

See also:
errno, expm1, log()

570 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. expm1(), expm1f()
Compute the exponential of a number, then subtract 1

Synopsis:
#include <math.h>

double expm1 (double x);

float expm1f (float x);

Arguments:
x The number for which you want to calculate the exponential

minus one.

Library:
libm

Description:
The expm1() and expm1f() functions compute the exponential of x,
minus 1 (ex - 1).

A range error occurs if the magnitude of x is too large.

The value of expm1(x) may be more accurate than exp(x) - 1.0 for
small values of x.

The expm1() and log1p() functions are useful for financial
calculations of (((1+x)**n)-1)/x, namely:

expm1(n * log1p(x))/x

when x is very small (for example, when performing calculations with
a small daily interest rate). These functions also simplify writing
accurate inverse hyperbolic functions.

Returns:
The exponential value of x, minus 1.

May 31, 2004 Manifests 571

expm1(), expm1f() 2004, QNX Software Systems Ltd.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <errno.h>
#include <inttypes.h>
#include <math.h>
#include <fpstatus.h>

int main(int argc, char** argv)
{

double a, b;

a = 2;
b = expm1(a);
printf("(e ˆ %f) -1 is %f \n", a, b);

return(0);
}

produces the output:

(e ˆ 2.000000) -1 is 6.389056

Classification:
expm1() is standard Unix; expm1f() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

572 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. expm1(), expm1f()

See also:
exp(), log1p()

May 31, 2004 Manifests 573

fabs(), fabsf() 2004, QNX Software Systems Ltd.

Compute the absolute value of a double number

Synopsis:
#include <math.h>

double fabs(double x);

float fabsf(float x);

Arguments:
x The number you want the absolute value of.

Library:
libm

Description:
These functions compute the absolute value of x.

Returns:
The absolute value of x.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

int main(void)
{

printf("%f %f\n", fabs(.5), fabs(-.5));
return EXIT SUCCESS;

}

produces the output:

574 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fabs(), fabsf()

0.500000 0.500000

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
abs(), cabs(), labs()

May 31, 2004 Manifests 575

fcfgopen() 2004, QNX Software Systems Ltd.

Open a configuration file

Synopsis:
#include <cfgopen.h>

FILE * fcfgopen(const char * path,
const char * mode,
int location,
const char * historical,
char * namebuf,
int nblen);

Arguments:
path The name of the configuration file that you want to

open.

mode A string that describes the mode to open in; see fopen().

location Flags that describe how the path is constructed. See
“Search condition flags” in the documentation for
cfgopen().

historical A optional file to open as a last resort if none of the
criteria for finding the path is met. This string works
like a path search order, and lets you search more than
one location. You can also specify %H to substitute the
hostname value into the string. Specify NULL to ignore
this option.

namebuf A buffer to save the pathname in. Specify NULL to
ignore this option.

nblen The length of the buffer pointed to by namebuf .
Specify 0 to ignore this option.

Library:
libc

576 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fcfgopen()

Description:
The fcfgopen() function is similar to cfgopen() with these exceptions:

� The CFGFILE NOFD flag isn’t valid.

� The values for flags described in open() aren’t valid.

Returns:
A valid fd if CFGFILE NOFD isn’t specified, a nonnegative value if
CFGFILE NOFD is specified, or -1 if an error occurs.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
cfgopen(), confstr()

mib.txt, snmpd.conf in the Utilities Reference

May 31, 2004 Manifests 577

fchmod() 2004, QNX Software Systems Ltd.

Change the permissions for a file

Synopsis:
#include <sys/types.h>
#include <sys/stat.h>

int fchmod(int fd,
mode t mode);

Arguments:
fd A file descriptor for the file whose permissions you want to

change.

mode The new permissions for the file. For more information, see
“Access permissions” in the documentation for stat().

Library:
libc

Description:
The fchmod() function changes the permissions for a file referred to
by fd to be the settings in the mode given by mode.

If the effective user ID of the calling process is equal to the file owner,
or the calling process has appropriate privileges (for example, the
superuser), fchmod() sets the S ISUID, S ISGID and the file permission
bits, defined in the <sys/stat.h> header file, from the
corresponding bits in the mode argument. These bits define access
permissions for the user associated with the file, the group associated
with the file, and all others.

For a regular file, if the calling process doesn’t have appropriate
privileges, and if the group ID of the file doesn’t match the effective
group ID, the S ISGID (set-group-ID on execution) bit in the file’s
mode is cleared upon successful return from fchmod().

Changing the permissions has no any effect on any file descriptors for
files that are already open.

578 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fchmod()

If fchmod() succeeds, the st ctime field of the file is marked for
update.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Invalid file descriptor.

ENOSYS The fchmod() function isn’t implemented for the
filesystem specified by fd.

EPERM The effective user ID doesn’t match the owner of the
file, and the calling process doesn’t have appropriate
privileges.

EROFS The referenced file resides on a read-only filesystem.

Examples:
/*
* Change the permissions of a list of files
* to be read/write by the owner only
*/

#include <stdio.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>

int main(int argc, char **argv)
{

int i;
int ecode = 0;
int fd;

for(i = 1; i < argc; i++) {
if((fd = open(argv[i], O RDONLY)) == -1) {

perror(argv[i]);
ecode++;

}
else if(fchmod(fd, S IRUSR | S IWUSR) == -1) {

May 31, 2004 Manifests 579

fchmod() 2004, QNX Software Systems Ltd.

perror(argv[i]);
ecode++;

}

close(fd);
}
return ecode;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
chmod(), chown(), errno, fchown(), fstat(), open(), stat()

580 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fchown()
Change the user ID and group ID of a file

Synopsis:
#include <sys/types.h>
#include <unistd.h>

int fchown(int fd,
uid t owner,
gid t group);

Arguments:
fd A file descriptor for the file whose ownership you want to

change.

owner The user ID of the new owner.

group The group ID of the new owner.

Library:
libc

Description:
The fchown() function changes the user ID and group ID of the file
referenced by fd to be the numeric values contained in owner and
group, respectively.

Only processes with an effective user ID equal to the user ID of the
file, or with appropriate privileges (for example, the superuser) may
change the ownership of a file.

The POSIX CHOWN RESTRICTED flag is enforced. This means that
only the superuser may change the ownership of a file. The group of a
file may be changed by the superuser, or also by a process with the
effective user ID equal to the user ID of the file, if (and only if) owner
is equal to the user ID of the file and group is equal to the effective
group ID of the calling process.

If the fd argument refers to a regular file, the set-user-ID (S ISUID)
and set-group-ID (S ISGID) bits of the file mode are cleared if the
function is successful.

May 31, 2004 Manifests 581

fchown() 2004, QNX Software Systems Ltd.

If fchown() succeeds, the st ctime field of the file is marked for
update.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Invalid file descriptor.

EPERM The effective user ID doesn’t match the owner of the file,
or the calling process doesn’t have appropriate privileges.

EROFS The named file resides on a read-only filesystem.

Examples:
/*
* Change the ownership of a list of files
* to the current user/group
*/

#include <stdio.h>
#include <fcntl.h>
#include <sys/types.h>
#include <unistd.h>

int main(int argc, char **argv)
{

int i;
int ecode = 0;
int fd;

for(i = 1; i < argc; i++) {
if((fd = open(argv[i], O RDONLY)) == -1) {

perror(argv[i]);
ecode++;

}
else if(fchown(fd, getuid(), getgid()) == -1) {

perror(argv[i]);
ecode++;

}

close(fd);

582 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fchown()

}
return ecode;

}

Classification:
POSIX 1003.1a

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
chmod(), chown(), errno, fchmod(), fstat(), lchown(), open(), stat()

May 31, 2004 Manifests 583

fclose() 2004, QNX Software Systems Ltd.

Close a stream

Synopsis:
#include <stdio.h>

int fclose(FILE* fp);

Arguments:
fp The stream you want to close.

Library:
libc

Description:
The fclose() function closes the stream specified by fp. Any
unwritten, buffered data is flushed before the file is closed. Any
unread, buffered data is discarded.

If the associated buffer was automatically allocated, it’s deallocated.

Returns:
0 for success, or EOF if an error occurred (errno is set).

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;

fp = fopen("stdio.h", "r");
if(fp != NULL) {

fclose(fp);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

584 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fclose()

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fcloseall(), fdopen(), fopen(), freopen()

May 31, 2004 Manifests 585

fcloseall() 2004, QNX Software Systems Ltd.

Close all open stream files

Synopsis:
#include <stdio.h>

int fcloseall(void);

Library:
libc

Description:
The fcloseall() function closes all open streams, except stdin, stdout
and stderr. This includes streams created (and not yet closed) by
fdopen(), fopen() and freopen().

Returns:
0

Errors:
If an error occurs, errno is set.

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

printf("The number of files closed is %d\n", fcloseall());
return EXIT SUCCESS;

}

Classification:
QNX 4

586 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fcloseall()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
fclose(), fdopen(), fopen(), freopen()

May 31, 2004 Manifests 587

fcntl() 2004, QNX Software Systems Ltd.

Provide control over an open file

Synopsis:
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>

int fcntl(int fildes,
int cmd,
...);

Arguments:
fildes The descriptor for the file you want to control.

cmd The command to execute; see below.

Library:
libc

Description:
The fcntl() function provides control over the open file referenced by
file descriptor fildes. To establish a lock with this function, open with
write-only permission (O WRONLY) or with read/write permission
(O RDWR).

The type of control is specified by the cmd argument, which may
require a third data argument (arg). The cmd argument is defined in
<fcntl.h>, and includes at least the following values:

F ALLOCSP If the size of the file is less than the number of bytes
specified by the extra arg argument, extend the file
with NUL characters.

F DUPFD Allocate and return a new file descriptor that’s the
lowest numbered available (i.e. not already open)
file descriptor greater than or equal to the third
argument, arg, taken as an int. The new file

588 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fcntl()

descriptor refers to the same file as fildes, and shares
any locks.

F FREESP Truncate the file to the size (in bytes) specified by
the extra argument, arg.

F GETFD Get the file descriptor flags associated with the file
descriptor fildes. File descriptor flags are associated
with a single file descriptor, and don’t affect other
file descriptors referring to the same file.

F GETFL Get the file status flags and the file access modes
associated with fildes. The flags and modes are
defined in <fcntl.h>.

The file status flags (see open() for more detailed
information) are:

� O APPEND — Set append mode.

� O NONBLOCK — No delay.

The file access modes are:

� O RDONLY — Open for reading only.

� O RDWR — Open for reading and writing.

� O WRONLY — Open for writing only.

F GETLK Get the first lock that blocks the lock description
pointed to by the third argument, arg, taken as a
pointer to type struct flock (defined in
<fcntl.h>). For more information, see the flock
structure section below. The information returned
overwrites the information passed to fcntl() in the
structure pointed to by arg.

If no lock is found that prevents this lock from being
created, the structure is left unchanged, except for
the lock type, which is set to F UNLCK. If a lock is
found, the l pid member of the structure pointed to
by arg is set to the process ID of the process holding
the blocking lock and l whence is set to SEEK SET.

May 31, 2004 Manifests 589

fcntl() 2004, QNX Software Systems Ltd.

F SETFD Set the file descriptor flags associated with fildes to
the third argument, arg, taken as type int. See the
above discussion for more details.

The only defined file descriptor flag is:

FD CLOEXEC When this flag is clear, the file
remains open across spawn*() or
exec*() calls; else the file is closed.

F SETFL Set the file status flags, as shown above, for the open
file description associated with fildes from the
corresponding bits in the third argument, arg, taken
as type int. You can’t use this function to change
the file access mode. All bits set in arg, other than
the file status bits, are ignored.

F SETLK Set or clear a file segment lock, according to the
lock description pointed to by the third argument,
arg, taken as a pointer to type struct flock, as
defined in the header file <fcntl.h>, and
documented below. This command is used to create
the following locks (defined in <fcntl.h>):

F RDLCK Shared or read locks.

F UNLCK Remove either type of lock.

F WRLCK Exclusive or write locks.

If a lock can’t be set, fcntl() returns immediately.

F SETLKW This command is the same as F SETLK, except that
when a lock is blocked by other locks, the process
waits until the request can be satisfied. If a signal
that’s to be caught is received while fcntl() is waiting
for a region, the call is interrupted without
performing the lock operation, and fcntl() returns -1
with errno set to EINTR.

590 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fcntl()

flock structure

The flock structure contains at least the following members:

short l type One of F RDLCK, F WRLCK or F UNLCK.

short l whence

One of the following flags that specify where the
relative offset, l start, is measured from:

SEEK CUR Current seek position.

SEEK END End of file.

SEEK SET Start of file.

off t l start Relative offset in bytes.

off t l len Consecutive bytes to lock; if 0, then until EOF; if
negative, the preceding bytes up to, but not
including, the start byte.

pid t l pid Process ID of the process holding the lock,
returned when cmd is F GETLK.

When a shared lock is set on a segment of a file, other processes can
set shared locks on the same segment, or a portion of it. A shared lock
prevents other processes from setting exclusive locks on any portion
of the protected area. A request for a shared lock fails if the file was
opened write-only.

An exclusive lock prevents any other process from setting a shared or
an exclusive lock on a portion of the protected area. A request for an
exclusive lock fails if the file was opened read-only.

Locks may start and extend beyond the current end of file, but may
not start or extend before the beginning of the file; to attempt to do so
is an error. A lock extends to “infinity” (the largest possible value for
the file offset) if l len is set to zero. If l whence and l start point to the
beginning of the file, and l len is zero, the entire file is locked.

May 31, 2004 Manifests 591

fcntl() 2004, QNX Software Systems Ltd.

The calling process may have only one type of lock set for each byte
of a file. Before successfully returning from an F SETLK or
F SETLKW request, the previous lock type (if any) for each byte in the
specified lock region is replaced by the new lock type. All locks
associated with a file for a given process are removed when a file
descriptor for that file is closed by the process, or the process holding
the file descriptor terminates. Locks aren’t inherited by a child
process using the fork() function. However, locks are inherited across
exec*() or spawn*() calls.

A potential for deadlock occurs if a process controlling a locked
region is put to sleep by attempting to lock another process’s locked
region. If the system detects that sleeping until a locked region is
unlocked would cause a deadlock, fcntl() fails with EDEADLK.
However, the system can’t always detect deadlocks in the network
case, and care should be exercised in the design of your application
for this possibility.

�

592 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fcntl()

Locking is a protocol designed for updating a file shared among
concurrently running applications. Locks are only advisory, that is,
they don’t prevent an errant or poorly-designed application from
overwriting a locked region of a shared file. An application should
use locks to indicate regions of a file that are to be updated by the
application, and it should respect the locks of other applications.

The following functions ignore locks:

� chsize()

� ltrunc()

� open()

� read()

� sopen()

� write()

�

Returns:
-1 if an error occurred (errno is set). The successful return value(s)
depend on the request type specified by arg, as shown in the following
table:

F DUPFD A new file descriptor.

F GETFD Value of the file descriptor flags (never a negative
value).

F GETFL Value of the file status flags and access modes as
shown above (never a negative value).

F GETLK Value other than -1.

F SETFD Value other than -1.

F SETFL Value other than -1.

May 31, 2004 Manifests 593

fcntl() 2004, QNX Software Systems Ltd.

F SETLK Value other than -1.

F SETLKW Value other than -1.

Errors:
EAGAIN The argument cmd is F SETLK, the type of lock

(l type) is a shared lock (F RDLCK), and the
segment of a file to be locked is already
exclusive-locked by another process, or the type is
an exclusive lock and some portion of the segment
of a file to be locked is already shared-locked or
exclusive-locked by another process.

EBADF The fildes argument isn’t a valid file descriptor.

The argument cmd is F SETLK or F SETLKW, the
type of lock (l type) is a shared lock (F RDLCK),
and fildes isn’t a valid file descriptor open for
reading.

The argument cmd is F SETLK or F SETLKW, the
type of lock (l type) is an exclusive lock
(F WRLCK), and fildes isn’t a valid file descriptor
open for writing.

EDEADLK The argument cmd is F SETLKW, and a deadlock
condition was detected.

EINTR The argument cmd is F SETLKW, and the function
was interrupted by a signal.

EINVAL The argument cmd is F DUPFD, and the third
argument is negative, or greater than the
configured number of maximum open file
descriptors per process.

The argument cmd is F GETLK, F SETLK or
F SETLKW, and the data arg isn’t valid, or fildes
refers to a file that doesn’t support locking.

594 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fcntl()

EMFILE The argument cmd is F DUPFD, and the process
has no unused file descriptors, or no file
descriptors greater than or equal to arg are
available.

ENOLCK The argument cmd is F SETLK or F SETLKW, and
satisfying the lock or unlock request causes the
number of lock regions in the system to exceed the
system-imposed limit.

EOVERFLOW One of the values to be returned can’t be
represented correctly.

Examples:
/*
* This program makes "stdout" synchronous
* to guarantee the data is recoverable
* (if it’s redirected to a file).
*/

#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int flags, retval;

flags = fcntl(STDOUT FILENO, F GETFL);

flags |= O DSYNC;

retval = fcntl(STDOUT FILENO, F SETFL, flags);
if(retval == -1) {

printf("error setting stdout flags\n");
return EXIT FAILURE;

}

printf("hello QNX world\n");

return EXIT SUCCESS;
}

May 31, 2004 Manifests 595

fcntl() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1

Safety

Cancellation point Read the Caveats

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The fcntl() function may be a cancellation point in the case of
F DUPFD (when dupping across the network), F GETFD, and
F SETFD.

See also:
close(), dup(), dup2(), execl(), execle(), execlp(), execlpe(), execv(),
execve(), execvp(), execvpe(), open()

596 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fdatasync()
Synchronize file data

Synopsis:
#include <unistd.h>

int fdatasync(int filedes);

Arguments:
filedes The descriptor of the file that you want to synchronize.

Library:
libc

Description:
The fdatasync() function forces all queued I/O operations for the file
specified by the filedes file descriptor to finish, synchronizing the
file’s data.

This function is similar to fsync(), except that fsync() also guarantees
the integrity of file information, such as access and modification
times.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF The specified filedes isn’t a valid file descriptor open for

writing.

EINVAL The implementation doesn’t support synchronized I/O
for the given file.

ENOSYS The fdatasync() function isn’t supported for the
filesystem specified by filedes.

May 31, 2004 Manifests 597

fdatasync() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
aio fsync(), close(), fcntl(), fsync(), open(), read(), sync(), write()

598 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fdopen()
Associate a stream with a file descriptor

Synopsis:
#include <stdio.h>

FILE* fdopen(int filedes,
const char* mode);

Arguments:
filedes The file descriptor that you want to associate with a stream.

mode The mode specified when filedes was originally opened.
For information, see fopen(), except modes begining with
w don’t cause truncation of the file.

Library:
libc

Description:
The fdopen() function associates a stream with the file descriptor
filedes, which represents an opened file or device.

The filedes argument is a file descriptor that was returned by one of
accept(), creat(), dup(), dup2(), fcntl(), open(), pipe(), or sopen().

The fdopen() function preserves the offset maximum previously set
for the open file description corresponding to filedes.

Returns:
A file stream for success, or NULL if an error occurs (errno is set).

Errors:
EBADF The filedes argument is not a valid file descriptor.

EINVAL The mode argument is not a valid mode.

EMFILE Too many file descriptors are currently in use by this
process.

May 31, 2004 Manifests 599

fdopen() 2004, QNX Software Systems Ltd.

ENOMEM There is no memory for FILE structure.

Examples:
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{

int filedes ;
FILE *fp;

filedes = open("file", O RDONLY);
if(filedes != -1) {

fp = fdopen(filedes , "r");
if(fp != NULL) {

/* Also closes the underlying FD, filedes. */
fclose(fp);

}
}
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

600 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fdopen()

See also:
creat(), dup(), dup2(), errno, fcntl(), fopen(), freopen(), open(), pipe(),
sopen()

May 31, 2004 Manifests 601

feof() 2004, QNX Software Systems Ltd.

Test a stream’s end-of-file flag

Synopsis:
#include <stdio.h>

int feof(FILE* fp);

Arguments:
fp The stream you want to test.

Library:
libc

Description:
The feof() function tests the end-of-file flag for the stream specified by
fp.

Because the end-of-file flag is set when an input operation attempts to
read past the end-of-file, the feof() function detects the end-of-file only
after an attempt is made to read beyond the end-of-file. Thus, if a file
contains 10 lines, the feof() won’t detect the end-of-file after the tenth
line is read; it will detect the end-of-file on the next read operation.

Returns:
0 if the end-of-file flag isn’t set, or nonzero if the end-of-file flag is set.

Examples:
#include <stdio.h>
#include <stdlib.h>

void process record(char *buf)
{

printf("%s\n", buf);
}

int main(void)
{

FILE *fp;
char buffer[100];

602 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. feof()

fp = fopen("file", "r");
fgets(buffer, sizeof(buffer), fp);
while(! feof(fp)) {

process record(buffer);
fgets(buffer, sizeof(buffer), fp);

}
fclose(fp);

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
clearerr(), ferror(), fgetc(), fgetchar(), fgets(), fgetwc(), fgetws(),
fopen(), freopen(), getc(), getc unlocked(), getchar(),
getchar unlocked(), gets(), getw(), getwc(), getwchar(), perror(),
read()

May 31, 2004 Manifests 603

ferror() 2004, QNX Software Systems Ltd.

Test a stream’s error flag

Synopsis:
#include <stdio.h>

int ferror(FILE* fp);

Arguments:
fp The stream whose error flag you want to test.

Library:
libc

Description:
The ferror() function tests the error flag for the stream specified by fp.

Returns:
0 if the error flag isn’t set, or nonzero if the error flag is set.

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;
int c;

fp = fopen("file", "r");
if(fp != NULL) {

c = fgetc(fp);
if(ferror(fp)) {

printf("Error reading file\n");
}

}
fclose(fp);

return EXIT SUCCESS;
}

604 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ferror()

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
clearerr(), feof(), fgetc(), fgetchar(), fgets(), fgetwc(), fgetws(), getc(),
getc unlocked(), getchar(), getchar unlocked(), gets(), getw(),
getwc(), getwchar(), perror(), strerror()

May 31, 2004 Manifests 605

fflush() 2004, QNX Software Systems Ltd.

Flush the buffers for a stream

Synopsis:
#include <stdio.h>

int fflush(FILE* fp);

Arguments:
fp NULL, or the stream whose buffers you want to flush.

Library:
libc

Description:
If the stream specified by fp is open for output or update, the fflush()
function causes any buffered (see setvbuf()) but unwritten data to be
written to the file descriptor associated with the stream (see fileno()).

If the file specified by fp is open for input or update, the fflush()
function undoes the effect of any preceding ungetc operation on the
stream.

If fp is NULL, all open streams are flushed.

Returns:
0 for success, or EOF if an error occurs (errno is set).

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

printf("Press Enter to continue...");
fflush(stdout);
getchar();

return EXIT SUCCESS;
}

606 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fflush()

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fgetc(), fgets(), fileno(), flushall(), fopen(), getc(), gets(),
setbuf(), setvbuf(), ungetc()

May 31, 2004 Manifests 607

ffs() 2004, QNX Software Systems Ltd.

Find the first bit set in a bit string

Synopsis:
#include <strings.h>

int ffs(int value);

Arguments:
value The bit string.

Library:
libc

Description:
The ffs() function finds the first bit set in value and returns the index
of that bit. Bits are numbered starting from 1, starting at the rightmost
bit.

Returns:
The index of the first bit set, or 0 if value is zero.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

608 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fgetc()
Read a character from a stream

Synopsis:
#include <stdio.h>

int fgetc(FILE* fp);

Arguments:
fp The stream from which you want to read a character.

Library:
libc

Description:
The fgetc() function reads the next character from the stream specified
by fp.

Returns:
The next character from fp, cast as (int)(unsigned char), or
EOF if end-of-file has been reached or if an error occurs (errno is set).

Use feof() or ferror() to distinguish an end-of-file condition from an
error.

�

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;
int c;

fp = fopen("file", "r");
if(fp != NULL) {

while((c = fgetc(fp)) != EOF) {
fputc(c, stdout);

}

May 31, 2004 Manifests 609

fgetc() 2004, QNX Software Systems Ltd.

fclose(fp);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, feof(), ferror(), fgetchar(), fgets(), fopen(), fputc(), getc(),
gets(), ungetc()

610 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fgetchar()
Read a character from stdin

Synopsis:
#include <stdio.h>

int fgetchar(void);

Library:
libc

Description:
The fgetchar() function is the same as fgetc() with an argument of
stdin.

Returns:
The next character from stdin, cast as (int)(unsigned char),
EOF if end-of-file has been reached on stdin or if an error occurs
(errno is set).

Use feof() or ferror() to distinguish an end-of-file condition from an
error.

�

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;
int c;

fp = freopen("file", "r", stdin);
if(fp != NULL) {

while((c = fgetchar()) != EOF) {
fputchar(c);

}
fclose(fp);

return EXIT SUCCESS;
}

May 31, 2004 Manifests 611

fgetchar() 2004, QNX Software Systems Ltd.

return EXIT FAILURE;
}

Classification:
QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, feof(), ferror(), fgetc(), fputchar(), getc(), getchar()

612 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fgetpos()
Get the current position of a stream

Synopsis:
#include <stdio.h>

int fgetpos(FILE* fp,
fpos t* pos);

Arguments:
fp The stream whose position you want to determine.

pos A pointer to a fpos t object where the function can store the
position.

Library:
libc

Description:
The fgetpos() function stores the current position of the stream fp in
the fpos t object specified by pos.

You can use the value stored in pos in a call to fsetpos() if you want to
reposition the file to the position at the time of the fgetpos() call.

Returns:
0 for success, or nonzero if an error occurs (errno is set).

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;
fpos t position;
char buffer[80];

fp = fopen("file", "r");
if(fp != NULL) {

May 31, 2004 Manifests 613

fgetpos() 2004, QNX Software Systems Ltd.

fgetpos(fp, &position); /* get position */
fgets(buffer, 80, fp); /* read record */
fsetpos(fp, &position); /* set position */
fgets(buffer, 80, fp); /* read same record */
fclose(fp);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fopen(), fseek(), fsetpos(), ftell()

614 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fgets()
Read a string of characters from a stream

Synopsis:
#include <stdio.h>

char* fgets(char* buf,
size t n,
FILE* fp);

Arguments:
buf A pointer to a buffer in which fgets() can store the characters

that it reads.

n The maximum number of characters to read.

fp The stream from which to read the characters.

Library:
libc

Description:
The fgets() function reads a string of characters from the stream
specified by fp, and stores them in the array specified by buf .

It stops reading characters when:

� the end-of-file is reached

Or:

� a newline (’\n’) character is read

Or:

� n-1 characters have been read.

The newline character isn’t discarded. A null character is placed
immediately after the last character read into the array.

May 31, 2004 Manifests 615

fgets() 2004, QNX Software Systems Ltd.

Don’t assume that there’s a newline character in every string that you
read with fgets(). A newline character isn’t present if there are more
than n-1 characters before the newline.

Also, a newline character might not appear as the last character in a
file when the end-of-file is reached.

�

Returns:
The same pointer as buf , or NULL if the stream is at the end-of-file or
an error occurs (errno is set).

Use feof() or ferror() to distinguish an end-of-file condition from an
error.

�

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;
char buffer[80];

fp = fopen("file", "r");
if(fp != NULL) {

while(fgets(buffer, 80, fp) != NULL) {
fputs(buffer, stdout);

}
fclose(fp);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

616 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fgets()

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, feof(), ferror(), fopen(), fputs(), getc(), gets(), fgetc()

May 31, 2004 Manifests 617

fgetspent() 2004, QNX Software Systems Ltd.

Get an entry from the shadow password database

Synopsis:
#include <sys/types.h>
#include <shadow.h>

struct spwd* fgetspent(FILE* f);

Arguments:
f The stream from which to read the shadow password database.

Library:
libc

Description:
The fgetspent() works like the getspent() function but it assumes that
it’s reading from a file formatted like a shadow password database
file. This function uses a static buffer that’s overwritten by each call.

The fgetspent(), getspent(), and getspnam() functions share the same
static buffer.

�

Returns:
A pointer to an object of type struct spwd containing the next
entry from the password database. For more information about this
structure, see putspent().

Errors:
The fgetspent() function uses the following functions, and as a result
errno can be set to an error for any of these calls:

� fclose()

� fgets()

618 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fgetspent()

� fopen()

� fseek()

� rewind()

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <pwd.h>
#include <shadow.h>

/*
* This program loops, reading a entries from a file
* (which is formatted in the shadow password way)
* reading the next shadow password entry.
* For example this file /etc/shadow
*/

int main(int argc, char** argv)
{

FILE* fp;
struct spwd* sp;

if (argc < 2) {
printf("%s filename \n", argv[0]);
return(EXIT FAILURE);

}

if (!(fp = fopen(argv[1], "r"))) {
fprintf(stderr, "Can’t open file %s \n", argv[1]);
return(EXIT FAILURE);

}

while((sp = fgetspent(fp)) != (struct spwd *) 0) {
printf("Username: %s\n", sp->sp namp);
printf("Password: %s\n", sp->sp pwdp);

}

fclose(fp);
return(EXIT SUCCESS);

}

May 31, 2004 Manifests 619

fgetspent() 2004, QNX Software Systems Ltd.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
errno, getgrent(), getlogin(), getpwnam(), getpwuid(), getspent(),
getspnam(), putspent()

620 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fgetwc()
Read a wide character from a stream

Synopsis:
#include <wchar.h>

wint t fgetwc(FILE * fp);

Arguments:
fp The stream from which you want to read a character.

Library:
libc

Description:
The fgetwc() function reads the next wide character from the stream
specified by fp.

Returns:
The next character from fp, cast as (wint t)(wchar t), or WEOF
if end-of-file has been reached or if an error occurs (errno is set).

Use feof() or ferror() to distinguish an end-of-file condition from an
error.

�

Errors:
EAGAIN The O NONBLOCK flag is set for fp and would

have been blocked by this operation.

EBADF The file descriptor for fp isn’t valid for reading.

EINTR A signal terminated the read operation; no data
was transferred.

EIO Either a physical I/O error has occurred, or the
process is in the background and is being ignored
or blocked.

May 31, 2004 Manifests 621

fgetwc() 2004, QNX Software Systems Ltd.

EOVERFLOW Cannot read at or beyond the offset maximum for
this stream.

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, feof(), ferror(), fputwc()

“Stream I/O functions” and “Wide-character functions” in the
summary of functions chapter

622 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fgetws()
Read a string of wide characters from a stream

Synopsis:
#include <wchar.h>

wchar t * fgetws(wchar t * buf,
int n,
FILE * fp);

Arguments:
buf A pointer to a buffer in which fgetws() can store the wide

characters that it reads.

n The maximum number of characters to read.

fp The stream from which to read the characters.

Library:
libc

Description:
The fgetws() function reads a string of wide characters from the
stream specified by fp, and stores them in the array specified by buf .

It stops reading wide characters when one of the following occurs:

� The end-of-file is reached.

� A newline (’\n’) character is read.

� n-1 characters have been read.

The fgetws() function places a NUL at the end of the string.

May 31, 2004 Manifests 623

fgetws() 2004, QNX Software Systems Ltd.

Don’t assume all strings have newline characters. A newline character
isn’t present when more than n-1 characters occur before the newline.

Also, a newline character might not appear as the last character in a
file when the end-of-file is reached.

�

Returns:
NULL Failure; the stream is at the end-of-file or an error occurred

(errno is set).

buf Success.

Use feof() or ferror() to distinguish an end-of-file condition from an
error.

�

Errors:
EAGAIN The O NONBLOCK flag is set for fp and would

have been blocked by this operation.

EBADF The file descriptor for fp isn’t valid for reading.

EINTR A signal terminated the read operation; no data
was transferred.

EIO Either a physical I/O error has occurred, or the
process is in the background and is being ignored
or blocked.

EOVERFLOW Cannot read at or beyond the offset maximum for
this stream.

Classification:
ANSI

624 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fgetws()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, feof(), ferror(), fputws()

“Stream I/O functions” and “Wide-character functions” in the
summary of functions chapter.

May 31, 2004 Manifests 625

fileno() 2004, QNX Software Systems Ltd.

Return the file descriptor for a stream

Synopsis:
#include <stdio.h>

int fileno(FILE * stream);

Arguments:
stream The stream whose file descriptor you want to find.

Library:
libc

Description:
The fileno() function returns the file descriptor for the specified file
stream. This file descriptor can be used in POSIX input/output calls
anywhere the value returned by open() can be used.

To associate a stream with a file descriptor, call fdopen().

In QNX Neutrino, the file descriptor is also the connection ID (coid)
used by various Neutrino-specific functions.

�

The following symbolic values in <unistd.h> define the file
descriptors associated with the C language stdin, stdout, and stderr
streams:

STDIN FILENO

Standard input file number, stdin (0)

STDOUT FILENO

Standard output file number, stdout (1)

STDERR FILENO

Standard error file number, stderr (2)

626 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fileno()

Returns:
A file descriptor, or -1 if an error occurs (errno is set).

Examples:
#include <stdlib.h>
#include <stdio.h>

int main(void)
{

FILE *stream;

stream = fopen("file", "r");
if(stream != NULL) {

printf("File number is %d.\n", fileno(stream));
fclose(stream);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

Produces output similar to:

File number is 7.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 627

fileno() 2004, QNX Software Systems Ltd.

See also:
errno, fdopen(), fopen(), open()

628 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. finite(), finitef()
Determine if a number is finite

Synopsis:
#include <math.h>

int finite (double x);

int finitef (float x);

Arguments:
x The number you want to test.

Library:
libm

Description:
The finite() and finitef() functions determine if x is finite.

Returns:
True (1) The value of x is finite.

False (≠ 1) The value of x is infinity or NAN.

Examples:
#include <stdio.h>
#include <errno.h>
#include <inttypes.h>
#include <math.h>
#include <fpstatus.h>

int main(int argc, char** argv)
{
double a, b, c, d;

a = 2;
b = -0.5;
c = NAN;
fp exception mask(FP EXC DIVZERO, 1);
d = 1.0/0.0;
printf("%f is %s \n", a, (finite(a)) ? "finite" : "not-finite");

May 31, 2004 Manifests 629

finite(), finitef() 2004, QNX Software Systems Ltd.

printf("%f is %s \n", b, (finite(b)) ? "finite" : "not-finite");
printf("%f is %s \n", c, (finite(c)) ? "finite" : "not-finite");
printf("%f is %s \n", d, (finite(d)) ? "finite" : "not-finite");

return(0);
}

produces the output:

2.000000 is finite
-0.500000 is finite
NAN is not-finite
Inf is not-finite

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
isnan()

630 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. flink()
Assign a pathname to a file descriptor

Synopsis:
#include <unistd.h>

int flink(int fd,
const char *path);

Arguments:
fd The file descriptor.

path The path you want to associate with the file descriptor.

Library:
libc

Description:
The flink() function assigns the pathname, path, to the file associated
with the file descriptor, fd.

Returns:
0 Success.

-1 An error occurred; errno is set.

Errors:
EACCES A component of either path prefix denies search

permission, or the link named by path is in a directory
with a mode that denies write permission.

EBADF The file descriptor fd is invalid.

EEXIST The link named by path already exists.

ELOOP Too many levels of symbolic links or prefixes.

May 31, 2004 Manifests 631

flink() 2004, QNX Software Systems Ltd.

EMLINK The number of links to the file would exceed
LINK MAX.

ENAMETOOLONG

The length of the path string exceeds PATH MAX, or a
pathname component is longer than NAME MAX.

ENOENT This error code can mean the following:

� A component of either path prefix doesn’t exist.

� The path points to an empty string.

ENOSPC The directory that would contain the link can’t be
extended.

ENOSYS The flink() function isn’t implemented for the
filesystem specified in path.

ENOTDIR A component of either path prefix isn’t a directory.

EROFS The requested link requires writing in a directory on a
read-only file system.

EXDEV The link named by path is on a different logical disk.

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

632 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. flink()

See also:
link()

May 31, 2004 Manifests 633

flock() 2004, QNX Software Systems Ltd.

Apply or remove an advisory lock on an open file

Synopsis:
#include <fcntl.h>

int flock(int filedes,
int operation);

Arguments:
filedes The file descriptor of an open file.

operation What you want to do to the file; see below.

Library:
libc

Description:
The flock() function applies or removes an advisory lock on the file
associated with the open file descriptor filedes. To establish a lock
with this function, open with write-only permission (O WRONLY) or
with read/write permission (O RDWR).

A lock is applied by specifying one of the following values for
operation:

LOCK EX Exclusive lock.

LOCK NB Don’t block when locking. This may be ORed with
LOCK EX or LOCK SH to give nonblocking behavior.

LOCK SH Shared lock.

LOCK UN Unlock an existing lock operation.

Advisory locks allow cooperating processes to perform consistent
operations on files, but they don’t guarantee consistency.

The locking mechanism allows two types of locks: shared and
exclusive. At any time, multiple shared locks may be applied to a file,

634 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. flock()

but at no time are multiple exclusive, or both shared and exclusive,
locks allowed simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa,
by specifying the appropriate lock type. The previous lock is released
and a new lock is applied (possibly after other processes have gained
and released the lock).

Requesting a lock on an object that’s already locked causes the caller
to be blocked until the lock may be acquired. If you don’t want the
caller to be blocked, you can specify LOCK NB in the operation to fail
the call (errno is set to EWOULDBLOCK).

Locks are applied to files, not file descriptors. That is, file descriptors
duplicated through dup() or fork() don’t result in multiple instances of
a lock, but rather multiple references to a single lock. If a process
holding a lock on a file forks and the child explicitly unlocks the file,
the parent loses its lock.

�

Processes blocked awaiting a lock may be awakened by signals.

Returns:
0 The operation was successful.

-1 An error occurred (errno is set).

Errors:
EBADF Invalid descriptor, filedes.

EINVAL The argument operation doesn’t include one of
LOCK EX, LOCK SH, or LOCK UN.

ENOMEM The system can’t allocate sufficient memory to store
lock resources.

EOPNOTSUPP

The filedes argument refers to an object other than a
file.

May 31, 2004 Manifests 635

flock() 2004, QNX Software Systems Ltd.

EWOULDBLOCK

The file is locked and LOCK NB was specified.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
fcntl(), lockf(), open()

636 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. flockfile()
Acquire ownership of a file

Synopsis:
#include <stdio.h>

void flockfile(FILE* file);

Arguments:
file A pointer to the FILE object for the file you want to lock.

Library:
libc

Description:
The flockfile() function provides for explicit application-level locking
of stdio (FILE) objects. This function can be used by a thread to
delineate a sequence of I/O statements that are to be executed as a
unit.

The flockfile() function is used by a thread to acquire ownership of a
FILE.

The implementation acts as if there is a lock count associated with
each FILE. This count is implicitly initialized to zero when the FILE
is created. The FILE object is unlocked when the count is zero. When
the count is positive, a single thread owns the FILE. When the
flockfile() function is called, if the count is zero or if the count is
positive and the caller owns the FILE, the count is incremented.
Otherwise, the calling thread is suspended, waiting for the count to
return to zero.

Classification:
POSIX 1003.1

May 31, 2004 Manifests 637

flockfile() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
getc unlocked(), getchar unlocked(), putc unlocked(),
putchar unlocked()

638 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. floor(), floorf()
Round down a value to the next integer

Synopsis:
#include <math.h>

double floor(double x);

float floorf(float x);

Arguments:
x The value you want to round.

Library:
libm

Description:
These functions compute the largest integer ≤ x (rounding towards the
“floor”).

Returns:
The largest integer ≤ x.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

int main(void)
{

printf("%f\n", floor(-3.14));
printf("%f\n", floor(-3.));
printf("%f\n", floor(0.));

May 31, 2004 Manifests 639

floor(), floorf() 2004, QNX Software Systems Ltd.

printf("%f\n", floor(3.14));
printf("%f\n", floor(3.));

return EXIT SUCCESS;
}

produces the output:

-4.000000
-3.000000
0.000000
3.000000
3.000000

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ceil(), fmod()

640 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. flushall()
Flush all input/output buffers

Synopsis:
#include <stdio.h>

int flushall(void);

Library:
libc

Description:
The flushall() function flushes all buffers associated with open
input/output streams. A subsequent read operation on an input stream
reads new data from the associated stream.

Calling the flushall() function is equivalent to calling fflush() for all
open streams.

Returns:
0 Success.

-1 An error occurred (errno is set).

Classification:
QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 641

flushall() 2004, QNX Software Systems Ltd.

Caveats:
The QNX 4 version of this function returns the number of streams
flushed.

See also:
errno, fopen(), fflush()

642 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fmod(), fmodf()
Compute a residue, using floating-point modular arithmetic

Synopsis:
#include <math.h>

double fmod(double x,
double y);

float fmodf(float x,
float y);

Arguments:
x An arbitrary number.

y The modulus.

Library:
libm

Description:
The fmod() and fmodf() functions compute the floating-point residue
of x (mod y), which is the remainder of x � y, even if the quotient
x � y isn’t representable.

Returns:
The residue, x - (i � y), for some integer i such that, if y is nonzero,
the result has the same sign as x and a magnitude less than the
magnitude of y.

If y is zero, the function returns 0.

May 31, 2004 Manifests 643

fmod(), fmodf() 2004, QNX Software Systems Ltd.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

int main(void)
{

printf("%f\n", fmod(4.5, 2.0));
printf("%f\n", fmod(-4.5, 2.0));
printf("%f\n", fmod(4.5, -2.0));
printf("%f\n", fmod(-4.5, -2.0));

return EXIT SUCCESS;
}

produces the output:

0.500000
-0.500000
0.500000
-0.500000

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

644 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fmod(), fmodf()

See also:
ceil(), div(), fabs(), floor()

May 31, 2004 Manifests 645

fnmatch() 2004, QNX Software Systems Ltd.

Check to see if a file or path name matches a pattern

Synopsis:
#include <fnmatch.h>

int fnmatch(const char* pat,
const char* str,
int flags);

Arguments:
pat The pattern to match; see “Pattern Matching Special

Characters,” below.

str The string to match against the pattern.

flags Flags that modify interpretation of pat and str; a bitwise
inclusive OR of these bits:

FNM PATHNAME

If this is set, a slash character in str is
explicitly matched by a slash in pat; it isn’t
matched by either the asterisk or question
mark special characters, or by a bracket
expression.

FNM PERIOD If this is set, a leading period in str matches
a period in pat, where the definition of
“leading” depends on FNM PATHNAME:
� If FNM PATHNAME is set, a period is

leading if it’s the first character in str, or
if it immediately follows a slash.

� If FNM PATHNAME isn’t set, a period is
leading only if it’s the first character in
str.

FNM QUOTE If this isn’t set, a backslash (\) in pat
followed by another character matches that
second character. If FNM QUOTE is set, a
backslash is treated as an ordinary
character.

646 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fnmatch()

Library:
libc

Description:
The fnmatch() function checks the file or path name specified by the
str argument to see if it matches the pattern specified by the pat
argument.

Pattern Matching Special Characters

A pattern-matching special character that is quoted is a pattern that
matches the special character itself. When not quoted, such special
characters have special meaning in the specification of patterns. The
pattern-matching special characters and the contexts in which they
have their special meaning are as follows:

? Matches any printable or nonprintable collating element except
<newline>.

* Matches any string, including the null string.

[bracket expr]

Matches a single collating element as per Regular Expression
Bracket Expressions (1003.2 2.9.1.2) except that:

� The exclamation point character (!) replaces the circumflex
character (ˆ) in its role as a nonmatching list in the regular
expression notation.

� The backslash is used as an escape character within bracket
expressions.

The ?, * and [characters aren’t special when used inside a
bracket expression.

The concatenation of patterns matching a single character is a valid
pattern that matches the concatenation of the single characters or
collating elements matched by each of the concatenated patterns. For
example, the pattern a[bc] matches the strings ab and ac.

May 31, 2004 Manifests 647

fnmatch() 2004, QNX Software Systems Ltd.

The concatenation of one or more patterns matching a single
character with one or more asterisks (*) is a valid pattern. In such
patterns, each asterisk matches a string of zero or more characters, up
to the first character that matches the character following the asterisk
in the pattern. For example, the pattern a*d matches the strings ad,
abd, and abcd, but not the string abc.

When an asterisk is the first or last character in a pattern, it matches
zero or more characters that precede or follow the characters matched
by the remainder of the pattern. For example, the pattern a*d*
matches the strings ad, abcd, abcdef, aaaad and adddd; the pattern
*a*d matches the strings ad, abcd, efabcd, aaaad and adddd.

Returns:
0 The str argument matches the pattern specified by pat.

Nonzero The str argument doesn’t match the pattern specified by
pat.

Examples:
/*
* The following example accepts a set of patterns
* for filenames as argv[1..argc]. It reads lines
* from standard input, and outputs the lines that
* match any of the patterns.
*/

#include <stdio.h>
#include <fnmatch.h>
#include <stdlib.h>
#include <limits.h>

int main(int argc, char **argv)
{

int i;
char buffer[PATH MAX+1];

while(gets(buffer)) {
for(i = 0; i < argc; i++) {

if(fnmatch(argv[i], buffer, 0) == 0) {
puts(buffer);
break;

}
}

648 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fnmatch()

}
exit(EXIT SUCCESS);

}

Classification:
POSIX 1003.1a

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
regcomp()

May 31, 2004 Manifests 649

fopen(), fopen64() 2004, QNX Software Systems Ltd.

Open a file stream

Synopsis:
#include <stdio.h>

FILE * fopen(const char * filename,
const char * mode);

FILE * fopen64(const char * filename,
const char * mode);

Arguments:
filename The name of the file that you want to open.

mode The access mode; see below.

Library:
libc

Description:
The fopen() and fopen64() functions open a file stream for the file
specified by filename. The mode string begins with one of the
following sequences:

a Append: create a new file or open the file for writing at its end.

a+ Append: open the file or create it for update, writing at
end-of-file; use the default file translation.

r Open the file for reading.

r+ Open the file for update (reading and/or writing); use the
default file translation.

w Create the file for writing, or truncate it to zero length.

w+ Create the file for update, or truncate it to zero length; use the
default file translation.

650 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fopen(), fopen64()

You can add the letter b to the end of any of the above sequences to
indicate that the file is (or must be) a binary file (this is an ANSI
requirement for portability to systems that make a distinction between
text and binary files, such as DOS). Under QNX Neutrino, there’s no
difference between text files and binary files.

� Opening a file in read mode (r in the mode) fails if the file doesn’t
exist or can’t be read.

� Opening a file in append mode (a in the mode) causes all
subsequent writes to the file to be forced to the current end-of-file,
regardless of previous calls to the fseek() function.

� When a file is opened with update mode (+ in the mode), both
input and output may be performed on the associated stream.

When using a stream in update mode, writing can’t be followed by
reading without an intervening call to fflush(), or to a file-positioning
function (fseek(), fsetpos() or rewind()). Similarly, reading can’t be
followed by writing without an intervening call to a file-positioning
function, unless the read resulted in end-of-file.

�

The largest value that can be represented correctly in an object of type
off t shall be established as the offset maximum in the open file
description.

Returns:
A pointer to a file stream for success, or NULL if an error occurs
(errno is set).

Errors:
EACCES Search permission is denied on a component of the

filename prefix, or the file exists and the
permissions specified by mode are denied, or the
file doesn’t exist and write permission is denied for
the parent directory of the file to be created.

May 31, 2004 Manifests 651

fopen(), fopen64() 2004, QNX Software Systems Ltd.

EBADFSYS While attempting to open the named file, either the
file itself or a component of the filename prefix
was found to be corrupted. A system failure —
from which no automatic recovery is possible —
occurred while the file was being written to, or
while the directory was being updated. You’ll need
to invoke appropriate systems-administration
procedures to correct this situation before
proceeding.

EBUSY File access was denied due to a conflicting open
(see sopen()).

EINTR The fopen() operation was interrupted by a signal.

EINVAL The value of the mode argument is not valid.

EISDIR The named file is a directory, and the mode
argument specifies write-only or read/write access.

ELOOP Too many levels of symbolic links or prefixes.

EMFILE Too many file descriptors are currently in use by
this process.

ENAMETOOLONG

The length of the filename string exceeds
PATH MAX, or a pathname component is longer
than NAME MAX.

ENFILE Too many files are currently open in the system.

ENOENT Either the named file or the filename prefix doesn’t
exist, or the filename argument points to an empty
string.

ENOMEM There is no memory for FILE structure.

ENOSPC The directory or filesystem that would contain the
new file can’t be extended.

652 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fopen(), fopen64()

ENOSYS The fopen() function isn’t implemented for the
filesystem specified in filename.

ENOTDIR A component of the filename prefix isn’t a
directory.

ENXIO The media associated with the file has been
removed (e.g. CD, floppy).

EOVERFLOW The named file is a regular file and the size of the
file can’t be represented correctly in an object of
type off t.

EROFS The named file resides on a read-only filesystem.

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;

fp = fopen("report.dat", "r");
if(fp != NULL) {

/* rest of code goes here */
fclose(fp);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

Classification:
fopen() is ANSI, fopen64() is for large-file support

May 31, 2004 Manifests 653

fopen(), fopen64() 2004, QNX Software Systems Ltd.

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fclose(), fcloseall(), fdopen(), freopen(), freopen64()

654 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fork()
Create a new process

Synopsis:
#include <sys/types.h>
#include <process.h>

pid t fork(void);

Library:
libc

Description:
The fork() function creates a new process. The new process (child
process) is an exact copy of the calling process (parent process),
except for the following:

� The child process has a unique process ID.

� The child process has a different parent process ID (which is the
process ID of the calling process).

� The child process has its own copy of the parent’s file descriptors.
Each of the child’s file descriptors refers to the same open file
description with the corresponding file descriptor of the parent.

� The child process has its own copy of the parent’s open directory
streams.

� The child process’s values of tms utime, tms stime, tms cutime,
and tms cstime are set to zero.

� File locks previously set by the parent aren’t inherited by the child.

� Pending alarms are cleared for the child process.

� The set of signals pending for the child process is initialized to the
empty set.

May 31, 2004 Manifests 655

fork() 2004, QNX Software Systems Ltd.

Returns:
A value of zero to the child process; and the process ID of the child
process to the parent process. Both processes continue to execute
from the fork() function. If an error occurs, fork() returns -1 to the
parent and sets errno.

Errors:
EAGAIN Insufficient resources are available to create the child

process.

ENOMEM The process requires more memory than the system is
able to supply.

ENOSYS The fork() function isn’t implemented for this memory
protection model. See also “Caveats,” below.

Examples:
/*
* This program executes the program and arguments
* specified by argv[1..argc]. The standard input
* of the executed program is converted to upper
* case.
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <ctype.h>
#include <process.h>
#include <sys/wait.h>

int main(int argc, char **argv)
{

pid t pid;
pid t wpid;
int fd[2];
char buffer[80];
int i, len;
int status;

if(pipe(fd) == -1) {
perror("pipe");
return EXIT FAILURE;

}

656 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fork()

if((pid = fork()) == -1) {
perror("fork");
return EXIT FAILURE;

}

if(pid == 0) {
/* This is the child process.
* Move read end of the pipe to stdin (0),
* close any extraneous file descriptors,
* then use exec to ’become’ the command.
*/

dup2(fd[0], 0);
close(fd[1]);
execvp(argv[1], argv+1);

/* This can only happen if exec fails; print message
* and exit.
*/

perror(argv[1]);
return EXIT FAILURE;

} else {
/* This is the parent process.
* Remove extraneous file descriptors,
* read descriptor 0, write into pipe,
* close pipe, and wait for child to die.
*/

close(fd[0]);
while((len = read(0, buffer, sizeof(buffer))

) > 0) {
for(i = 0; i < len; i++) {
if(isupper(buffer[i]))
buffer[i] = tolower(buffer[i]);

}
write(fd[1], buffer, len);

}
close(fd[1]);
do {

wpid = waitpid(pid, &status, 0);
} while(WIFEXITED(status) == 0);
return WEXITSTATUS(status);

}
}

May 31, 2004 Manifests 657

fork() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
Currently, fork() is supported only in single-threaded applications. If
you create a thread and then call fork(), the function returns -1 and
sets errno to ENOSYS.

See also:
errno, execl(), execle(), execlp(), execlpe(), execv(), execve(),
execvp(), execvpe(), spawn(), spawnl(), spawnle(), spawnlp(),
spawnlpe(), spawnp(), spawnv(), spawnve(), spawnvp(), spawnvpe(),
wait()

658 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. forkpty()
Create a new process operating in a pseudo-tty

Synopsis:
#include <unix.h>

pid t forkpty(int *amaster,
char *name,
struct termios *termp,
struct winsize *winp);

Arguments:
amaster A pointer to a location where forkpty() can store the file

descriptor of the master side of the pseudo-tty.

name NULL, or a pointer to a buffer where forkpty() can store
the filename of the slave side of the pseudo-tty.

termp NULL, or a pointer to a termios structure that describes
the terminal’s control attributes to apply to the slave side
of the pseudo-tty.

winp A pointer to a winsize structure that defines the
window size to use for the slave side of the pseudo-tty.

Library:
libc

Description:
The forkpty() function combines openpty(), fork(), and login tty() to
create a new process operating in a pseudo-tty.

This function fails if either openpty() or fork() fails.

Returns:
0 to the child process, the child’s process ID to the parent, or -1 if an
error occurred.

May 31, 2004 Manifests 659

forkpty() 2004, QNX Software Systems Ltd.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
fork(), login tty(), openpty(), termios

660 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fp exception mask()
Get or set the current exception mask

Synopsis:
#include <fpstatus.h>

int fp exception mask (int new mask,
int set);

Arguments:
new mask The new mask to apply. The bits include:

� FP EXC INVALID

� FP EXC DIVZERO

� FP EXC OVERFLOW

� FP EXC UNDERFLOW

� FP EXC INEXACT

� FP EXC DENORMAL

set A value that indicates what you want the function to
do:

� If set < 0, return the current mask. The new mask
argument is ignored.

� If set = 0, disable the bits in the exception mask that
correspond to the bits set in new mask.

� If set > 0, enable the bits in the exception mask that
correspond to the bits set in new mask.

Library:
libm

Description:
The fp exception mask() function gets or sets the current exception
mask, depending on the value of the set argument.

May 31, 2004 Manifests 661

fp exception mask() 2004, QNX Software Systems Ltd.

Returns:
If set < 0 The current exception mask.

If set ≥ 0 The previous mask.

This function doesn’t return a special value to indicate that an error
occurred. If you want to check for errors, set errno to 0, call the
function, and then check errno again.

�

Examples:
#include <fpstatus.h>

int main(int argc, char** argv)
{

int ret;

if ((ret = fp exception mask(0, -1)) < 0)
printf("*** Problem retrieving exceptions \n");

printf("Exceptions Enabled: \n\t");
if (ret & FP EXC INEXACT)

printf("Inexact ");
if (ret & FP EXC DIVZERO)

printf("DivZero ");
if (ret & FP EXC UNDERFLOW)

printf("Underflow ");
if (ret & FP EXC OVERFLOW)

printf("Overflow ");
if (ret & FP EXC INVALID)

printf("Invalid ");
printf("\n");

/* Set the exception mask to enable division by zero errors */
if ((ret = fp exception mask(FP EXC DIVZERO, 1)) < 0)

printf("*** Problem setting exceptions \n");
if ((ret = fp exception mask(0, -1)) < 0)

printf("*** Problem retrieving exceptions \n");
printf("Exceptions Enabled: \n\t");
if (ret & FP EXC INEXACT)

printf("Inexact ");
if (ret & FP EXC DIVZERO)

printf("DivZero ");
if (ret & FP EXC UNDERFLOW)

printf("Underflow ");
if (ret & FP EXC OVERFLOW)

662 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fp exception mask()

printf("Overflow ");
if (ret & FP EXC INVALID)

printf("Invalid ");
printf("\n");

return(0);
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
fp exception value(), fp precision(), fp rounding()

May 31, 2004 Manifests 663

fp exception value() 2004, QNX Software Systems Ltd.

Get the value of the current exception registers

Synopsis:
#include <fpstatus.h>

int fp exception value(int mask);

Arguments:
mask A mask whose bits indicate which registers you want the

value of. The bits include:

� FP EXC INVALID

� FP EXC DIVZERO

� FP EXC OVERFLOW

� FP EXC UNDERFLOW

� FP EXC INEXACT

� FP EXC DENORMAL

Library:
libm

Description:
The fp exception value() function gets the value of the current
exception registers. Set bits indicate that the exception has signaled,
unset bits indicate that the exception hasn’t signaled.

Returns:
The value of the current exception registers based on the values from
<fpstatus.h>.

664 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fp exception value()

This function doesn’t return a special value to indicate that an error
occurred. If you want to check for errors, set errno to 0, call the
function, and then check errno again.

�

Examples:
#include <fpstatus.h>

int main(int argc, char** argv)
{

int ret;

/* Test to see if an operation has set (but not necessarily
* signaled depending on the exception mask) the
* division by zero bit:
*/

if (fp exception value(FP EXC DIVZERO) & FP EXC DIVZERO)
printf("Division by zero has occurred \n");

else
printf("Division by zero has not occurred \n");

return(0);

}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 665

fp exception value() 2004, QNX Software Systems Ltd.

See also:
fp precision(), fp rounding(), fp exception mask()

666 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fp precision()
Set or get the current precision

Synopsis:
#include <fpstatus.h>

int fp precision(int newprecision);

Arguments:
newprecision The new precision; one of:

� < 0 — return the current setting.

� FP PREC FLOAT

� FP PREC DOUBLE

� FP PREC EXTENDED

� FP PREC DOUBLE EXTENDED

Library:
libm

Description:
The fp precision() function sets or gets the current floating-point
precision, depending on the value of newprecision.

Returns:
If newprecision is less than 0, the current precision; otherwise, the
previous precision.

This function doesn’t return a special value to indicate that an error
occurred. If you want to check for errors, set errno to 0, call the
function, and then check errno again.

�

May 31, 2004 Manifests 667

fp precision() 2004, QNX Software Systems Ltd.

Examples:
#include <fpstatus.h>

int main(int argc, char** argv)
{

int ret;

ret = fp precision(-1);
printf("Precision: ");
if (ret == FP PREC FLOAT)

printf("Float \n");
else if (ret == FP PREC DOUBLE)

printf("Double \n");
else if (ret == FP PREC EXTENDED)

printf("Extended \n");
else if (ret == FP PREC DOUBLE EXTENDED)

printf("128 Bit \n");
else if (ret == FP PREC EXTENDED)

printf("Extended \n");
else if (ret == FP PREC DOUBLE EXTENDED)

printf("128 Bit \n");
else

printf("Error \n");

return(0);
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

668 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fp precision()

See also:
fp exception mask(), fp exception value(), fp rounding()

May 31, 2004 Manifests 669

fp rounding() 2004, QNX Software Systems Ltd.

Set or get the current rounding

Synopsis:
#include <fpstatus.h>

int fp rounding(int newrounding);

Arguments:
newrounding The new rounding; one of:

� < 0 — return the current setting.

� FP ROUND NEAREST

� FP ROUND ZERO

� FP ROUND POSITIVE

� FP ROUND NEGATIVE

Library:
libm

Description:
The fp rounding() function sets or gets the current rounding mode,
depending on the value of newrounding.

Returns:
If newrounding is less than 0, the current rounding mode; otherwise,
the previous mode.

This function doesn’t return a special value to indicate that an error
occurred. If you want to check for errors, set errno to 0, call the
function, and then check errno again.

�

670 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fp rounding()

Examples:
#include <fpstatus.h>
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char** argv)
{

int ret;

ret = fp rounding(-1);
printf("Rounding mode: ");
if (ret == FP ROUND NEAREST)

printf("Nearest \n");
else if (ret == FP ROUND POSITIVE)

printf("Positive \n");
else if (ret == FP ROUND NEGATIVE)

printf("Negative \n");
else if (ret == FP ROUND ZERO)

printf("To Zero \n");
else

printf("Error \n");

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 671

fp rounding() 2004, QNX Software Systems Ltd.

See also:
fp exception mask(), fp exception value(), fp precision()

672 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fpathconf()
Return the value of a configurable limit associated with a file

Synopsis:
#include <unistd.h>

long fpathconf(int filedes,
int name);

Arguments:
filedes A file descriptor for the file whose limit you want to check.

name The name of the configurable limit; see below.

Library:
libc

Description:
The fpathconf() function returns a value of a configurable limit
indicated by name that’s associated with the file indicated by filedes.

Configurable limits are defined in <confname.h>, and include at
least the following values:

PC LINK MAX

Maximum value of a file’s link count.

PC MAX CANON

Maximum number of bytes in a terminal’s canonical input
buffer (edit buffer).

PC MAX INPUT

Maximum number of bytes in a terminal’s raw input buffer.

PC NAME MAX

Maximum number of bytes in a file name (not including the
terminating null).

May 31, 2004 Manifests 673

fpathconf() 2004, QNX Software Systems Ltd.

PC PATH MAX

Maximum number of bytes in a pathname (not including the
terminating null).

PC PIPE BUF

Maximum number of bytes that can be written atomically when
writing to a pipe.

PC CHOWN RESTRICTED

If defined (not -1), indicates that the use of the chown() function
is restricted to a process with appropriate privileges, and to
changing the group ID of a file to the effective group ID of the
process or to one of its supplementary group IDs.

PC NO TRUNC

If defined (not -1), indicates that the use of pathname
components longer than the value given by PC NAME MAX
generates an error.

PC VDISABLE

If defined (not -1), this is the character value that can be used to
individually disable special control characters in the termios
control structure.

Returns:
The requested configurable limit, or -1 if an error occurred (errno is
set).

Errors:
EINVAL The name argument is invalid, or the indicated limit isn’t

supported for this filedes.

EBADF The argument filedes is invalid.

674 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fpathconf()

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main()
{

long value;

value = fpathconf(0, PC MAX INPUT);
printf("Input buffer size is %ld bytes\n",

value);
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
confstr(), pathconf(), sysconf(), termios

May 31, 2004 Manifests 675

fprintf() 2004, QNX Software Systems Ltd.

Write output to a stream

Synopsis:
#include <stdio.h>

int fprintf(FILE* fp,
const char* format,
...);

Arguments:
fp The stream to which you want to send the output.

format A string that specifies the format of the output. The
formatting string determines what additional arguments
you need to provide. For more information, see printf().

Library:
libc

Description:
The fprintf() function writes output to the stream specified by fp,
under control of the format specifier.

Returns:
The number of characters written, or a negative value if an output
error occurred (errno is set).

Examples:
#include <stdio.h>
#include <stdlib.h>

char *weekday = { "Saturday" };
char *month = { "April" };

int main(void)
{

fprintf(stdout, "%s, %s %d, %d\n",
weekday, month, 10, 1999);

676 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fprintf()

return EXIT SUCCESS;
}

Produces:

Saturday, April 10, 1999

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fwprintf(), printf(), snprintf(), sprintf(), swprintf(), vfprintf(),
vfwprintf(), vprintf(), vsnprintf(), vsprintf(), vswprintf(), vwprintf(),
wprintf()

May 31, 2004 Manifests 677

fputc() 2004, QNX Software Systems Ltd.

Write a character to a stream

Synopsis:
#include <stdio.h>

int fputc(int c,
FILE* fp);

Arguments:
c The character you want to write.

fp The stream you want to write the character to.

Library:
libc

Description:
The fputc() function writes the character specified by c, cast as
(int)(unsigned char), to the stream specified by fp.

Returns:
The character written, cast as (int)(unsigned char), or EOF if
an error occurred (errno is set).

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;
int c;

fp = fopen("file", "r");
if(fp != NULL) {

while((c = fgetc(fp)) != EOF) {
fputc(c, stdout);

}
fclose(fp);

678 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fputc()

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
If c is negative, the value returned by this function isn’t equal to c —
unless c is -1 and an error occurred :-)

See also:
errno, fgetc(), fopen(), fprintf(), fputchar(), fputs(), putc(), putchar(),
puts()

May 31, 2004 Manifests 679

fputchar() 2004, QNX Software Systems Ltd.

Write a character to stdout

Synopsis:
#include <stdio.h>

int fputchar(int c);

Arguments:
c The character you want to write.

Library:
libc

Description:
The fputchar() function writes the character specified by c, cast as
(int)(unsigned char), to stdout. It’s equivalent to putchar() and
to:

fputc(c, stdout);

Returns:
The character written, cast as (int)(unsigned char), or EOF if
an error occurred (errno is set).

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;
int c;

fp = fopen("file", "r");
if(fp != NULL) {

c = fgetc(fp);
while(c != EOF) {

680 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fputchar()

fputchar(c);
c = fgetc(fp);

}
fclose(fp);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

Classification:
QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
If c is negative, the value returned by this function isn’t equal to c —
unless c is -1 and an error occurred :-)

See also:
errno, fgetc(), fgetchar(), fprintf(), fputc(), fputs(), putc(), putchar()

May 31, 2004 Manifests 681

fputs() 2004, QNX Software Systems Ltd.

Write a string to an output stream

Synopsis:
#include <stdio.h>

int fputs(const char* buf,
FILE* fp);

Arguments:
buf The string you want to write.

fp The stream you want to write the string to.

Library:
libc

Description:
The fputs() function writes the character string specified by buf to the
output stream specified by fp.

The terminating NUL character isn’t written.�

Returns:
A nonnegative value for success, or EOF if an error occurs (errno is
set).

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp in, *fp out;
char buffer[80];

fp in = fopen("file", "r");
fp out = fopen("outfile", "w");
if(fp in != NULL && fp out != NULL) {

682 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fputs()

while(fgets(buffer, 80, fp in) != NULL) {
fputs(buffer, fp out);

}
fclose(fp in);
fclose(fp out);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fgets(), fopen(), fprintf(), fputc(), putc(), puts()

May 31, 2004 Manifests 683

fputwc() 2004, QNX Software Systems Ltd.

Write a wide character to a stream

Synopsis:
#include <wchar.h>

wint t fputwc(wchar t wc,
FILE * fp);

Arguments:
wc The wide character you want to write.

fp The stream you want to write the character to.

Library:
libc

Description:
The fputwc() function writes the wide character specified by wc, cast
as (wint t)(wchar t), to the stream specified by fp.

Returns:
The wide character written, cast as (wint t)(wchar t), or WEOF
if an error occurred (errno is set).

If wc exceeds the valid wide-character range, the value returned is the
wide character written, not wc.

�

Errors:
EAGAIN The O NONBLOCK flag is set for fp and would have

been blocked by this operation.

EBADF The stream specified by fp isn’t valid for writing.

EFBIG The file exceeds the maximum file size, the process’s
file size limit, or the function can’t write at or beyond
the offset maximum.

684 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fputwc()

EINTR A signal terminated the write operation; no data was
transferred.

EIO A physical I/O error has occurred or all of the following
conditions were met:

� The process is in the background.

� TOSTOP is set.

� The process is blocking/ignoring SIGTTOU.

� The process group is orphaned.

EPIPE Can’t write to pipe or FIFO because it’s closed; a
SIGPIPE signal is also sent to the thread.

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fgetwc(), fputws()

“Stream I/O functions” and “Wide-character functions” in the
summary of functions chapter.

May 31, 2004 Manifests 685

fputws() 2004, QNX Software Systems Ltd.

Write a wide-character string to an output stream

Synopsis:
#include <wchar.h>

int fputws(const wchar t * ws,
FILE * fp);

Arguments:
buf The wide-character string you want to write.

fp The stream you want to write the string to.

Library:
libc

Description:
The fputws() function writes the wide-character string specified by ws
to the output stream specified by fp.

The terminating NUL wide character isn’t written.�

Returns:
A nonnegative value for success, or WEOF if an error occurs (errno is
set).

Errors:
EAGAIN The O NONBLOCK flag is set for fp and would have

been blocked by this operation.

EBADF The stream specified by fp isn’t valid for writing.

EFBIG The file exceeds the maximum file size, the process’s
file size limit, or the function can’t write at or beyond
the offset maximum.

686 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fputws()

EINTR A signal terminated the write operation; no data was
transferred.

EIO A physical I/O error has occurred or all of the following
conditions were met:

� The process is in the background.

� TOSTOP is set.

� The process is blocking/ignoring SIGTTOU.

� The process group is orphaned.

EPIPE Can’t write to pipe or FIFO because it’s closed; a
SIGPIPE signal is also sent to the thread.

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fgetws(), fputwc()

“Stream I/O functions” and “Wide-character functions” in the
summary of functions chapter.

May 31, 2004 Manifests 687

fread() 2004, QNX Software Systems Ltd.

Read elements of a given size from a stream

Synopsis:
#include <stdio.h>

size t fread(void* buf,
size t size,
size t num,
FILE* fp);

Arguments:
buf A pointer to a buffer where the function can store the

elements that it reads.

size The size of each element to read.

num The number of elements to read.

fp The stream from which to read the elements.

Library:
libc

Description:
The fread() function reads num elements of size bytes each from the
stream specified by fp into the buffer specified by buf .

Returns:
The number of complete elements successfully read; this value may
be less than the requested number of elements.

Use the feof() and ferror() functions to determine whether the end of
the file was encountered or if an input/output error has occurred.

688 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fread()

Errors:
If an error occurs, errno is set to indicate the type of error.

Examples:
The following example reads a simple student record containing
binary data. The student record is described by the struct
student data declaration.

#include <stdio.h>
#include <stdlib.h>

struct student data {
int student id;
unsigned char marks[10];

};

size t read data(FILE *fp, struct student data *p)
{

return(fread(p, sizeof(struct student data), 1, fp));
}

int main(void)
{

FILE *fp;
struct student data std;
int i;

fp = fopen("file", "r");
if(fp != NULL) {

while(read data(fp, &std) != 0) {
printf("id=%d ", std.student id);

for(i = 0; i < 10; i++) {
printf("%3d ", std.marks[i]);

}

printf("\n");
}

fclose(fp);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

May 31, 2004 Manifests 689

fread() 2004, QNX Software Systems Ltd.

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fopen(), feof(), ferror()

690 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. free()
Deallocate a block of memory

Synopsis:
#include <stdlib.h>

void free(void* ptr);

Arguments:
ptr A pointer to the block of memory that you want to free. It’s

safe to call free() with a NULL pointer.

Library:
libc

Description:
The free() function deallocates the memory block specified by ptr,
which was previously returned by a call to calloc(), malloc() or
realloc().

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>

int main(void)
{

char *buffer;

buffer = (char *)malloc(80);
if(buffer == NULL) {

printf("Unable to allocate memory\n");
return EXIT FAILURE;

} else {
/* rest of code goes here */

free(buffer); /* deallocate buffer */
}

return EXIT SUCCESS;
}

May 31, 2004 Manifests 691

free() 2004, QNX Software Systems Ltd.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
Calling free() on a pointer already deallocated by a call to free() or
realloc() could corrupt the memory allocator’s data structures.

See also:
alloca(), calloc(), malloc(), realloc(), sbrk()

692 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. freeaddrinfo()
Free a list of address information structures

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

void freeaddrinfo(struct addrinfo * ai);

Arguments:
ai A pointer to the addrinfo structure that’s at the beginning of

the list to be freed.

Library:
libsocket

Description:
The freeaddrinfo() function frees the given list of addrinfo
structures and the dynamic storage associated with each item in the
list.

Classification:
POSIX 1003.1-2001

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 693

freeaddrinfo() 2004, QNX Software Systems Ltd.

See also:
addrinfo, gai strerror(), getaddrinfo()

694 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. freeifaddrs()
Free a network interface address

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>
#include <ifaddrs.h>

void freeifaddrs(struct ifaddrs * ifap);

Arguments:
ifap A pointer to the linked list of ifaddrs structures to be freed.

Library:
libsocket

Description:
The freeifaddrs() function frees the dynamically allocated data
returned by getifaddrs().

Returns:
0 for success, or -1 if an error occurs (errno is set).

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 695

freeifaddrs() 2004, QNX Software Systems Ltd.

See also:
errno, getifaddrs(), ifaddrs, ioctl(), malloc(), socket(), sysctl()

696 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. freopen(), freopen64()
Reopen a stream

Synopsis:
#include <stdio.h>

FILE* freopen(const char* filename,
const char* mode,
FILE* fp);

FILE* freopen64(const char* filename,
const char* mode,
FILE* fp);

Arguments:
filename The name of the file to open.

mode The mode to use when opening the file. For more
information, see fopen().

fp The stream to associate with the file.

Library:
libc

Description:
The freopen() and freopen64() functions close the open stream fp,
open the file specified by filename, and associate its stream with fp.

The largest value that can be represented correctly in an object of type
off t shall be established as the offset maximum in the open file
description.

Returns:
A pointer to the newly opened stream, or NULL if an error occurs
(errno is set).

May 31, 2004 Manifests 697

freopen(), freopen64() 2004, QNX Software Systems Ltd.

Errors:
EACCES Search permission is denied on a component of the

filename prefix, or the file exists and the
permissions specified by mode are denied, or the
file doesn’t exist and write permission is denied for
the parent directory of the file to be created.

EBADFSYS While attempting to open the named file, either the
file itself or a component of the filename prefix
was found to be corrupted. A system failure —
from which no automatic recovery is possible —
occurred while the file was being written to, or
while the directory was being updated. You’ll need
to invoke appropriate systems-administration
procedures to correct this situation before
proceeding.

EBUSY File access was denied due to a conflicting open
(see sopen()).

EINTR The freopen() operation was interrupted by a
signal.

EINVAL The value of the mode argument is not valid.

EISDIR The named file is a directory, and the mode
argument specifies write-only or read/write access.

ELOOP Too many levels of symbolic links or prefixes.

EMFILE Too many file descriptors are currently in use by
this process.

ENAMETOOLONG

The length of the filename string exceeds
PATH MAX, or a pathname component is longer
than NAME MAX.

ENFILE Too many files are currently open in the system.

698 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. freopen(), freopen64()

ENOENT Either the named file or the filename prefix doesn’t
exist, or the filename argument points to an empty
string.

ENOMEM There is no memory for FILE structure.

ENOSPC The directory or filesystem that would contain the
new file can’t be extended.

ENOSYS The freopen() function isn’t implemented for the
filesystem specified in filename.

ENOTDIR A component of the filename prefix isn’t a
directory.

ENXIO The media associated with the file has been
removed (e.g. CD, floppy).

EOVERFLOW The named file is a regular file and the size of the
file can’t be represented correctly in an object of
type off t.

EROFS The named file resides on a read-only filesystem.

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE* fp;
int c;

/* Reopen the stdin stream so it’s reading
* from "file" instead of standard input.
*/

fp = freopen("file", "r", stdin);

if(fp != NULL) {
/* Now we can read from "file" using the
* stdin functions like fgetchar()...
*/
while((c = fgetchar()) != EOF) {

fputchar(c);

May 31, 2004 Manifests 699

freopen(), freopen64() 2004, QNX Software Systems Ltd.

}

fclose(fp);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

Classification:
freopen() is ANSI, freopen64() is for large-file support

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fclose(), fcloseall(), fdopen(), fopen(), fopen64()

700 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. frexp(), frexpf()
Break a floating-point number into a normalized fraction and an integral power of 2

Synopsis:
#include <math.h>

double frexp(double value,
int* exp);

float frexpf(float value,
int* exp);

Arguments:
value The value you want to break into a normalized fraction.

exp A pointer to a location where the function can store the
integral power of 2.

Library:
libm

Description:
These functions break a floating-point number into a normalized
fraction and an integral power of 2. It stores the integral power of 2 in
the int pointed to by exp.

Returns:
x, such that x is a double with magnitude in the interval [0.5, 1] or 0,
and value equals x times 2 raised to the power exp. If value is 0, then
both parts of the result are 0.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main(void)
{

int expon;

May 31, 2004 Manifests 701

frexp(), frexpf() 2004, QNX Software Systems Ltd.

double value;

value = frexp(4.25, &expon);
printf("%f %d\n", value, expon);
value = frexp(-4.25, &expon);
printf("%f %d\n", value, expon);

return EXIT SUCCESS;
}

produces the output:

0.531250 3
-0.531250 3

Classification:
frexp() is ANSI; frexpf() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ldexp(), modf()

702 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fscanf()
Scan input from a stream

Synopsis:
#include <stdio.h>

int fscanf(FILE* fp,
const char* format,
...);

Arguments:
fp The stream that you want to read from.

format A string that specifies the format of the input. For more
information, see scanf(). The formatting string determines
what additional arguments you need to provide.

Library:
libc

Description:
The fscanf() function scans input from the stream specified by fp,
under control of the argument format.

Returns:
The number of input arguments for which values were successfully
scanned and stored, or EOF if the scanning reached the end of the
input stream before storing any values (errno is set).

Examples:
Scan a date in the form “Friday March 26 1999”:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int day;

May 31, 2004 Manifests 703

fscanf() 2004, QNX Software Systems Ltd.

int year;
char weekday[10];
char month[10];
FILE *in data;

in data = fopen("file", "r");
if(in data != NULL) {

fscanf(in data, "%s %s %d %d",
weekday, month, &day, &year);

printf("Weekday=%s Month=%s Day=%d Year=%d\n",
weekday, month, day, year);

fclose(in data);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fwscanf(), scanf(), sscanf(), swscanf(), vfscanf(), vfwscanf(),
vscanf(), vsscanf(), vswscanf(), vwscanf(), wscanf()

704 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fseek(), fseeko()
Change the current position of a stream

Synopsis:
#include <stdio.h>

int fseek(FILE* fp,
long offset,
int whence);

int fseeko(FILE* fp,
off t offset,
int whence);

Arguments:
fp A FILE pointer returned by fopen() or freopen().

offset The position to seek to, relative to one of the positions
specified by whence.

whence The position from which to apply the offset; one of:

SEEK SET Compute the new file position relative to the
start of the file. The value of offset must not
be negative.

SEEK CUR Compute the new file position relative to the
current file position. The value of offset
may be positive, negative or zero. A
SEEK CUR with a 0 offset is necessary
when you want to switch from reading to
writing on a stream opened for updates.

SEEK END Compute the new file position relative to the
end of the file.

Library:
libc

May 31, 2004 Manifests 705

fseek(), fseeko() 2004, QNX Software Systems Ltd.

Description:
The fseek() function changes the current position of the stream
specified by fp. This position defines the character that will be read or
written by the next I/O operation on the file.

The fseek() function clears the end-of-file indicator, and undoes any
effects of the ungetc() function on the stream.

You can use ftell() to get the current position of the stream before
changing it. You can restore the position by using the value returned
by ftell() in a subsequent call to fseek() with the whence parameter set
to SEEK SET.

Returns:
0 for success, or nonzero if an error occurs.

Errors:
If an error occurs, errno is set to indicate the type of error.

Examples:
Determine the size of a file, by saving and restoring the current
position of the file:

#include <stdio.h>
#include <stdlib.h>

long filesize(FILE *fp)
{

long int save pos;
long size of file;

/* Save the current position. */
save pos = ftell(fp);

/* Jump to the end of the file. */
fseek(fp, 0L, SEEK END);

/* Get the end position. */
size of file = ftell(fp);

/* Jump back to the original position. */

706 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fseek(), fseeko()

fseek(fp, save pos, SEEK SET);

return(size of file);
}

int main(void)
{

FILE *fp;

fp = fopen("file", "r");

if(fp != NULL) {
printf("File size=%ld\n", filesize(fp));
fclose(fp);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

Classification:
fseek() is ANSI; fseeko() is standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, fgetpos(), fopen(), fsetpos(), ftell()

May 31, 2004 Manifests 707

fsetpos() 2004, QNX Software Systems Ltd.

Set the current position of a file

Synopsis:
#include <stdio.h>

int fsetpos(FILE* fp,
const fpos t* pos);

Arguments:
fp The stream whose position you want to set.

pos A pointer to a fpos t object that specifies the new position
for the stream. You must have initialized the value pointed to
by pos by calling fgetpos() on the same file.

Library:
libc

Description:
The fsetpos() function sets the current position of the stream specified
by fp according to the value of the fpos t object pointed to by pos.

Returns:
0 for success, or nonzero if an error occurs (errno is set).

Examples:
See fgetpos().

Classification:
ANSI

Safety

Cancellation point No

continued. . .

708 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fsetpos()

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, fgetpos(), fopen(), fseek(), ftell()

May 31, 2004 Manifests 709

fstat(), fstat64() 2004, QNX Software Systems Ltd.

Get file information, given a file description

Synopsis:
#include <sys/types.h>
#include <sys/stat.h>

int fstat(int filedes,
struct stat* buf);

int fstat64(int filedes,
struct stat64* buf);

Arguments:
filedes The descriptor of the file that you want to get information

about.

buf A pointer to a buffer where the function can store the
information about the file.

Library:
libc

Description:
The fstat() and fstat64() functions get information from the file
specified by filedes and stores it in the structure pointed to by buf .

The file <sys/stat.h> contains definitions for struct stat, as
well as following macros:

S ISBLK(m) Test for block special file.

S ISCHR(m) Test for character special file.

S ISDIR(m) Test for directory.

S ISFIFO(m) Test for FIFO.

S ISLNK(m) Test for symbolic link.

710 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fstat(), fstat64()

S ISREG(m) Test for regular file.

S TYPEISMQ(buf)

Test for message queue.

S TYPEISSEM(buf)

Test for semaphore.

S TYPEISSHM(buf)

Test for shared memory object.

The arguments to the macros are:

m The value of st mode in a stat structure.

buf A pointer to a stat structure.

The macros evaluate to nonzero if the test is true, and zero if the test
is false.

Access permissions are specified as a combination of bits in the
st mode field of the stat structure. These bits are defined in
<sys/stat.h>. For more information, see “Access permissions” in
the documentation for stat().

The st mode field also encodes the following bits:

S ISUID Set user ID on execution. The process’s effective user
ID (EUID) is set to that of the owner of the file when the
file is run as a program. On a regular file, this bit may be
cleared for security reasons on any write.

S ISGID Set group ID on execution. Set effective group ID
(EGID) on the process to the file’s group when the file is
run as a program. On a regular file, this bit bit may be
cleared for security reasons on any write.

May 31, 2004 Manifests 711

fstat(), fstat64() 2004, QNX Software Systems Ltd.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF The filedes argument isn’t a valid file descriptor.

ENOSYS The fstat() function isn’t implemented for the
filesystem specified by filedes.

EOVERFLOW The file size in bytes or the number of blocks
allocated to the file or the file serial number can’t
be represented correctly in the structure pointed to
by buf .

Examples:
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{

int filedes;
int rc;
struct stat buf;

filedes = open("file", O RDONLY);
if(filedes != -1) {

rc = fstat(filedes , &buf);
if(rc != -1) {

printf("File size = %d\n", buf.st size);
}

close(filedes);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

712 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fstat(), fstat64()

Classification:
fstat() is POSIX 1003.1; fstat64() is for large-file support

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
creat(), dup(), dup2(), errno, fcntl(), lstat(), open(), pipe(), sopen(),
stat()

May 31, 2004 Manifests 713

fstatvfs(), fstatvfs64() 2004, QNX Software Systems Ltd.

Get filesystem information, given a file descriptor

Synopsis:
#include <sys/statvfs.h>

int fstatvfs(int fildes,
struct statvfs *buf);

int fstatvfs64(int fildes,
struct statvfs64 *buf);

Arguments:
fildes The descriptor for a file that resides on the filesystem that

you want to get information about.

buf A pointer to a buffer where the function can store
information about the filesystem; see below.

Library:
libc

Description:
The fstatvfs() function returns a “generic superblock” describing a
filesystem; you can use it to get information about mounted
filesystems. The fstatvfs64() function is a 64-bit version of fstatvfs().

The fildes argument is an open file descriptor, obtained from a
successful call to open(), creat(), dup(), fcntl(), or pipe(), for a file that
resides on that filesystem. The filesystem type is known to the
operating system. Read, write, or execute permission for the named
file isn’t required.

The buf argument is a pointer to a statvfs or statvfs64 structure
that’s filled by the function. It contains at least:

unsigned long f bsize

The preferred filesystem blocksize.

714 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fstatvfs(), fstatvfs64()

unsigned long f frsize

The fundamental filesystem blocksize (if supported)

fsblkcnt t f blocks

The total number of blocks on the filesystem, in units of f frsize.

fsblkcnt t f bfree

The total number of free blocks.

fsblkcnt t f bavail

The number of free blocks available to a nonsuperuser.

fsfilcnt t f files

The total number of file nodes (inodes).

fsfilcnt t f ffree

The total number of free file nodes.

fsfilcnt t f favail

The number of inodes available to a nonsuperuser.

unsigned long f fsid

The filesystem ID (dev for now).

char f basetype[16]

The type of the target filesystem, as a null-terminated string.

unsigned long f flag

A bitmask of flags; the function can set these flags:

� ST RDONLY — read-only filesystem.

� ST NOSUID — the filesystem doesn’t support
setuid/setgid semantics.

unsigned long f namemax

The maximum filename length.

May 31, 2004 Manifests 715

fstatvfs(), fstatvfs64() 2004, QNX Software Systems Ltd.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF The fildes argument isn’t an open file descriptor.

EFAULT The buf argument points to an illegal address.

EINTR A signal was caught during execution.

EIO An I/O error occurred while reading the filesystem.

EOVERFLOW One of the values to be returned can’t be
represented correctly in the structure pointed to by
buf .

Classification:
fstatvfs() is standard Unix; fstatvfs64() is for large-file support

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The values returned for f files, f ffree, and f favail might not be valid
for NFS-mounted filesystems.

716 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fstatvfs(), fstatvfs64()

See also:
chmod(), chown(), creat(), dup(), fcntl(), link(), mknod(), open(),
pipe(), read(), statvfs(), statvfs64(), time(), unlink(), utime(), write()

May 31, 2004 Manifests 717

fsync() 2004, QNX Software Systems Ltd.

Synchronize the file state

Synopsis:
#include <unistd.h>

int fsync(int filedes);

Arguments:
filedes The descriptor for the file that you want to synchronize.

Library:
libc

Description:
The fsync() function forces all queued I/O operations for the file
specified by the filedes file descriptor to finish, synchronizing the
file’s state.

Although similar to fdatasync(), fsync() also guarantees the integrity
of file information such as access and modification times.

Returns:
0 for success, or -1 if an error occurs (errno is set).

Errors:
EBADF The filedes argument isn’t a valid file descriptor open

for writing.

EINVAL The implementation doesn’t support synchronized I/O
for the given file.

ENOSYS The fsync() function isn’t supported for the filesystem
specified by filedes.

718 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fsync()

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
aio fsync(), close(), fcntl(), fdatasync(), open(), read(), sync(), write()

May 31, 2004 Manifests 719

ftell(), ftello() 2004, QNX Software Systems Ltd.

Return the current position of a stream

Synopsis:
#include <stdio.h>

long int ftell(FILE* fp);

off t ftello(FILE* fp);

Arguments:
fp The stream that you want to get the current position of.

Library:
libc

Description:
The ftell() function returns the current position of the stream specified
by fp. This position defines the character that will be read or written
by the next I/O operation on the file. You can use the value returned
by ftell() in a subsequent call to fseek() to restore the file position to a
previous value.

The ftello() function is similar to ftell(), except that the position is
returned as an off t.

Returns:
The current position of the file or -1L if an error occurred (errno is
set).

Examples:
#include <stdio.h>
#include <stdlib.h>

long filesize(FILE *fp)
{

long int save pos;
long size of file;

720 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ftell(), ftello()

/* Save the current position. */
save pos = ftell(fp);

/* Jump to the end of the file. */
fseek(fp, 0L, SEEK END);

/* Get the end position. */
size of file = ftell(fp);

/* Jump back to the original position. */
fseek(fp, save pos, SEEK SET);

return(size of file);
}

int main(void)
{

FILE *fp;

fp = fopen("file", "r");

if(fp != NULL) {
printf("File size=%ld\n", filesize(fp));
fclose(fp);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

Classification:
ftell() is ANSI; ftello() is standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 721

ftell(), ftello() 2004, QNX Software Systems Ltd.

See also:
errno, fgetpos(), fopen(), fsetpos(), fseek()

722 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ftime()
Get the current time

Synopsis:
#include <sys/timeb.h>

int ftime(struct timeb * timeptr);

Arguments:
timeptr A pointer to a timeb structure where the function can

store the current time; see below.

Library:
libc

Description:
The ftime() function stores the current time in the timeptr structure.
The timeb structure contains the following fields:

time t time Time, in seconds, since the Unix Epoch, 00:00:00
January 1, 1970 Coordinated Universal Time
(UTC).

unsigned short millitm

Milliseconds.

short timezone Difference in minutes of the timezone from UTC.

short dstflag Nonzero if in daylight savings time.

Returns:
0 Success.

-1 An error occurred (errno is set).

May 31, 2004 Manifests 723

ftime() 2004, QNX Software Systems Ltd.

Examples:
#include <stdio.h>
#include <time.h>
#include <sys/timeb.h>
#include <stdlib.h>

int main(void)
{

struct timeb timebuf;
char *now;

ftime(&timebuf);
now = ctime(&timebuf.time);

/* Note that we’re cutting "now" off
* after 19 characters to avoid the
* \n that ctime() appends to the
* formatted time string.
*/

printf("The time is %.19s.%hu\n",
now, timebuf.millitm);

return EXIT SUCCESS;
}

Produces output similar to the following:

The time is Mon Jul 05 15:58:42.870

Classification:
Legacy Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

724 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ftime()

See also:
asctime(), clock(), ctime(), difftime(), gmtime(), localtime(), mktime(),
strftime(), time(), tzset()

May 31, 2004 Manifests 725

ftruncate(), ftruncate64() 2004, QNX Software Systems Ltd.

Truncate a file

Synopsis:
#include <unistd.h>

int ftruncate(int fildes,
off t length);

int ftruncate64(int fildes,
off64 t length);

Arguments:
fildes The descriptor for the file that you want to truncate.

length The length that you want the file to be, in bytes.

Library:
libc

Description:
These functions cause the file referenced by fildes to have a size of
length bytes. If the size of the file previously exceeded length, the
extra data is discarded (this is similar to using the F FREESP option
with fcntl()). If the size of the file was previously shorter than length,
the file size is extended with NUL characters (similar to the
F ALLOCSP option to fcntl()).

The value of the seek pointer isn’t modified by a call to ftruncate().

Upon successful completion, the ftruncate() function marks the
st ctime and st mtime fields of the file for update. If the ftruncate()
function is unsuccessful, the file is unaffected.

Returns:
Zero for success, or -1 if an error occurred (errno is set).

726 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ftruncate(), ftruncate64()

Errors:
EBADF The fildes argument isn’t a valid file descriptor.

EFBIG The file is a regular file and length is greater than the
offset maximum associated with the file.

EINTR A signal was caught during the call to ftruncate().

EINVAL The fildes argument doesn’t refer to a file on which
this operation is possible, the filedes argument isn’t
open for writing or the length argument is less than the
minimum file size for the specified filesystem.

EIO An I/O error occurred while reading from or writing to
the filesystem.

ENOSYS The ftruncate() function isn’t implemented for the
filesystem specified by filedes.

ENOTSUP The ftruncate() function is implemented for the
specified filesystem, but the specific operation
(F ALLOCSP or F FREESP; see fcntl()) isn’t supported.

EROFS The file resides on a read-only filesystem.

Classification:
ftruncate() is POSIX 1003.1; ftruncate64() is for large-file support

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 727

ftruncate(), ftruncate64() 2004, QNX Software Systems Ltd.

See also:
mmap(), open(), shm open(), truncate()

728 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ftrylockfile()
Acquire ownership of a file, without blocking

Synopsis:
#include <stdio.h>

int ftrylockfile(FILE* file);

Arguments:
file A pointer to the FILE object for the file you want to lock.

Library:
libc

Description:
The ftrylockfile() function is used by a thread to acquire ownership of
a FILE if the object is available; ftrylockfile() is a nonblocking version
of flockfile().

Returns:
0 Success.

Nonzero The lock can’t be acquired.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 729

ftrylockfile() 2004, QNX Software Systems Ltd.

See also:
flockfile(), getc unlocked(), getchar unlocked(), putc unlocked(),
putchar unlocked()

730 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ftw(), ftw64()
Walk a file tree

Synopsis:
#include <ftw.h>

int ftw(const char *path,
int (*fn)(const char *fname,

const struct stat *sbuf,
int flags),

int depth);

Arguments:
path The path of the directory whose file tree you want to walk.

fn A pointer to a function that you want to call for each file;
see below.

depth The maximum number of file descriptors that ftw() can use.
The ftw() function uses one file descriptor for each level in
the tree.

If depth is zero or negative, the effect is the same as if it
were 1. The depth must not be greater than the number of
file descriptors currently available for use. The ftw()
function is faster if depth is at least as large as the number
of levels in the tree.

Library:
libc

Description:
The ftw() function recursively descends the directory hierarchy
identified by path. For each object in the hierarchy, ftw() calls the
user-defined function fn(), passing to it:

� a pointer to a NULL-terminated character string containing the
name of the object

May 31, 2004 Manifests 731

ftw(), ftw64() 2004, QNX Software Systems Ltd.

� a pointer to a stat structure (see stat()) containing information
about the object

� an integer. Possible values of the integer, defined in the <ftw.h>
header, are:

FTW F The object is a file.

FTW D The object is a directory.

FTW DNR The object is a directory that can’t be read.
Descendents of the directory aren’t processed.

FTW NS The stat() failed on the object because the
permissions weren’t appropriate, or the object is a
symbolic link that points to a nonexistent file. The
stat buffer passed to fn() is undefined.

The ftw() function visits a directory before visiting any of its
descendents.

The tree traversal continues until the tree is exhausted, an invocation
of fn() returns a nonzero value, or some error is detected within ftw()
(such as an I/O error). If the tree is exhausted, ftw() returns zero. If
fn() returns a nonzero value, ftw() stops its tree traversal and returns
whatever value was returned by fn().

When ftw() returns, it closes any file descriptors it opened; it doesn’t
close any file descriptors that may have been opened by fn().

Returns:
0 Success.

-1 An error (other than EACCESS) occurred (errno is set).

Classification:
Standard Unix, ftw64() is for large-file support

732 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ftw(), ftw64()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
Because ftw() is recursive, it might terminate with a memory fault
when applied to very deep file structures.

This function uses malloc() to allocate dynamic storage during its
operation. If ftw() is forcibly terminated, for example if longjmp() is
executed by fn() or an interrupt routine, ftw() doesn’t have a chance to
free that storage, so it remains permanently allocated. A safe way to
handle interrupts is to store the fact that an interrupt has occurred, and
arrange to have fn() return a nonzero value at its next invocation.

See also:
longjmp(), malloc(), nftw(), stat()

May 31, 2004 Manifests 733

funlockfile() 2004, QNX Software Systems Ltd.

Release ownership of a file

Synopsis:
#include <stdio.h>

void funlockfile(FILE* file);

Arguments:
file A pointer to the FILE object for the file you want to unlock.

Library:
libc

Description:
The funlockfile() function is used to release ownership of file granted
to the thread. The behavior is undefined if a thread other than the
current owner calls the funlockfile() function.

For more information, see flockfile().

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

734 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. funlockfile()

See also:
flockfile(), ftrylockfile(), getc unlocked(), getchar unlocked(),
putc unlocked(), putchar unlocked()

May 31, 2004 Manifests 735

futime() 2004, QNX Software Systems Ltd.

Record the modification time for a file

Synopsis:
#include <utime.h>

int futime(int fildes,
const struct utimbuf *times);

struct utimbuf {
time t actime; /* access time */
time t modtime; /* modification time */

};

Arguments:
fildes The descriptor for the file whose modification time you

want to get or set.

times NULL, or a pointer to a utimbuf structure where the
function can store the modification time.

Library:
libc

Description:
The futime() function records the modification time for the file or
directory with the descriptor, fildes.

If the times argument is NULL, the access and modification times of
the file or directory are set to the current time. The effective user ID
of the process must match the owner of the file or directory, or the
process must have write permission to the file or directory, or
appropriate privileges in order to use the futime() function in this way.

If the times argument isn’t NULL, it’s interpreted as a pointer to a
utimbuf structure, and the access and modification times of the file
or directory are set to the values contained in the actime and modtime
fields in this structure. Only the owner of the file or directory, and
processes with appropriate privileges are permitted to use the futime()
function in this way.

736 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. futime()

Returns:
0 Success.

-1 An error occurred (errno) is set.

Errors:
EACCES Search permission is denied for a component of path,

or the times argument is NULL, and the effective user
ID of the process doesn’t match the owner of the file,
and write access is denied.

ENAMETOOLONG

The argument path exceeds PATH MAX in length, or a
pathname component is longer than NAME MAX.

ENOENT The specified path doesn’t exist, or path is an empty
string.

ENOTDIR A component of path isn’t a directory.

EPERM The times argument isn’t NULL, and the calling
process’s effective user ID has write access to the file
but doesn’t match the owner of the file, and the calling
process doesn’t have the appropriate privileges.

EROFS The named file resides on a read-only filesystem.

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 737

futime() 2004, QNX Software Systems Ltd.

See also:
errno, utime()

738 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fwide()
Set or get the stream orientation

Synopsis:
#include <wchar.h>

int fwide(FILE * fp,
int mode);

Arguments:
fp The stream whose orientation you want to set.

mode The orientation mode:

� If mode is greater than zero and the stream orientation
hasn’t been set, fwide() flags the stream as wide-oriented.

� If mode is less than zero, fwide() behaves similarly, but
flags the stream as byte-oriented.

� If mode is zero, fwide() returns the stream type without
altering the stream.

Library:
libc

Description:
The fwide() function sets or determines the orientation of the stream
fp.

Returns:
> 0 The stream is (now) wide-oriented.

0 The stream is unbound.

< 0 The stream is (now) byte-oriented.

May 31, 2004 Manifests 739

fwide() 2004, QNX Software Systems Ltd.

Errors:
EBADF The fp argument isn’t valid.

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
“Stream I/O functions” and “Wide-character functions” in the
summary of functions chapter.

740 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fwprintf()
Write wide-character output to a stream

Synopsis:
#include <wchar.h>

int fwprintf(FILE * fp,
const wchar t * format,
...);

Arguments:
fp The stream to which you want to send the output.

format A wide-character string that specifies the format of the
output. The formatting string determines what additional
arguments you need to provide. For more information, see
printf().

Library:
libc

Description:
The fwprintf() function writes output to the stream specified by fp,
under control of the format specifier.

The fwprintf() function is the wide-character version of fprintf().

Returns:
The number of wide characters written, excluding the terminating
NUL, or a negative number if an error occurred (errno is set).

Classification:
ANSI

May 31, 2004 Manifests 741

fwprintf() 2004, QNX Software Systems Ltd.

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fprintf(), printf(), snprintf(), sprintf(), swprintf(), vfprintf(),
vfwprintf(), vprintf(), vsnprintf(), vsprintf(), vswprintf(), vwprintf(),
wprintf()

742 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fwrite()
Write elements to a file

Synopsis:
#include <stdio.h>

size t fwrite(const void* buf,
size t size,
size t num,
FILE* fp);

Arguments:
buf A pointer to a buffer that contains the elements that you want

to write.

size The size of each element to write.

num The number of elements to write.

fp The stream to which to write the elements.

Library:
libc

Description:
The fwrite() function writes num elements of size bytes each to the
stream specified by fp.

Returns:
The number of complete elements successfully written; if an error
occurs, this is less than num.

Errors:
If an error occurs, errno is set to indicate the type of error.

May 31, 2004 Manifests 743

fwrite() 2004, QNX Software Systems Ltd.

Examples:
#include <stdio.h>
#include <stdlib.h>

struct student data {
int student id;
unsigned char marks[10];

};

int main(void)
{

FILE *fp;
struct student data std;
int i;

fp = fopen("file", "w");
if(fp != NULL) {

std.student id = 1001;

for(i = 0; i < 10; i++) {
std.marks[i] = (unsigned char)(85 + i);

}

/* write student record with marks */
i = fwrite(&std, sizeof(struct student data), 1, fp);
printf("Successfully wrote %d records\n", i);

fclose(fp);

if(i == 1) {
return EXIT SUCCESS;

}
}

return EXIT FAILURE;
}

Classification:
ANSI

Safety

Cancellation point Yes

continued. . .

744 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fwrite()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, ferror(), fopen()

May 31, 2004 Manifests 745

fwscanf() 2004, QNX Software Systems Ltd.

Scan wide-character input from a stream

Synopsis:
#include <wchar.h>

int fwscanf(FILE * fp,
const wchar t * format,
...);

Arguments:
fp The stream that you want to read from.

format A wide-character string that specifies the format of the
input. For more information, see scanf(). The formatting
string determines what additional arguments you need to
provide.

Library:
libc

Description:
The fwscanf() function scans input from the stream specified by fp,
under control of the argument format. Following the format string is a
list of addresses to receive values.

The fwscanf() function is the wide-character version of fscanf().

Returns:
The number of input arguments for which values were successfully
scanned and stored, or EOF if the scanning reached the end of the
input stream before storing any values.

Classification:
ANSI

746 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. fwscanf()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fscanf(), scanf(), sscanf(), swscanf(), vfscanf(), vfwscanf(),
vscanf(), vsscanf(), vswscanf(), vwscanf(), wscanf()

May 31, 2004 Manifests 747

gai strerror() 2004, QNX Software Systems Ltd.

Return the string associated with a getaddrinfo() error code

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

const char * gai strerror(int ecode);

Arguments:
ecode The error code number from the getaddrinfo() function.

Library:
libsocket

Description:
The gai strerror() function returns a string describing the error code
from the getaddrinfo() function. Nonzero error codes are defined in
<netdb.h> as follows:

EAI ADDRFAMILY

The address family for nodename isn’t supported.

EAI AGAIN There was a temporary failure in name resolution.

EAI BADFLAGS Invalid value for ai flags.

EAI FAIL Nonrecoverable failure in name resolution.

EAI FAMILY The ai family isn’t supported.

EAI MEMORY Memory allocation failure.

EAI NODATA No address associated with the nodename.

EAI NONAME Either the nodename or the servname argument
wasn’t provided or isn’t known.

748 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. gai strerror()

EAI SERVICE The servname argument isn’t supported for
ai socktype.

EAI SOCKTYPE The ai socktype isn’t supported.

EAI SYSTEM System error returned in errno.

Returns:
If called with a proper ecode argument, a pointer to a string describing
the given error code. If the argument isn’t one of the EAI * values, a
pointer to a string whose contents indicate an unknown error.

Don’t modify the strings that this function returns.�

Classification:
POSIX 1003.1-2001

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
addrinfo, freeaddrinfo(), getaddrinfo()

May 31, 2004 Manifests 749

gamma(), gamma r(), gammaf(), gammaf r() 2004, QNX

Software Systems Ltd.

Log gamma function

Synopsis:
#include <math.h>

double gamma(double x);

double gamma r(double x,
int* signgam);

float gammaf(float x);

float gammaf r(float x,
int* signgam);

Arguments:
x An arbitrary number.

signgam (gamma r(), gammaf r() only) A pointer to a location
where the function can store the sign of �(x).

Library:
libm

Description:
The gamma() and gamma r() functions return the natural log (ln) of
the gamma() function and are equivalent to lgamma(). These
functions return ln|�(x)|, where �(x) is defined as follows:

For x > 0:

e
-t

t
x-1

dt

0

8

For x < 1: n / (�(1-x) * sin(nx))

The results converge when x is between 0 and 1. The � function has
the property:

750 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. gamma(), gamma r(), gammaf(),
gammaf r()

�(N) = �(N-1)�N

The gamma* functions compute the log because the � function grows
very quickly.

The gamma() and gammaf() functions use the external integer
signgam to return the sign of �(x), while gamma r() and gammaf r()
use the user-allocated space addressed by signgamp.

The signgam variable isn’t set until gamma() or gammaf() returns. For
example, don’t use the expression:

g = signgam * exp(gamma(x));

to compute g = �(x)’. Instead, compute gamma() first:

lg = gamma(x);
g = signgam * exp(lg);

�

Note that �(x) must overflow when x is large enough, underflow when
-x is large enough, and generate a division by 0 exception at the
singularities x a nonpositive integer.

Returns:
ln|�(x)|

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Classification:
Legacy Unix

May 31, 2004 Manifests 751

gamma(), gamma r(), gammaf(), gammaf r() 2004, QNX

Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
lgamma()

752 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getaddrinfo()
Get socket address information

Synopsis:
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char * nodename,
const char * servname,
const struct addrinfo * hints,
struct addrinfo ** res);

Arguments:
nodename The node name. A non-NULL nodename may be

either a node name or a numeric host address string
(i.e. a dotted-decimal IPv4 address or an IPv6 hex
address.)

servname The server name. A non-NULL servname may be
either a server name or a decimal port number.

hints A pointer to an addrinfo structure that provides
hints about the type of socket you’re supporting. See
“Using the hints argument” for more information.

res The address of a location where the function can store
a pointer to a linked list of one or more addrinfo
structures.

Library:
libsocket

Description:
The getaddrinfo() function performs the functionality of
gethostbyname() and getservbyname() but in a more sophisticated
manner.

The nodename and servname arguments are either pointers to
null-terminated strings or NULL. One or both of these two arguments

May 31, 2004 Manifests 753

getaddrinfo() 2004, QNX Software Systems Ltd.

must be a non-NULL pointer. Normally, a client scenario specifies
both nodename and servname.

On success, the getaddrinfo() function stores, in the location pointed
to by res, a pointer to a linked list of one or more addrinfo
structures. You can process each addrinfo structure in this list by
following the ai next pointer until reaching a NULL pointer. Each
addrinfo structure contains the corresponding ai family,
ai socktype, and ai protocol arguments for a call to the socket()
function. The ai addr argument of the addrinfo structure points to a
filled-in socket address structure with a length specified by the
ai addrlen argument.

Using the hints argument

You can optionally pass an addrinfo structure, pointed to by the
hints argument, that provides hints concerning the type of socket that
your application supports.

In this structure, all members — except ai flags, ai family,
ai socktype, and ai protocol — must be zero or a NULL pointer. The
addrinfo structure of the hints argument can accept various types of
sockets:

To accept: Set: To:

Any protocol family ai family PF UNSPEC

Any socket type ai socktype 0

Any protocol ai protocol 0

All of the above (as
well as setting
ai flags to 0)

hints NULL

The hints argument defaults to all possibilities, but you can also use it
to limit choices:

754 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getaddrinfo()

� If the application handles only TCP but not UDP, you could set the
ai socktype member of the hints structure to SOCK STREAM.

� If the application handles only IPv4 but not IPv6, you could set the
ai family member of the hints structure to PF INET.

Using the ai flags argument in the hints structure

You can set the ai flags argument to further configure the hints
structure. Settings for ai flags include:

AI PASSIVE Set this bit if you plan to use the returned addrinfo
structure in a call to bind(). In this call, if the
nodename argument is a NULL pointer, then the IP
address portion of the socket address structure
ai addr is set to INADDR ANY for an IPv4 address
or IN6ADDR ANY INIT for an IPv6 address.

If you don’t set the AI PASSIVE flag, you can use
the returned addrinfo structure in a call to:

� connect() — connectionless or
connection-oriented protocol

� sendto() — connectionless protocol

� sendmsg() — connectionless protocol

In this case, if the nodename argument is a NULL
pointer, then the IP address portion of the socket
address structure ai addr is set to the loopback
address.

AI CANONNAME

Set this bit if you want the ai canonname argument
of the first addrinfo structure to point to a
null-terminated string containing the canonical
name of the specified nodename.

AI NUMERICHOST

Set this bit if you want to prevent any type of name
resolution service (such as DNS) from being used.

May 31, 2004 Manifests 755

getaddrinfo() 2004, QNX Software Systems Ltd.

A non-NULL nodename string must be a numeric
host address string; otherwise, getaddrinfo() returns
EAI NONAME.

Pitfalls

The arguments to getaddrinfo() must be sufficiently consistent and
unambiguous or this function will return an error. Here are some
problems you may encounter:

� Inconsistent hints — for Internet address families, specifying
SOCK STREAM for ai socktype while specifying IPPROTO UDP
for ai protocol.

� Inconsistent servname — specifying a servname that’s defined
only for certain ai socktype values, such as the TFTP service (a
datagram service SOCK DGRAM) on SOCK STREAM.

� Undefined service names — specifying a servname while
specifying SOCK RAW for ai socktype. (Service names aren’t
defined for the internet SOCK RAW space.)

� Incomplete specifications — specifying a numeric servname while
leaving ai socktype and ai protocol unspecified. The getaddrinfo()
function isn’t allowed to glob() the argument when a numeric
servname doesn’t have a specified socket type.

756 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getaddrinfo()

The getaddrinfo() function dynamically allocates space for the
following:

� addrinfo structures

� socket address structures

� canonical node name strings pointed to by the addrinfo structures.

Use freeaddrinfo() to free the addrinfo structures, and gai strerror()
to decipher error codes.

�

Returns:
Zero for success, or nonzero if an error occurs.

Errors:
To get an explanation of any error code, use gai strerror().

Examples:
The following code tries to connect to www.kame.net service HTTP
using a stream socket. It loops through all the addresses available,
regardless of the address family. If the destination resolves to an IPv4
address, it uses a AF INET socket. Similarly, it uses an AF INET6
socket if it resolves to IPv6. Note that there aren’t any hardcoded
references to any particular address family; the code works even if
getaddrinfo() returns addresses that aren’t IPv4/v6.

struct addrinfo hints, *res, *res0;
int error;
int s;
const char *cause = NULL;

memset(&hints, 0, sizeof(hints));
hints.ai family = PF UNSPEC;
hints.ai socktype = SOCK STREAM;
error = getaddrinfo("www.kame.net", "http", &hints, &res0);
if (error) {

err1(1, "%s", gai strerror(error));
/*NOTREACHED*/

May 31, 2004 Manifests 757

getaddrinfo() 2004, QNX Software Systems Ltd.

}
s = -1;
for (res = res0; res; res = res->ai next) {

s = socket(res->ai family, res->ai socktype,
res->ai protocol);

if (s < 0) {
cause = "socket";
continue;

}

if (connect(s, res->ai addr, res->ai addrlen) < 0) {
cause = "connect";
close(s);
s = -1;
continue;

}

break; /* okay we got one */
}
if (s < 0) {

err(1, cause);
/*NOTREACHED*/

}
freeaddrinfo(res0);

The following example tries to open a wildcard-listening socket onto
the HTTP service for all of the available address families:

struct addrinfo hints, *res, *res0;
int error;
int s[MAXSOCK];
int nsock;
const char *cause = NULL;

memset(&hints, 0, sizeof(hints));
hints.ai family = PF UNSPEC;
hints.ai socktype = SOCK STREAM;
hints.ai flags = AI PASSIVE;
error = getaddrinfo(NULL, "http", &hints, &res0);
if (error) {

err1(1, "%s", gai strerror(error));
/*NOTREACHED*/

}
nsock = 0;
for (res = res0; res && nsock < MAXSOCK; res = res->ai next) {

s[nsock] = socket(res->ai family, res->ai socktype,
res->ai protocol);

if (s[nsock] < 0) {
cause = "socket";

758 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getaddrinfo()

continue;
}

if (connect(s[nsock], res->ai addr, res->ai addrlen) < 0) {
cause = "connect";
close(s[nsock]);
continue;

}

nsock++;
}
if (nsock == 0) {

err(1, cause);
/*NOTREACHED*/

}
freeaddrinfo(res0);

Classification:
POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
addrinfo, freeaddrinfo(), gai strerror()

May 31, 2004 Manifests 759

getc() 2004, QNX Software Systems Ltd.

Get the next character from a file

Synopsis:
#include <stdio.h>

int getc(FILE* fp);

Arguments:
fp The stream you want to get the character from.

Library:
libc

Description:
The getc() macro gets the next character from the stream designated
by fp. The character is returned as an int value.

Returns:
The next character from the stream fp, cast as (int)(unsigned
char), or EOF if an end-of-file or error condition occurs (errno is
set).

Use feof() or ferror() to distinguish an end-of-file condition from an
error.

�

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE* fp;
int c;

fp = fopen("file", "r");
if(fp != NULL) {

while((c = getc(fp)) != EOF) {
putchar(c);

760 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getc()

}

fclose(fp);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
getc() is a macro.

See also:
errno, feof(), ferror(), fgetc(), fgetchar(), fgets(), fopen(), getchar(),
gets(), putc(), putc unlocked(), putchar(), putchar unlocked(),
ungetc()

May 31, 2004 Manifests 761

getc unlocked() 2004, QNX Software Systems Ltd.

Get the next character from a file

Synopsis:
#include <stdio.h>

int getc unlocked(FILE *fp);

Arguments:
fp The stream you want to get the character from.

Library:
libc

Description:
The getc unlocked() function is a thread-unsafe version of getc(). You
can use it safely only when the invoking thread has locked fp using
flockfile() (or ftrylockfile()) and funlockfile().

Returns:
The next character from the input stream pointed to by fp, or EOF if
an end-of-file or error condition occurs (errno is set).

Use feof() or ferror() to distinguish an end-of-file condition from an
error.

�

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

continued. . .

762 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getc unlocked()

Safety

Signal handler No

Thread No

See also:
feof(), ferror(), flockfile(), getc(), getchar(), getchar unlocked(),
putc(), putc unlocked(), putchar(), putchar unlocked()

May 31, 2004 Manifests 763

getchar() 2004, QNX Software Systems Ltd.

Get a character from stdin

Synopsis:
#include <stdio.h>

int getchar(void);

Library:
libc

Description:
The getchar() function is equivalent to getc() on the stdin stream.

Returns:
The next character from the input stream pointed to by stdin, cast as
(int)(unsigned char), or EOF if an end-of-file or error condition
occurs (errno is set).

Use feof() or ferror() to distinguish an end-of-file condition from an
error.

�

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;
int c;

/* Get characters from "file" instead of
* stdin.
*/

fp = freopen("file", "r", stdin);
while((c = getchar()) != EOF) {

putchar(c);
}

fclose(fp);

764 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getchar()

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, feof(), ferror(), fgetc(), fgetchar(), getc(), putc(),
putc unlocked(), putchar(), putchar unlocked()

May 31, 2004 Manifests 765

getchar unlocked() 2004, QNX Software Systems Ltd.

Get a character from stdin

Synopsis:
#include <stdio.h>

int getchar unlocked(void);

Library:
libc

Description:
The getchar unlocked() function is a thread-unsafe version of
getchar(). You can use it safely only when the invoking thread has
locked stdin using flockfile() (or ftrylockfile()) and funlockfile().

Returns:
The next character from the input stream pointed to by stdin, cast as
(int)(unsigned char), or EOF if an end-of-file or error condition
occurs (errno is set).

Use feof() or ferror() to distinguish an end-of-file condition from an
error.

�

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

766 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getchar unlocked()

See also:
feof(), ferror(), getc(), getc unlocked(), getchar(), putc(),
putc unlocked(), putchar(), putchar unlocked()

May 31, 2004 Manifests 767

getcwd() 2004, QNX Software Systems Ltd.

Get the name of the current working directory

Synopsis:
#include <unistd.h>

char* getcwd(char* buffer,
size t size);

Arguments:
buffer A pointer to a buffer where the function can store the

directory name.

size The size of the buffer, in bytes.

Library:
libc

Description:
The getcwd() function returns the name of the current working
directory. buffer is a pointer to a buffer of at least size bytes where the
NUL-terminated name of the current working directory will be placed.

The maximum size that might be required for buffer is PATH MAX +
1 bytes. See <limits.h>.

Returns:
The address of the string containing the name of the current working
directory, or NULL if an error occurs (errno is set).

Errors:
EINVAL The argument size is negative or 0.

ELOOP Too many levels of symbolic links.

ENOSYS The getcwd() function isn’t implemented for the
filesystem specified in the current working directory.

768 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getcwd()

ERANGE The buffer is too small (as specified by size) to contain
the name of the current working directory.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <limits.h>

int main(void)
{

char* cwd;
char buff[PATH MAX + 1];

cwd = getcwd(buff, PATH MAX + 1);
if(cwd != NULL) {

printf("My working directory is %s.\n", cwd);
}

return EXIT SUCCESS;
}

produces the output:

My working directory is /home/bill.

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 769

getcwd() 2004, QNX Software Systems Ltd.

Caveats:
There is only one current working directory per process. In a
multithreaded application, any thread calling chdir() will change the
current working directory for all threads in that process.

See also:
chdir(), errno, mkdir(), rmdir()

770 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getdomainname()
Get the domain name of the current host

Synopsis:
#include <unistd.h>

int getdomainname(char * name,
size t namelen);

Arguments:
name A buffer where the function can store the domain name.

namelen The size of the name array.

Library:
libsocket

Description:
The getdomainname() function gets the standard domain name for the
current processor and stores it in the buffer that name points to. The
name is null-terminated.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EFAULT The name or namelen parameters gave an invalid

address.

Classification:
Unix

May 31, 2004 Manifests 771

getdomainname() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
setdomainname()

772 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getdtablesize()
Get the size of the file descriptor table

Synopsis:
#include <unistd.h>

int getdtablesize(void);

Library:
libc

Description:
Each process has a fixed size descriptor table, which is guaranteed to
have at least 20 slots. The entries in the descriptor table are numbered
with small integers starting at 0. The getdtablesize() returns the size
of this table.

This function is equivalent to getrlimit() with the RLIMIT NOFILE
option.

Returns:
The size of the file descriptor table.

Classification:
Legacy Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 773

getdtablesize() 2004, QNX Software Systems Ltd.

See also:
close(), dup(), getrlimit(), open(), select(), sysconf()

774 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getegid()
Get the effective group ID

Synopsis:
#include <sys/types.h>
#include <unistd.h>

gid t getegid(void);

Library:
libc

Description:
The getegid() function gets the effective group ID for the calling
process.

Returns:
The calling process’s effective group ID. This function can’t fail.

Examples:
/*
* Print the effective group ID of a process
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int main(void)
{
printf("My effective group ID is %d\n", getegid());
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

May 31, 2004 Manifests 775

getegid() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
geteuid(), getgid(), getuid(), setegid()

776 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getenv()
Get the value of an environment variable

Synopsis:
#include <stdlib.h>

char* getenv(const char* name);

Arguments:
name The name of the environment variable whose value you

want to get.

Library:
libc

Description:
The getenv() function searches the environment list for a string in the
form name=value and returns a pointer to a string containing the
value for the specified name. The matching is case-sensitive.

Returns:
A pointer to the value assigned to name, or NULL if name wasn’t
found in the environment.

Don’t modify the returned string.�

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

char* path;

path = getenv("INCLUDE");
if(path != NULL) {

printf("INCLUDE=%s\n", path);
return EXIT SUCCESS;

}

May 31, 2004 Manifests 777

getenv() 2004, QNX Software Systems Ltd.

return EXIT FAILURE;
}

Classification:
ANSI, POSIX 1003.1a

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

Caveats:
The getenv() function manipulates the environment pointed to by the
global environ variable.

See also:
clearenv(), environ, execl(), execle(), execlp(), execlpe(), execv(),
execve(), execvp(), execvpe(), putenv(), searchenv(), setenv(),
spawn*() functions, system()

778 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. geteuid()
Get the effective user ID

Synopsis:
#include <sys/types.h>
#include <unistd.h>

uid t geteuid(void);

Library:
libc

Description:
The geteuid() function gets the effective user ID for the calling
process.

Returns:
The calling process’s effective user ID.

Examples:
/*
* Print the effective user ID of a process.
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int main(void)
{
printf("My effective user ID is %d\n", geteuid());
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

May 31, 2004 Manifests 779

geteuid() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
getegid(), getgid(), getuid(), seteuid()

780 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getgid()
Get the group ID

Synopsis:
#include <sys/types.h>
#include <unistd.h>

gid t getgid(void);

Library:
libc

Description:
The getgid() function gets the group ID for the calling process.

Returns:
The calling process’s group ID. This function can’t fail.

Examples:
/*
* Print the group id of a process.
*/

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main(void)
{

printf("I belong to group ID %d\n", getgid());
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

May 31, 2004 Manifests 781

getgid() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
getegid(), geteuid(), getuid()

782 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getgrent()
Return an entry from the group database

Synopsis:
#include <grp.h>

struct group* getgrent(void);

Library:
libc

Description:
The getgrent() function returns the next entry from the group
database, although no particular order is guaranteed. This function
uses a static buffer that’s overwritten by each call.

The getgrent(), getgrgid(), and getgrnam() function share the same
static buffer.

�

Returns:
The next entry from the group database. When you first call
getgrent(), the group database is opened. It remains open until either
getgrent() returns NULL to signify end-of-file, or you call endgrent().

Errors:
The getgrent() function uses the following functions, and as a result,
errno can be set to an error for any of these calls:

� fclose()

� fgets()

� fopen()

� fseek()

� rewind()

May 31, 2004 Manifests 783

getgrent() 2004, QNX Software Systems Ltd.

Examples:
/*
* This program loops, reading a group name from
* standard input and checking to see if it is a valid
* group. If it isn’t valid, the entire contents of the
* group database are printed.
*/

#include <stdio.h>
#include <stdlib.h>
#include <grp.h>
#include <limits.h>

int main(void)
{

struct group* gr;
char buf[80];

setgrent();
while(gets(buf) != NULL) {
if((gr=getgrnam(buf)) != (struct group *)0) {

printf("Valid group is: %s\n",gr->gr name);
} else {

setgrent();
while((gr=getgrent()) != (struct group *)0)
printf("%s\n",gr->gr name);

}
}
endgrent();
return(EXIT SUCCESS);

}

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

784 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getgrent()

See also:
endgrent(), errno, getgrgid(), getgrnam(), getpwent(), setgrent()

May 31, 2004 Manifests 785

getgrgid() 2004, QNX Software Systems Ltd.

Get information about the group with a given ID

Synopsis:
#include <sys/types.h>
#include <grp.h>

struct group* getgrgid(gid t gid);

Arguments:
gid The ID of the group you want to get information about.

Library:
libc

Description:
The getgrgid() function lets a process gain more knowledge about
group gid. This function uses a static buffer that’s overwritten by each
call.

The getgrent(), getgrgid(), and getgrnam() functions share the same
static buffer.

�

Returns:
A pointer to an object of type struct group containing an entry from
the group database with a matching gid. On error or failure to find an
entry with a matching gid, a NULL pointer is returned.

Examples:
/*
* Print a list of all users in your group
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <grp.h>

786 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getgrgid()

int main(void)
{

struct group* g;
char** p;

if((g = getgrgid(getgid())) == NULL) {
fprintf(stderr, "getgrgid: NULL pointer\n");
return(EXIT FAILURE);

}
printf("group name:%s\n", g->gr name);
for(p = g->gr mem; *p != NULL; p++) {
printf("\t%s\n", *p);

}
return(EXIT SUCCESS);

}

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
getgrent(), getgrgid r(), getgrnam()

May 31, 2004 Manifests 787

getgrgid r() 2004, QNX Software Systems Ltd.

Get information about the group with a given ID

Synopsis:
#include <sys/types.h>
#include <grp.h>

int getgrgid r (gid t gid,
struct group* grp,
char* buffer,
size t bufsize,
struct group** result);

Arguments:
gid The ID of the group you want to get information about.

grp A pointer to a group structure where the function can
store information about the group.

buffer A buffer from which to allocate any memory required.

bufsize The size of the buffer.

result The address of a pointer that getgrgid r() sets to the same
pointer as grp on success, or to NULL if the function can’t
find the group.

Library:
libc

Description:
If POSIX THREAD SAFE FUNCTIONS is defined, getgrgid r()
updates the group structure pointed by grp and stores a pointer to that
structure at the location pointed by result. The structure contains an
entry from the group database with a matching gid.

This function allocates storage referenced by the group structure from
the memory provided with the buffer parameter, which is bufsize
characters in size. You can determine the maximum size needed for

788 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getgrgid r()

this buffer by calling sysconf() with an argument of
SC GETGR R SIZE MAX.

The getgrgid r() stores a NULL pointer at the location pointed by
result on error or if the requested entry isn’t found.

Returns:
Zero for success, or an error number if an error occurred.

Errors:
ERANGE Insufficient storage was supplied via buffer and bufsize

to contain the resulting group structure.

The getgrgid r() function uses the following functions, and as a result,
errno can be set to an error for any of these calls:

� fclose()

� fgets()

� fopen()

� fseek()

� rewind()

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 789

getgrgid r() 2004, QNX Software Systems Ltd.

See also:
getgrgid(), getgrnam(), getgrnam r(), getlogin(), sysconf()

790 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getgrnam()
Get information about the group with a given name

Synopsis:
#include <sys/types.h>
#include <grp.h>

struct group* getgrnam(const char* name);

Arguments:
name The name of the group you want to get information about.

Library:
libc

Description:
The getgrnam() function lets a process gain more knowledge about
the group named name. This function uses a static buffer that’s
overwritten by each call.

The getgrent(), getgrgid(), and getgrnam() functions share the same
static buffer.

�

Returns:
A pointer to an object of type struct group containing an entry
from the group database with a matching name, or NULL on error or
failure to find an entry with a matching name.

Examples:
/*
* Print the name of all users in the group given in
* argv[1]
*/

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <grp.h>

May 31, 2004 Manifests 791

getgrnam() 2004, QNX Software Systems Ltd.

int main(int argc, char** argv)
{

struct group* g;
char** p;

if((g = getgrnam(argv[1])) == NULL) {
fprintf(stderr, "getgrnam: %s failed\n",

argv[1]);
return(EXIT FAILURE);

}
printf("group name:%s\n", g->gr name);
for(p = g->gr mem; *p != NULL; p++) {

printf("\t%s\n", *p);
}
return(EXIT SUCCESS);

}

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
getgrent(), getgrgid(), getgrnam r()

792 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getgrnam r()
Get information about the group with a given name

Synopsis:
#include <sys/types.h>
#include <grp.h>

int getgrnam r(const char* name,
struct group* grp,
char* buffer,
size t bufsize,
struct group** result);

Arguments:
name The name of the group you want to get information about.

grp A pointer to a group structure where the function can
store information about the group.

buffer A buffer from which to allocate any memory required.

bufsize The size of the buffer.

result The address of a pointer that getgrgid r() sets to the same
pointer as grp on success, or to NULL if the function can’t
find the group.

Library:
libc

Description:
If POSIX THREAD SAFE FUNCTIONS is defined, the getgrnam r()
function updates the group structure pointed by grp and stores a
pointer to that structure at the location pointed by result. The structure
contains an entry from the group database with a matching name.

This function allocates storage referenced by the group structure from
the memory provided with the buffer parameter, which is bufsize
characters in size. You can determine the maximum size needed for

May 31, 2004 Manifests 793

getgrnam r() 2004, QNX Software Systems Ltd.

this buffer by calling sysconf() with an argument of
SC GETGR R SIZE MAX.

The getgrnam r() stores a NULL pointer at the location pointed by
result on error or if the requested entry isn’t found.

Returns:
Zero for success, or an error number if an error occurred.

Errors:
ERANGE Insufficient storage was supplied via buffer and bufsize

to contain the group structure.

The getgrnam r() function uses the following functions, and as a
result, errno can be set to an error for any of these calls:

� fclose()

� fgets()

� fopen()

� fseek()

� rewind()

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

794 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getgrnam r()

See also:
getgrgid(), getgrgid r(), getgrnam(), getlogin(), sysconf()

May 31, 2004 Manifests 795

getgrouplist() 2004, QNX Software Systems Ltd.

Determine the group access list for a user

Synopsis:
#include <unistd.h>

int getgrouplist(const char *name,
gid t basegid,
gid t *groups,
int *ngroups);

Arguments:
name The name of the user.

basegid The basegid is automatically included in the list of
groups. Typically this value is given as the group number
from the password file.

groups A pointer to an array where the function can store the
group IDs.

ngroups A pointer to the size of the groups array. The function
sets the value pointed to by ngroups to be the actual
number of groups found.

Library:
libc

Description:
The getgrouplist() function reads the group file and determines the
group access list for the user specified in name.

Returns:
-1 if the size of the group list is too small to hold all the user’s groups.
The group array is filled with as many groups as fit.

796 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getgrouplist()

Files:
/etc/group Group membership list.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The getgrouplist() function uses the routines based on getgrent(). If
the invoking program uses any of these routines, the group structure
will be overwritten in the call to getgrouplist().

See also:
initgroups(), setgroups()

May 31, 2004 Manifests 797

getgroups() 2004, QNX Software Systems Ltd.

Get the supplementary group IDs of the calling process

Synopsis:
#include <sys/types.h>
#include <unistd.h>

int getgroups(int gidsetsize,
gid t grouplist[]);

Arguments:
gidsetsize The size of the grouplist array.

grouplist An array that the function can fill in with the process’s
supplementary group IDs.

Library:
libc

Description:
The getgroups() function fills the array grouplist with the
supplementary group IDs of the calling process. The values of array
entries with indices greater than or equal to the returned value are
undefined.

Returns:
The number of supplementary groups IDs; this value is zero if
NGROUPS MAX is zero. A value of -1 indicates an error (errno is
set).

Errors:
EINVAL The gidsetsize argument isn’t equal to zero, and is less

than the number of supplementary group IDs.

798 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getgroups()

Examples:
/*
* Print the supplementary group IDs of
* the calling process.
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int main(void)
{

int gidsize;
gid t *grouplist;
int i;

gidsize = getgroups(0, NULL);
grouplist = malloc(gidsize * sizeof(gid t));
getgroups(gidsize, grouplist);
for(i = 0; i < gidsize; i++)
printf("%d\n", (int) grouplist[i]);

return EXIT SUCCESS;
}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, getegid(), geteuid(), getgid(), getuid(), setgroups()

May 31, 2004 Manifests 799

gethostbyaddr() 2004, QNX Software Systems Ltd.

Get a network host entry, given an Internet address

Synopsis:
#include <netdb.h>

struct hostent * gethostbyaddr(const void * addr,
socklen t len,
int type);

Arguments:
addr A pointer to the binary-format (i.e. not NULL-terminated)

address in network byte order.

len The length, in bytes, of addr.

type The type of address. Currently, this must be AF INET.

Library:
libsocket

Description:
The gethostbyaddr() function searches for information associated
with a host, which has the address pointed to by addr within the
address family specified by type, opening a connection to the database
if necessary.

This function returns a pointer to a structure of type hostent that
describes an Internet host. This structure contains either the
information obtained from a name server, or broken-out fields from a
line in /etc/hosts.

You can use sethostent() to request the use of a connected TCP socket
for queries. If the stayopen flag is nonzero, all queries to the name
server will use TCP and the connection will be retained after each call
to gethostbyaddr() or gethostbyname(). If the stayopen flag is zero,
queries use UDP datagrams.

800 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. gethostbyaddr()

Returns:
A pointer to a valid hostent structure, or NULL if an error occurs
(h errno is set).

Errors:
See herror().

Examples:
Use the gethostbyaddr() function to find a host:

struct sockaddr in client;
struct hostent* host;

int sock, fd, len;

...

len = sizeof(client);

fd = accept(sock, (struct sockaddr*)&client, &len);

if(fd == -1) {
perror("accept");
exit(1);

}

host = gethostbyaddr((const void*)&client.sin addr,
sizeof(struct in addr),
AF INET);

printf("Connection from %s: (%s)\n",
host ? host->h name : "<unknown>",
inet ntoa(client.sin addr));

...

Files:
/etc/hosts Host database file.

May 31, 2004 Manifests 801

gethostbyaddr() 2004, QNX Software Systems Ltd.

/etc/resolv.conf

Resolver configuration file.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

Caveats:
This function uses static data storage; if you need the data for future
use, copy it before any subsequent calls overwrite it. Currently, only
the Internet address format is understood.

See also:
endhostent(), gethostbyname(), gethostbyaddr r(), gethostent(),
herror(), hostent, sethostent()

/etc/hosts, /etc/resolv.conf in the Utilities Reference

802 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. gethostbyaddr r()
Get a network host entry, in a thread-safe manner

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

struct hostent * gethostbyaddr r(
const void * addr,
socklen t length,
int type,
struct hostent * result,
char * buffer,
int buflen,
int * h errnop);

Arguments:
addr A pointer to the binary-format (i.e. not

NULL-terminated) address in network byte order.

length The length, in bytes, of addr.

type The type of address. Currently, this must be AF INET.

result A pointer to a struct hostent where the function
can store the host entry.

buffer A pointer to a buffer that the function can use during the
operation to store host database entries; buffer should be
large enough to hold all of the data associated with the
host entry. A 2K buffer is usually more than enough; a
256-byte buffer is safe in most cases.

buflen The length of the area pointed to by buffer.

h errnop A pointer to a location where the function can store an
herrno value if an error occurs.

May 31, 2004 Manifests 803

gethostbyaddr r() 2004, QNX Software Systems Ltd.

Library:
libsocket

Description:
The gethostbyaddr r() function is a thread-safe version of
gethostbyaddr(). This function gets the network host entry for the
host specified by addr. The addr argument is the network address of
the specified network family, type. The buffer for addr is at least
length bytes.

If you need to convert a text-based address into the format necessary
for use as gethostbyaddr r()’s addr, see inet pton().

Returns:
A pointer to result, or NULL if an error occurs.

Errors:
If an error occurs, the int pointed to by h errnop is set to:

ERANGE The supplied buffer isn’t large enough to store the
result.

HOST NOT FOUND

Authoritative answer: Unknown host.

NO ADDRESS No address associated with name; look for an MX
record.

NO DATA Valid name, but no data record of the requested
type. The name is known to the name server, but has
no IP address associated with it — this isn’t a
temporary error. Another type of request to the
name server using this domain name will result in
an answer (e.g. a mail-forwarder may be registered
for this domain).

804 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. gethostbyaddr r()

NO RECOVERY

Unknown server error. An unexpected server failure
was encountered. This is a nonrecoverable network
error.

TRY AGAIN Nonauthoritative answer: Host name lookup failure.
This is usually a temporary error and means that the
local server didn’t receive a response from an
authoritative server. A retry at some later time may
succeed.

Files:
/etc/hosts Local host database file.

/etc/resolv.conf

Resolver configuration file.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
gethostbyaddr(), gethostbyname(), gethostbyname r(), inet ntop(),
inet pton()

/etc/hosts, /etc/resolv.conf in the Utilities Reference

May 31, 2004 Manifests 805

gethostbyname(), gethostbyname2() 2004, QNX Software

Systems Ltd.

Get a network host entry, given a name

Synopsis:
#include <netdb.h>

struct hostent * gethostbyname(const char * name);

struct hostent * gethostbyname2(const char * name,
int af);

Arguments:
name The name of the Internet host whose entry you want to find.

af (gethostbyname2() only) The address family; one of:

� AF INET

� AF INET6

Library:
libsocket

Description:
The gethostbyname() routine gets the network host entry for a given
name. It returns a pointer to a structure of type hostent that
describes an Internet host. This structure contains either the
information obtained from a name server, or broken-out fields from a
line in /etc/hosts.

When using the name server, gethostbyname() searches for the named
host in the current domain and in the domain’s parents, unless the
name ends in a dot.

806 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. gethostbyname(),
gethostbyname2()

If the name doesn’t contain a dot, and the environment variable
HOSTALIASES contains the name of an alias file, the alias file is
first searched for an alias matching the input name. This file has the
same form as /etc/hosts.

�

You can use sethostent() to request the use of a connected TCP socket
for queries. If the stayopen flag is nonzero, all queries to the name
server use TCP and the connection is retained after each call to
gethostbyname() or gethostbyaddr(). If the stayopen flag is zero,
queries use UDP datagrams.

The gethostbyname2() function is an evolution of the gethostbyname()
function that lets you look up host names in address families other
than AF INET. If you specify an invalid address family, the function
returns NULL and sets h errno to NETDB INTERNAL.

Returns:
A pointer to a valid hostent structure, or NULL if an error occurs
(h errno is set).

Errors:
See herror().

Files:
/etc/hosts Host database file.

/etc/resolv.conf

Resolver configuration file.

For information about these files, see the Utilities Reference.

May 31, 2004 Manifests 807

gethostbyname(), gethostbyname2() 2004, QNX Software

Systems Ltd.

Environment variables:
HOSTALIASES

Name of the alias file that gethostbyname() is to search first
when the hostname doesn’t contain a dot.

Classification:
POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

Caveats:
This function uses static data storage; if you need the data for future
use, copy it before any subsequent calls overwrite it.

See also:
endhostent(), gethostbyaddr(), gethostbyname r(), gethostent(),
herror(), hostent, sethostent()

/etc/hosts, /etc/resolv.conf in the Utilities Reference

808 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. gethostbyname r()
Get a network host entry by name

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

struct hostent * gethostbyname r(const char * name,
struct hostent * result,
char * buffer,
int bufflen,
int * h errnop);

Arguments:
name The name of the Internet host whose entry you want to

find.

result A pointer to a struct hostent where the function
can store the host entry.

buffer A pointer to a buffer that the function can use during the
operation to store host database entries; buffer should be
large enough to hold all of the data associated with the
host entry. A 2K buffer is usually more than enough; a
256-byte buffer is safe in most cases.

buflen The length of the area pointed to by buffer.

h errnop A pointer to a location where the function can store an
herrno value if an error occurs.

Library:
libsocket

May 31, 2004 Manifests 809

gethostbyname r() 2004, QNX Software Systems Ltd.

Description:
The gethostbyname r() function is a thread-safe version of
gethostbyname(). This function gets the network host entry for the
host specified by name, and stores the entry in the struct hostent

pointed to by result.

Returns:
A pointer to result, or NULL if an error occurs.

Errors:
If an error occurs, the int pointed to by h errnop is set to:

ERANGE The supplied buffer isn’t large enough to store the
result.

HOST NOT FOUND

Authoritative answer: Unknown host.

NO ADDRESS No address associated with name; look for an MX
record.

NO DATA Valid name, but no data record of the requested
type. The name is known to the name server, but has
no IP address associated with it — this isn’t a
temporary error. Another type of request to the
name server using this domain name will result in
an answer (e.g. a mail-forwarder may be registered
for this domain).

NO RECOVERY

Unknown server error. An unexpected server failure
was encountered. This is a nonrecoverable network
error.

TRY AGAIN Nonauthoritative answer: Host name lookup failure.
This is usually a temporary error and means that the
local server didn’t receive a response from an

810 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. gethostbyname r()

authoritative server. A retry at some later time may
succeed.

Files:
/etc/hosts Local host database file.

/etc/resolv.conf

Resolver configuration file.

For information about these files, see the Utilities Reference.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
gethostbyaddr(), gethostbyaddr r(), gethostbyname()

/etc/hosts, /etc/resolv.conf in the Utilities Reference

May 31, 2004 Manifests 811

gethostent() 2004, QNX Software Systems Ltd.

Read the next line of the host database file

Synopsis:
#include <netdb.h>

struct hostent * gethostent(void);

Library:
libsocket

Description:
The gethostent() routine reads the next line in the host database file.

Returns:
A pointer to a valid hostent structure, or NULL if an error occurs.

Files:
/etc/hosts Host database file.

/etc/resolv.conf

Resolver configuration file.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

812 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. gethostent()

Caveats:
This function uses static data storage; if you need the data for future
use, copy it before any subsequent calls overwrite it.

Currently, this function understands only the Internet address format.

See also:
endhostent(), gethostbyaddr(), gethostbyname(), gethostent r(),
hostent, sethostent()

/etc/hosts, /etc/resolv.conf in the Utilities Reference

May 31, 2004 Manifests 813

gethostent r() 2004, QNX Software Systems Ltd.

Read the next line of the host database file

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

struct hostent * gethostent r(FILE ** hostf,
struct hostent * result,
char * buffer,
int buflen,
int * h errnop);

Arguments:
hostf NULL, or the address of the FILE * pointer associated

with the host database file.

result A pointer to a struct hostent where the function
can store the host entry.

buffer A pointer to a buffer that the function can use during the
operation to store host database entries; buffer should be
large enough to hold all of the data associated with the
host entry. A 2K buffer is usually more than enough; a
256-byte buffer is safe in most cases.

buflen The length of the area pointed to by buffer.

h errnop A pointer to a location where the function can store an
herrno value if an error occurs.

Library:
libsocket

814 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. gethostent r()

Description:
The gethostent r() function is a thread-safe version of the gethostent()
function. This function gets the local host’s entry. If the pointer
pointed to by hostf is NULL, gethostent r() opens /etc/hosts and
returns its file pointer in hostf for later use. It’s the calling process’s
responsibility to close the host file with fclose().

The first time that you call gethostent r(), pass NULL in the pointer
pointed to by hostf .

�

Returns:
A pointer to result, or NULL if an error occurs.

Errors:
If an error occurs, the int pointed to by h errnop is set to:

ERANGE The supplied buffer isn’t large enough to store the
result.

HOST NOT FOUND

Authoritative answer: Unknown host.

NO ADDRESS No address associated with name, look for an MX
record.

NO DATA Valid name, no data record of the requested type.
The name is known to the name server, but has no
IP address associated with it — this isn’t a
temporary error. Another type of request to the
name server using this domain name will result in
an answer (e.g. a mail-forwarder may be registered
for this domain).

NO RECOVERY

Unknown server error. An unexpected server failure
was encountered. This is a nonrecoverable network
error.

May 31, 2004 Manifests 815

gethostent r() 2004, QNX Software Systems Ltd.

TRY AGAIN Nonauthoritative answer: Host name lookup failure.
This is usually a temporary error and means that the
local server didn’t receive a response from an
authoritative server. A retry at some later time may
succeed.

Files:
/etc/hosts Local host database file.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
endhostent(), gethostent(), sethostent()

/etc/hosts in the Utilities Reference

816 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. gethostname()
Get the name of the current host

Synopsis:
#include <unistd.h>

int gethostname(char * name,
size t namelen);

Arguments:
name A buffer where the function can store the host name.

namelen The size of the buffer.

Library:
libc

Description:
The gethostname() function stores in name the standard hostname for
the current processor, as previously set by sethostname(). The
parameter namelen specifies the size of the name array. The returned
name is NULL-terminated unless insufficient space is provided.

This function gets the value of the CS HOSTNAME configuration
string, not that of the HOSTNAME environment variable.

�

Returns:
0 Success.

-1 An error occurred (errno isn’t set).

Classification:
Standard Unix, POSIX 1003.1g (draft)

May 31, 2004 Manifests 817

gethostname() 2004, QNX Software Systems Ltd.

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
Hostnames are limited to MAXHOSTNAMELEN characters (defined in
<sys/param.h>).

See also:
sethostname()

818 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getifaddrs()
Get a network interface address

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>
#include <ifaddrs.h>

int getifaddrs(struct ifaddrs ** ifap);

Arguments:
ifap The address of a location where the function can store a

pointer to a linked list of ifaddrs structures that contain the
data related to the network interfaces on the local machine.

Library:
libsocket

Description:
The getifaddrs() function stores a reference to a linked list of the
network interfaces on the local machine in the memory referenced by
ifap.

The data returned by getifaddrs() is dynamically allocated; you
should free it by calling freeifaddrs() when you no longer need it.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
The getifaddrs() function may fail and set errno for any of the errors
specified by:

� ioctl()

� malloc()

May 31, 2004 Manifests 819

getifaddrs() 2004, QNX Software Systems Ltd.

� socket()

� sysctl()

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, freeifaddrs(), ifaddrs, ioctl(), malloc(), socket(), sysctl()

820 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. GETIOVBASE()
Get the base member of an iov t structure

Synopsis:
#include <unistd.h>

#define GETIOVBASE(iov) ...

Arguments:
iov The iov t structure from which you want to get the base

member.

Library:
libc

Description:
This macro evaluates to the iov base member of the given iov t

structure.

Returns:
The iov base member of the iov t structure, which is of type void
*.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 821

GETIOVBASE() 2004, QNX Software Systems Ltd.

See also:
GETIOVLEN(), SETIOV()

822 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. GETIOVLEN()
Get the length member of an iov t structure

Synopsis:
#include <unistd.h>

#define GETIOVLEN(iov) ...

Arguments:
iov The iov t structure from which you want to get the length

member.

Library:
libc

Description:
This macro evaluates to the iov len member of the given iov t

structure.

Returns:
The iov len member of the iov t structure, which is of type size t.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 823

GETIOVLEN() 2004, QNX Software Systems Ltd.

See also:
GETIOVBASE(), SETIOV()

824 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getitimer()
Get the value of an interval timer

Synopsis:
#include <sys/time.h>

int getitimer (int which,
struct itimerval *value);

Arguments:
which The interval time whose value you want to get. Currently,

this must be ITIMER REAL.

value A pointer to a itimerval structure where the function can
store the value of the interval timer.

Library:
libc

Description:
The system provides each process with several interval timers, defined
in <sys/time.h>. The getitimer() function stores the current value
of the timer specified by which into the structure pointed to by value.

A timer value is defined by the itimerval structure (see
gettimeofday() for the definition of timeval), which includes the
following members:

struct timeval it interval; /* timer interval */
struct timeval it value; /* current value */

The it value member indicates the time to the next timer expiration.
The it interval member specifies a value to be used in reloading
it value when the timer expires. Setting it value to 0 disables a timer,
regardless of the value of it interval. Setting it interval to 0 disables a
timer after its next expiration (assuming it value is nonzero).

Time values smaller than the resolution of the system clock are
rounded up to the resolution of the system clock.

The interval timers include:

May 31, 2004 Manifests 825

getitimer() 2004, QNX Software Systems Ltd.

ITIMER REAL Decrements in real time. A SIGALRM signal is
delivered when this timer expires.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EINVAL The specified number of seconds is greater than

100,000,000, the number of microseconds is greater than
or equal to 1,000,000, or the which argument is
unrecognized.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
alarm(), gettimeofday(), pthread attr setscope(), pthread sigmask(),
setitimer(), sigprocmask(), sleep(), sysconf()

826 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getlogin()
Get the user name associated with the calling process

Synopsis:
#include <unistd.h>

char* getlogin(void) ;

Library:
libc

Description:
The getlogin() function returns a pointer to a string containing the
login name of the user associated with the calling process.

Returns:
A pointer to a string containing the user’s login name, or NULL if the
user’s login name can’t be found.

The return value from getlogin() may point to static data and,
therefore, may be overwritten by each call.

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

May 31, 2004 Manifests 827

getlogin() 2004, QNX Software Systems Ltd.

See also:
getlogin r(), getpwnam(), getpwuid()

828 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getlogin r()
Get the user name associated with the calling process

Synopsis:
#include <unistd.h>

int getlogin r(char* name,
size t namesize);

Arguments:
name A buffer where the function can store the user name.

namesize The size of the buffer.

Library:
libc

Description:
If POSIX THREAD SAFE FUNCTIONS is defined, the getlogin r()
function puts the login name of the user associated with the calling
process in the character array pointed to by name. The array is
namesize characters long and should have space for the name and the
terminating NULL character. The maximum size of the login name is
POSIX LOGIN NAME MAX.

If getlogin r() is successful, name points to the name the user used at
login, even if there are several login names with the same user ID.

Returns:
EOK Success.

ERANGE Insufficient storage was supplied via the name and
namesize arguments to contain the user’s name.

May 31, 2004 Manifests 829

getlogin r() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
getlogin(), getpwnam(), getpwnam r(), getpwuid(), getpwuid r()

830 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getnameinfo()
Perform address-to-nodename translation in protocol-independent manner

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int getnameinfo(const struct sockaddr *sa,
socklen t salen,
char *host, size t hostlen,
char *serv, size t servlen,
int flags);

Arguments:
sa Points to either a sockaddr in structure (for IPv4) or a

sockaddr in6 structure (for IPv6) that holds the IP
address and port number.

salen Length of the sockaddr in or sockaddr in6

structure.

host Buffer pointer for the host.

hostlen Size of the host buffer.

serv Buffer pointer for the server.

servlen Length of the server buffer.

flags Change the default action of getnameinfo(). By default,
the fully qualified domain name (FQDN) for the host is
looked up in the DNS and returned.

These flags are defined in <netdb.h>:

NI NOFQDN Only the nodename portion of the
FQDN is returned for local hosts.

NI NUMERICHOST

If set, or if the host’s name can’t be
located in the DNS, the numeric form

May 31, 2004 Manifests 831

getnameinfo() 2004, QNX Software Systems Ltd.

of the host’s address is returned instead
of its name (e.g. by calling inet ntop()
instead of getnodebyaddr()).

NI NAMEREQD If set, an error is returned when the
host’s name can’t be located in the
DNS.

NI NUMERICSERV

If set, the numeric form of the service
address (instead of its name) is
returned e.g. its port number. You may
require two NI NUMERICxxx flags to
support the -n flag that many
commands provide.

NI DGRAM Specify that the service is a datagram
service. Call getservbyport() with a
second argument of udp instead of its
default of tcp. This is required for the
few ports (512-514) that have different
services for UDP and TCP.

Library:
libsocket

Description:
The getnameinfo() function defines and performs
protocol-independent address-to-nodename translation. You can think
of it as implementing the reverse-functionality of getaddrinfo() or
similar functionality of gethostbyaddr() or getservbypor().

This function looks up an IP address and port number provided by the
caller in the DNS and system-specific database. For both IP address
and port number, the getnameinfo() function returns text strings in
respective buffers provided by the caller. The function indicates
successful completion by a zero return value; a non-zero return value
indicates failure.

832 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getnameinfo()

The getnameinfo() function returns the nodename associated with the
IP address in the buffer pointed to by the host argument. The hostlen
argument gives the length of this buffer.

The getnameinfo() function returns the service name associated with
the port number in the buffer pointed to by the serv argument. The
servlen argument gives the length of this buffer.

Specify zero for hostlen or servlen when the caller chooses not to
return either string. Otherwise, the caller must provide buffers large
enough to hold the nodename and the service name, including the
terminating null characters.

Most systems don’t provide constants that specify the maximum size
of either a FQDN or a service name. In order to aid your application
in allocating buffers, the following constants are defined in
<netdb.h>:

#define NI MAXHOST 1025
#define NI MAXSERV 32

You may find the first value as the constant MAXDNAME in recent
versions of BIND’s <arpa/nameser.h>; older versions of BIND
define this constant to be 256. The second value is a guess based on
the services listed in the current Assigned Numbers RFC. BIND
(Berkeley Internet Name Domain) is a suite of functionalities that
implements Domain Name System (DNS) protocols.

Extension

The implementation allows experimental numeric IPv6 address
notation with scope identifier. An IPv6 link-local address appears as
string like fe80::1%ne0, when the NI WITHSCOPEID bit is enabled
in the flags argument. See getaddrinfo() for the notation.

Returns:
0 Success.

Non-zero value

An error occurred (see below).

May 31, 2004 Manifests 833

getnameinfo() 2004, QNX Software Systems Ltd.

Errors:
EAI AGAIN The name couldn’t be resolved at this time. Future

attempts may succeed.

EAI BADFLAGS The flags had invalid values.

EAI FAIL A nonrecoverable error occurred.

EAI FAMILY The address family wasn’t recognized or the
address length was invalid for the specified family.

EAI MEMORY There was a memory allocation failure.

EAI NONAME The name doesn’t resolve for the supplied
parameters. NI NAMEREQD is set and the host’s
name can’t be located, or both node name and serv
name were null.

EAI SYSTEM A system error occurred. The error code can be
found in errno.

Examples:
The following code gets the numeric hostname and the service name
for a given socket address. There is no hardcoded reference to a
particular address family.

struct sockaddr *sa; /* input */
char hbuf[NI MAXHOST], sbuf[NI MAXSERV];

if (getnameinfo(sa, sa->sa len, hbuf, sizeof(hbuf), sbuf,
sizeof(sbuf), NI NUMERICHOST | NI NUMERICSERV)) {
errx(1, "could not get numeric hostname");
/*NOTREACHED*/
}
printf("host=%s, serv=%s\n", hbuf, sbuf);

The following version checks if the socket address has reverse address
mapping.

struct sockaddr *sa; /* input */
char hbuf[NI MAXHOST];

834 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getnameinfo()

if (getnameinfo(sa, sa->sa len, hbuf, sizeof(hbuf), NULL, 0,
NI NAMEREQD)) {
errx(1, "could not resolve hostname"); /*NOTREACHED*/
}
printf("host=%s\n", hbuf);

Classification:
POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
getaddrinfo(), gethostbyaddr(), getservbyport(), /etc/hosts,
/etc/resolv.conf, /etc/services, named

May 31, 2004 Manifests 835

getnetbyaddr() 2004, QNX Software Systems Ltd.

Get a network entry, given an address (Unix)

Synopsis:
#include <netdb.h>

struct netent * getnetbyaddr(uint32 t net,
int type);

Arguments:
net The net address whose network entry you want to find.

type The address type. This must currently be AF INET.

Library:
libsocket

Description:
The getnetbyaddr() function gets an entry for the given address, net,
from the network database, /etc/networks.

This function returns a pointer to a structure of type netent, which
contains the broken-out fields of a line in the network database.

The setnetent() function opens and rewinds the file. If you pass a
nonzero stayopen argument to setnetent(), the network database isn’t
closed after each call to getnetbyname(), or getnetbyaddr().

The getnetbyname() and getnetbyaddr() functions sequentially search
from the beginning of the file until a matching net name or net address
and type is found, or until EOF is encountered. Network numbers are
supplied in host order.

Returns:
A pointer to a valid netent structure, or NULL if an error occurs.

836 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getnetbyaddr()

Files:
/etc/networks

Network name database file.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

Caveats:
This function uses static data; if you need the data for future use, copy
it before any subsequent calls overwrite it.

Only Internet network numbers are currently understood.

See also:
endnetent(), getnetbyname(), getnetent(), netent, setnetent()

/etc/networks in the Utilities Reference

May 31, 2004 Manifests 837

getnetbyname() 2004, QNX Software Systems Ltd.

Get a network entry, given a name

Synopsis:
#include <netdb.h>

struct netent * getnetbyname(const char * name);

Arguments:
name The name of the network whose entry you want to find.

Library:
libsocket

Description:
The getnetbyname() function gets the network entry for the given
name. This function returns a pointer to a structure of type netent,
which contains the broken-out fields of a line in the network database,
/etc/networks.

The setnetent() function opens and rewinds the file. If you pass a
nonzero stayopen argument to setnetent(), the network database isn’t
closed after each call to getnetbyname() or getnetbyaddr().

The getnetbyaddr() and getnetbyname() functions sequentially search
from the beginning of the file until a matching net name or net address
and type is found, or until EOF is encountered. Network numbers are
supplied in host order.

Returns:
A pointer to a valid netent structure, or NULL if an error occurs.

Files:
/etc/networks

Network name database file.

838 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getnetbyname()

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
endnetent(), getnetbyaddr(), getnetent(), netent, setnetent()

/etc/networks in the Utilities Reference

May 31, 2004 Manifests 839

getnetent() 2004, QNX Software Systems Ltd.

Read the next line of the network name database file

Synopsis:
#include <netdb.h>

struct netent * getnetent(void);

Library:
libsocket

Description:
The getnetent() function reads the next line of the network name
database file, opening the file if necessary. It returns a pointer to a
structure of type netent, which contains the broken-out fields of a
line in the network database, /etc/networks.

Returns:
A pointer to a valid netent structure, or NULL if an error occurs.

Files:
/etc/networks

Network name database file.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

840 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getnetent()

See also:
endnetent(), getnetbyaddr(), getnetbyname(), netent, setnetent()

/etc/networks in the Utilities Reference

May 31, 2004 Manifests 841

getopt() 2004, QNX Software Systems Ltd.

Parse options from a command line

Synopsis:
#include <unistd.h>

int getopt(int argc,
char * const argv[],
const char * optstring);

extern char * optarg;
extern int optind, opterr, optopt;

Arguments:
argc The argument count that was passed to main().

argv The argument array that was passed to main().

optstring A string of recognized option letters; if a letter is
followed by a colon, the option takes an argument. Valid
option characters for optstring consist of a single
alphanumeric character (i.e. a letter or digit).

Library:
libc

Description:
The getopt() function is a command-line parser that can be used by
applications that follow the Utility Syntax Guidelines described
below.

The optind global variable is the index of the next element of the
argv[] vector to be processed. The system initializes optind to 1 when
the program is loaded, and getopt() updates it when it finishes with
each element of argv[]. Reset optind to 1 if you want to use getopt()
to process additional argument sets.

The getopt() function returns the next option character from argv that
matches a letter in optstring, if there’s one that matches. If the option

842 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getopt()

takes an argument, getopt() sets the global variable optarg to point to
the option argument as follows:

1 If the option is the last letter in the string pointed to by an
element of argv, then optarg contains the next element of argv,
and optind is incremented by 2.

2 Otherwise, optarg points to the string following the option
letter in that element of argv, and optind is incremented by 1.

The getopt() function returns -1 is returned and doesn’t change optind
if:

� argv[optind] is NULL

� *argv[optind] isn’t the character ’-’

� argv[optind] points to the string "-".

This function returns -1 after incrementing optind, if:

� argv[optind] points to the string "--".

If getopt() encounters an option character that isn’t contained in
optstring, it returns the ? character. If it detects a missing option
argument, it returns : if the first character of optstring is a colon, or ?
otherwise. In both cases, getopt() sets optopt to the option character
that caused the error.

The getopt() always prints a diagnostic message to stderr unless
opterr is set to 0, or the first character of optstring is a : character.

Utility Syntax Guidelines

The getopt() function may be used by applications that follow these
guidelines:

� When describing the syntax of a utility, the options are listed in
alphabetical order. There’s no implied relationship between the
options based upon the order in which they appear, unless
otherwise stated in the Options section, or:

May 31, 2004 Manifests 843

getopt() 2004, QNX Software Systems Ltd.

- the options are documented as mutually-exclusive and such an
option is documented to override any incompatible options
preceding it

- when an option has option arguments repeated, the option and
option argument combinations are interpreted in the order
specified on the command line.

If an option that doesn’t have option arguments is repeated, the
results depend on the application.

� Names of parameters that require substitution by actual values may
be shown with embedded underscores or as <parameter name>.
Angle brackets are used for the symbolic grouping of a phrase
representing a single parameter and portable applications shouldn’t
include them in data submitted to the utility.

� Options may be documented individually, or grouped (if they don’t
take option arguments):
utility name [-a] [-b] [-c option argument]

[-d|-e] [-foption argument] [operand...]

Or:
utility name [-ab] [-c option argument]

[-d|-e] [-foption argument] [operand...]

Utilities with very complex arguments may be shown as:
utility name [options] [operand]

� Unless specified, whenever an operand or option argument is, or
contains, a numeric value:

- the number is interpreted as a decimal integer

- numerals in the range 0 to 2,147,483,647 are syntactically
recognized as numeric values

- when the utility description states that it accepts negative
numbers as operands or option arguments, numerals in the

844 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getopt()

range -2,147,483,647 to 2,147,483,647 are syntactically
recognized as numeric values

- ranges greater than those listed here are allowed.

All numbers within the allowable range aren’t necessarily
semantically correct. A standard utility that accepts an option
argument or operand that’s to be interpreted as a number, and for
which a range of values smaller than that shown above is
permitted, describes that smaller range along with the description
of the option argument or operand. If an error is generated, the
utility’s diagnostic message indicates that the value is out of the
supported range, not that it’s syntactically incorrect.

� Arguments or option arguments enclosed in the “[” and “]”
notation are optional and can be omitted. Portable applications
shouldn’t include the “[” and “]” symbols in data submitted to the
utility.

� Ellipses (. . .) are used to denote that one or more occurrences of
an option or operand are allowed. When an option or an operand
followed by ellipses is enclosed in brackets, zero or more options
or operands may be specified. The forms:

utility name -f option argument...[operand...]
utility name [-g option argument]...[operand...]

indicate that multiple occurrences of the option and its option
argument preceding the ellipses are valid, with semantics as
indicated in the Options section of the utility. In the first example,
each option argument requires a preceding -f and at least one
-foption argument must be given.

� When the synopsis is too long to be printed on a single line in the
documentation, the indented lines following the initial line are
continuation lines. An actual use of the command appears on a
single logical line.

May 31, 2004 Manifests 845

getopt() 2004, QNX Software Systems Ltd.

Returns:
The next option character specified on the command line; a colon if a
missing argument is detected and the first character of optstring is a
colon; a question mark if an option character is encountered that’s not
in optstring and the first character of optstring isn’t a colon;
otherwise, -1 when all command line options have been parsed.

Examples:
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char* argv[])
{

int c, errflag = 0;

while((c = getopt(argc, argv, "abt:"))
!= -1) {
switch(c) {

case ’a’: printf("apples\n");
break;

case ’b’: printf("bananas\n");
break;

case ’t’: printf("tree = %s\n", optarg);
break;

case ’?’: ++errflag;
break;

}
}
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1a

Safety

Cancellation point Yes

Interrupt handler No

continued. . .

846 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getopt()

Safety

Signal handler No

Thread No

See also:
getsubopt(), stderr

Guidelines 3,4,5,6,7,9 and 10 in the Base Definitions volume of the
IEEE Std.1003.1-2001, Section 12.2, Utility Syntax Guidelines.

May 31, 2004 Manifests 847

getpass() 2004, QNX Software Systems Ltd.

Prompt for and read a password

Synopsis:
#include <unistd.h>

char *getpass(const char *prompt);

Arguments:
prompt The string you want to display to prompt for the password.

Library:
libc

Description:
The getpass() function can be used to get a password. It opens the
current terminal, displays the given prompt, suppresses echoing, reads
up to 32 characters into a static buffer, and restores echoing. This
function adds a null character to the end of the string, but ignores
additional characters and the newline character.

Returns:
A pointer to the static buffer.

Classification:
Legacy Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

848 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getpass()

Caveats:
This function leaves its result in an internal static buffer and returns a
pointer to it. Subsequent calls to getpass() modify the same buffer.
The calling process should zero the password as soon as possible to
avoid leaving the clear-text password visible in the process’s address
space.

See also:
crypt()

May 31, 2004 Manifests 849

getpeername() 2004, QNX Software Systems Ltd.

Get the name of the peer connected to a socket

Synopsis:
#include <sys/socket.h>

int getpeername(int s,
struct sockaddr * name,
socklen t * namelen);

Arguments:
s The socket whose connected peer you want to get.

name A buffer where the function can store the name of the
peer.

namelen A pointer to a socklen t object that initially specifies
the size of the buffer. This function stores the actual size
of the name, in bytes, in this object.

Library:
libsocket

Description:
The getpeername() function returns the name of the peer connected to
socket s. The name is truncated if the buffer provided is too small.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Invalid descriptor s.

EFAULT The name parameter points to memory not in a valid
part of the process address space.

850 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getpeername()

ENOBUFS Insufficient resources were available in the system
to perform the operation.

ENOTCONN The socket isn’t connected.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
accept(), bind(), getsockname(), socket()

May 31, 2004 Manifests 851

getpgid() 2004, QNX Software Systems Ltd.

Get a process group ID

Synopsis:
#include <unistd.h>

pid t getpgid(pid t pid);

Arguments:
pid The ID of the process whose process group ID you want to

get.

Library:
libc

Description:
The getpgid() returns the group ID for the process specified by pid. If
pid is 0, getpgid() returns the calling process’s group ID.

The following definitions are worth mentioning:

Process An executing instance of a program, identified by
a nonnegative integer called a process ID.

Process group A collection of one or more processes, with a
unique process group ID. A process group ID is a
positive integer.

Returns:
A process group ID for success, or (pid t)-1 if an error occurs.

Errors:
If an error occurs, errno is set to:

ESRCH The process specified by pid doesn’t exist.

852 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getpgid()

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
getsid(), setpgid(), setsid()

May 31, 2004 Manifests 853

getpgrp() 2004, QNX Software Systems Ltd.

Get the process group

Synopsis:
#include <sys/types.h>
#include <process.h>

pid t getpgrp(void);

Library:
libc

Description:
The getpgrp() function gets the ID of the process group to which the
calling process belongs.

Returns:
The calling process’s process group ID.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <process.h>
#include <sys/types.h>

int main(void)
{

printf("I am in process group %d\n", (int) getpgrp());
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

continued. . .

854 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getpgrp()

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
setpgrp(), setsid()

May 31, 2004 Manifests 855

getpid() 2004, QNX Software Systems Ltd.

Get the process ID

Synopsis:
#include <process.h>

pid t getpid(void);

Library:
libc

Description:
The getpid() function gets the process ID for the calling process.

Returns:
The process ID of the calling process.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <process.h>

int main (void)
{

printf("I’m process %d\n", getpid());
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

continued. . .

856 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getpid()

Safety

Thread Yes

See also:
getppid()

May 31, 2004 Manifests 857

getppid() 2004, QNX Software Systems Ltd.

Get the parent process ID

Synopsis:
#include <sys/types.h>
#include <process.h>

pid t getppid(void);

Library:
libc

Description:
The getppid() function gets the process ID of the parent of the calling
process.

Returns:
The calling process’s parent’s process ID.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <process.h>

int main(void)
{

printf("My parent is %d\n", getppid());
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

continued. . .

858 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getppid()

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
getpid()

May 31, 2004 Manifests 859

getprio() 2004, QNX Software Systems Ltd.

Get the priority of a given process

Synopsis:
#include <sched.h>

int getprio(pid t pid);

Arguments:
pid The process ID of the process whose priority you want to get.

Library:
libc

Description:
The getprio() function returns the current priority of thread 1 in
process pid. If pid is zero, the priority of the calling thread is returned.

Returns:
The priority, or -1 if an error occurred (errno is set).

Errors:
ESRCH The process pid doesn’t exist.

Classification:
QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

860 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getprio()

Caveats:
The getprio() and setprio() functions are included in the QNX
Neutrino libraries for porting QNX 4 applications. For new programs,
use sched getparam() or pthread getschedparam().

See also:
errno, pthread getschedparam(), pthread setschedparam(),
sched get priority max(), sched get priority min(), sched getparam(),
sched getscheduler(), sched setscheduler(), sched yield(), setprio()

May 31, 2004 Manifests 861

getprotobyname() 2004, QNX Software Systems Ltd.

Get a protocol entry, given a name

Synopsis:
#include <netdb.h>

struct protoent * getprotobyname(const char * name);

Arguments:
name The name of the protocol whose entry you want to get.

Library:
libsocket

Description:
The getprotobyname() function gets the entry for the given name from
the protocol database, /etc/protocols. This function returns a
pointer to a structure of type protoent, which contains the
broken-out fields of a line in the network protocol database.

The setprotoent() function opens and rewinds the file. If you pass a
nonzero stayopen argument to setprotoent(), the protocol database
isn’t closed after each call to getprotobyname() or
getprotobynumber().

The getprotobyname() and getprotobynumber() functions sequentially
search from the beginning of the file until a matching protocol name
or protocol number is found, or until EOF is encountered.

Returns:
A pointer to a valid protoent structure, or NULL if an error occurs.

Files:
/etc/protocols

Protocol name database file.

862 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getprotobyname()

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

Caveats:
This function uses static data; if you need the data for future use, copy
it before any subsequent calls overwrite it.

Currently, only the Internet protocols are understood.

See also:
endprotoent(), getprotobynumber(), getprotoent(), protoent,
setprotoent()

/etc/protocols in the Utilities Reference

May 31, 2004 Manifests 863

getprotobynumber() 2004, QNX Software Systems Ltd.

Get a protocol entry, given a number

Synopsis:
#include <netdb.h>

struct protoent * getprotobynumber(int proto);

Arguments:
proto The protocol number whose entry you want to get.

Library:
libsocket

Description:
The getprotobynumber() function gets the protocol entry for the given
number. It returns a pointer to structure of type protoent, which
contains the broken-out fields of a line in the network protocol
database, /etc/protocols.

The setprotoent() function opens and rewinds the file. If you pass a
nonzero stayopen argument to setprotoent(), the protocol database
isn’t closed after each call to getprotobyname() or
getprotobynumber().

The getprotobyname() and getprotobynumber() functions sequentially
search from the beginning of the file until a matching protocol name
or protocol number is found, or until EOF is encountered.

Returns:
A pointer to a valid protoent structure, or NULL if an error occurs.

Files:
/etc/protocols

Protocol name database file.

864 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getprotobynumber()

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

Caveats:
This function uses static data; if you need the data for future use, copy
it before any subsequent calls overwrite it.

Currently, only the Internet protocols are understood.

See also:
endprotoent(), getprotobyname(), getprotoent(), protoent,
setprotoent()

/etc/protocols in the Utilities Reference

May 31, 2004 Manifests 865

getprotoent() 2004, QNX Software Systems Ltd.

Read the next line of the protocol name database file

Synopsis:
#include <netdb.h>

struct protoent * getprotoent(void);

Library:
libsocket

Description:
The getprotoent() function reads the next line of the protocol name
database file, opening the file if necessary. It returns a pointer to a
structure of type protoent, which contains the broken-out fields of a
line in the network protocol database, /etc/protocols.

Returns:
A pointer to a valid protoent structure, or NULL if an error occurs.

Files:
/etc/protocols

Protocol name database file.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

866 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getprotoent()

Caveats:
This function uses static data; if you need the data for future use, copy
it before any subsequent calls overwrite it.

Currently, only the Internet protocols are understood.

See also:
endprotoent(), getprotobyname(), getprotobynumber(), protoent,
setprotoent()

/etc/protocols in the Utilities Reference

May 31, 2004 Manifests 867

getpwent() 2004, QNX Software Systems Ltd.

Get an entry from the password database

Synopsis:
#include <sys/types.h>
#include <pwd.h>

struct passwd* getpwent(void);

Library:
libc

Description:
The getpwent() function returns the next entry from the password
database. This function uses a static buffer that’s overwritten by each
call.

The getpwent(), getpwnam(), and getpwuid(), functions share the
same static buffer.

�

Returns:
A pointer to an object of type struct passwd containing the next
entry from the password database. When getpwent() is first called, the
password database is opened, and remains open until either a NULL is
returned to signify end-of-file, or endpwent() is called.

Errors:
The getpwent() function uses the following functions, and as a result,
errno can be set to an error for any of these calls:

� fclose()

� fgets()

� fopen()

� fseek()

� rewind()

868 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getpwent()

Examples:
/*
* This program loops, reading a login name from standard
* input and checking to see if it is a valid name. If it
* is not valid, the entire contents of the name in the
* password database are printed.
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <pwd.h>

int main(void)
{

struct passwd* pw;
char buf[80];

setpwent();
while(gets(buf) != NULL) {
if((pw = getpwnam(buf)) != (struct passwd *)0) {

printf("Valid login name is: %s\n", pw->pw name);
} else {

setpwent();
while((pw=getpwent()) != (struct passwd *)0)
printf("%s\n", pw->pw name);

}
}
endpwent();
return(EXIT SUCCESS);

}

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

May 31, 2004 Manifests 869

getpwent() 2004, QNX Software Systems Ltd.

See also:
endpwent(), errno, getgrent(), getlogin(), getpwnam(), getpwuid(),
setpwent()

870 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getpwnam()
Get information about the user with a given name

Synopsis:
#include <sys/types.h>
#include <pwd.h>

struct passwd* getpwnam(const char* name);

Arguments:
name The name of the user whose entry you want to find.

Library:
libc

Description:
The getpwnam() function gets information about the user with the
given name. It uses a static buffer that’s overwritten by each call.

The getpwent(), getpwnam(), and getpwuid() functions share the same
static buffer.

�

The getpwnam r() function is a reentrant version of getpwnam().

Returns:
A pointer to an object of type struct passwd containing an entry
from the group database with a matching name. A NULL pointer is
returned on error or failure to find a entry with a matching name.

Examples:
/*
* Print information from the password entry
* about the user name given as argv[1].
*/

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>

May 31, 2004 Manifests 871

getpwnam() 2004, QNX Software Systems Ltd.

#include <pwd.h>

int main(int argc, char* *argv)
{

struct passwd* pw;

if((pw = getpwnam(argv[1])) == NULL) {
fprintf(stderr, "getpwnam: unknown %s\n",

argv[1]);
return(EXIT FAILURE);

}
printf("login name %s\n", pw->pw name);
printf("user id %d\n", pw->pw uid);
printf("group id %d\n", pw->pw gid);
printf("home dir %s\n", pw->pw dir);
printf("login shell %s\n", pw->pw shell);
return(EXIT SUCCESS);

}

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
getlogin(), getpwent(), getpwnam r() getpwuid()

872 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getpwnam r()
Get information about the user with a given name

Synopsis:
#include <sys/types.h>
#include <pwd.h>

int getpwnam r(const char* name,
struct passwd* pwd,
char* buffer,
size t bufsize,
struct passwd* result);

Arguments:
name The name of the user whose entry you want to find.

pwd A pointer to a passwd structure where the function can
store the entry.

buffer A block of memory that the function can use to allocate
storage referenced by the passwd structure. You can
determine the maximum size needed for this buffer by
calling sysconf() with an argument of
SC GETPW R SIZE MAX.

bufsize The size of the block that buffer points to, in characters.

result The address of a pointer to a passwd structure. If
getpwnam r() finds the entry, it stores a pointer to pwd in
the location indicated by result; otherwise the function
stores a NULL pointer there.

Library:
libc

Description:
The getpwnam r() function is a reentrant version of getpwnam(). It
gets information about the user with the given name.

May 31, 2004 Manifests 873

getpwnam r() 2004, QNX Software Systems Ltd.

If POSIX THREAD SAFE FUNCTIONS is defined, the getpwnam r()
function updates the passwd structure pointed to by pwd and stores a
pointer to that structure at the location pointed by result. The structure
contains an entry from the user database with the given name.

The function stores a NULL pointer at the location pointed by result
on error or if it can’t find the requested entry.

Returns:
Zero for success, or an error number.

Errors:
ERANGE Insufficient storage was supplied via buffer and bufsize

to contain the resulting passwd structure.

The getpwnam r() function uses the following functions, and as a
result, errno can be set to an error for any of these calls:

� fclose()

� fgets()

� fopen()

� fseek()

� rewind()

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

874 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getpwnam r()

See also:
getlogin(), getpwent(), getpwnam(), getpwuid(), getpwuid r()

May 31, 2004 Manifests 875

getpwuid() 2004, QNX Software Systems Ltd.

Get information about the user with a given ID

Synopsis:
#include <sys/types.h>
#include <pwd.h>

struct passwd* getpwuid(uid t uid);

Arguments:
uid The userid whose entry you want to find.

Library:
libc

Description:
The getpwuid() function gets information about user uid. This
function uses a static buffer that’s overwritten by each call.

The getpwent(), getpwnam(), and getpwuid() functions share the same
static buffer.

�

Returns:
A pointer to an object of type struct passwd containing an entry
from the group database with a matching uid, or NULL if an error
occurred or the function couldn’t find a matching entry.

Examples:
/*
* Print password info on the current user.
*/

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <pwd.h>

int main(void)

876 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getpwuid()

{
struct passwd* pw;

if((pw = getpwuid(getuid())) == NULL) {
fprintf(stderr,

"getpwuid: no password entry\n");
return(EXIT FAILURE);

}
printf("login name %s\n", pw->pw name);
printf("user id %d\n", pw->pw uid);
printf("group id %d\n", pw->pw gid);
printf("home dir %s\n", pw->pw dir);
printf("login shell %s\n", pw->pw shell);
return(EXIT SUCCESS);

}

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
getlogin(), getpwent(), getpwnam()

May 31, 2004 Manifests 877

getpwuid r() 2004, QNX Software Systems Ltd.

Get information about the user with a given ID

Synopsis:
#include <sys/types.h>
#include <pwd.h>

int getpwuid r(uid t uid,
struct passwd* pwd,
char* buffer,
size t bufsize,
struct passwd** result);

Arguments:
uid The userid whose entry you want to find.

pwd A pointer to a passwd structure where the function can
store the entry.

buffer A block of memory that the function can use to allocate
storage referenced by the passwd structure. You can
determine the maximum size needed for this buffer by
calling sysconf() with an argument of
SC GETPW R SIZE MAX.

bufsize The size of the block that buffer points to, in characters.

result The address of a pointer to a passwd structure. If
getpwnam r() finds the entry, it stores a pointer to pwd in
the location indicated by result; otherwise the function
stores a NULL pointer there.

Library:
libc

Description:
The getpwuid r() function is a reentrant version of getpwuid(). It lets
a process gain more knowledge about user with the given uid.

878 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getpwuid r()

If POSIX THREAD SAFE FUNCTIONS is defined, the getpwuid r()
function updates the passwd structure pointed to by pwd and stores a
pointer to that structure at the location pointed by result. The structure
contains an entry from the user database with a matching uid.

The function stores a NULL pointer at the location pointed by result
on error or if it can’t find the requested entry.

Returns:
Zero for success, or an error number.

Errors:
ERANGE Insufficient storage was supplied via buffer and bufsize

to contain the resulting passwd structure.

The getpwuid r() function uses the following functions, and as a
result, errno can be set to an error for any of these calls:

� fclose()

� fgets()

� fopen()

� fseek()

� rewind()

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 879

getpwuid r() 2004, QNX Software Systems Ltd.

See also:
getlogin(), getpwnam(), getpwnam r(), getpwuid()

880 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getrlimit(), getrlimit64()
Get the limit on a system resource

Synopsis:
#include <sys/resource.h>

int getrlimit(int resource,
struct rlimit * rlp);

int getrlimit64(int resource,
struct rlimit64 * rlp);

Arguments:
resource The resource whose limit you want to get. For a list of

the possible resources, their descriptions, and the actions
taken when the current limit is exceeded, see setrlimit().

rlp A pointer to a rlimit or rlimit64 structure where the
function can store the limit on the resource. The rlimit
and rlimit64 structures include at least the following
members:

rlim t rlim cur; /* current (soft) limit */
rlim t rlim max; /* hard limit */

The rlim t type is an arithmetic data type to which you
can cast objects of type int, size t, and off t

without loss of information.

Library:
libc

Description:
The getrlimit() function gets the limits on the consumption of a
variety of system resources by a process and each process it creates.
The getrlimit64() function is a 64-bit version of getrlimit().

Each call to getrlimit() identifies a specific resource to be operated
upon as well as a resource limit. A resource limit is a pair of values:

May 31, 2004 Manifests 881

getrlimit(), getrlimit64() 2004, QNX Software Systems Ltd.

� the current (soft) limit

� a maximum (hard) limit.

A process can change soft limits to any value that’s less than or equal
to the hard limit. A process may (irreversibly) lower its hard limit to
any value that’s greater than or equal to the soft limit. Only a process
with an effective user ID of root can raise a hard limit. Both hard
and soft limits can be changed in a single call to setrlimit() subject to
the constraints described above. Limits may have an “infinite” value
of RLIM INFINITY.

Because limit information is stored in the per-process information, the
shell builtin ulimit command must directly execute this system call
if it’s to affect all future processes created by the shell.

The values of the current limit of the following resources affect these
parameters:

Resource Parameter

RLIMIT FSIZE FCHR MAX

RLIMIT NOFILE OPEN MAX

When using getrlimit(), if a resource limit can be represented
correctly in an object of type rlim t, then its representation is
returned; otherwise, if the value of the resource limit is equal to that
of the corresponding saved hard limit, the value returned is
RLIM SAVED MAX; otherwise, the value returned is
RLIM SAVED CUR.

A limit whose value is greater than RLIM INFINITY is permitted.

The exec* family of functions also causes resource limits to be saved.

882 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getrlimit(), getrlimit64()

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EFAULT The rlp argument points to an illegal address.

EINVAL An invalid resource was specified.

EPERM The limit specified to setrlimit() would’ve raised the
maximum limit value, and the effective user of the
calling process isn’t the superuser.

Classification:
getrlimit() is standard Unix; getrlimit64() is for large-file support

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
brk(), execl(), execle(), execlp(), execlpe(), execv(), execve(), execvp(),
execvpe(), fork(), getdtablesize(), malloc(), open(), setrlimit(),
setrlimit64(), signal(), sysconf()

May 31, 2004 Manifests 883

getrusage() 2004, QNX Software Systems Ltd.

Get information about resource utilization

Synopsis:
#include <sys/resource.h>

int getrusage(int who,
struct rusage * r usage);

Arguments:
who Which process to get the usage for:

� RUSAGE CHILDREN — get information about
resources used by the terminated and waited-for
children of the current process. If the child is never
waited for (e.g if the parent has SA NOCLDWAIT set,
or sets SIGCHLD to SIG IGN), the resource
information for the child process is discarded and isn’t
included.

� RUSAGE SELF — get information about resources
used by the current process.

r usage A pointer to an object of type struct rusage in which
the function can store the resource information; see
below.

Library:
libc

Description:
The getrusage() function provides measures of the resources used by
the current process or its terminated and waited-for child processes,
depending on the value of the who argument.

The rusage structure is defined as:

struct timeval ru utime; /* user time used */
struct timeval ru stime; /* system time used */
long ru maxrss; /* max resident set size */

884 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getrusage()

long ru ixrss; /* integral shared memory size */
long ru idrss; /* integral unshared data " */
long ru isrss; /* integral unshared stack " */
long ru minflt; /* page reclaims */
long ru majflt; /* page faults */
long ru nswap; /* swaps */
long ru inblock; /* block input operations */
long ru oublock; /* block output operations */
long ru msgsnd; /* messages sent */
long ru msgrcv; /* messages received */
long ru nsignals; /* signals received */
long ru nvcsw; /* voluntary context switches */
long ru nivcsw; /* involuntary " */

The members include:

ru utime The total amount of time, in seconds and
microseconds, spent executing in user mode.

ru stime The total amount of time, in seconds and
microseconds, spent executing in system mode.

ru maxrss The maximum resident set size, given in pages. See
the Caveats section, below.

ru ixrss Not currently supported.

ru idrss An “integral” value indicating the amount of memory
in use by a process while the process is running. This
value is the sum of the resident set sizes of the
process running when a clock tick occurs. The value
is given in pages times clock ticks. It doesn’t take
sharing into account. See the Caveats section, below.

ru isrss Not currently supported.

ru minflt The number of page faults serviced that didn’t
require any physical I/O activity. See the Caveats
section, below.

ru majflt The number of page faults serviced that required
physical I/O activity. This could include page ahead

May 31, 2004 Manifests 885

getrusage() 2004, QNX Software Systems Ltd.

operations by the kernel. See the Caveats section,
below

ru nswap The number of times a process was swapped out of
main memory.

ru inblock The number of times the file system had to perform
input in servicing a read() request.

ru oublock The number of times the filesystem had to perform
output in servicing a write() request.

ru msgsnd The number of messages sent over sockets.

ru msgrcv The number of messages received from sockets.

ru nsignals The number of signals delivered.

ru nvcsw The number of times a context switch resulted due to
a process’s voluntarily giving up the processor before
its timeslice was completed (usually to await
availability of a resource).

ru nivcsw The number of times a context switch resulted due to
a higher priority process’s becoming runnable or
because the current process exceeded its time slice.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EFAULT The address specified by the r usage argument isn’t in a

valid portion of the process’s address space.

EINVAL Invalid who parameter.

886 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getrusage()

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
Only the timeval fields of struct rusage are supported.

The numbers ru inblock and ru oublock account only for real I/O, and
are approximate measures at best. Data supplied by the cache
mechanism is charged only to the first process to read and the last
process to write the data.

The way resident set size is calculated is an approximation, and could
misrepresent the true resident set size.

Page faults can be generated from a variety of sources and for a
variety of reasons. The customary cause for a page fault is a direct
reference by the program to a page that isn’t in memory. Now,
however, the kernel can generate page faults on behalf of the user, for
example, servicing read() and write() functions. Also, a page fault can
be caused by an absent hardware translation to a page, even though
the page is in physical memory.

In addition to hardware-detected page faults, the kernel may cause
pseudo page faults in order to perform some housekeeping. For
example, the kernel may generate page faults, even if the pages exist
in physical memory, in order to lock down pages involved in a raw
I/O request.

May 31, 2004 Manifests 887

getrusage() 2004, QNX Software Systems Ltd.

By definition, major page faults require physical I/O, while minor
page faults don’t. For example, reclaiming the page from the free list
would avoid I/O and generate a minor page fault. More commonly,
minor page faults occur during process startup as references to pages
which are already in memory. For example, if an address space faults
on some “hot” executable or shared library, a minor page fault results
for the address space. Also, anyone doing a read() or write() to
something that’s in the page cache gets a minor page fault(s) as well.

There’s no way to obtain information about a child process that hasn’t
yet terminated.

See also:
gettimeofday(), read(), times(), wait(), write()

888 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. gets()
Get a string of characters from standard input

Synopsis:
#include <stdio.h>

char *gets(char *buf);

Arguments:
buf A buffer where the function can store the string.

Library:
libc

Description:
The gets() function gets a string of characters from the stdin stream,
and stores them in the array pointed to by buf until end-of-file is
encountered or a newline character is read. Any newline character is
discarded, and the string is NUL-terminated.

You should use fgets() instead of gets(); gets() happily overflows the
buf array if a newline character isn’t read from stdin before the end of
the array is reached.

�

The gets() function is similar to fgets(), except that gets() operates
with stdin, has no size argument, and replaces a newline character
with the NUL character.

Returns:
A pointer to buf , or NULL when end-of-file is encountered before
reading any characters or a read error occurred (errno is set).

May 31, 2004 Manifests 889

gets() 2004, QNX Software Systems Ltd.

Use feof() or ferror() to distinguish an end-of-file condition from an
error.

�

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

char buffer[80];

while(gets(buffer) != NULL) {
puts(buffer);

}

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, feof(), ferror(), fopen(), getc(), fgetc(), fgets(), puts(), ungetc()

890 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getservbyname()
Get a service entry, given a name

Synopsis:
#include <netdb.h>

struct servent * getservbyname(const char * name,
const char * proto);

Arguments:
name The name of the service whose entry you want to find.

proto NULL, or the protocol for the service.

Library:
libsocket

Description:
The getservbyname() function gets the entry for the given name and
protocol from the network services database, /etc/services. This
function returns a pointer of type servent, which contains the
broken-out fields of a line in the network services database.

The setservent() function opens and rewinds the file. If you pass a
nonzero stayopen argument to setservent(), the services database isn’t
closed after each call to getservbyname() or getservbyport().

The getservbyname() and getservbyport() functions sequentially
search from the beginning of the file until a matching protocol name
or port number is found, or until EOF is encountered. If a protocol
name is also supplied (non-NULL), searches must also match the
protocol.

Returns:
A valid pointer to a servent structure, or NULL if an error occurs.

May 31, 2004 Manifests 891

getservbyname() 2004, QNX Software Systems Ltd.

Files:
/etc/services

Network services database file.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

Caveats:
This function uses static data; if you need the data for future use, copy
it before any subsequent calls overwrite it.

See also:
endservent(), getprotoent(), getservbyport(), getservent(), servent,
setservent()

/etc/services in the Utilities Reference

892 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getservbyport()
Get a service entry, given a port

Synopsis:
#include <netdb.h>

struct servent * getservbyport(int port,
const char * proto);

Arguments:
port The port number for the service.

proto NULL, or the protocol for the service.

Library:
libsocket

Description:
The getservbyport() function gets the entry for the given port from the
services database, /etc/services. This function returns a pointer
to a structure of type servent, which contains the broken-out fields
of a line in the network services database.

The setservent() function opens and rewinds the file. If you pass a
nonzero stayopen argument to setservent(), the services database isn’t
closed after each call to getservbyname() or getservbyport().

The getservbyport() function sequentially searches from the
beginning of the file until a matching protocol name or port number is
found, or until EOF is encountered. If a protocol name is also supplied
(non-NULL), searches must also match the protocol.

Returns:
A valid pointer to a servent structure, or NULL if an error occurs.

May 31, 2004 Manifests 893

getservbyport() 2004, QNX Software Systems Ltd.

Files:
/etc/services

Network services database file.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

Caveats:
This function uses static data; if you need the data for future use, copy
it before any subsequent calls overwrite it.

See also:
endservent(), getservbyname(), getservent(), servent, setservent()

/etc/services in the Utilities Reference

894 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getservent()
Read the next line of network services database file

Synopsis:
#include <netdb.h>

struct servent * getservent(void);

Library:
libsocket

Description:
The getservent() function reads the next line of network services
database file, opening the file if necessary. It returns a pointer to a
structure of type servent, which contains the broken-out fields of a
line in the network services database, /etc/services.

Returns:
A valid pointer to a servent structure, or NULL if an error occurs.

Files:
/etc/services

Network services database file.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

May 31, 2004 Manifests 895

getservent() 2004, QNX Software Systems Ltd.

Caveats:
This function uses static data; if you need the data for future use, copy
it before any subsequent calls overwrite it.

See also:
endservent(), getservbyname(), getservbyport(), servent,
setservent()

/etc/services in the Utilities Reference

896 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getsid()
Get the session ID of a process

Synopsis:
#include <unistd.h>

pid t getsid(pid t pid);

Arguments:
pid The process ID for the process whose session ID you want to

get.

Library:
libc

Description:
The getsid() function determines the session ID for the given process
ID, pid.

Returns:
The session ID, or -1 if an error occurs (errno is set).

Errors:
EPERM The process specified by pid is not in the same session

as the calling process. The implementation doesn’t
allow access to the process group ID of the session
leader from the calling process.

EINVAL There isn’t a process with the given ID.

Classification:
Standard Unix

May 31, 2004 Manifests 897

getsid() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, setsid()

898 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getsockname()
Get the name of a socket

Synopsis:
#include <sys/socket.h>

int getsockname(int s,
struct sockaddr * name,
socklen t * namelen);

Arguments:
s The file descriptor of the socket whose name you want to

get.

name A pointer to a sockaddr object where the function can
store the socket’s name.

namelen A pointer to a socklen t object that initially indicates
the amount of space pointed to by name. The function
updates namelen to contain the actual size of the name
(in bytes).

Library:
libsocket

Description:
The getsockname() function returns the current name for the specified
socket.

Returns:
0 Success.

-1 An error occurred (errno is set).

May 31, 2004 Manifests 899

getsockname() 2004, QNX Software Systems Ltd.

Errors:
EBADF Invalid descriptor s.

EFAULT The name parameter points to memory that isn’t in a
valid part of the process address space.

ENOBUFS Insufficient resources were available in the system to
perform the operation.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
getpeername()

900 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getsockopt()
Get options associated with a socket

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>

int getsockopt(int s,
int level,
int optname,
void * optval,
socklen t * optlen);

Arguments:
s The file descriptor of the socket that the option is to be

applied to, as returned by socket().

level The protocol layer that the option is to be applied to. In
most cases, it’s a socket-level option and is indicated by
SOL SOCKET.

optname The option for the socket file descriptor. For a list of
options, see “Options,” below.

optval A pointer to the value of the option (in most cases,
whether the option is to be turned on or off). If no
option value is to be returned, optval may be NULL.

Most socket-level options use an int parameter for
optval. Others, such as the SO LINGER,
SO SNDTIMEO, and SO RCVTIMEO options, use
structures that also let you get data associated with the
option.

optlen A pointer to the length of the value of the option. This
argument is a value-result parameter; initialize it to
indicate the size of the buffer pointed to by optval.

May 31, 2004 Manifests 901

getsockopt() 2004, QNX Software Systems Ltd.

Library:
libsocket

Description:
The getsockopt() function gets options associated with a socket.

Manipulating socket options

When manipulating a socket option, you must specify the option’s
name (optname) and the level (level) at which the option resides.

To manipulate options at the socket-level, specify level as
SOL SOCKET. When manipulating options any other level, the value
that you specify for level is represented by the protocol number of the
appropriate protocol controlling the option. You can obtain the value
in a variety of ways:

� from the “Options” section below, use the symbolic constant (e.g.
IPPROTO IP, IPPROTO TCP) that corresponds to the option

� from /etc/protocols, specify the protocol number for the
appropriate protocol

� call getprotobyname() and pass the appropriate protocol (e.g.
getprotobyname(tcp);) to retrieve the number of the
protocol level.

The latter two ways might not work if you have customized
/etc/protocols.

�

The optname parameter and any specified options are passed
uninterpreted to the appropriate protocol module for interpretation.
The <sys/socket.h> header file contains definitions for the
socket-level options. Options at other protocol levels vary in format
and name.

902 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getsockopt()

Since levels (e.g. SOL SOCKET, IPPROTO IP and IPPROTO TCP) and
the options within the levels can vary, you need to ensure the proper
headers are included for both. For example, when setting
TCP NODELAY:

int on = 1;
setsockopt(s, IPPROTO TCP, TCP NODELAY, &on);

the level IPPROTO TCP is defined in <netinet/in.h>, whereas the
TCP NODELAY option is defined in <netinet/tcp.h>.

�

Options

Here are some of the more common options and their corresponding
level.

Except where noted, you can examine the state of the option by
calling getsockopt(), and set the state by calling setsockopt().

For the list of options that the tiny TCP/IP stack supports, see
npm-ttcpip.so in the Utilities Reference.

�

level: IPPROTO IPIP HDRINCL

Get or set the custom IP header that’s included with your data. You
can use it only for raw sockets. For example:

(socket(AF INET, SOCK RAW, ...)

level: IPPROTO IPIP TOS

Get or set the type-of-service field in the IP header for
SOCK STREAM and SOCK DGRAM (not applicable for
npm-ttcpip.so) sockets.

May 31, 2004 Manifests 903

getsockopt() 2004, QNX Software Systems Ltd.

level: SOL SOCKET
SO BINDTODEVICE

Applies to setsockopt() only.

Allow packets to be sent or received on this specified interface only. If
the interface specified conflicts with the parameters of bind(), or with
the routing table, an error or undesired behavior may occur.

This option accepts the ifreq structure with the ifr name member set
to the interface name (e.g. en0). Currently, you can use this option
only for UDP sockets.

level: SOL SOCKET
SO BROADCAST

Enable or disable the permission to transmit broadcast messages. You
can use this option only for UDP sockets. For example:

(socket(AF INET, SOCK DGRAM, ...))

“Broadcast” was a privileged operation in earlier versions of the
system.

level: SOL SOCKETSO DEBUG

Enable or disable the recording of debug information in the
underlying protocol modules.

level: SOL SOCKET
SO DONTROUTE

Enable or disable the bypassing of routing tables for outgoing
messages. Indicates that outgoing messages should bypass the
standard routing facilities. The messages are directed to the
appropriate network interface according to the network portion of the
destination address.

level: SOL SOCKETSO ERROR

Applies to getsockopt() only.

Get any pending error on the socket and clears the error status. You
can use it to check for asynchronous errors on connected datagram
sockets or for other asynchronous errors.

904 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getsockopt()

level: SOL SOCKET
SO KEEPALIVE

Enable or disable the periodic (at least every 2 hours) transmission of
messages on a connected socket. Should the connected party fail to
respond to these messages, the connection is considered broken, and
processes that are using the socket are notified via a SIGPIPE signal
when they attempt to send data.

level: SOL SOCKETSO LINGER

Controls the action that’s taken when unsent messages are queued on
socket when a close() is performed.

If it’s enabled and the socket promises reliable delivery of data, the
system blocks the process on the close() attempt until it’s able to
transmit the data or until it decides it can’t deliver the information (a
timeout period, termed the linger interval, is specified in the
setsockopt() call when SO LINGER is requested).

If it’s disabled, the system processes the close() in a way that lets the
process continue as quickly as possible.

The struct linger parameter (defined in <sys/socket.h>)
specifies the desired state of the option in the l onoff field and the
linger interval in the l linger field, in seconds. A value of 0 causes
a reset on the socket when the application closes the socket.

level: SOL SOCKET
SO OOBINLINE

For protocols that support out-of-band data, allows or disallows
out-of-band data to be placed in the normal data input queue as
received. The data is accessible using the recv() or read() calls
without the MSG OOB flag. Some protocols always behave as if this
option is set.

level: SOL SOCKETSO RCVBUF
and

SO SNDBUF Gets or sets the normal buffer sizes allocated for output (SO SNDBUF)
and input (SO RCVBUF) buffers. You can increase the buffer size for
high-volume connections, or decrease it to limit the possible backlog

May 31, 2004 Manifests 905

getsockopt() 2004, QNX Software Systems Ltd.

of incoming data. The system places an absolute limit on these values
and defaults them to at least 16K for TCP sockets.

level: SOL SOCKET
SO RCVLOWAT

Gets or sets the minimum count for input operations (default is 1). In
general, receive calls block until any (nonzero) amount of data is
received, and then return with the amount available or the amount
requested, whichever is smaller.

If you set the value to be larger than the default, blocking receive calls
will wait until they’ve received the low-water mark value or the
requested amount, whichever is smaller. Receive calls may still return
less than the low-water mark if: an error occurs, a signal is caught, or
if the type of data next in the receive queue differs from that returned.

level: SOL SOCKET
SO RCVTIMEO

Gets or sets a timeout value for input operations. It accepts a
struct timeval parameter (defined in <sys/time.h>) with the
number of seconds and microseconds used to limit waits for input
operations to complete.

In the current implementation, this timer is restarted each time
additional data is received by the protocol, so the limit is in effect an
inactivity timer. If a receive operation has been blocked for this much
time without receiving additional data, it returns with a short count or,
if no data was received, with the error EWOULDBLOCK.

level: SOL SOCKET
SO REUSEADDR

Enables or disables the reuse of duplicate addresses and port bindings.
Indicates that the rules used in validating addresses supplied in a
bind() call allows/disallows local addresses to be reused.

level: SOL SOCKET
SO REUSEPORT

Enables or disables duplicate address and port bindings. Complete
duplicate bindings by multiple processes are allowed when they all set
SO REUSEPORT before binding the port. This option permits multiple
instances of a program to each receive UDP/IP multicast or broadcast

906 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getsockopt()

datagrams destined for the bound port. See the reuseport unicast

option of the npm-tcpip.so utility to see how unicast packets are
also received on all sockets bound to the same port.

level: SOL SOCKET
SO SNDLOWAT

Gets or sets the minimum count for output operations. In BSD, this
count is typically 2048, but it is a calculated value in Neutrino. If you
require a specific SO SNDLOWAT, you must specify the count. Most
output operations process all of the data supplied by the call,
delivering data to the protocol for transmission and blocking as
necessary for flow control. Nonblocking output operations will
process as much data as permitted (subject to flow control without
blocking), but will process no data if flow control doesn’t allow the
smaller of the low-water mark value or the entire request to be
processed.

A select() operation that tests the ability to write to a socket returns
true only if the low-water mark amount could be processed.

level: SOL SOCKET
SO SNDTIMEO

Gets or sets a timeout value for output operations. It accepts a
struct timeval parameter (defined in <sys/time.h>) that
includes the number of seconds and microseconds that are used to
limit waits for output operations to complete. If a send operation has
blocked for this much time, it returns with a partial count or with the
error EWOULDBLOCK if data weren’t sent.

This timer is restarted each time additional data is delivered to the
protocol, implying that the limit applies to output portions ranging in
size from the low-water mark to the high-water mark for output.
Timeouts are restricted to 32 seconds or under.

level: SOL SOCKET
SO TIMESTAMP

Enables or disables the reception of a timestamp with datagrams. If
enabled on a SOCK DGRAM socket, the recvmsg() call returns a
timestamp corresponding to when the datagram was received. The
msg control field in the msghdr structure points to a buffer that

May 31, 2004 Manifests 907

getsockopt() 2004, QNX Software Systems Ltd.

contains a cmsghdr structure followed by a struct timeval. The
cmsghdr fields have the following values:

cmsg len = sizeof(struct cmsghdr) + sizeof(struct timeval)
cmsg level = SOL SOCKET
cmsg type = SCM TIMESTAMP

level: SOL SOCKETSO TYPE

Applies to getsockopt() only.

Gets the type of the socket (e.g. SOCK STREAM). This information is
useful for servers that inherit sockets on startup.

level: SOL SOCKET
SO USELOOPBACK

Enables or disables the sending process to receive its own routing
messages.

level: IPPROTO TCP
TCP KEEPALIVE

Gets or sets the amount of time in seconds between keepalive probes
(the default value is 2 hours). It accepts a struct timeval

parameter with the number of seconds to wait between the keepalive
probes.

level: IPPROTO TCP
TCP NODELAY

Don’t delay sending in order to coalesce packets. Under most
circumstances, TCP sends data when it’s presented. When
outstanding data hasn’t yet been acknowledged, TCP gathers small
amounts of output to be sent in a single packet once an
acknowledgment is received.

908 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getsockopt()

For a few clients (such as windowing systems that send a stream of
mouse events that receive no replies), this packetization may cause
significant delays. Therefore, TCP provides a boolean option,
TCP NODELAY, to defeat this algorithm.

�

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Invalid file descriptor s.

EDOM Value was set out of range.

EFAULT The address pointed to by optval isn’t in a valid part of
the process address space. For getsockopt(), this error
may also be returned if optlen isn’t in a valid part of the
process address space.

EINVAL The optval argument can’t be NULL; optlen can’t be 0.

ENOPROTOOPT

The option is unknown at the level indicated.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 909

getsockopt() 2004, QNX Software Systems Ltd.

See also:
ICMP, IP, TCP, and UDP protocols

close(), getprotobyname(), ioctl(), read(), select(), setsockopt(),
socket()

/etc/protocols in the Utilities Reference

910 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getspent(), getspent r()
Get an entry from the shadow password database

Synopsis:
#include <sys/types.h>
#include <shadow.h>

struct spwd* getspent(void);

struct spwd* getspent r(struct spwd* result,
char* buffer,
int buflen);

Arguments:
These arguments apply only to getspent r():

result A pointer to a spwd structure where the function can store
the entry. For more information about this structure, see
putspent().

buffer A block of memory that the function can use to allocate
storage referenced by the spwd structure. You can
determine the maximum size needed for this buffer by
calling sysconf() with an argument of
SC GETPW R SIZE MAX.

bufsize The size of the block that buffer points to, in characters.

Library:
libc

Description:
The getspent() and getspent r() functions return the next entry from
the shadow password database. The getspent() function uses a static
buffer that’s overwritten by each call.

May 31, 2004 Manifests 911

getspent(), getspent r() 2004, QNX Software Systems Ltd.

The fgetspent(), getspent(), getspnam(), and functions share the same
static buffer.

�

Returns:
The getspent() function returns a pointer to an object of type struct
spwd containing the next entry from the shadow password database.
When getspent() is first called, the database is opened, and remains
open until either a NULL is returned to signify end-of-file, or
endspent() is called.

Errors:
The getspent() function uses the following functions, and as a result,
errno can be set to an error for any of these calls:

� fclose()

� fgets()

� fopen()

� fseek()

� rewind()

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <pwd.h>
#include <shadow.h>

/*
* This program loops, reading a login name from standard
* input and checking to see if it is a valid name. If it
* is not valid, the entire contents of the name in the
* password database are printed.
*/

int main(int argc, char** argv)
{

struct spwd* sp;

912 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getspent(), getspent r()

char buf[80];

setpwent();
while(gets(buf) != NULL) {
if((sp = getspnam(buf)) != (struct spwd *)0) {

printf("Valid login name is: %s\n", sp->sp namp);
} else {

setspent();
while((sp=getspent()) != (struct spwd *)0)
printf("%s\n", sp->sp namp);

}
}
endspent();
return(EXIT SUCCESS);

}

Classification:
Unix

getspent()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

getspent r()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 913

getspent(), getspent r() 2004, QNX Software Systems Ltd.

See also:
errno, fgetspent(), getgrent(), getlogin(), getspnam(), getpwuid(),
putspent(), setspent()

914 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getspnam(), getspnam r()
Get information about a user with a given name

Synopsis:
#include <sys/types.h>
#include <shadow.h>

struct spwd* getspnam(char* name);

struct spwd* getspnam r(const char* name,
struct spwd* result,
char* buffer,
size t bufsize);

Arguments:
name The name of the user.

result (getspnam r() only) A pointer to a spwd structure where
the function can store the entry. For more information
about this structure, see putspent().

buffer (getspnam r() only) A block of memory that the function
can use to allocate storage referenced by the spwd
structure. You can determine the maximum size needed
for this buffer by calling sysconf() with an argument of
SC GETPW R SIZE MAX.

bufsize (getspnam r() only) The size of the block that buffer
points to, in characters.

Library:
libc

Description:
The getspnam() and getspnam r() functions allow a process to gain
more knowledge about a user name. The getspnam() function uses a
static buffer that’s overwritten by each call.

May 31, 2004 Manifests 915

getspnam(), getspnam r() 2004, QNX Software Systems Ltd.

The fgetspent(), getspent(), and getspnam() functions share the same
static buffer.

�

Returns:
A pointer to an object of type struct spwd containing an entry
from the group database with a matching name, or NULL if an error
occurred or the function couldn’t find a matching entry.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <pwd.h>
#include <shadow.h>

/*
* Print information from the password entry
* about the user name given as argv[1].
*/

int main(int argc, char** argv)
{

struct spwd* sp;

if (argc < 2) {
printf("%s username \n", argv[0]);
return(EXIT FAILURE);

}

if((sp = getspnam(argv[1])) == (struct spwd*)0) {
fprintf(stderr, "getspnam: unknown %s\n",

argv[1]);
return(EXIT FAILURE);

}
printf("login name %s\n", sp->sp namp);
printf("password %s\n", sp->sp pwdp);
return(EXIT SUCCESS);

}

916 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getspnam(), getspnam r()

Classification:
getspnam() is POSIX 1003.1; getspnam r() is Unix

getspnam()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

getspnam r()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
fgetspent(), getlogin(), getspent(), getpwuid(), putspent()

May 31, 2004 Manifests 917

getsubopt() 2004, QNX Software Systems Ltd.

Parse suboptions from a string

Synopsis:
#include <stdlib.h>

int getsubopt(char** optionp,
char* const* tokens,
char** valuep);

Arguments:
optionp The address of a pointer to the string of options that you

want to parse. The function updates this pointer as it
parses the options; see below.

tokens A vector of possible tokens.

valuep The address of a pointer that the function updates to point
to the first character of a value that’s associated with an
option; see below.

Library:
libc

Description:
The getsubopt() functions parses suboptions in a flag argument that
was initially parsed by getopt(). These suboptions are separated by
commas and may consist of either a single token or a token-value pair
separated by an equal sign. Since commas delimit suboptions in the
option string, they aren’t allowed to be part of the suboption or the
value of a suboption. A command that uses this syntax is mount,
which allows the user to specify mount parameters with the -o option
as follows:

mount -o rw,hard,bg,wsize=1024 speed:/usr /usr

In this example there are four suboptions: rw, hard, bg, and wsize,
the last of which has an associated value of 1024.

918 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getsubopt()

The getsubopt() function takes the address of a pointer to the option
string, a vector of possible tokens, and the address of a value string
pointer. It returns the index of the token that matched the suboption in
the input string, or -1 if there was no match. If the option string at
optionp contains only one suboption, getsubopt() updates optionp to
point to the null character at the end of the string; otherwise, it isolates
the suboption by replacing the comma separator with a null character,
and updates optionp to point to the start of the next suboption. If the
suboption has an associated value, getsubopt() updates valuep to point
to the value’s first character. Otherwise, it sets valuep to NULL.

The token vector is organized as a series of pointers to null strings.
The end of the token vector is identified by a NULL pointer.

When getsubopt() returns, if valuep isn’t NULL, the suboption
processed included a value. The calling program may use this
information to determine if the presence or lack of a value for this
suboption is an error.

Additionally, when getsubopt() fails to match the suboption with the
tokens in the tokens array, the calling program should decide if this is
an error, or if the unrecognized option should be passed to another
program.

Returns:
The getsubopt() function returns -1 when the token it’s scanning isn’t
in the tokens vector. The variable addressed by valuep contains a
pointer to the first character of the token that wasn’t recognized rather
than a pointer to a value for that token.

The variable addressed by optionp points to the next option to be
parsed, or a null character if there are no more options.

Examples:
The following code fragment shows how to process options to the
mount(1M) command using getsubopt():

#include <stdlib.h>

May 31, 2004 Manifests 919

getsubopt() 2004, QNX Software Systems Ltd.

char *myopts[] = {
#define READONLY 0

"ro",
#define READWRITE 1

"rw",
#define WRITESIZE 2

"wsize",
#define READSIZE 3

"rsize",
NULL};

main(argc, argv)
int argc;
char **argv;

{
int sc, c, errflag;
char *options, *value;
extern char *optarg;
extern int optind;
.
.
.
while((c = getopt(argc, argv, "abf:o:")) != -1) {

switch (c) {
case ’a’: /* process a option */

break;
case ’b’: /* process b option */

break;
case ’f’:

ofile = optarg;
break;

case ’?’:
errflag++;
break;

case ’o’:
options = optarg;
while (*options != ’\0’) {

switch(getsubopt(&options,myopts,&value) {
case READONLY : /* process ro option */

break;
case READWRITE : /* process rw option */

break;

case WRITESIZE : /* process wsize option */
if (value == NULL) {

error no arg();
errflag++;

} else
write size = atoi(value);

break;

920 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getsubopt()

case READSIZE : /* process rsize option */
if (value == NULL) {

error no arg();
errflag++;

} else
read size = atoi(value);

break;
default :

/* process unknown token */
error bad token(value);
errflag++;
break;

}
}
break;

}
}
if (errflag) {

/* print usage instructions etc. */
}
for (; optind < argc; optind++) {

/* process remaining arguments */
}
.
.
.

}

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 921

getsubopt() 2004, QNX Software Systems Ltd.

Caveats:
During parsing, commas in the option input string are changed to null
characters. White space in tokens or token-value pairs must be
protected from the shell by quotes.

See also:
getopt()

922 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. gettimeofday()
Get the current time

Synopsis:
#include <sys/time.h>

int gettimeofday(struct timeval * when,
void * not used);

Arguments:
when A pointer to a timeval structure where the function can

store the time. The struct timeval contains the
following members:

� long tv sec — the number of seconds since the start
of the Unix Epoch.

� long tv usec — the number of microseconds.

not used This pointer must be NULL or the behavior of
gettimeofday() is unspecified. This argument is provided
only for backwards compatibility.

Library:
libc

Description:
The gettimeofday() function returns the current time in when in
seconds and microseconds, since the Unix Epoch, 00:00:00 January 1,
1970 Coordinated Universal Time (UTC) (formerly known as
Greenwich Mean Time (GMT)).

Returns:
0 for success, or -1 if an error occurs (errno is set).

May 31, 2004 Manifests 923

gettimeofday() 2004, QNX Software Systems Ltd.

Errors:
EFAULT An error occurred while accessing the when buffer.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The gettimeofday() function is provided for porting existing code.
You shouldn’t use it in new code; use clock gettime() instead.

See also:
asctime(), asctime r(), clock gettime(), clock settime(), ctime(),
ctime r(), difftime(), gmtime(), gmtime r(), localtime(), localtime r(),
settimeofday(), time()

924 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getuid()
Get the user ID

Synopsis:
#include <sys/types.h>
#include <unistd.h>

uid t getuid(void);

Library:
libc

Description:
The getuid() function gets the user ID for the calling process.

Returns:
The user ID for the calling process.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int main(void)
{

printf("My userid is %d\n", getuid());
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

continued. . .

May 31, 2004 Manifests 925

getuid() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

See also:
getegid(), geteuid(), getgid(), setuid()

926 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getutent()
Read the next entry from the user-information file

Synopsis:
#include <utmp.h>

struct utmp * getutent(void);

Library:
libc

Description:
The getutent() function reads in the next entry from a
user-information file. If the file isn’t already open, getutent() opens it.
If the function reaches the end of the file, it fails.

Returns:
A pointer to a utmp structure for the next entry, or NULL if the file
couldn’t be read or reached the end of file.

Files:
PATH UTMP

Specifies the user information file.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 927

getutent() 2004, QNX Software Systems Ltd.

Caveats:
The most current entry is saved in a static structure. Copy it before
making further accesses.

On each call to either getutid() or getutline(), the routine examines the
static structure before performing more I/O. If the contents of the
static structure match what it’s searching for, the function looks no
further. For this reason, to use getutline() to search for multiple
occurrences, zero out the static area after each success, or getutline()
will return the same structure over and over again.

There’s one exception to the rule about emptying the structure before
further reads are done: the implicit read done by pututline() (if it finds
that it isn’t already at the correct place in the file) doesn’t hurt the
contents of the static structure returned by the getutent(), getutid() or
getutline() routines, if you just modified those contents and passed the
pointer back to pututline().

These routines use buffered standard I/O for input, but pututline()
uses an unbuffered nonstandard write to avoid race conditions
between processes trying to modify the utmp and wtmp files.

See also:
endutent(), getutid(), getutline(), pututline(), setutent(), utmp,
utmpname()

login in the Utilities Reference

928 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getutid()
Search for an entry in the user-information file

Synopsis:
#include <utmp.h>

struct utmp * getutid(struct utmp * id);

Arguments:
id A pointer to a utmp structure that you want to find in the

user-information file.

Library:
libc

Description:
The getutid() function searches forward from the current point in the
utmp file until it finds a matching entry:

� If id->ut type is one of RUN LVL, BOOT TIME, OLD TIME, or
NEW TIME, the function looks for an entry with the same ut type.

� If id->ut type is INIT PROCESS, LOGIN PROCESS,
USER PROCESS, or DEAD PROCESS, getutid() looks for the first
entry entry with the same ut type and a ut id field that matches
id->ut id.

If getutid() reaches the end of the file without finding a match, the
search fails.

Returns:
A pointer to the utmp structure for the matching entry, or NULL if it
couldn’t be found.

May 31, 2004 Manifests 929

getutid() 2004, QNX Software Systems Ltd.

Files:
PATH UTMP

Specifies the user information file.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
The most current entry is saved in a static structure. Copy it before
making further accesses.

On each call to either getutid() or getutline(), the routine examines the
static structure before performing more I/O. If the contents of the
static structure match what it’s searching for, the function looks no
further. For this reason, to use getutline() to search for multiple
occurrences, zero out the static area after each success, or getutline()
will return the same structure over and over again.

There’s one exception to the rule about emptying the structure before
further reads are done: the implicit read done by pututline() (if it finds
that it isn’t already at the correct place in the file) doesn’t hurt the
contents of the static structure returned by the getutent(), getutid() or
getutline() routines, if the user has just modified those contents and
passed the pointer back to pututline().

930 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getutid()

These routines use buffered standard I/O for input, but pututline()
uses an unbuffered nonstandard write to avoid race conditions
between processes trying to modify the utmp and wtmp files.

See also:
endutent(), getutent(), getutline(), pututline(), setutent(), utmp,
utmpname()

login in the Utilities Reference

May 31, 2004 Manifests 931

getutline() 2004, QNX Software Systems Ltd.

Get an entry from the user-information file

Synopsis:
#include <utmp.h>

struct utmp * getutline(struct utmp * line);

Arguments:
line A pointer to a utmp structure that you want to find in the

user-information file.

Library:
libc

Description:
The getutline() function searches forward from the current point in the
utmp file until it finds an entry of the type LOGIN PROCESS or a
ut line string that matches line->ut line. If the function reaches the
end of the file is reached without finding a match, the function fails.

Returns:
A pointer to the utmp structure for the entry found, or NULL if the
search failed.

Files:
PATH UTMP

Specifies the user information file.

Classification:
Unix

932 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getutline()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
The most current entry is saved in a static structure. Copy it before
making further accesses.

On each call to either getutid() or getutline(), the routine examines the
static structure before performing more I/O. If the contents of the
static structure match what it’s searching for, the function looks no
further. For this reason, to use getutline() to search for multiple
occurrences, zero out the static area after each success, or getutline()
will return the same structure over and over again.

There’s one exception to the rule about emptying the structure before
further reads are done: the implicit read done by pututline() (if it finds
that it isn’t already at the correct place in the file) doesn’t hurt the
contents of the static structure returned by the getutent(), getutid() or
getutline() routines, if the user has just modified those contents and
passed the pointer back to pututline().

These routines use buffered standard I/O for input, but pututline()
uses an unbuffered nonstandard write to avoid race conditions
between processes trying to modify the utmp and wtmp files.

See also:
endutent(), getutent(), getutid(), pututline(), setutent(), utmp,
utmpname()

login in the Utilities Reference

May 31, 2004 Manifests 933

getw() 2004, QNX Software Systems Ltd.

Get a word from a stream

Synopsis:
#include <stdio.h>

int getw(FILE* stream);

Arguments:
stream The stream that you want to read a word from.

Library:
libc

Description:
The getw() function returns the next word (i.e. integer) from the
named input stream. This function increments the associated file
pointer, if defined, to point to the next word. The size of a word is the
size of an integer, and varies from machine to machine. The getw()
function assumes no special alignment in the file.

Returns:
The next word, or the constant EOF at the end-of-file or on an error; it
sets the EOF or error indicator of the stream.

Use feof() or ferror() to distinguish an end-of-file condition from an
error.

�

Errors:
EOVERFLOW The file is a regular file, and an attempt was made

to read at or beyond the offset maximum associated
with the corresponding stream.

934 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getw()

Classification:
Legacy Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
Because of possible differences in word length and byte ordering,
files written using putw() are implementation-dependent, and might
not be read correctly using getw() on a different processor.

See also:
fclose(), feof(), ferror(), fgetc(), flockfile(), fopen(), fread(), getc(),
getc unlocked(), getchar(), getchar unlocked(), gets(), putc(), putw(),
scanf(), ungetc(),

May 31, 2004 Manifests 935

getwc() 2004, QNX Software Systems Ltd.

Read a wide character from a stream

Synopsis:
#include <wchar.h>

wint t getwc(FILE * fp);

Arguments:
fp The stream from which you want to read a wide character.

Library:
libc

Description:
The getwc() function reads the next wide character from the specified
stream.

Returns:
The next character from the stream, cast as (wint t)(wchar t), or
WEOF if end-of-file has been reached or if an error occurs (errno is
set).

Use feof() or ferror() to distinguish an end-of-file condition from an
error.

�

Errors:
EAGAIN The O NONBLOCK flag is set for fp and would

have been blocked by this operation.

EBADF The fp stream isn’t valid for reading.

EINTR A signal terminated the read operation; no data
was transferred.

936 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getwc()

EIO Either a physical I/O error has occurred, or the
process is in the background and is being ignored
or blocked.

EOVERFLOW Cannot read at or beyond the offset maximum for
this stream.

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, feof(), ferror(), putwc(), putwchar()

“Stream I/O functions” and “Wide-character functions” in the
summary of functions chapter

May 31, 2004 Manifests 937

getwchar() 2004, QNX Software Systems Ltd.

Read a character from a stream

Synopsis:
#include <wchar.h>

wint t getwchar(void);

Library:
libc

Description:
The getwchar() function reads the next wide character from stdin.

Returns:
The next character from stdin, cast as (wint t)(wchar t), or
WEOF if the end-of-file has been reached or if an error occurs (errno
is set).

Use feof() or ferror() to distinguish an end-of-file condition from an
error.

�

Errors:
EAGAIN The O NONBLOCK flag is set for stdin and would

have been blocked by this operation.

EINTR A signal terminated the read operation; no data
was transferred.

EIO Either a physical I/O error has occurred, or the
process is in the background and is being ignored
or blocked.

EOVERFLOW Cannot read at or beyond the offset maximum for
this stream.

938 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getwchar()

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, feof(), ferror(), putwc(), putwchar()

“Stream I/O functions” and “Wide-character functions” in the
summary of functions chapter

May 31, 2004 Manifests 939

getwd() 2004, QNX Software Systems Ltd.

Get current working directory pathname

Synopsis:
#include <unistd.h>

char* getwd(char *path name);

Arguments:
path name A buffer where the function can store the current

working directory.

Library:
libc

Description:
The getwd() function determines the absolute pathname of the current
working directory of the calling process, and copies that pathname
into the array pointed to by the path name argument.

If the length of the pathname of the current working directory is
greater than ({PATH MAX} + 1) including the null byte, getwd() fails
and returns a null pointer.

For portability, use getcwd() instead of getwd().�

Returns:
A pointer to the string containing the absolute pathname of the current
working directory. On error, getwd() returns a null pointer and the
contents of the array pointed to by path name are undefined.

Classification:
Legacy Unix

940 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. getwd()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
getcwd()

May 31, 2004 Manifests 941

glob() 2004, QNX Software Systems Ltd.

Find paths matching a pattern

Synopsis:
#include <glob.h>

int glob(const char* pattern,
int flags,
int (*errfunc)(const char* epath,

int error),
glob t* pglob);

Arguments:
pattern The pattern you want to match. This can include these

wildcard characters:

� * matches any string, of any length

� ? matches any single character

� [chars] matches any of the characters found in the
string chars.

flags Flags that affect the search; see below.

errfunc A pointer to a function that glob() calls when it
encounters a directory that it can’t open or read. For more
information, see below.

pglob A pointer to a glob t structure where glob() can store
the paths found. This structure contains at least the
following members:

� size t gl pathc — the number of pathnames
matched by pattern.

� char** gl pathv — a NULL-terminated array of
pointers to the pathnames matched by pattern.

� size t gl offs — the number of pointers to reserve at
the beginning of gl pathv.

You must create the glob t structure before calling
glob(). The glob() function allocates storage as needed for
the gl pathv array. Use globfree() to free this space.

942 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. glob()

Library:
libc

Description:
The glob() function finds pathnames matching the given pattern.

In order to have access to a pathname, glob() must have search
permission on every component of the path except the last, and read
permission on each directory of every filename component of pattern
that contains any of the special characters (*, ?, [and]).

The errfunc argument is a pointer to an error-handler function with
this prototype:

int errfunc(const char* epath, int error);

The errfunc function is called when glob() encounters a directory that
it can’t open or read. The arguments are:

epath A pointer to the path that failed.

error The value of errno from the failure. The error argument
can be set to any of the values returned by opendir(),
readdir(), or stat().

The errfunc function should return 0 if glob() should continue, or a
nonzero value if glob() should stop searching.

You can set errfunc to NULL to ignore these types of errors.

The flags argument can be set to any combination of the following
bits:

GLOB APPEND Append found pathnames to the ones from a
previous call from glob().

GLOB DOOFFS Use the value in pglob->gl offs to specify how
many NULL pointers to add at the beginning of
pglob->pathv. After the call to glob(),

May 31, 2004 Manifests 943

glob() 2004, QNX Software Systems Ltd.

pglob->pathv will contain pglob->gl offs NULL
pointers, followed by pglob->gl pathc pathnames,
followed by a NULL pointer. This can be useful if
you’re building a command to be applied to the
matched files.

GLOB ERR Cause glob() to return when it encounters a
directory that it can’t open or read. Otherwise,
glob() will continue to find matches.

GLOB MARK Append a slash to each matching pathname that’s a
directory.

GLOB NOCHECK

If pattern doesn’t match any path names, return
only the contents of pattern.

GLOB NOESCAPE

Disable backslash escapes in pattern.

GLOB NOSORT Don’t sort the returned pathnames; their order will
be unspecified. The default is to sort the
pathnames.

Returns:
Zero for success, or an error value.

Errors:
GLOB ABEND

The scan was stopped because GLOB ERR was set, or the
errfunc function returned nonzero.

GLOB NOMATCH

The value of pattern doesn’t match any existing pathname, and
GLOB NOCHECK wasn’t set in flags.

GLOB NOSPACE

Unable to allocate memory to store the matched paths.

944 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. glob()

Examples:
This simple example attempts to find all of the .c files in the current
directory and print them in the order the filesystem found them.

#include <unistd.h>
#include <stdio.h>
#include <glob.h>

int main(void)
{

glob t paths;
int retval;

paths.gl pathc = 0;
paths.gl pathv = NULL;
paths.gl offs = 0;

retval = glob("*.c", GLOB NOCHECK | GLOB NOSORT,
NULL, &paths);

if(retval == 0) {
int idx;

for(idx = 0; idx < paths.gl pathc; idx++) {
printf("[%d]: %s\n", idx,

paths.gl pathv[idx]);
}

globfree(&paths);
} else {

puts("glob() failed");
}

return 0;
}

Classification:
POSIX 1003.1a

Safety

Cancellation point Yes

Interrupt handler No

continued. . .

May 31, 2004 Manifests 945

glob() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

Caveats:
Don’t change the values in pglob between calling glob() and
globfree().

See also:
globfree(), wordexp(), wordfree()

946 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. globfree()
Free storage allocated by a call to glob()

Synopsis:
#include <glob.h>

void globfree(glob t* pglob);

Arguments:
pglob A pointer to a glob t structure that you passed to glob().

Library:
libc

Description:
The globfree() function frees the storage allocated by a call to glob().

Classification:
POSIX 1003.1a

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
Don’t change the values in pglob between calling glob() and
globfree().

May 31, 2004 Manifests 947

globfree() 2004, QNX Software Systems Ltd.

See also:
glob(), wordexp(), wordfree()

948 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. gmtime()
Convert calendar time to a broken-down time

Synopsis:
#include <time.h>

struct tm* gmtime(const time t* timer);

Arguments:
timer A pointer to a time t structure that contains the time that

you want to convert.

Library:
libc

Description:
The gmtime() function converts the calendar time pointed to by timer
into a broken-down time, expressed as Coordinated Universal Time
(UTC) (formerly known as Greenwich Mean Time or GMT).

The gmtime() function places the converted time in a static structure
that’s reused each time you call gmtime(). If you want a thread-safe
version of gmtime(), use gmtime r().

You typically use the date command to set the computer’s internal
clock using Coordinated Universal Time (UTC). Use the TZ
environment variable or CS TIMEZONE configuration string to
establish the local time zone. For more information, see “Setting the
time zone” in the Configuring Your Environment chapter of the
Neutrino User’s Guide.

Returns:
A pointer to a tm structure that contains the broken-down time.

May 31, 2004 Manifests 949

gmtime() 2004, QNX Software Systems Ltd.

Classification:
ANSI, POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

See also:
asctime(), asctime r(), clock(), ctime(), difftime(), gmtime r(),
localtime(), localtime r(), mktime(), strftime(), time(), tm, tzset()

“Setting the time zone” in the Configuring Your Environment chapter
of the Neutrino User’s Guide

950 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. gmtime r()
Convert calendar time to a broken-down time

Synopsis:
#include <time.h>

struct tm* gmtime r(const time t* timer,
struct tm* result);

Arguments:
timer A pointer to a time t structure that contains the time that

you want to convert.

result A pointer to a tm structure where the function can store the
broken-down time.

Library:
libc

Description:
The gmtime r() function converts the calendar time pointed to by
timer into a broken-down time, expressed as Coordinated Universal
Time (UTC) (formerly known as Greenwich Mean Time or GMT)
and stores it in the tm structure pointed to by result.

You typically use the date command to set the computer’s internal
clock using Coordinated Universal Time (UTC). Use the TZ
environment variable or CS TIMEZONE configuration string to
establish the local time zone. For more information, see “Setting the
time zone” in the Configuring Your Environment chapter of the
Neutrino User’s Guide.

Returns:
A pointer to the tm structure containing the broken-down time.

May 31, 2004 Manifests 951

gmtime r() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
asctime(), asctime r(), clock(), ctime(), difftime(), localtime(),
localtime r(), mktime(), strftime(), time(), tm, tzset()

“Setting the time zone” in the Configuring Your Environment chapter
of the Neutrino User’s Guide

952 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. h errno
Host error variable

Synopsis:
#include <netdb.h>

extern int h errno;

Library:
libsocket

Description:
The h errno variable can be set by any one of the following functions:

� gethostbyaddr()

� gethostbyaddr r()

� gethostbyname()

� gethostbyname2()

� gethostbyname r()

� res query()

� res search()

It can be set to any one of the following:

HOST NOT FOUND

Authoritative answer: Unknown host.

NETDB INTERNAL

You specified an invalid address family when
calling gethostbyname2().

NO DATA Valid name, no data record of the requested type.
The name is known to the name server, but has no
IP address associated with it — this isn’t a
temporary error. Another type of request to the

May 31, 2004 Manifests 953

h errno 2004, QNX Software Systems Ltd.

name server using this domain name will result in
an answer (e.g. a mail-forwarder may be registered
for this domain).

NO RECOVERY

Unknown server error. An unexpected server failure
was encountered. This is a nonrecoverable network
error.

TRY AGAIN Nonauthoritative answer: Host name lookup failure.
This is usually a temporary error and means that the
local server didn’t receive a response from an
authoritative server. A retry at some later time may
succeed.

Classification:
POSIX 1003.1-2001

Caveats:
Unlike errno, h errno isn’t thread-safe.

See also:
errno, gethostbyaddr(), gethostbyaddr r(), gethostbyname(),
gethostbyname2(), gethostbyname r(), res query(), res search()

954 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. hcreate()
Create a hash search table

Synopsis:
#include <search.h>

int hcreate(size t nel);

Arguments:
nel An estimate of the maximum number of entries that the table

will contain. The algorithm might adjust this number upward
in order to obtain certain mathematically favorable
circumstances.

Library:
libc

Description:
The hcreate() function allocates space for the hash search table. You
must call this function before using hsearch().

The hsearch() and hcreate() functions use malloc() to allocate space.

Only one hash search table may be active at any given time. You can
destroy the table by calling hdestroy().

Returns:
0 if there isn’t enough space available to allocate the table.

Examples:
See hsearch().

Classification:
Standard Unix

May 31, 2004 Manifests 955

hcreate() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
bsearch(), hdestroy(), hsearch(), malloc()

The Art of Computer Programming, Volume 3, Sorting and Searching
by Donald E. Knuth, published by Addison-Wesley Publishing
Company, 1973.

956 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. hdestroy()
Destroy the hash search table

Synopsis:
#include <search.h>

void hdestroy(void);

Library:
libc

Description:
The hdestroy() function destroys the hash search table that was
created by hcreate() and used by hsearch(). Only one hash search
table may be active at any given time.

Examples:
See hsearch().

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
hcreate(), hsearch()

May 31, 2004 Manifests 957

herror() 2004, QNX Software Systems Ltd.

Print the message associated with the value of h errno to standard error

Synopsis:
#include <netdb.h>

void herror(const char* prefix);

Arguments:
prefix NULL, or a string that you want to print before the error

message.

Library:
libsocket

Description:
The herror() function prints the message corresponding to the error
number contained in h errno to stderr. The following functions can
set h errno:

� gethostbyaddr()

� gethostbyaddr r()

� gethostbyname()

� gethostbyname2()

� gethostbyname r()

� res query()

� res search()

If the prefix string is non-NULL, it’s printed, followed by a colon and
a space. The error message is printed with a trailing newline. One of
the following messages could be printed:

HOST NOT FOUND

Authoritative answer: Unknown host.

958 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. herror()

NETDB INTERNAL

You specified an invalid address family when
calling gethostbyname2().

NO DATA Valid name, no data record of the requested type.
The name is known to the name server, but has no
IP address associated with it — this isn’t a
temporary error. Another type of request to the
name server using this domain name will result in
an answer (e.g. a mail-forwarder may be registered
for this domain).

NO RECOVERY

Unknown server error. An unexpected server failure
was encountered. This is a nonrecoverable network
error.

TRY AGAIN Nonauthoritative answer: Host name lookup failure.
This is usually a temporary error and means that the
local server didn’t receive a response from an
authoritative server. A retry at some later time may
succeed.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

May 31, 2004 Manifests 959

herror() 2004, QNX Software Systems Ltd.

See also:
gethostbyaddr(), gethostbyaddr r(), gethostbyname(),
gethostbyname r(), h errno, res query(), res search(), stderr

960 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. hostent
Structure that describes an Internet host

Synopsis:
#include <netdb.h>

struct hostent {
char * h name;
char ** h aliases;
int h addrtype;
int h length;
char ** h addr list;

};

#define h addr h addr list[0]

Description:
This structure describes an Internet host. It contains either the
information obtained from a name server, or broken-out fields from a
line in /etc/hosts.

The members of this structure are:

h name The official name of the host.

h aliases A zero-terminated array of alternate names for the
host.

h addrtype The type of address being returned; currently always
AF INET.

h length The length of the address, in bytes.

h addr list A zero-terminated array of network addresses for the
host. Host addresses are returned in network byte
order.

A #define statement is used to define the following:

h addr The first address in h addr list. This is for backward
compatibility.

May 31, 2004 Manifests 961

hostent 2004, QNX Software Systems Ltd.

Classification:
Unix, POSIX 1003.1-2001

See also:
endhostent(), gethostbyaddr(), gethostbyname(), gethostent(),
sethostent()

/etc/hosts, /etc/resolv.conf in the Utilities Reference

962 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. hsearch()
Search the hash search table

Synopsis:
#include <search.h>

ENTRY* hsearch (ENTRY item,
ACTION action);

Arguments:
item A structure of type ENTRY, defined in <search.h>, that

contains:

� char *key — a pointer to the comparison key.

� void *data — a pointer to any other data to be
associated with the key.

action A member of an enumeration type ACTION, also defined in
<search.h>, indicating what to do with the entry if it
isn’t in the table:

� ENTER — insert the entry in the table at the appropriate
point. If the item is a duplicate of an existing item, the
new item isn’t added, and hsearch() returns a pointer to
the existing one.

� FIND — don’t add the entry. If the item can’t be found,
hsearch() returns NULL.

Library:
libc

Description:
The hsearch() function is a hash-table search routine generalized from
Knuth (6.4) Algorithm D. Before using this function, you must call
hcreate() to create the hash table.

The hsearch() function returns a pointer into a hash table indicating
the location at which an entry can be found. This function uses
strcmp() as the comparison function.

May 31, 2004 Manifests 963

hsearch() 2004, QNX Software Systems Ltd.

The hsearch() and hcreate() functions use malloc() to allocate space.

Only one hash search table may be active at any given time. You can
destroy the table by calling hdestroy().

Returns:
A pointer to the item found, or NULL if either the action is FIND and
the item wasn’t found, or the action is ENTER and the table is full.

Examples:
The following example reads in strings followed by two numbers and
stores them in a hash table, discarding duplicates. It then reads in
strings, finds the matching entry in the hash table and prints it.

#include <stdio.h>
#include <search.h>
#include <string.h>
#include <stdlib.h>
struct info { /* this is the info stored in table */

int age, room; /* other than the key */
};
#define NUM EMPL 5000 /* # of elements in search table */
main()
{

/* space to store strings */
char string space[NUM EMPL*20];

/* space to store employee info */
struct info info space[NUM EMPL];

/* next avail space in string space */
char *str ptr = string space;

/* next avail space in info space */
struct info *info ptr = info space;
ENTRY item, *found item;

/* name to look for in table */
char name to find[30];
int i = 0;

/* create table */
(void) hcreate(NUM EMPL);
while (scanf("%s%d%d", str ptr, &info ptr->age,

&info ptr->room) != EOF && i++ < NUM EMPL) {
/* put info in structure, and structure in item */

item.key = str ptr;
item.data = (void *)info ptr;
str ptr += strlen(str ptr) + 1;

964 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. hsearch()

info ptr++;
/* put item into table */

(void) hsearch(item, ENTER);
}

/* access table */
item.key = name to find;
while (scanf("%s", item.key) != EOF) {

if ((found item = hsearch(item, FIND)) != NULL) {
/* if item is in the table */

(void)printf("found %s, age = %d, room = %d\n",
found item->key,
((struct info *)found item->data)->age,
((struct info *)found item->data)->room);

} else {
(void)printf("no such employee %s\n",

name to find);
}

}
hdestroy();
return 0;

}

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
bsearch(), hcreate(), hdestroy(), malloc(), strcmp()

May 31, 2004 Manifests 965

hsearch() 2004, QNX Software Systems Ltd.

The Art of Computer Programming, Volume 3, Sorting and Searching
by Donald E. Knuth, published by Addison-Wesley Publishing
Company, 1973.

966 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. hstrerror()
Get an error message string associated with the error return status

Synopsis:
#include <netdb.h>

const char* hstrerror(int err);

Arguments:
err The error code that you want to get the message for. For more

information, see h errno.

Library:
libsocket

Description:
The hstrerror() function gets an error message string associated with
the error return status from network host-related functions.

Network host-related functions such as the following can return the
error status:

� gethostbyaddr(), gethostbyaddr r()

� gethostbyname(), gethostbyname r()

� res query()

� res search()

You can check the external integer h errno to see whether this is a
temporary failure or an invalid or unknown host.

Returns:
A pointer to the message string affiliated with an error number.

May 31, 2004 Manifests 967

hstrerror() 2004, QNX Software Systems Ltd.

Don’t modify the message string.�

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
h errno, herror

968 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. htonl()
Convert a 32-bit value from host-byte order to network-byte order

Synopsis:
#include <arpa/inet.h>

uint32 t htonl(uint32 t hostlong);

Arguments:
hostlong The value that you want to convert.

Library:
libc

Description:
The htonl() function converts a 32-bit value from host-byte order to
network-byte order.

You typically use this routine in conjunction with the internet
addresses and ports that gethostbyname() and getservent() return.

Returns:
The value in network-byte order.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 969

htonl() 2004, QNX Software Systems Ltd.

See also:
gethostbyname(), getservent(), htons(), ntohl(), ntohs()

970 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. htons()
Convert a 16-bit value from host-byte order to network-byte order

Synopsis:
#include <arpa/inet.h>

uint16 t htons(uint16 t hostshort);

Arguments:
hostshort The value that you want to convert.

Library:
libc

Description:
The htons() function converts a 16-bit value from host-byte order to
network-byte order.

You typically use this routine in conjunction with the internet
addresses and ports that gethostbyname() and getservent() return.

Returns:
The value in network-byte order.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 971

htons() 2004, QNX Software Systems Ltd.

See also:
gethostbyname(), getservent(), htonl(), ntohl(), ntohs()

972 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. hwi find item()
Find an item in the hwinfo structure

Synopsis:
#include <hw/sysinfo.h>

unsigned hwi find item(unsigned start,
...);

Arguments:
start Where to start the search for the given item.

For the initial call, set this argument to HWI NULL OFF. If
the item found isn’t the one that you want, pass the return
value from the first call to hwi find item() as the start
parameter of the next call. This makes the search pick up
where it left off. You can repeat this process as many times
as required (the return value from the second call going
into the start parameter of the third, etc).

char * A sequence of names for identifying the item being
searched.

Terminate the sequence with a NULL pointer. The last
string before the NULL is the bottom-level item name that
you’re looking for, the string in front of that is the name of
the item that owns the bottom-level item, etc.

Library:
libc

Description:
The hwi find item() function finds an item in the hwinfo structure of
the system page.

May 31, 2004 Manifests 973

hwi find item() 2004, QNX Software Systems Ltd.

Returns:
The offset of the item requested, or HWI NULL OFF if the item wasn’t
found.

Examples:
Find the first occurrence of an item called “foobar”:

item off = hwi find item(HWI NULL OFF, "foobar", NULL);

Find the first occurrence of an item called “foobar” that’s owned by
“sam”:

item off = hwi find item(HWI NULL OFF, "sam", "foobar", NULL);

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
hwi find tag(), hwi off2tag(), hwi tag2off()

“Structure of the system page” in the Customizing Image Startup
Programs chapter of Building Embedded Systems

974 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. hwi find tag()
Find a tag in the hwinfo structure

Synopsis:
#include <hw/sysinfo.h>

unsigned hwi find tag(unsigned start,
int curr item,
const char * tagname);

Arguments:
start Where to start to search for the given item.

For the initial call, set this argument to
HWI NULL OFF. If the item found isn’t the one that
you want, pass the return value from the first call to
hwi find tag() as the start parameter of the next call.
This makes the search pick up where it left off. You can
repeat this process as many times as required (the return
value from the second call going into the start
parameter of the third, etc).

curr item If this argument is nonzero, the search stops at the end
of the current item (i.e. the one that start points to). If
curr item is zero, the search continues until the end of
the section.

tagname The name of tag to search for.

Library:
libc

Description:
The hwi find tag() function finds the tag named tagname.

May 31, 2004 Manifests 975

hwi find tag() 2004, QNX Software Systems Ltd.

Returns:
The offset of the tag, or HWI NULL OFF if the tag wasn’t found.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
hwi find item(), hwi off2tag(), hwi tag2off()

“Structure of the system page” in the Customizing Image Startup
Programs chapter of Building Embedded Systems

976 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. hwi off2tag()
Return a pointer to the start of a tag in the hwinfo area of the system page

Synopsis:
#include <hw/sysinfo.h>

void * hwi off2tag(unsigned offsect);

Arguments:
offsect The offset, in bytes from the start of the hwinfo section, of

a tag.

Library:
libc

Description:
The hwi off2tag() function returns a pointer to the start of the tag,
given an offset.

Returns:
A pointer to the start of the tag.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 977

hwi off2tag() 2004, QNX Software Systems Ltd.

See also:
hwi find item(), hwi find tag(), hwi tag2off()

“Structure of the system page” in the Customizing Image Startup
Programs chapter of Building Embedded Systems

978 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. hwi tag2off()
Return the offset from the start of the hwinfo area of the system page

Synopsis:
#include <hw/sysinfo.h>

unsigned hwi tag2off(void *tag);

Arguments:
tag A pointer to a tag in the hwinfo area of the system page.

Library:
libc

Description:
Given a pointer to the start of a tag, the hwi tag2off() function returns
the offset, in bytes, from the beginning of the start of the hwinfo
section.

Returns:
The offset of the tag, in bytes.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 979

hwi tag2off() 2004, QNX Software Systems Ltd.

See also:
hwi find item(), hwi find tag(), hwi off2tag()

“Structure of the system page” in the Customizing Image Startup
Programs chapter of Building Embedded Systems

980 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. hypot(), hypotf()
Calculate the length of the hypotenuse for a right-angled triangle

Synopsis:
#include <math.h>

double hypot(double x,
double y);

float hypotf(float x,
float y);

Arguments:
x, y The lengths of the sides that are adjacent to the right angle.

Library:
libm

Description:
These functions compute the length of the hypotenuse for a right
triangle whose sides are x and y adjacent to the right angle. The
calculation is equivalent to:

length = sqrt(x*x + y*y);

Returns:
The length of the hypotenuse.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

May 31, 2004 Manifests 981

hypot(), hypotf() 2004, QNX Software Systems Ltd.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main(void)
{

printf("%f\n", hypot(3.0, 4.0));

return EXIT SUCCESS;
}

produces the output:

5.000000

Classification:
hypot() is standard Unix; hypotf() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
sqrt

982 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ICMP
Internet Control Message Protocol

Synopsis:
#include <sys/socket.h>
#include <netinet/in.h>

int socket(AF INET,
SOCK RAW,
proto);

Description:
ICMP is the error- and control-message protocol used by IP and the
Internet protocol family. The protocol may be accessed through a
“raw socket” for network monitoring and diagnostic functions.

To get the proto parameter to socket() that’s used to create an ICMP
socket, call getprotobyname(). You normally use ICMP sockets,
which are connectionless, with sendto() and recvfrom(), although you
can also use connect() to fix the destination for future packets (in
which case you can use the read() or recv(), and write() or send()
system calls).

Outgoing packets automatically have an IP header prepended to them
that’s based on the destination address. Incoming packets are received
with the IP header and IP options intact.

Returns:
A descriptor referencing the socket, or -1 if an error occurs (errno is
set).

Errors:
EADDRNOTAVAIL

Tried to create a socket with a network address for
which no network interface exists.

EISCONN Tried to establish a connection on a socket that
already has one, or tried to send a datagram with the

May 31, 2004 Manifests 983

ICMP 2004, QNX Software Systems Ltd.

destination address specified but the socket is
already connected.

ENOBUFS The system ran out of memory for an internal data
structure.

ENOTCONN Tried to send a datagram, but no destination address
was specified, and the socket hasn’t been connected.

See also:
ICMP6, IP protocols

connect(), getprotobyname(), read(), recv(), recvfrom(), send(),
sendto(), socket(), write()

RFC 792

984 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ICMP6
Internet Control Message Protocol for IP6

Synopsis:
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/icmp6.h>

int socket(AF INET6,
SOCK RAW,
proto);

Description:
ICMP6 is the error and control message protocol that IP6 and the
Internet Protocol family use. It may be accessed through a “raw
socket” for network monitoring and diagnostic functions. Use the
getprotobyname() function to obtain the proto parameter to the
socket() function, or simply pass IPPROTO ICMPV6.

ICMPv6 sockets are connectionless, and are normally used with the
sendto() and recvfrom() functions. You may also use the connect()
function to fix the destination for future packets (in which case, you
may also use the read() or recv() functions and the write() or send()
system calls).

Outgoing packets automatically have an IP6 header prepended to
them (based on the destination address). The ICMP6 pseudo header
checksum field (icmp6 cksum, found in the icmp6 hdr structure in
<netinet/icmp6.h>) is filled automatically by the socket manager.
Incoming packets are received without the IP6 header or extension
headers.

This behavior is opposite from both IPv4 raw sockets and ICMPv4
sockets.

�

ICMP6 type/code filter

Each ICMP6 raw socket has an associated filter whose data type is
defined as struct icmp6 filter. This structure, along with the

May 31, 2004 Manifests 985

ICMP6 2004, QNX Software Systems Ltd.

macros and constants defined below are defined in the
<netinet/icmp6.h> header.

You can get and set the current filter by calling getsockopt() and
setsockopt() with a level of IPPROTO ICMPV6 and an option name of
ICMP6 FILTER.

These macros operate on an icmp6 filter structure:

ICMP6 FILTER SETPASSALL(struct icmp6 filter *)
ICMP6 FILTER SETBLOCKALL(struct icmp6 filter *)
ICMP6 FILTER SETPASS(int, struct icmp6 filter *)
ICMP6 FILTER SETBLOCK(int, struct icmp6 filter *)
ICMP6 FILTER WILLPASS(int, const struct icmp6 filter *)
ICMP6 FILTER WILLBLOCK(int, const struct icmp6 filter *)

If the first argument is an integer, it represents an ICMP6 message
type, with a value between 0 and 255. The pointer arguments are
pointers to the filters that are either set or examined, depending on the
macro:

ICMP6 FILTER SETPASSALL()

Pass all ICMPv6 messages to the application.

ICMP6 FILTER SETBLOCKALL()

Block all ICMPv6 messages from the application.

ICMP6 FILTER SETPASS()

Pass messages of a certain ICMPv6 type to the application.

ICMP6 FILTER SETBLOCK()

Block messages of a certain ICMPv6 type from the application.

ICMP6 FILTER WILLPASS()

Return true or false, depending on whether or not the specified
message type is passed to the application.

ICMP6 FILTER WILLBLOCK()

Return true or false, depending on whether or not the specified
message type is blocked from the application.

986 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ICMP6

When you create an ICMP6 raw socket, it passes all ICMPv6 message
types to the application by default.

For more information, see RFC 2292.

See also:
INET6, IP6 protocols

connect(), getprotobyname(), getsockopt(), read(), recv(), recvfrom(),
send(), sendto(), setsockopt(), socket(), write()

RFC 2292

May 31, 2004 Manifests 987

 2004, QNX Software Systems Ltd. if freenameindex()
Free dynamic memory allocated by if nameindex()

Synopsis:
#include <net/if.h>

void if freenameindex(struct if nameindex * ptr);

Arguments:
ptr A pointer to the if nameindex structure to be freed.

Library:
libsocket

Description:
The if freenameindex() function frees the dynamic memory that you
allocated by calling if nameindex().

Classification:
POSIX 1003.1-2001

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
getifaddrs(), if indextoname(), if nameindex(), if nametoindex()

May 31, 2004 Manifests 989

 2004, QNX Software Systems Ltd. if indextoname()
Map an interface index to its name

Synopsis:
#include <net/if.h>

char * if indextoname(unsigned int ifindex,
char * ifname);

Arguments:
ifindex The interface index.

ifname A pointer to a buffer in which if indextoname() copies the
interface name. The buffer must be a minimum of
IFNAMSIZ bytes long.

Library:
libsocket

Description:
The if indextoname() function maps the interface index specified by
ifindex to its corresponding name. The name is copied into the buffer
pointed to by ifname.

Returns:
A pointer to the name, or NULL if There isn’t an interface
corresponding to the specified index.

Classification:
POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

continued. . .

May 31, 2004 Manifests 991

if indextoname() 2004, QNX Software Systems Ltd.

Safety

Signal handler No

Thread Yes

See also:
getifaddrs(), if freenameindex(), if nameindex(), if nametoindex()

992 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. if nameindex()
Return a list of interfaces

Synopsis:
#include <net/if.h>

struct if nameindex * if nameindex(void);

Library:
libsocket

Description:
The if nameindex() function returns an array of if nameindex

structures, with one structure per interface, as defined in the include
file <net/if.h>. The if nameindex structure contains at least the
following members:

unsigned int if index

The index of the interface (1, 2, . . .).

char *if name

A null-terminated name (e.g. le0).

The end of the array of structures is indicated by an entry with an
if index of 0 and an if name of NULL.

Returns:
A valid array of if nameindex structures, or NULL if and error
occurred while using getifaddrs() to retrieve the list, or there wasn’t
enough memory available.

Classification:
POSIX 1003.1-2001

May 31, 2004 Manifests 993

if nameindex() 2004, QNX Software Systems Ltd.

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
getifaddrs(), if freenameindex(), if indextoname(), if nametoindex()

994 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. if nametoindex()
Map an interface name to its index

Synopsis:
#include <net/if.h>

unsigned int if nametoindex(const char * ifname);

Arguments:
ifname The interface name that you want to map.

Library:
libsocket

Description:
The if nametoindex() function maps the interface name specified by
ifname to its corresponding index.

Returns:
The index number of the interface, or 0 if the specified interface
couldn’t be found or an error occurred while using getifaddrs() to
retrieve the list of interfaces.

Classification:
POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 995

if nametoindex() 2004, QNX Software Systems Ltd.

See also:
getifaddrs(), if freenameindex(), if indextoname(), if nameindex()

996 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ifaddrs
Structure that describes an Internet host

Synopsis:
#include <ifaddrs.h>

struct ifaddrs {
struct ifaddrs * ifa next;
char * ifa name;
u int ifa flags;
struct sockaddr * ifa addr;
struct sockaddr * ifa netmask;
struct sockaddr * ifa dstaddr;
void * ifa data;

};

Description:
The ifaddrs structure contains the following entries:

ifa next A pointer to the next structure in the list. This field is
NULL in the last structure in the list.

ifa name The interface name.

ifa flags The interface flags, as set by the ifconfig utility.

ifa addr Either the address of the interface or the link-level
address of the interface, if one exists; otherwise it’s
NULL. See the sa family member of the sockaddr
structure pointed to by ifa addr to determine the
format of the address.

ifa netmask The netmask associated with ifa addr, if one is
set; otherwise it’s NULL.

ifa dstaddr The destination address on a P2P interface, if one
exists; otherwise it’s NULL. If the interface isn’t a
P2P interface, ifa dstaddr contains the broadcast
address associated with ifa addr, if one exists;
otherwise it’s NULL (see <ifaddr.h>).

ifa data Currently, this is set to NULL.

May 31, 2004 Manifests 997

ifaddrs 2004, QNX Software Systems Ltd.

Classification:
Unix

See also:
freeifaddrs(), getifaddrs()

998 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ilogb(), ilogbf()
Compute the integral part of a logarithm

Synopsis:
#include <math.h>

int ilogb (double x);

int ilogbf (float x);

Arguments:
x The number you want to compute the integral part of the

logarithm.

Library:
libm

Description:
The ilogb() and ilogbf() functions compute the integral part of:

logr |x|

as a signed integral value, for nonzero finite x, where r is the radix of
the machine’s floating point arithmetic.

Returns:
The exponent part of x, in integer format:

If x is: ilogb() returns:

0 -INT MAX

NAN INT MAX

negative infinity INT MAX

positive infinity INT MAX

May 31, 2004 Manifests 999

ilogb(), ilogbf() 2004, QNX Software Systems Ltd.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main(void)
{

printf("%f\n", ilogb(.5));

return EXIT SUCCESS;
}

Classification:
ilogb() is standard Unix; ilogbf() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
log(), logb(), log10(), log1p()

1000 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. in8()
Read an 8-bit value from a port

Synopsis:
#include <hw/inout.h>

uint8 t in8(uintptr t port);

Arguments:
port The port you want to read the value from.

Library:
libc

Description:
The in8() function reads an 8-bit value from the specified port.

Returns:
An 8-bit value.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1001

in8() 2004, QNX Software Systems Ltd.

Caveats:
The calling thread must have I/O privileges; see ThreadCtl()’s
NTO TCTL IO command for details.

The calling process must also use mmap device io() to access the
device’s I/O registers.

See also:
in8s(), in16(), in16s(), in32(), in32s(), mmap device io(), out8(),
out8s(), out16(), out16s(), out32(), out32s()

1002 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. in8s()
Read 8-bit values from a port

Synopsis:
#include <hw/inout.h>

void * in8s(void * buff,
unsigned len,
uintptr t port);

Arguments:
buff A pointer to a buffer where the function can store the values

read.

len The number of values that you want to read.

port The port you want to read the values from.

Library:
libc

Description:
The in8s() function reads len 8-bit values from the specified port and
stores them in the buffer pointed to by buff .

Returns:
A pointer to the end of the read data.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

continued. . .

May 31, 2004 Manifests 1003

in8s() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

Caveats:
The calling thread must have I/O privileges; see ThreadCtl()’s
NTO TCTL IO command for details.

The calling process must also use mmap device io() to access the
device’s I/O registers.

See also:
in8(), in16(), in16s(), in32(), in32s(), mmap device io(), out8(),
out8s(), out16(), out16s(), out32(), out32s()

1004 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. in16(), inbe16(), inle16()
Read a 16-bit value from a port

Synopsis:
#include <hw/inout.h>

uint16 t in16(uintptr t port);

#define inbe16 (port) ...

#define inle16 (port) ...

Arguments:
port The port you want to read the value from.

Library:
libc

Description:
The in16() function reads a 16-bit value from the specified port in
native-endian format (there’s no conversion required).

The inbe16() and inle16() macros read a 16-bit value that’s in
big-endian or little-endian format, respectively, from the specified
port, and returns the value as native-endian.

Returns:
A 16-bit value in native-endian.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

continued. . .

May 31, 2004 Manifests 1005

in16(), inbe16(), inle16() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

Caveats:
The calling thread must have I/O privileges; see ThreadCtl()’s
NTO TCTL IO command for details.

The calling process must also use mmap device io() to access the
device’s I/O registers.

Both inbe16() and inle16() are implemented as macros.

See also:
in8(), in8s(), in16s(), in32(), in32s(), mmap device io(), out8(),
out8s(), out16(), out16s(), out32(), out32s()

1006 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. in16s()
Read 16-bit values from a port

Synopsis:
#include <hw/inout.h>

void * in16s(void * buff,
unsigned len,
uintptr t port);

Arguments:
buff A pointer to a buffer where the function can store the values

read.

len The number of values that you want to read.

port The port you want to read the values from.

Library:
libc

Description:
The in16s() function reads len 16-bit values from the specified port
and stores them in the buffer pointed to by buff .

Returns:
A pointer to the end of the read data.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

continued. . .

May 31, 2004 Manifests 1007

in16s() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

Caveats:
The calling thread must have I/O privileges; see ThreadCtl()’s
NTO TCTL IO command for details.

The calling process must also use mmap device io() to access the
device’s I/O registers.

See also:
in8(), in8s(), in16(), in32(), in32s(), mmap device io(), out8(),
out8s(), out16(), out16s(), out32(), out32s()

1008 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. in32(), inbe32(), inle32()
Read a 32-bit value from a port

Synopsis:
#include <hw/inout.h>

uint32 t in32(uintptr t port);

#define inbe32 (port) ...

#define inle32 (port) ...

Arguments:
port The port you want to read the value from.

Library:
libc

Description:
The in32() function reads a 32-bit value from the specified port.

The inbe32() and inle32() macros read a 32-bit value that’s in
big-endian or little-endian format, respectively, from the specified
port, and returns the value as native-endian.

Returns:
A 32-bit value in native-endian.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

continued. . .

May 31, 2004 Manifests 1009

in32(), inbe32(), inle32() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

Caveats:
The calling thread must have I/O privileges; see ThreadCtl()’s
NTO TCTL IO command for details.

The calling process must also use mmap device io() to access the
device’s I/O registers.

Both inbe32() and inle32() are implemented as macros.

See also:
in8(), in8s(), in16(), in16s(), in32s(), mmap device io(), out8(),
out8s(), out16(), out16s(), out32(), out32s()

1010 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. in32s()
Read 32-bit values from a port

Synopsis:
#include <hw/inout.h>

void * in32s(void * buff,
unsigned len,
uintptr t port);

Arguments:
buff A pointer to a buffer where the function can store the values

read.

len The number of values that you want to read.

port The port you want to read the values from.

Library:
libc

Description:
The in32s() function reads len 32-bit values from the specified port
and stores them in the buffer pointed to by buff .

Returns:
A pointer to the end of the read data.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

continued. . .

May 31, 2004 Manifests 1011

in32s() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

Caveats:
The calling thread must have I/O privileges; see ThreadCtl()’s
NTO TCTL IO command for details.

The calling process must also use mmap device io() to access the
device’s I/O registers.

See also:
in8(), in8s(), in16(), in16s(), in32(), mmap device io(), out8(),
out8s(), out16(), out16s(), out32(), out32s()

1012 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. index()
Find a character in a string

Synopsis:
#include <strings.h>

char* index(const char* s,
int c);

Arguments:
s The string you want to search. This string must end with a null

(\0) character. The null character is considered to be part of the
string.

c The character you’re looking for.

Library:
libc

Description:
The index() function returns a pointer to the first occurrence of the
character c in the string s.

Returns:
A pointer to the character, or NULL if the character doesn’t occur in
the string.

Classification:
Legacy Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

continued. . .

May 31, 2004 Manifests 1013

index() 2004, QNX Software Systems Ltd.

Safety

Thread Yes

See also:
rindex(), strchr(), strrchr()

1014 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet addr()
Convert a string into a numeric Internet address

Synopsis:
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

in addr t inet addr(const char * cp);

Arguments:
cp A pointer to a string that represents an Internet address.

Library:
libsocket

Description:
The inet addr() routine converts a string representing an IPv4 Internet
address (for example, “127.0.0.1”) into a numeric Internet address.
To convert a hostname such as ftp.qnx.com, call gethostbyname().

All Internet addresses are returned in network byte order (bytes are
ordered from left to right). All network numbers and local address
parts are returned as machine-format integer values. For more
information on Internet addresses, see inet net ntop().

Returns:
An Internet address, or INADDR NONE if an error occurs.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 1015

inet addr() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
Although the value INADDR NONE (0xFFFFFFFF) is a valid
broadcast address, inet addr() always indicates failure when returning
that value. The inet aton() function doesn’t share this problem.

See also:
inet aton(), inet network()

1016 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet aton()
Convert a string into an Internet address stored in a structure

Synopsis:
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int inet aton(const char * cp,
struct in addr * addr);

Arguments:
cp A pointer to the character string.

addr A pointer to a in addr structure where the function can
store the converted address.

Library:
libsocket

Description:
The inet aton() routine interprets the specified character string as an
IPv4 Internet address, placing the address into the structure provided.

All Internet addresses are returned in network byte order (bytes are
ordered from left to right). All network numbers and local address
parts are returned as machine-format integer values.

For more information on Internet addresses, see inet net ntop().

Returns:
1 Success; the string was successfully interpreted.

0 Failure; the string is invalid.

May 31, 2004 Manifests 1017

inet aton() 2004, QNX Software Systems Ltd.

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
gethostbyname(), getnetent() inet addr(), inet lnaof(),
inet makeaddr(), inet netof(), inet network(), inet ntoa()

/etc/hosts, /etc/networks in the Utilities Reference

1018 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet lnaof()
Extract the local network address from an Internet address

Synopsis:
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet lnaof(struct in addr in);

Arguments:
in An Internet address.

Library:
libsocket

Description:
The inet lnaof() routine returns the local network address for an IPv4
Internet address.

All Internet addresses are returned in network byte order (bytes are
ordered from left to right). All network numbers and local address
parts are returned as machine-format integer values. For more
information on Internet addresses, see inet net ntop().

Returns:
A local network address.

Classification:
Standard Unix, POSIX 1003.1g (draft)

Safety

Cancellation point No

Interrupt handler No

continued. . .

May 31, 2004 Manifests 1019

inet lnaof() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

See also:
inet aton(), inet netof()

1020 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet makeaddr()
Convert a network number and a local network address into an Internet address

Synopsis:
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

struct in addr inet makeaddr(unsigned long net,
unsigned long lna);

Arguments:
net An Internet network number.

lna The local network address.

Library:
libsocket

Description:
The inet makeaddr() routine takes an Internet network number and a
local network address and constructs an IPv4 Internet address.

All Internet addresses are returned in network byte order (bytes are
ordered from left to right). All network numbers and local address
parts are returned as machine-format integer values. For more
information on Internet addresses, see inet net ntop().

Returns:
An Internet address.

Classification:
Standard Unix, POSIX 1003.1g (draft)

May 31, 2004 Manifests 1021

inet makeaddr() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
inet aton()

1022 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet net ntop()
Convert an Internet network number to CIDR format

Synopsis:
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

char * inet net ntop(int af,
const void * src,
int bits,
char * dst,
size t size);

Arguments:
af The address family. Currently, only AF INET is supported.

src A pointer to the Internet network number that you want to
convert. The format of the address is interpreted according to
af .

bits The number of bits that specify the network number (src).

dst a pointer to the buffer where the function can store the
converted address.

size The size of the buffer that dst points to, in bytes.

Library:
libsocket

Description:
The inet net ntop() function converts an Internet network number
from network format (usually a struct in addr or some other
binary form, in network byte order) to CIDR (Classless Internet
Domain Routing) presentation format that’s suitable for external
display purposes.

With CIDR, a single IP address can be used to designate many unique
IP addresses. A CIDR IP address looks like a normal IP address,

May 31, 2004 Manifests 1023

inet net ntop() 2004, QNX Software Systems Ltd.

except that it ends with a slash (/) followed by a number, called the
IP prefix. For example:

172.200.0.0/16

The IP prefix specifies how many addresses are covered by the CIDR
address, with lower numbers covering more addresses.

Network Numbers (IPv4 Internet addresses)

You can specify Internet addresses in the “dotted quad” notation, or
Internet network numbers, using one of the following forms:

a.b.c.d/bits or a.b.c.d

When you specify a four-part address, each part is
interpreted as a byte of data and is assigned, from left to
right, to the four bytes of an Internet network number (or
Internet address). When an Internet network number is
viewed as a 32-bit integer quantity on a system that uses
little-endian byte order (i.e. right to left), such as the Intel
386, 486 and Pentium processors, the bytes referred to
above appear as “d.c.b.a”.

a.b.c When you specify a three-part address, the last part is
interpreted as a 16-bit quantity and is placed in the
rightmost two bytes of the Internet network number (or
network address). This makes the three-part address format
convenient for specifying Class B network addresses as
net.net.host.

a.b When you specify a two-part address, the last part is
interpreted as a 24-bit quantity and is placed in the
rightmost three bytes of the Internet network number (or
network address). This makes the two-part number format
convenient for specifying Class A network numbers as
net.host.

a When you specify a one-part address, the value is stored
directly in the Internet network number (network address)
without any byte rearrangement.

1024 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet net ntop()

All numbers supplied as “parts” in a dot notation may be decimal,
octal, or hexadecimal, as specified in the C language. That is, a
number is interpreted as decimal unless it has a leading 0 (octal), or a
leading 0x or 0X (hex).

Returns:
A pointer to the destination string (dst), or NULL if a system error
occurs (errno is set).

Errors:
ENOENT Invalid argument af .

Classification:
POSIX 1003.1-2000

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
inet aton(), inet net ntop()

May 31, 2004 Manifests 1025

inet netof() 2004, QNX Software Systems Ltd.

Extract the network number from an Internet address

Synopsis:
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet netof(struct in addr in);

Arguments:
in An Internet address.

Library:
libsocket

Description:
The inet netof() routine returns the network number of the specified
IPv4 Internet address.

All Internet addresses are returned in network order (bytes are ordered
from left to right). All network numbers and local address parts are
returned as machine-format integer values. For more information on
Internet addresses, see inet net ntop().

Returns:
An Internet network number.

Classification:
Standard Unix, POSIX 1003.1g (draft)

Safety

Cancellation point No

Interrupt handler No

continued. . .

1026 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet netof()

Safety

Signal handler Yes

Thread Yes

See also:
inet aton(), inet lnaof()

May 31, 2004 Manifests 1027

inet net pton() 2004, QNX Software Systems Ltd.

Convert an Internet network number from CIDR format to network format

Synopsis:
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int inet net pton(int af,
const char * src,
void * dst,
size t size);

Arguments:
af The address family. Currently, only AF INET is supported.

src A pointer to the presentation-format (CIDR) address. The
format of the address is interpreted according to af .

dst A pointer to the buffer where the function can store the
converted address.

size The size of the buffer pointed to by dst, in bytes.

Library:
libsocket

Description:
The inet net pton() function converts an Internet network number
from presentation format — a printable form as held in a character
string, such as, Internet standard dot notation, or Classless Internet
Domain Routing (CIDR) — to network format (usually a struct
in addr or some other internal binary representation, in network
byte order).

For more information on Internet addresses, see inet net ntop().

1028 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet net pton()

Returns:
The number of bits that specify the network number (computed based
on the class, or specified with /CIDR), or -1 if an error occurred
(errno is set).

Errors:
ENOENT Invalid argument af .

Classification:
POSIX 1003.1-2000

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
inet aton(), inet net ntop()

May 31, 2004 Manifests 1029

inet network() 2004, QNX Software Systems Ltd.

Convert a string into an Internet network number

Synopsis:
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet network(const char * cp);

Arguments:
cp A pointer to a string representing an Internet address.

Library:
libsocket

Description:
The inet network() routine converts a string representing an IPv4
Internet address (for example, “127.0.0.1”) into a numeric Internet
network number.

All Internet addresses are returned in network order (bytes are ordered
from left to right). All network numbers and local address parts are
returned as machine-format integer values. For more information on
Internet addresses, see inet net ntop().

Returns:
An Internet network number, or INADDR NONE if an error occurs.

Classification:
Standard Unix, POSIX 1003.1g (draft)

Safety

Cancellation point No

continued. . .

1030 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet network()

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
inet addr(), inet aton()

May 31, 2004 Manifests 1031

inet ntoa() 2004, QNX Software Systems Ltd.

Convert an Internet address into a string

Synopsis:
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

char * inet ntoa(struct in addr in);

Arguments:
in The Internet address that you want to convert.

Library:
libsocket

Description:
The inet ntoa() routine converts an IPv4 Internet address into an
ASCII string representing the address in dot notation (for example,
“127.0.0.1”).

For more information on Internet addresses, see inet net ntop().

Returns:
A string representing an Internet address.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

1032 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet ntoa()

Caveats:
The string returned by this function is stored in a static buffer that’s
reused for every call to inet ntoa(). For a thread-safe version, see
inet ntoa r().

See also:
inet aton(), inet ntoa r()

May 31, 2004 Manifests 1033

inet ntoa r() 2004, QNX Software Systems Ltd.

Convert an Internet address into a string

Synopsis:
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

char * inet ntoa r(struct in addr in,
char * buffer,
int bufflen);

Arguments:
in The Internet address that you want to convert.

buffer A buffer where the function can store the result.

bufflen The size of the buffer, in bytes.

Library:
libsocket

Description:
The inet ntoa r() function is a thread-safe version of inet ntoa(). It
converts an IPv4 Internet address into a string (for example,
“127.0.0.1"”). For more information on this routine, see
inet aton().

Returns:
A string representing an Internet address, or NULL if an error occurs
(errno is set).

Errors:
ERANGE The supplied buffer isn’t large enough to store the

result.

1034 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet ntoa r()

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
inet aton(), inet ntoa()

May 31, 2004 Manifests 1035

inet ntop() 2004, QNX Software Systems Ltd.

Convert a numeric network address to a string

Synopsis:
#include <sys/socket.h>
#include <arpa/inet.h>

const char * inet ntop(int af,
const void * src,
char * dst,
socklen t size);

Arguments:
af The src address’s network family; one of:

AF INET IPv4 addresses

AF INET6 IPv6 addresses

src The numeric network address that you want to convert to a
string.

dst The text string that represents the translated network address.
You can use the following constants to allocate buffers of the
correct size (they’re defined in <netinet/in.h>):

� INET ADDRSTRLEN — storage for an IPv4 address

� INET6 ADDRSTRLEN — storage for an IPv6 address

size The size of the buffer pointed to by dst.

Library:
libc

Description:
The inet ntop() function converts a numeric network address pointed
to by src into a text string in the buffer pointed to by dst.

1036 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet ntop()

Returns:
A pointer to the buffer containing the text version of the address, or
NULL if an error occurs (errno is set).

Errors:
EAFNOSUPPORT

The value of the af argument isn’t a supported network
family.

ENOSPC The dst buffer isn’t large enough (according to size) to
store the translated address.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <errno.h>

#define INADDR "10.1.0.29"
#define IN6ADDR "DEAD:BEEF:7654:3210:FEDC:3210:7654:BA98"

int
main()
{

struct in addr inaddr;
struct in6 addr in6addr;
char buf[INET ADDRSTRLEN], buf6[INET6 ADDRSTRLEN];
int rval;

if ((rval = inet pton(AF INET, INADDR, &inaddr)) == 0) {
printf("Invalid address: %s\n", INADDR);
exit(EXIT FAILURE);

} else if (rval == -1) {
perror("inet pton");
exit(EXIT FAILURE);

}

if (inet ntop(AF INET, &inaddr, buf, sizeof(buf)) != NULL)
printf("inet addr: %s\n", buf);

else {
perror("inet ntop");
exit(EXIT FAILURE);

}

May 31, 2004 Manifests 1037

inet ntop() 2004, QNX Software Systems Ltd.

if ((rval = inet pton(AF INET6, IN6ADDR, &in6addr)) == 0) {
printf("Invalid address: %s\n", IN6ADDR);
exit(EXIT FAILURE);

} else if (rval == -1) {
perror("inet pton");
exit(EXIT FAILURE);

}

if (inet ntop(AF INET6, &in6addr, buf6, sizeof(buf6)) != NULL)
printf("inet6 addr: %s\n", buf6);

else {
perror("inet ntop");
exit(EXIT FAILURE);

}

return(EXIT SUCCESS);
}

Classification:
Unix, POSIX 1003.1-2001

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
inet pton()

1038 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet pton()
Convert a text host address to a numeric address

Synopsis:
#include <sys/socket.h>
#include <arpa/inet.h>

int inet pton(int af,
const char * src,
void * dst);

Arguments:
af The src address’s network family; one of:

AF INET IPv4 addresses

AF INET6 IPv6 addresses

src A pointer to the text host address that you want to convert.
The format of the address is interpreted according to af

dst A pointer to a buffer where the function can store the
converted address.

Library:
libc

Description:
The inet pton() function converts the standard text representation of
the numeric network address (src) into its numeric network byte-order
binary form (dst).

The converted address is stored in network byte order in dst. The
buffer pointed to by dst must be large enough to hold the numeric
address:

May 31, 2004 Manifests 1039

inet pton() 2004, QNX Software Systems Ltd.

Family Numeric address size

AF INET 4 bytes

AF INET6 16 bytes

AF INET addresses

IPv4 addresses must be specified in the standard dotted-decimal form:

ddd.ddd.ddd.ddd

where ddd is a one- to three-digit decimal number between 0 and 255.

Many existing implementations of inet addr() and inet aton() accept
nonstandard input: octal numbers, hexadecimal numbers, and fewer
than four numbers. The inet pton() function doesn’t accept these
formats.

�

AF INET6 addresses

IPv6 addresses must be specified in one of the following standard
formats:

� The preferred form is:

x:x:x:x:x:x:x:x

where x is a hexadecimal value for one of the eight 16-bit pieces of
the address. For example:

DEAD:BEEF:7654:3210:FEDC:3210:7654:BA98

417A:200C:800:8:0:0:0:1080

� A :: can be used once per address to represent multiple groups of
16 zero-bits. For example, the following addresses:

1080:0:0:0:8:800:200C:417A

FF01:0:0:0:0:0:0:43

0:0:0:0:0:0:0:1

0:0:0:0:0:0:0:0

can be represented as:

1040 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet pton()

1080::8:800:200C:417A

FF01::43

::1

::

� A convenient format when dealing with mixed IPv4 and IPv6
environments is:

x:x:x:x:x:x:d.d.d.d

where x is a hexadecimal value for one of the six high-order 16-bit
pieces of the address and d is a decimal value for one of the four
low-order 8-bit pieces of the address (standard AF INET
representation). For example:

0:0:0:0:0:0:13.1.68.3

0:0:0:0:0:FFFF:129.144.52.38

Or, in their compressed forms:

::13.1.68.3

::FFFF:129.144.52.38

Returns:
1 Success.

0 The input isn’t a valid address.

-1 An error occurred (errno is set).

Errors:
EAFNOSUPPORT

The af argument isn’t one of the supported networking families.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <errno.h>

#define INADDR "10.1.0.29"

May 31, 2004 Manifests 1041

inet pton() 2004, QNX Software Systems Ltd.

#define IN6ADDR "DEAD:BEEF:7654:3210:FEDC:3210:7654:BA98"

int
main()
{

struct in addr inaddr;
struct in6 addr in6addr;
char buf[INET ADDRSTRLEN], buf6[INET6 ADDRSTRLEN];
int rval;

if ((rval = inet pton(AF INET, INADDR, &inaddr)) == 0) {
printf("Invalid address: %s\n", INADDR);
exit(EXIT FAILURE);

} else if (rval == -1) {
perror("inet pton");
exit(EXIT FAILURE);

}

if (inet ntop(AF INET, &inaddr, buf, sizeof(buf)) != NULL)
printf("inet addr: %s\n", buf);

else {
perror("inet ntop");
exit(EXIT FAILURE);

}

if ((rval = inet pton(AF INET6, IN6ADDR, &in6addr)) == 0) {
printf("Invalid address: %s\n", IN6ADDR);
exit(EXIT FAILURE);

} else if (rval == -1) {
perror("inet pton");
exit(EXIT FAILURE);

}

if (inet ntop(AF INET6, &in6addr, buf6, sizeof(buf6)) != NULL)
printf("inet6 addr: %s\n", buf6);

else {
perror("inet ntop");
exit(EXIT FAILURE);

}

return(EXIT SUCCESS);
}

1042 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet pton()

Classification:
Unix, POSIX 1003.1-2001

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
inet ntop()

RFC 2373

May 31, 2004 Manifests 1043

inet6 option *() 2004, QNX Software Systems Ltd.

Manipulate IPv6 hop-by-hop and destination options

Synopsis:
#include <netinet/in.h>

int inet6 option space(int nbytes);

int inet6 option init(void *bp,
struct cmsghdr **cmsgp,
int type);

int inet6 option append(struct cmsghdr *cmsg,
const u int8 t *typep,
int multx,
int plusy);

u int8 t * inet6 option alloc(struct cmsghdr *cmsg,
int datalen,

int multx,
int plusy);

int inet6 option next(const struct cmsghdr *cmsg,
u int8 t **tptrp);

int inet6 option find(const struct cmsghdr *cmsg,
u int8 t **tptrp,
int type);

Arguments:
nbytes Size of the structure that defines the option. It includes

any pad bytes at the beginning the value y in the alignment
term xn + y, the type byte, the length byte, and the option
data.

bp Pointer to previously allocated space that contains the
ancillary data object. It must be large enough to contain
all the individual options to be added by later calls to
inet6 option append() and inet6 option alloc().

cmsgp Pointer to a cmsghdr structure. The *cmsgp variable is
initialized by this function to point to the cmsghdr

1044 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet6 option *()

structure constructed by this function in the buffer pointed
to by bp.

type Either IPV6 HOPOPTS or IPV6 DSTOPTS. This type is
stored in the cmsg type member of the cmsghdr structure
pointed to by *cmsgp.

cmsg Pointer to the cmsghdr structure that must have been
initialized by inet6 option init().

typep Pointer to the 8-bit option type. It’s assumed that this field
is immediately followed by the 8-bit option data length
field, which is then followed by the option data. The caller
initializes these three fields (the type-length-value, or
TLV) before calling this function.

The option type must have a value from 2 to 255,
inclusive. (0 and 1 are reserved for the Pad1 and PadN

options, respectively.)

The option data length must have a value between 0 and
255, inclusive, and is the length of the option data that
follows.

multx value x in the alignment term xn + y. It must have a value
of 1, 2, 4, or 8.

plusy Value y in the alignment term xn + y. It must have a
value between 0 and 7, inclusive.

tptrp Pointer to a pointer to an 8-bit byte.

Library:
libsocket

Description:
These functions perform hop-by-hop and destination options
following RFC2292 that alleviates alignment constraints, padding and
ancillary data manipulation. You can find the prototypes for these
functions in the <netinet/in.h> header.

May 31, 2004 Manifests 1045

inet6 option *() 2004, QNX Software Systems Ltd.

inet6 option space()

This function returns the number of bytes required to hold an option
when it’s stored as ancillary data, including the cmsghdr structure at
the beginning, and any padding at the end (to make its size a multiple
of 8 bytes). The argument is the size of the structure that defines the
option. It includes any pad bytes at the beginning (the value y in the
alignment term xn + y), the type byte, the length byte, and the option
data.

When multiple options are stored in a single ancillary data object, this
function overestimates the amount of space required by the size of
N-1 cmsghdr structures, where N is the number of options to be
stored in the object. This is of little consequence, since it’s assumed
that most hop-by-hop option and destination option headers carry
only one option (see Appendix B of RFC 2460).

�

inet6 option init()

This function is called once per ancillary data object that contains
either hop-by-hop or destination options.

bp Pointer to previously allocated space that contains the
ancillary data object. It must be large enough to contain
all the individual options to be added by later calls to
inet6 option append() and inet6 option alloc().

cmsgp Pointer to a cmsghdr structure. The *cmsgp variable is
initialized by this function to point to the cmsghdr
structure constructed by this function in the buffer pointed
to by bp.

type Either IPV6 HOPOPTS or IPV6 DSTOPTS. This type is
stored in the cmsg type member of the cmsghdr structure
pointed to by *cmsgp.

Returns:

1046 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet6 option *()

0 Success.

-1 An error has occurred.

inet6 option append()

This function appends a hop-by-hop option or a destination option
into an ancillary data object that has been initialized by
inet6 option init().

cmsg Pointer to the cmsghdr structure that must have been
initialized by inet6 option init().

typep Pointer to the 8-bit option type. It’s assumed that this field
is immediately followed by the 8-bit option data length
field, which is then followed by the option data. The caller
initializes these three fields (the type-length-value, or TLV)
before calling this function.

The option type must have a value from 2 to 255, inclusive.
(0 and 1 are reserved for the Pad1 and PadN options,
respectively.)

The option data length must have a value between 0 and
255, inclusive, and is the length of the option data that
follows.

multx value x in the alignment term xn + y. It must have a value
of 1, 2, 4, or 8.

plusy Value y in the alignment term xn + y. It must have a value
between 0 and 7, inclusive.

Returns:

0 Success.

-1 An error has occurred.

May 31, 2004 Manifests 1047

inet6 option *() 2004, QNX Software Systems Ltd.

inet6 option alloc()

This function appends a hop-by-hop option or a destination option
into an ancillary data object that has been initialized by
inet6 option init().

The difference between this function and inet6 option append() is
that the latter copies the contents of the previously built option into
the ancillary data object. This function returns a pointer to the space
in the data object where the option’s TLV must then be built by the
caller.

cmsg pointer to the cmsghdr structure that must have been
initialized by inet6 option init().

datalen Value of the option data length byte for this option. This
value is required as an argument to allow the function to
determine if padding should be appended at the end of the
option, argument since the option data length must
already be stored by the caller. (The
inet6 option append() function doesn’t need a data
length)

multx Value x in the alignment term xn + y. It must have a
value of 1, 2, 4, or 8.

plusy Value of y in the alignment term xn + y. It must have a
value between 0 and 7, inclusive.

Returns

Pointer to the 8-bit option type field that starts the option

Success.

NULL An error has occurred.

1048 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet6 option *()

inet6 option next()

This function processes the next hop-by-hop option or destination
option in an ancillary data object. If another option remains to be
processed, the return value of the function is 0 and *tptrp points to the
8-bit option type field the option data.

The cmsg variable is a pointer to cmsghdr structure for which
cmsg level equals IPPROTO IPV6 and cmsg type equals either
IPV6 HOPOPTS or IPV6 DSTOPTS.

The tptrp is a pointer to a pointer to an 8-bit byte and *tptrp is used
by the function to remember its place in the ancillary data object each
time the function is called. The first time this function is called for a
given ancillary data object, *tptrp must be set to NULL.

Each time this function returns success, *tptrp points to the 8-bit
option type field for the next option to be processed.

Returns:

0 The option is located and the *tptrp points to the 8-bit option
type field.

-1 with *tptrp pointing to NULL

No more options to process.

-1 with *tptrp pointing to non-NULL

An error has occurred.

inet6 option find()

This function is similar to inet6 option next(). It however, lets the
caller specify the option type to be searched for, instead of always
returning the next option in the ancillary data object. The cmsg is a
pointer to the cmsghdr structure of which cmsg level equals
IPPROTO IPV6 and cmsg type equals either IPV6 HOPOPTS or
IPV6 DSTOPTS.

The tptrp is a pointer to a pointer to an 8-bit byte that is used by the
function to remember its place in the ancillary data object each time
the function is called.

May 31, 2004 Manifests 1049

inet6 option *() 2004, QNX Software Systems Ltd.

The first time this function is called for a given ancillary data object,
*tptrp must be set to NULL. This function starts searching for an
option of the specified type beginning after the value of *tptrp pointer.

Returns:

0 with *tptrp pointing to the 8-bit option

The option is located.

-1 with *tptrp pointing to NULL

The option is not located.

-1 with *tptrp pointing to non-NULL

An error has occurred.

Classification:
Standard RFC 2292

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
W. Stevens and M. Thomas, Advanced Sockets API for IPv6, RFC
2292, February 1998. Contains examples.

S. Deering and R. Hinden, Internet Protocol, Version 6 (IPv6)
Specification, RFC 2460, December 1998.

1050 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. INET6
Internet protocol version 6 family

Synopsis:
#include <netinet/in.h>

struct sockaddr in6 {
uint8 t sin6 len;
sa family t sin6 family;
in port t sin6 port;
uint32 t sin6 flowinfo;
struct in6 addr sin6 addr;
uint32 t sin6 scope id;

};

Description:
Protocols

The INET6 family consists of the:

� IPv6 network protocol

� Internet Control Message Protocol version 6 (ICMP)

� Transmission Control Protocol (TCP)

� User Datagram Protocol (UDP).

TCP supports the SOCK STREAM abstraction, while UDP supports
the SOCK DGRAM abstraction. Note that TCP and UDP are common
to INET and INET6. A raw interface to IPv6 is available by creating
an Internet SOCK RAW socket. The ICMPv6 message protocol may
be accessed from a raw socket.

The INET6 protocol family is an updated version of the INET family.
While INET implements Internet Protocol version 4, INET6
implements Internet Protocol version 6.

Addressing

IPv6 addresses are 16-byte quantities, stored in network standard
(big-endian) byte order. The header file <netinet/in.h> defines
this address as a discriminated union.

May 31, 2004 Manifests 1051

INET6 2004, QNX Software Systems Ltd.

Sockets bound to the INET6 family use the structure shown above.

You can create sockets with the local address :: (which is equal to
IPv6 address 0:0:0:0:0:0:0:0) to cause “wildcard” matching on
incoming messages. You can specify the address in a call to connect()
or sendto() as :: to mean the local host. You can get the :: value by
setting the sin6 addr field to 0, or by using the address contained in
the in6addr any global variable, which is declared in
<netinet6/in6.h>.

The IPv6 specification defines scoped addresses, such as link-local or
site-local addresses. A scoped address is ambiguous to the kernel if
it’s specified without a scope identifier. To manipulate scoped
addresses properly in your application, use the advanced API defined
in RFC 2292. A compact description on the advanced API is available
in IP6. If you specify scoped addresses without an explicit scope, the
socket manager may return an error.

Scoped addresses are currently experimental, from both a
specification and an implementation point of view.

�

The KAME implementation supports extended numeric IPv6 address
notation for link-local addresses. For example, you can use
fe80::1%de0 to specify “fe80::1 on the de0 interface.” The
getaddrinfo() and getnameinfo() functions support this notation.
Some utilities, such as telnet and ftp, can use the notation. With
special programs like ping6, you can disambiguate scoped addresses
by specifying the outgoing interface with extra command-line options.

The socket manager handles scoped addresses in a special manner. In
the socket manager’s routing tables or interface structures, a scoped
address’s interface index is embedded in the address. Therefore, the
address contained in some of the socket manager structures isn’t the
same as on the wire. The embedded index becomes visible when
using the PF ROUTE socket or the sysctl() function. You shouldn’t use
the embedded form.

1052 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. INET6

Interaction between IPv4/v6 sockets

The behavior of the AF INET6 TCP/UDP socket is documented in
the RFC 2553 specification, which states:

� A specific bind on an AF INET6 socket (bind() with an address
specified) should accept IPv6 traffic to that address only.

� If you perform a wildcard bind on an AF INET6 socket (bind() to
the IPv6 address ::), and there isn’t a wildcard-bound AF INET
socket on that TCP/UDP port, then the IPv6 traffic as well as the
IPv4 traffic should be routed to that AF INET6 socket. IPv4 traffic
should be seen by the application as if it came from an IPv6
address such as ::ffff:10.1.1.1. This is called an IPv4
mapped address.

� If there are both wildcard-bound AF INET sockets and
wildcard-bound AF INET6 sockets on one TCP/UDP port, they
should operate independently: IPv4 traffic should be routed to the
AF INET socket, and IPv6 should be routed to the AF INET6
socket.

However, the RFC 2553 specification doesn’t define the constraint
between the binding order, nor how the IPv4 TCP/UDP port numbers
and the IPv6 TCP/UDP port numbers relate each other (whether they
must be integrated or separated). The behavior is very different from
implementation to implementation. It is unwise to rely too much on
the behavior of the AF INET6 wildcard-bound socket. Instead,
connect to two sockets, one for AF INET and another for AF INET6,
when you want to accept both IPv4 and IPv6 traffic.

CAUTION: Use caution when handling connections from IPv4
mapped addresses with AF INET6 sockets — if the target node routes
IPv4 traffic to AF INET6 sockets, malicious parties can bypass
security.

!

Because of the security hole, by default, NetBSD doesn’t route IPv4
traffic to AF INET6 sockets. If you want to accept both IPv4 and
IPv6 traffic, use two sockets. IPv4 traffic may be routed with multiple

May 31, 2004 Manifests 1053

INET6 2004, QNX Software Systems Ltd.

per-socket/per-node configurations, but, it isn’t recommended. See
IP6 for details.

The IPv6 support is subject to change as the Internet protocols
develop. Don’t depend on details of the current implementation, but
rather the services exported. Try to implement version-independent
code as much as possible, because you’ll need to support both INET
and INET6.

�

See also:
ICMP, ICMP6, IP6, IP, TCP, UDP protocols

bind(), connect(), getaddrinfo(), ioctl(), sendto(), socket(), sysctl()

ftp, ping6, telnet in the Utilities Reference

RFC 2553, RFC 2292

1054 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet6 rthdr *()
Manipulate IPv6 Router header options

Synopsis:
#include <netinet/in.h>
size t inet6 rthdr space(int type,

int segments);

struct cmsghdr * inet6 rthdr init(void *bp,
int type);

int inet6 rthdr add(struct cmsghdr *cmsg,
const struct in6 addr *addr,
unsigned int flags);

int inet6 rthdr lasthop(struct cmsghdr *cmsg,
unsigned int flags);

int inet6 rthdr reverse(const struct cmsghdr *in,
struct cmsghdr *out);

int inet6 rthdr segments(const struct cmsghdr *cmsg);

struct in6 addr * inet6 rthdr getaddr(struct cmsghdr *cmsg,
int index);

int inet6 rthdr getflags(const struct cmsghdr *cmsg,
int index);

Arguments:
type The type of IPv6 Routing header (e.g. Type 0 as defined

in <netinet/in.h>).

segments The number of segments (addresses) in the Routing
header.

bp Pointer to the buffer that contains a cmsghdr structure
followed by a Routing header of the specified type.

addr IPv6 address structure.

flags Routing header flags.

May 31, 2004 Manifests 1055

inet6 rthdr *() 2004, QNX Software Systems Ltd.

in Ancillary data containing Routing header.

out Ancillary data containing Routing header.

cmsg Ancillary data containing Routing header.

index A value between 0 and the number returned by
inet6 rthdr segments().

Library:
libsocket

Description:
Your application can now call eight functions to build and examine a
Routing header. The function prototypes for these functions are all in
the <netinet/in.h> header.

The following functions build a Routing header:

Use this function: To:

inet6 rthdr space() Return number of bytes
required for ancillary data

inet6 rthdr init() Initialize ancillary data for
Routing header

inet6 rthdr add() Add IPv6 address and flags to
Routing header

inet6 rthdr lasthop() Specify the flags for the final
hop

The following functions deal with a returned Routing header:

1056 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet6 rthdr *()

Use this function: To:

inet6 rthdr reverse() Reverse a Routing header

inet6 rthdr segments() Return number of segments in a
Routing header

inet6 rthdr getaddr() Fetch one address from a
Routing header

inet6 rthdr getflags() Fetch one flag from a Routing
header

inet6 rthdr space()

This function returns the number of bytes required to hold a Routing
header of the specified type containing a specified number of
segments (addresses). For an IPv6 Type 0 Routing header, the number
of segments must be between 1 and 23, inclusive. The return value
includes the size of the cmsghdr structure that precedes the Routing
header, and any required padding.

If the return value is 0, then either the type of the Routing header isn’t
supported by this implementation or the number of segments is
invalid for this type of Routing header.

This function returns the size but doesn’t allocate the space required
for the ancillary data. This allows an application to allocate a larger
buffer, if other ancillary data objects are desired. All the ancillary data
objects must be specified to sendmsg() as a single msg control

buffer in the msghdr structure msg control member.

�

inet6 rthdr init()

This function initializes the buffer pointed to by bp to contain a
cmsghdr structure followed by a Routing header of the specified
type. The cmsg len member of the cmsghdr structure is initialized to
the size of the structure plus the amount of space required by the
Routing header.

May 31, 2004 Manifests 1057

inet6 rthdr *() 2004, QNX Software Systems Ltd.

The cmsg level and cmsg type members are also initialized as
required.

The caller must allocate the buffer and its size that is determined by
calling inet6 rthdr space().

Upon success, the return value is the pointer to the cmsghdr structure,
and this is then used as the first argument to the next two functions.

The function returns NULL on error.

inet6 rthdr add()

This function adds the address pointed to by addr to the end of the
Routing header being constructed and sets the type of this hop to the
value of flags. For an IPv6 Type 0 Routing header, flags must be
either IPV6 RTHDR LOOSE or IPV6 RTHDR STRICT.

If successful, the cmsg len member of the cmsghdr structure is
updated to account for the new address in the Routing header.

Returns:

0 Success.

-1 An error has occurred.

inet6 rthdr lasthop()

This function specifies the Strict/Loose flag for the final hop of a
Routing header. For an IPv6 Type 0 Routing header, flags must be
either IPV6 RTHDR LOOSE or IPV6 RTHDR STRICT.

Returns:

0 Success.

-1 An error has occurred.

1058 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. inet6 rthdr *()

A Routing header specifying N intermediate nodes requires N+1
Strict/Loose flags. This requires N calls to inet6 rthdr add() followed
by one call to inet6 rthdr lasthop().

�

inet6 rthdr reverse()

The inet6 rthdr reverse() has not been implemented yet.�

This function takes a Routing header that has been received as
ancillary data (pointed to by the first argument, in) and writes a new
Routing header. The Routing header sends datagrams along the
reverse of that route. Both arguments are allowed to point to the same
buffer (that is, the reversal can occur in place).

Returns:

0 Success.

-1 An error has occurred.

inet6 rthdr segments()

This function returns the number of segments (addresses) contained in
the Routing header described by cmsg.

Returns:

1 to 23 Success.

-1 An error has occurred.

inet6 rthdr getaddr()

This function returns a pointer to the IPv6 address specified by index
in the Routing header described by cmsg. The index must have a
value between 1 and the number returned by inet6 rthdr segments().
An application should first call inet6 rthdr segments() to obtain the
number of segments in the Routing header.

The function returns NULL on error.

May 31, 2004 Manifests 1059

inet6 rthdr *() 2004, QNX Software Systems Ltd.

inet6 rthdr getflags()

This function returns the flags value specified by index in the Routing
header described by cmsg. The index must have a value between 0
and the number returned by inet6 rthdr segments(). For an IPv6 Type
0 Routing header, the return value is either IPV6 RTHDR LOOSE or
IPV6 RTHDR STRICT.

The function returns -1 on error.

Addresses are indexed starting at 1, and flags starting at 0. They’re
consistent with the terminology and figures in RFC2460.

�

Classification:
RFC 2292

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
W. Stevens and M. Thomas, Advanced Sockets API for IPv6, RFC
2292, February 1998. Contains good examples.

S. Deering and R. Hinden, Internet Protocol, Version 6 (IPv6)
Specification, RFC 2460, December 1998.

1060 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. initgroups()
Initialize the supplementary group access list

Synopsis:
#include <grp.h>
#include <sys/types.h>

int initgroups(const char * name,
gid t basegid);

Arguments:
name The name of the user whose group membership you want

to use as the supplementary group access list.

basegid A group ID that you want to include in the group access
list.

Library:
libc

Description:
The initgroups() function reads the group membership for the user
specified by name from the group database, and then initializes the
supplementary group access list of the calling process (see getgrnam()
and getgroups()).

If the number of groups in the supplementary access list exceeds
NGROUPS MAX, the extra groups are ignored.

Returns:
0 Success.

-1 An error occurred (errno is set).

May 31, 2004 Manifests 1061

initgroups() 2004, QNX Software Systems Ltd.

Errors:
EPERM The caller isn’t root.

Files:
/etc/group The group database.

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

Caveats:
If initgroups() fails, it doesn’t change the supplementary group access
list.

The getgrouplist() function called by initgroups() is based on
getgrent(). If the calling process uses getgrent(), the in-memory group
structure is overwritten in the call to initgroups().

See also:
getgroups(), getgrnam()

1062 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. initstate()
Initialize a pseudo-random number generator

Synopsis:
#include <stdlib.h>

char* initstate(unsigned int seed,
char* state,
size t size);

Arguments:
seed A starting point for the random-number sequence. This lets

you restart the sequence at the same point.

state The state array that you want to initialize.

size The size, in bytes, of the state array; see below.

Library:
libc

Description:
The initstate() initializes the given state array for future use when
generating pseudo-random numbers.

This function uses the size argument to determine what type of
random-number generator to use; the larger the state array, the more
random the numbers. Values for the amount of state information are
8, 32, 64, 128, and 256 bytes. Other values greater than 8 bytes are
rounded down to the nearest one of these values. For values smaller
than 8, random() uses a simple linear congruential random number
generator.

Use this function in conjunction with the following:

random() Generate a pseudo-random number using a default
state.

setstate() Specify the state of the pseudo-random number
generator.

May 31, 2004 Manifests 1063

initstate() 2004, QNX Software Systems Ltd.

srandom() Set the seed used by the pseudo-random number
generator.

If you haven’t called initstate(), random() behaves as though you had
called initstate() with a seed of 1 and a size of 128.

After initialization, you can restart a state array at a different point in
one of these ways:

� Call initstate() with the desired seed, state array, and size of the
array.

� Call setstate() with the desired state, then call srandom() with the
desired seed. The advantage of using both of these functions is that
the size of the state array doesn’t have to be saved once it’s
initialized.

Returns:
A pointer to the previous state array, or NULL if an error occurred.

Examples:
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

static char state1[32];

int main() {
initstate(time(NULL), state1, sizeof(state1));
setstate(state1);
printf("%d0\n", random());
return EXIT SUCCESS;

}

Classification:
Standard Unix

1064 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. initstate()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
drand48(), rand(), random(), setstate(), srand(), srandom()

May 31, 2004 Manifests 1065

input line() 2004, QNX Software Systems Ltd.

Get a string of characters from a file

Synopsis:
#include <stdio.h>

char* input line(FILE* fp,
char* buf,
int bufsize);

extern int input line max;

Arguments:
fp The file that you want to read from.

buf A pointer to a buffer where the function can store the
string that it reads.

bufsize The size of the buffer, in bytes.

Library:
libc

Description:
The input line() function gets a string of characters from the file
designated by fp and stores them in the array pointed to by buf . The
input line() function stops reading characters when:

� end-of-file is reached

� a newline character is read

� bufsize - 1 characters have been read.

In addition, the input line() function buffers the last input line max
lines internally. The input line max variable is defined in
<stdio.h>. You can set it before calling input line() for the first
time; its default value is 20. While the line is being read, the KEY UP
and KEY DOWN keys can be used to move to the previous and next
line respectively in a circular buffer of previously read lines. The
newline character (\n) is replaced with the null character on input.

1066 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. input line()

Returns:
A pointer to the input line. On end-of-file or on encountering an error
reading from fp, NULL is returned and errno is set.

Examples:
#include <stdlib.h>
#include <stdio.h>

#define SIZ 256

int input line max;

int main(void)
{

FILE *fp;
char *p,

buf[SIZ];

fp = stdin; /* Or any stream */
input line max = 25; /* set before 1st call */

while((p = input line(fp, buf, SIZ)) != NULL) {
printf("%s\n", buf);
fflush(stdout);

}
return EXIT SUCCESS;

}

Classification:
QNX 4

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

May 31, 2004 Manifests 1067

InterruptAttach(), InterruptAttach r() 2004, QNX Software Systems

Ltd.

Attach an interrupt handler to an interrupt source

Synopsis:
#include <sys/neutrino.h>

int InterruptAttach(int intr,
const struct sigevent * (* handler)(void *, int),
const void * area,
int size,
unsigned flags);

int InterruptAttach r(int intr,
const struct sigevent * (* handler)(void *, int),
const void * area,
int size,
unsigned flags);

Arguments:
intr The interrupt that you want to attach a handler to; see

“Interrupt vector numbers,” below.

handler A pointer to the handler function; see “Interrupt handler
function,” below.

area A pointer to a communications area in your process that
the handler can assume is never paged out, or NULL if
you don’t want a communications area.

size The size of the communications area.

flags Flags that specify how you want to attach the interrupt
handler. For more information, see “Flags,” below.

Library:
libc

1068 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. InterruptAttach(),
InterruptAttach r()

Description:
The InterruptAttach() and InterruptAttach r() kernel calls attach the
interrupt function handler to the hardware interrupt specified by intr.
They automatically enable (i.e unmask) the interrupt level.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

Before calling either of these functions, the thread must request I/O
privity by calling:

ThreadCtl(NTO TCTL IO, 0);

If the thread doesn’t do this, the attachment fails with an error code of
EPERM.

Interrupt vector numbers

The interrupt values for intr are logical interrupt vector numbers
grouped into related “interrupt classes” that generally correspond to a
particular interrupt line on the CPU. The following interrupt classes
are present on all QNX Neutrino systems:

NTO INTR CLASS EXTERNAL

Normal external interrupts (such as the ones generated by the
INTR pin on x86 CPUs).

NTO INTR CLASS SYNTHETIC

Synthetic, kernel-generated interrupts.

NTO INTR SPARE is usually the only
NTO INTR CLASS SYNTHETIC interrupt you’ll use;
NTO INTR SPARE is guaranteed not to match any valid logical

interrupt vector number.

There can be additional interrupt classes defined for specific CPUs or
embedded systems. For the interrupt assignments for specific boards,
see the sample build files in
${QNX TARGET}/${PROCESSOR}/boot/build.

May 31, 2004 Manifests 1069

InterruptAttach(), InterruptAttach r() 2004, QNX Software Systems

Ltd.

Interrupts and startup code

The mapping of logical interrupt vector numbers is completely
dependent on the implementor of the startup code.

Device drivers must:

� Let the user specify an interrupt number on the command line;
don’t use a hard-coded value. Eventually, the configuration
manager will provide interrupt numbers for the device drivers.

� Store interrupt numbers in an unsigned int variable; don’t
assume an interrupt number fits into a byte.

Typical x86 Interrupt vector numbers

The following list contains typical interrupt assignments for the 16
hardware interrupts on an x86-based PC using startup-bios:

Interrupt intr Description

0 A clock that runs at the resolution set by
ClockPeriod()

1 Keyboard

2 Slave 8259 — you can’t attach to this interrupt.

3 Com2

4 Com1

5 Net card / sound card / other

6 Floppy

7 Parallel printer / sound card / other

8

9 Remapped interrupt 2

10

continued. . .

1070 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. InterruptAttach(),
InterruptAttach r()

Interrupt intr Description

11

12

13 Co-processor

14 Primary disk controller

15 Secondary disk controller

The interrupt assignments are different for other boards.�

Interrupt handler function

The function to call is specified by the handler argument. This
function runs in the environment of your process. If a pager is running
that swaps pages out of memory, It’s possible for your handler to
reference a variable in the process address space that isn’t present.
This results in a kernel shutdown.

The area and size arguments define a communications area in your
process that the handler can assume is never paged out. This typically
is a structure containing buffers and information needed by the
handler and the process when it runs. In a paging system, lock the
memory pointed to by area by calling mlock() before attaching the
handler. In a nonpaging system, you can omit the call to mlock() (but
you should still call it for compatibility with future versions of the
OS).

The area argument can be NULL to indicate no communications area.
If area is NULL, size should be 0.

�

The handler function’s prototype is:

const struct sigevent* handler(void* area, int id);

Where area is a pointer to the area specified by the call to
InterruptAttach(), and id is the ID returned by InterruptAttach().

May 31, 2004 Manifests 1071

InterruptAttach(), InterruptAttach r() 2004, QNX Software Systems

Ltd.

Follow the following guidelines when writing your handler:

� A temporary interrupt stack of limited depth is provided at
interrupt time, so avoid placing large arrays or structures on the
stack frame of the handler. It’s safe to assume that about 200 bytes
of stack are available.

� The interrupt handler runs asynchronously with the threads in the
process. Any variables modified by the handler should be declared
with the volatile keyword and modified with interrupts disabled
or using the atomic*() functions in any thread and ISR.

� The interrupt handler should be kept as short as possible. If a
significant amount of work needs to be done, the handler should
deliver an event to awaken a thread to do the work.

� The handler can’t call library routines that contain kernel calls
except for InterruptDisable(), InterruptEnable(), InterruptLock(),
InterruptMask(), InterruptUnlock(), and InterruptUnmask().

The handler can call TraceEvent(), but not all modes are valid.

The return value of the handler function should be NULL or a pointer
to a valid sigevent structure that the kernel delivers. These events
are defined in <signal.h>.

Consider the following when choosing the event type:

� Message-driven processes that block in a receive loop using
MsgReceivev() should consider using SIGEV PULSE to trigger a
pulse.

� Threads that block at a particular point in their code and don’t go
back to a common receive point should consider using
SIGEV INTR as the event notification type and InterruptWait() as
the blocking call.

1072 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. InterruptAttach(),
InterruptAttach r()

The thread that calls InterruptWait() must be the one that called
InterruptAttach().

�

� Using SIGEV SIGNAL, SIGEV SIGNAL CODE,
SIGEV SIGNAL THREAD, or SIGEV THREAD is discouraged. It’s
less efficient than the other mechanisms for interrupt event
delivery.

Flags

The flags argument is a bitwise OR of the following values, or 0:

Flag Description

NTO INTR FLAGS END Put the new handler at the end of
the list of existing handlers (for
shared interrupts) instead of the
start.

NTO INTR FLAGS PROCESS Associate the handler with the
process instead of the attaching
thread.

NTO INTR FLAGS TRK MSK Track calls to InterruptMask()
and InterruptUnmask() to make
detaching the interrupt handler
safer.

NTO INTR FLAGS END

The interrupt structure allows hardware interrupts to be shared. For
example, if two processes take over the same physical interrupt, both
handlers are invoked consecutively. When a handler attaches, it’s
placed in front of any existing handlers for that interrupt and is called
first. You can change this behavior by setting the
NTO INTR FLAGS END flag in the flags argument. This adds the

handler at the end of any existing handlers. Although the Neutrino
microkernel allows full interrupt sharing, your hardware might not.

May 31, 2004 Manifests 1073

InterruptAttach(), InterruptAttach r() 2004, QNX Software Systems

Ltd.

For example, the ISA bus doesn’t allow interrupt sharing, while the
PCI bus does.

Processor interrupts are enabled during the execution of the handler.
Don’t attempt to talk to the interrupt controller chip. The operating
system issues the end-of-interrupt command to the chip after
processing all handlers at a given level.

The first process to attach to an interrupt unmasks the interrupt. When
the last process detaches from an interrupt, the system masks it.

If the thread that attached the interrupt handler terminates without
detaching the handler, the kernel does it automatically.

NTO INTR FLAGS PROCESS

Adding NTO INTR FLAGS PROCESS to flags associates the interrupt
handler with the process instead of the attaching thread. The interrupt
handler is removed when the process exits, instead of when the
attaching thread exits.

NTO INTR FLAGS TRK MSK

The NTO INTR FLAGS TRK MSK flag and the id argument to
InterruptMask() and InterruptUnmask() let the kernel track the
number of times a particular interrupt handler or event has been
masked. Then, when an application detaches from the interrupt, the
kernel can perform the proper number of unmasks to ensure that the
interrupt functions normally. This is important for shared interrupt
levels.

You should always set NTO INTR FLAGS TRK MSK.�

Blocking states

This call doesn’t block.

1074 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. InterruptAttach(),
InterruptAttach r()

Returns:
The only difference between these functions is the way they indicate
errors:

InterruptAttach()

An interrupt function ID. If an error occurs, -1 is returned and
errno is set.

InterruptAttach r()

An interrupt function ID. This function does NOT set errno. If
an error occurs, the negative of a value from the Errors section
is returned.

Use the function ID with the InterruptDetach() function to detach this
interrupt handler.

Errors:
EAGAIN All kernel interrupt entries are in use.

EFAULT A fault occurred when the kernel tried to access the
buffers provided.

EINVAL The value of intr isn’t a valid interrupt number.

EPERM The process doesn’t have I/O privileges.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1075

InterruptAttach(), InterruptAttach r() 2004, QNX Software Systems

Ltd.

Caveats:
If you’re writing a resource manager and using the resmgr *()
functions with multiple threads, a thread that attaches to an interrupt
must use NTO INTR FLAGS PROCESS in the flags argument when
calling InterruptAttach().

If your interrupt handler isn’t SMP-safe, you must lock it to one
processor using:

ThreadCtl(NTO TCTL RUNMASK, ...);

See also:
atomic add(), atomic clr(), atomic set(), atomic sub(),
atomic toggle(), InterruptAttachEvent(), InterruptDetach(),
InterruptDisable(), InterruptEnable(), InterruptLock(),
InterruptMask(), InterruptUnlock(), InterruptUnmask(),
InterruptWait(), mlock(), sigevent, ThreadCtl(), TraceEvent()

1076 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. InterruptAttachEvent(),
InterruptAttachEvent r()

Attach an event to an interrupt source

Synopsis:
#include <sys/neutrino.h>

int InterruptAttachEvent(
int intr,
const struct sigevent* event,
unsigned flags);

int InterruptAttachEvent r(
int intr,
const struct sigevent* event,
unsigned flags);

Arguments:
intr The interrupt vector number that you want to attach an

event to; for more information, see “Interrupt vector
numbers” in the documentation for InterruptAttach().

event A pointer to the sigevent structure that you want to be
delivered when this interrupt occurs.

flags Flags that specify how you want to attach the interrupt
handler. For more information, see “Flags,” below.

Library:
libc

Description:
The InterruptAttachEvent() and InterruptAttachEvent r() kernel calls
attach the given event to the hardware interrupt specified by intr.
They automatically enable (i.e unmask) the interrupt level.

The InterruptAttachEvent() and InterruptAttachEvent r() functions
are identical except in the way they indicate errors. See the Returns
section for details.

May 31, 2004 Manifests 1077

InterruptAttachEvent(), InterruptAttachEvent r()

2004, QNX Software Systems Ltd.

Before calling either of these functions, the thread must request I/O
privity by calling:

ThreadCtl(NTO TCTL IO, 0);

If the thread doesn’t do this, it might SIGSEGV when it calls
InterruptUnlock().

To prevent infinite interrupt recursion, the kernel automatically does
an InterruptMask() for intr when delivering the event. After the
interrupt-handling thread has dealt with the event, it must call
InterruptUnmask() to reenable the interrupt.

Consider the following when choosing an event type:

� Message-driven processes that block in a receive loop using
MsgReceivev() should consider using SIGEV PULSE to trigger a
channel.

� Threads that block at a particular point in their code and don’t go
back to a common receive point, should consider using
SIGEV INTR as the event notification type and InterruptWait() as
the blocking call.

The thread that calls InterruptWait() must be the one that called
InterruptAttachEvent().

�

� Using SIGEV SIGNAL, SIGEV SIGNAL CODE, or
SIGEV SIGNAL THREAD is discouraged. It is less efficient than
the other mechanisms for interrupt event delivery.

Flags

The flags argument is a bitwise OR of the following values, or 0:

1078 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. InterruptAttachEvent(),
InterruptAttachEvent r()

Flag Description

NTO INTR FLAGS END Put the new event at the end of
the list of existing events instead
of the start.

NTO INTR FLAGS PROCESS Associate the event with the
process instead of the attaching
thread.

NTO INTR FLAGS TRK MSK Track calls to InterruptMask()
and InterruptUnmask() to make
detaching the interrupt handler
safer.

NTO INTR FLAGS END

The interrupt structure allows hardware interrupts to be shared. For
example if two processes call InterruptAttachEvent() for the same
physical interrupt, both events are sent consecutively. When an event
attaches, it’s placed in front of any existing events for that interrupt
and is delivered first. You can change this behavior by setting the
NTO INTR FLAGS END flag in the flags argument. This adds the

event at the end of any existing events.

NTO INTR FLAGS PROCESS

Adding NTO INTR FLAGS PROCESS to flags associates the interrupt
event with the process instead of the attaching thread. The interrupt
event is removed when the process exits, instead of when the
attaching thread exits.

The kernel automatically attempts to set the
NTO INTR FLAGS PROCESS flag if the event is directed at the

process in general (for SIGEV SIGNAL, SIGEV SIGNAL CODE, and
SIGEV PULSE events).

�

May 31, 2004 Manifests 1079

InterruptAttachEvent(), InterruptAttachEvent r()

2004, QNX Software Systems Ltd.

NTO INTR FLAGS TRK MSK

The NTO INTR FLAGS TRK MSK flag and the id argument to
InterruptMask() and InterruptUnmask() let the kernel track the
number of times a particular interrupt handler or event has been
masked. Then, when an application detaches from the interrupt, the
kernel can perform the proper number of unmasks to ensure that the
interrupt functions normally. This is important for shared interrupt
levels.

You should always set NTO INTR FLAGS TRK MSK.�

Advantages & disadvantages

InterruptAttachEvent() has several advantages over InterruptAttach():

� Less work is done at interrupt time (you avoid the context switch
necessary to map in an interrupt handler).

� Interrupt handling code runs at the thread’s priority, which lets you
specify the priority of the interrupt handling.

� You can use process-level debugging on your interrupt handler
code.

There are also some disadvantages:

� There might be a delay before the interrupt handling code runs
(until the thread is scheduled to run).

� For multiple devices sharing an event, the amount of time spent
with the interrupt masked increases.

You can freely mix calls to InterruptAttach() and
InterruptAttachEvent() for a particular interrupt.

Blocking states

This call doesn’t block.

1080 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. InterruptAttachEvent(),
InterruptAttachEvent r()

Returns:
The only difference between these functions is the way they indicate
errors:

InterruptAttachEvent()

An interrupt function ID. If an error occurs, -1 is returned and
errno is set.

InterruptAttachEvent r()

An interrupt function ID. This function does NOT set errno. If
an error occurs, the negative of a value from the Errors section
is returned.

Use the ID with InterruptDetach() to detach this interrupt event.

Errors:
EAGAIN All kernel interrupt entries are in use.

EFAULT A fault occurred when the kernel tried to access the
buffers provided.

EINVAL The value of intr isn’t a valid interrupt number.

EPERM The process doesn’t have superuser capabilities.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1081

InterruptAttachEvent(), InterruptAttachEvent r()

2004, QNX Software Systems Ltd.

See also:
InterruptAttach(), InterruptDetach(), InterruptLock(),
InterruptMask(), InterruptUnlock(), InterruptUnmask(),
InterruptWait(), sigevent

1082 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. InterruptDetach(),
InterruptDetach r()

Detach an interrupt handler by ID

Synopsis:
#include <sys/neutrino.h>

int InterruptDetach(int id);

int InterruptDetach r(int id);

Arguments:
id The value returned by InterruptAttach()

InterruptAttachEvent(), or InterruptHookIdle().

Library:
libc

Description:
These kernel calls detach the interrupt handler specified by the id
argument. If, after detaching, no thread is attached to the interrupt
then the interrupt is masked off.

The InterruptDetach() and InterruptDetach r() functions are identical
except in the way they indicate errors. See the Returns section for
details.

Before calling either of these functions, the thread must request I/O
privity by calling:

ThreadCtl(NTO TCTL IO, 0);

If the thread doesn’t do this, it might SIGSEGV when it calls
InterruptUnlock().

Blocking states

These calls don’t block.

May 31, 2004 Manifests 1083

InterruptDetach(), InterruptDetach r() 2004, QNX Software

Systems Ltd.

Returns:
The only difference between these functions is the way they indicate
errors:

InterruptDetach()

If an error occurs, -1 is returned and errno is set. Any other
value returned indicates success.

InterruptDetach r()

EOK is returned on success. This function does NOT set errno.
If an error occurs, any value in the Errors section may be
returned.

Errors:
EINVAL The value of id doesn’t exist for this process.

EPERM The process doesn’t have superuser capabilities.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
InterruptAttach(), InterruptAttachEvent(), InterruptHookIdle(),
InterruptUnlock()

1084 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. InterruptDisable()
Disable hardware interrupts

Synopsis:
#include <sys/neutrino.h>

void InterruptDisable(void);

Library:
libc

Description:
The InterruptDisable() function disables all hardware interrupts. You
can call it from a thread or from an interrupt handler. Before calling
this function, the thread must request I/O privity by calling:

ThreadCtl(NTO TCTL IO, 0);

Any kernel call results in the re-enabling of interrupts, and many
library routines are built on kernel calls. Masked interrupts are not
affected.

�

If the thread doesn’t do this, it might SIGSEGV when
InterruptUnlock() is called.

Reenable the interrupts by calling InterruptEnable().

CAUTION: Since this function disables all hardware interrupts, take
care to reenable them as quickly as possible. Failure to do so may
result in increased interrupt latency and nonrealtime performance.

!

Use InterruptDisable() instead of an inline cli to ensure hardware
portability with non-x86 CPUs.

May 31, 2004 Manifests 1085

InterruptDisable() 2004, QNX Software Systems Ltd.

Use InterruptLock() and InterruptUnlock() instead of
InterruptDisable() and InterruptEnable(). The InterruptLock() and
InterruptUnlock() functions perform the intended function on SMP
hardware, and allow your interrupt thread to run on any processor in
the system.

�

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
InterruptEnable(), InterruptLock(), InterruptMask(),
InterruptUnlock(), InterruptUnmask(), ThreadCtl()

1086 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. InterruptEnable()
Enable hardware interrupts

Synopsis:
#include <sys/neutrino.h>

void InterruptEnable(void);

Library:
libc

Description:
The InterruptEnable() function enables all hardware interrupts. You
can call it from a thread or from an interrupt handler. Before calling
this function, the thread must request I/O privity by calling:

ThreadCtl(NTO TCTL IO, 0);

If the thread doesn’t do this, it might SIGSEGV when
InterruptUnlock() is called.

You should call this function as quickly as possible after calling
InterruptDisable().

Use InterruptLock() and InterruptUnlock() instead of
InterruptDisable() and InterruptEnable(). The InterruptLock() and
InterruptUnlock() functions perform the intended function on SMP
hardware, and allow your interrupt thread to run on any processor in
the system.

�

Classification:
QNX Neutrino

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 1087

InterruptEnable() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
InterruptDisable(), InterruptLock(), InterruptMask(),
InterruptUnlock(), InterruptUnmask(), ThreadCtl()

1088 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. InterruptHookIdle()
Attach an “idle” interrupt handler

Synopsis:
#include <sys/neutrino.h>

int InterruptHookIdle(
void (*handler)(uint64 t *, struct qtime entry *),
unsigned flags);

Arguments:
handler A pointer to the handler function; see below.

flags Flags that specify how you want to attach the interrupt
handler. For more information, see “Flags,” below.

Library:
libc

Description:
The InterruptHookIdle() kernel call attaches the specified interrupt
handler to the “idle” interrupt, which is called when the system is
idle. This is typically used to implement power management features.

The arguments to the handler functions are:

uint64 t* A pointer to the time, in nanoseconds, when the next
timer will expire.

struct qtime entry *

A pointer to the section of the system page with the
time information, including the current time of day.

The simplest idle handler consists of a halt instruction.

May 31, 2004 Manifests 1089

InterruptHookIdle() 2004, QNX Software Systems Ltd.

Flags

The flags argument is a bitwise OR of the following values, or 0:

Flag Description

NTO INTR FLAGS END Put the new handler at the end of
the list of existing handlers (for
shared interrupts) instead of the
start.

NTO INTR FLAGS PROCESS Associate the handler with the
process instead of the attaching
thread.

NTO INTR FLAGS TRK MSK Track calls to InterruptMask()
and InterruptUnmask() to make
detaching the interrupt handler
safer.

NTO INTR FLAGS END

The interrupt structure allows hardware interrupts to be shared. For
example, if two processes take over the same physical interrupt, both
handlers are invoked consecutively. When a handler attaches, it’s
placed in front of any existing handlers for that interrupt and is called
first. You can change this behavior by setting the
NTO INTR FLAGS END flag in the flags argument. This adds the

handler at the end of any existing handlers.

Processor interrupts are enabled during the execution of the handler.
Don’t attempt to talk to the interrupt controller chip. The end of
interrupt command is issued to the chip by the operating system after
processing all handlers at a given level.

The first process to attach to an interrupt unmasks the interrupt. When
the last process detaches from an interrupt, the system masks it.

If the thread that attached the interrupt handler terminates without
detaching the handler, the kernel does it automatically.

1090 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. InterruptHookIdle()

NTO INTR FLAGS PROCESS

Adding NTO INTR FLAGS PROCESS to flags associates the interrupt
handler with the process instead of the attaching thread. The interrupt
handler is removed when the process exits, instead of when the
attaching thread exits.

NTO INTR FLAGS TRK MSK

The NTO INTR FLAGS TRK MSK flag and the id argument to
InterruptMask() and InterruptUnmask() let the kernel track the
number of times a particular interrupt handler or event has been
masked. Then, when an application detaches from the interrupt, the
kernel can perform the proper number of unmasks to ensure that the
interrupt functions normally. This is important for shared interrupt
values.

Blocking states

This call doesn’t block.

Returns:
An interrupt function ID, or -1 if an error occurs (errno is set).

Use the returned value with the InterruptDetach() function to detach
this interrupt handler.

Errors:
EAGAIN All kernel interrupt entries are in use.

EPERM The process doesn’t have superuser capabilities.

Classification:
QNX Neutrino

May 31, 2004 Manifests 1091

InterruptHookIdle() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
InterruptAttach(), InterruptAttachEvent(), InterruptDetach(),
InterruptHookTrace()

1092 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. InterruptHookTrace()
Attach the pseudo interrupt handler that the instrumented module uses

Synopsis:
#include <sys/neutrino.h>

int InterruptHookTrace(
const struct sigevent * (* handler)(int),
unsigned flags);

Arguments:
handler A pointer to the handler function.

flags Flags that specify how you want to attach the interrupt
handler.

Library:
libc

Description:
The InterruptHookTrace() kernel call attaches the pseudo interrupt
handler handle that the instrumented module uses.

This function requires the instrumented kernel. For more information,
see the documentation for the System Analysis Toolkit (SAT).

�

Returns:
An interrupt function ID, or -1 if an error occurs (errno is set).

Errors:
EAGAIN All kernel interrupt entries are in use.

EFAULT A fault occurred when the kernel tried to access the
buffers provided.

EPERM The process doesn’t have superuser capabilities.

ENOTSUP The kernel is not instrumented.

May 31, 2004 Manifests 1093

InterruptHookTrace() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
InterruptAttach(), TraceEvent()

1094 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. InterruptLock()
Guard a critical section in an interrupt handler

Synopsis:
#include <sys/neutrino.h>

void InterruptLock(intrspin t* spinlock);

Arguments:
spinlock The spinlock (a variable shared between the interrupt

handler and a thread) to use.

If spinlock isn’t a static variable, you must initialize it by calling:

memset(spinlock, 0, sizeof(*spinlock));

before using it with InterruptLock().

�

Library:
libc

Description:
The InterruptLock() function guards a critical section by locking the
specified spinlock. You can call this function from a thread or from an
interrupt handler. Before calling this function, the thread must request
I/O privity by calling:

ThreadCtl(NTO TCTL IO, 0);

If the thread doesn’t do this, it might SIGSEGV when
InterruptUnlock() is called.

This function tries to acquire the spinlock (a variable shared between
the interrupt handler and a thread) while interrupts are disabled. The
code spins in a tight loop until the lock is acquired. It’s important to
release the lock as soon as possible. Typically, this is a few lines of
code without any loops:

May 31, 2004 Manifests 1095

InterruptLock() 2004, QNX Software Systems Ltd.

InterruptLock(&spinner);

/* ... critical section */

InterruptUnlock(&spinner);

InterruptLock() solves a common need in many realtime systems to
protect access to shared data structures between an interrupt handler
and the thread that owns the handler. The traditional POSIX
primitives used between threads aren’t available for use by an
interrupt handler.

The InterruptLock() and InterruptUnlock() functions work on
single-processor or multiprocessor machines.

Any kernel call results in the re-enabling of interrupts, and many
library routines are built on kernel calls. Masked interrupts are not
affected.

�

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
InterruptDisable(), InterruptEnable(), InterruptMask(),
InterruptUnlock(), InterruptUnmask(), ThreadCtl()

1096 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. InterruptMask()
Disable a hardware interrupt

Synopsis:
#include <sys/neutrino.h>

int InterruptMask(int intr,
int id);

Arguments:
intr The interrupt you want to mask.

id The value returned by InterruptAttach() or
InterruptAttachEvent(), or -1 if you don’t want the kernel to
track interrupt maskings and unmaskings for each handler.

The id is ignored unless you use the NTO INTR FLAGS TRK MSK
flag when you attach the handler.

�

Library:
libc

Description:
The InterruptMask() kernel call disables the hardware interrupt
specified by intr for the handler specified by id. You can call this
function from a thread or from an interrupt handler. Before calling
this function, the thread must request I/O privity by calling:

ThreadCtl(NTO TCTL IO, 0);

If the thread doesn’t do this, it might SIGSEGV when
InterruptUnmask() is called.

Reenable the interrupt by calling InterruptUnmask().

The kernel automatically enables an interrupt when the first handler
attaches to it using InterruptAttach() and disables it when the last
handler detaches.

May 31, 2004 Manifests 1097

InterruptMask() 2004, QNX Software Systems Ltd.

This call is often used when a device presents a level-sensitive
interrupt to the system that can’t be easily cleared in the interrupt
handler. Since the interrupt is level-sensitive, you can’t exit the
handler with the interrupt line active and unmasked. InterruptMask()
lets you mask the interrupt in the handler and schedule a thread to do
the real work of communicating with the device to clear the source.
Once cleared, the thread should call InterruptUnmask() to reenable
this interrupt.

To disable all hardware interrupts, use the InterruptLock() function.

To ensure hardware portability, use InterruptMask() instead of writing
code that talks directly to the interrupt controller.

�

Calls to InterruptMask() are nested; the interrupt isn’t unmasked until
InterruptUnmask() has been called once for every call to
InterruptMask().

Returns:
The current mask level count for success; or -1 if an error occurs
(errno is set).

Errors:
EINVAL The value of intr isn’t a supported hardware interrupt.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

1098 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. InterruptMask()

See also:
InterruptAttach(), InterruptDisable(), InterruptEnable(),
InterruptLock(), InterruptUnlock(), InterruptUnmask(), ThreadCtl()

May 31, 2004 Manifests 1099

InterruptUnlock() 2004, QNX Software Systems Ltd.

Release a critical section in an interrupt handler

Synopsis:
#include <sys/neutrino.h>

void InterruptUnlock(intrspin t* spinlock);

Arguments:
spinlock The spinlock (a variable shared between the interrupt

handler and a thread) used in a call to InterruptLock() to
lock the handler.

Library:
libc

Description:
The InterruptUnlock() function releases a critical section by
unlocking the specified spinlock, reenabling interrupts. You can call
this function from a thread or from an interrupt handler.

Before calling this function, the thread must request I/O privity by
calling:

ThreadCtl(NTO TCTL IO, 0);

If the thread doesn’t do this, it might SIGSEGV.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

1100 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. InterruptUnlock()

See also:
InterruptDisable(), InterruptEnable(), InterruptLock(),
InterruptMask(), InterruptUnmask(), ThreadCtl()

May 31, 2004 Manifests 1101

InterruptUnmask() 2004, QNX Software Systems Ltd.

Enable a hardware interrupt

Synopsis:
#include <sys/neutrino.h>

int InterruptUnmask(int intr,
int id);

Arguments:
intr The interrupt you want to unmask.

id The value returned by InterruptAttach() or
InterruptAttachEvent(), or -1 if you don’t want the kernel to
track interrupt maskings and unmaskings for each handler.

The id is ignored unless you use the NTO INTR FLAGS TRK MSK
flag when you attach the handler.

�

Library:
libc

Description:
The InterruptUnmask() kernel call enables the hardware interrupt
specified by intr for the interrupt handler specified by intr for the
handler specified by id when the mask count reaches zero. You can
call this function from a thread or from an interrupt handler. Before
calling this function, the thread must request I/O privity by calling:

ThreadCtl(NTO TCTL IO, 0);

If the thread doesn’t do this, it might SIGSEGV.

Calls to InterruptMask() are nested; the interrupt isn’t unmasked until
InterruptUnmask() has been called once for every call to
InterruptMask().

1102 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. InterruptUnmask()

Returns:
The current mask count, or -1 if an error occurs (errno is set).

Errors:
EINVAL Not a supported hardware interrupt intr.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
InterruptAttach(), InterruptDisable(), InterruptEnable(),
InterruptLock(), InterruptMask(), InterruptUnlock() ThreadCtl()

May 31, 2004 Manifests 1103

InterruptWait(), InterruptWait r() 2004, QNX Software Systems Ltd.

Wait for a hardware interrupt

Synopsis:
#include <sys/neutrino.h>

int InterruptWait(int flags,
const uint64 t * timeout);

int InterruptWait r(int flags,
const uint64 t * timeout);

Arguments:
flags This should currently be 0.

timeout This should currently be NULL. This may change in
future versions.

Use TimerTimeout() to achieve a timeout.
�

Library:
libc

Description:
These kernel calls wait for a hardware interrupt. The calling thread
should have attached a handler to the interrupt, by calling
InterruptAttach() or InterruptAttachEvent(). The call to
InterruptWait() or InterruptWait r() blocks waiting for an interrupt
handler to return an event with notification type SIGEV INTR (i.e. a
hardware interrupt).

The InterruptWait() and InterruptWait r() functions are identical
except in the way they indicate errors. See the Returns section for
details.

If the notification event occurs before InterruptWait() is called, a
pending flag is set. When InterruptWait() is called, the flag is checked;
if set, it’s cleared and the call immediately returns with success.

1104 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. InterruptWait(), InterruptWait r()

Blocking states

STATE INTR The thread is waiting for an interrupt handler to
return a SIGEV INTR event.

Returns:
The only difference between these functions is the way they indicate
errors:

InterruptWait()

If an error occurs, -1 is returned and errno is set. Any other
value returned indicates success.

InterruptWait r()

EOK is returned on success. This function does NOT set errno.
If an error occurs, any value in the Errors section may be
returned.

Errors:
EINTR The call was interrupted by a signal.

ENOTSUP The reserved arguments aren’t NULL.

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1105

InterruptWait(), InterruptWait r() 2004, QNX Software Systems Ltd.

See also:
InterruptAttach(), InterruptAttachEvent(), TimerTimeout()

1106 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. intr v86()
Execute a real-mode software interrupt

Synopsis:
#include <x86/v86.h>

int intr v86(int swi,
struct v86reg* regs,
void* data,
int datasize);

Arguments:
swi The software interrupt that you want to execute.

regs A pointer to a v86reg structure that specifies the
values you want to use for the registers on entry to real
mode; see below.

data A pointer to the data that you want to copy into memory;
see below.

datasize The size of the data, in bytes.

Library:
libc

Description:
The intr v86() function executes the real-mode software interrupt
specified by swi in virtual 8086 mode. This allows access to the ROM
BIOS functions that are designed to run in 16-bit real mode. Two
common examples are:

Interrupt Description

int 10h Video BIOS

int 1ah PCI

May 31, 2004 Manifests 1107

intr v86() 2004, QNX Software Systems Ltd.

BIOS calls (such as int 13h, disk I/O) that require hardware
interrupts to be directed at their code aren’t supported.

Upon entry to real mode, the registers are loaded from regs. The
segment registers and any pointers should address a 2K
communication area located at offset 0:800h in real memory. The
buffer data of length datasize is copied to this area just before real
mode is entered and copied back when the call completes. At this
point regs is also updated to contain the values of the real-mode
registers.

You should set the DS, ES, FS and GS segment registers to 0. The
values in the CS:IP, and SS:SP registers are ignored and are set by
the kernel. The stack provided is about 500 bytes in size.

The layout of real mode memory is described by the structure
v86 memory in <x86/v86.h>.

When a thread enters virtual 8086 mode, all threads in the system
continue to be scheduled based upon their priority, including the
calling thread. While in virtual 8086 mode, full access to IO ports and
interrupt enable and disable are allowed. Only one thread may enter
virtual 8086 mode at a time.

This function fails if the calling process doesn’t have an effective user
ID of root (euid 0).

Returns:
0 Success.

-1 An error occurred; errno is set.

Errors:
EPERM The calling thread didn’t have an effective user ID of

root.

1108 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. intr v86()

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <errno.h>
#include <x86/v86.h>

struct v86reg reg;

int main(void) {
char buf[4];

/* Equipment call */
printf("int 12\n");
memset(®, 0, sizeof(reg));
intr v86(0x12, ®, NULL, 0);

printreg();
sleep(5);

/* Enter 40 column text mode */
printf("int 10 ah=00h al=00h\n");
memset(®, 0, sizeof(reg));
intr v86(0x10, ®, NULL, 0);

printreg();
sleep(5);

/* Enter 80 column text mode */
printf("int 10 ah=00h al=02h\n");
memset(®, 0, sizeof(reg));
reg.eax = 2;
intr v86(0x10, ®, NULL, 0);

printreg();
sleep(5);

/* Write a string from memory */
printf("int 10 ah=13h al=00h\n");
strcpy(buf, "Hi!");
memset(®, 0, sizeof(reg));
reg.eax = 0x1300;
reg.es = 0;
reg.ebp = offsetof(struct v86 memory, userdata);
reg.ecx = strlen(buf);
reg.edx = 0;
reg.ebx = 0x0007;
intr v86(0x10, ®, buf, strlen(buf));

printreg();
sleep(5);

return EXIT SUCCESS;
}

May 31, 2004 Manifests 1109

intr v86() 2004, QNX Software Systems Ltd.

printreg() {

printf("eax=%-8x ebx=%-8x ecx=%-8x edx=%-8x\n",
reg.eax, reg.ebx, reg.ecx, reg.edx);

printf("esi=%-8x edi=%-8x ebp=%-8x esp=%-8x\n",
reg.esi, reg.edi, reg.ebp, reg.esp);

printf(" ds=%-8x es=%-8x fs=%-8x gs=%-8x\n",
reg.ds, reg.es, reg.fs, reg.gs);

printf("efl=%-8x\n\n",
reg.efl);

}

Classification:
QNX Neutrino (x86 only)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

1110 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. io connect
Structure of a resource manager’s connect message

Synopsis:
struct io connect {

uint16 t type;
uint16 t subtype;
uint32 t file type;
uint16 t reply max;
uint16 t entry max;
uint32 t key;
uint32 t handle;
uint32 t ioflag;
uint32 t mode;
uint16 t sflag;
uint16 t access;
uint16 t zero;
uint16 t path len;
uint8 t eflag;
uint8 t extra type;
uint16 t extra len;
char path[1];

};

Description:
The io connect structure is used to describe a connect message
that a resource manager receives and sends.

The members include:

type IO CONNECT

subtype The type of connection that the message concerns; one
of:

� IO CONNECT COMBINE — combine with an I/O
message.

� IO CONNECT COMBINE CLOSE — combine with
I/O message and always close.

� IO CONNECT OPEN

� IO CONNECT UNLINK

May 31, 2004 Manifests 1111

io connect 2004, QNX Software Systems Ltd.

� IO CONNECT RENAME

� IO CONNECT MKNOD

� IO CONNECT READLINK

� IO CONNECT LINK

� IO CONNECT RSVD UNBLOCK — place holder in
the jump table.

� IO CONNECT MOUNT

file type The file type; one of the following (defined in
<sys/ftype.h>):

� FTYPE ANY — the path name can be anything.

� FTYPE LINK — reserved for the Process Manager.

� FTYPE MOUNT — receive mount requests on the
path (path must be NULL).

� FTYPE MQUEUE — reserved for a mqueue
manager.

� FTYPE PIPE — reserved for a pipe manager.

� FTYPE SEM — reserved for a semaphore manager.

� FTYPE SHMEM — reserved for a shared memory
object.

� FTYPE SOCKET — reserved for a socket manager.

� FTYPE SYMLINK — reserved for the Process
Manager.

reply max The maximum length of the reply message.

entry max The maximum number of io connect entry

structures that the resource manager is willing to
accept. If a path could reference more than one
resource manager, it returns a list of
io connect entry structures referring to the

overlapping resource managers.

key Reserved.

1112 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. io connect

handle The handle returned by resmgr attach().

ioflag One of:

� O RDONLY — open for reading only.

� O RDWR — open for reading and writing. Opening
a FIFO for read-write is unsupported.

� O WRONLY — open for writing only.

You can also specify any combination of the remaining
flags in the value of ioflag:

� O APPEND — if set, the file offset is set to the end
of the file prior to each write.

� O CLOEXEC — close the file descriptor on
execution.

� O CREAT — create the file.

� O DSYNC — if set, this flag affects subsequent I/O
calls; each call to write() waits until all data is
successfully transferred to the storage device such
that it’s readable on any subsequent open of the file
(even one that follows a system failure) in the
absence of a failure of the physical storage medium.
If the physical storage medium implements a
non-write-through cache, then a system failure may
be interpreted as a failure of the physical storage
medium, and data may not be readable even if this
flag is set and the write() indicates that it succeeded.

� O EXCL — if you set both O EXCL and O CREAT,
open() fails if the file exists. The check for the
existence of the file and the creation of the file if it
doesn’t exist are atomic; no other process that’s
attempting the same operation with the same
filename at the same time will succeed. Specifying
O EXCL without O CREAT has no effect.

� O LARGEFILE — allow the file offset to be 64 bits
long.

May 31, 2004 Manifests 1113

io connect 2004, QNX Software Systems Ltd.

� O NOCTTY — if set, and path identifies a terminal
device, the open() function doesn’t cause the
terminal device to become the controlling terminal
for the process.

� O NONBLOCK — don’t block.

� O REALIDS — use the real uid/gid for
permissions checking.

� O RSYNC — read I/O operations on the file
descriptor complete at the same level of integrity as
specified by the O DSYNC and O SYNC flags.

� O SYNC — if set, this flag affects subsequent I/O
calls; each call to read() or write() is complete only
when both the data has been successfully
transferred (either read or written) and all file
system information relevant to that I/O operation
(including that required to retrieve said data) is
successfully transferred, including file update
and/or access times, and so on. See the discussion
of a successful data transfer in O DSYNC, above.

� O TRUNC — if the file exists and is a regular file,
and the file is successfully opened O WRONLY or
O RDWR, the file length is truncated to zero and the
mode and owner are left unchanged. O TRUNC has
no effect on FIFO or block or character special files
or directories. Using O TRUNC with O RDONLY
has no effect.

mode One of:

� S IFBLK — block special.

� S IFCHR — character special.

� S IFDIR — directory.

� S IFIFO — FIFO special.

� S IFLNK — symbolic link.

� S IFMT — type of file.

1114 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. io connect

� S IFNAM — special named file.

� S IFREG — regular.

� S IFSOCK — socket.

sflag How the client wants the file to be shared; a
combination of the following bits:

� SH COMPAT — set compatibility mode.

� SH DENYRW — prevent read or write access to the
file.

� SH DENYWR — prevent write access to the file.

� SH DENYRD — prevent read access to the file.

� SH DENYNO — permit both read and write access
to the file.

access The access permissions for the file or directory,
specified as a combination of the following bits
(defined in <sys/stat.h>):

Owner Group Others Permission

S IRUSR S IRGRP S IROTH Read

S IRWXU S IRWXG S IRWXO Read, write, execute/search. A bitwise inclusive OR
of the other three constants.
(S IRWXU is OR of IRUSR, S IWSUR and S IXUSR.)

S IWUSR S IWGRP S IWOTH Write

S IXUSR S IXGRP S IXOTH Execute/search

The following bits define miscellaneous permissions
used by other implementations:

May 31, 2004 Manifests 1115

io connect 2004, QNX Software Systems Ltd.

Bit Equivalent

S IEXEC S IXUSR

S IREAD S IRUSR

S IWRITE S IWUSR

path len The length of the path member.

eflag Extended flags:

� IO CONNECT EFLAG DIR — the path referenced a
directory.

� IO CONNECT EFLAG DOT — the last component
of a path was . or .. (i.e. the current or parent
directory).

extra type One of:

� IO CONNECT EXTRA NONE

� IO CONNECT EXTRA LINK

� IO CONNECT EXTRA SYMLINK

� IO CONNECT EXTRA MQUEUE

� IO CONNECT EXTRA PHOTON

� IO CONNECT EXTRA SOCKET

� IO CONNECT EXTRA SEM

� IO CONNECT EXTRA RESMGR LINK

� IO CONNECT EXTRA PROC SYMLINK

� IO CONNECT EXTRA RENAME

� IO CONNECT EXTRA MOUNT

� IO CONNECT EXTRA MOUNT OCB

extra len The length of any extra data included in the message.

path The path that the client is trying to connect to, relative
to the resource manager’s mountpoint.

1116 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. io connect

Classification:
QNX Neutrino

See also:
io connect ftype reply, io connect link reply,
resmgr connect funcs t

“The IO OPEN message for filesystems” in the Writing a Resource
Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1117

io connect ftype reply 2004, QNX Software Systems Ltd.

Structure of a connect message giving a status and a file type

Synopsis:
struct io connect ftype reply {

uint16 t status;
uint16 t reserved;
uint32 t file type;

};

Description:
A resource manager uses the io connect ftype reply structure
to send a status and a file type to a client that has sent a connect
message.

The members include:

status Typically one of the errno values.

file type The file type; one of the following (defined in
<sys/ftype.h>):

� FTYPE ANY — the path name can be anything.

� FTYPE LINK — reserved for the Process Manager.

� FTYPE MOUNT — receive mount requests on the
path (path must be NULL).

� FTYPE MQUEUE — reserved for a mqueue manager.

� FTYPE PIPE — reserved for a pipe manager.

� FTYPE SEM — reserved for a semaphore manager.

� FTYPE SHMEM — reserved for a shared memory
object.

� FTYPE SOCKET — reserved for a socket manager.

� FTYPE SYMLINK — reserved for the Process
Manager.

1118 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. io connect ftype reply

Classification:
QNX Neutrino

See also:
io connect, io connect link reply,
resmgr connect funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1119

io connect link reply 2004, QNX Software Systems Ltd.

Structure of a connect message that redirects a client to another resource

Synopsis:
struct io connect link reply {

uint32 t reserved1;
uint32 t file type;
uint8 t eflag;
uint8 t reserved2[1];
uint16 t chroot len;
uint32 t umask;
uint16 t nentries;
uint16 t path len;

/*
struct io connect entry server[nentries];
char path[path len];

or
struct server info info;
io ? t msg;

*/
};

Description:
A resource manager uses the io connect link reply structure
in a reply to a client that redirects the client to another resource. The
members include:

file type The file type; one of the following (defined in
<sys/ftype.h>):

� FTYPE ANY — the path name can be anything.

� FTYPE LINK — reserved for the Process Manager.

� FTYPE MOUNT — receive mount requests on the
path (path must be NULL).

� FTYPE MQUEUE — reserved for a mqueue
manager.

� FTYPE PIPE — reserved for a pipe manager.

1120 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. io connect link reply

� FTYPE SEM — reserved for a semaphore manager.

� FTYPE SHMEM — reserved for a shared memory
object.

� FTYPE SOCKET — reserved for a socket manager.

� FTYPE SYMLINK — reserved for the Process
Manager.

eflag Extended flags:

� IO CONNECT EFLAG DIR — the path referenced
a directory.

� IO CONNECT EFLAG DOT — the last component
of a path was . or .. (i.e. the current or parent
directory).

chroot len The length of chroot in the returned path.

umask One of:

� S IFBLK — block special.

� S IFCHR — character special.

� S IFDIR — directory.

� S IFIFO — FIFO special.

� S IFLNK — symbolic link.

� S IFMT — type of file.

� S IFNAM — special named file.

� S IFREG — regular.

� S IFSOCK — socket.

nentries If this member is zero, the path is a symbolic link.

path len The length of the path including the terminating null
character. If this member is zero, the path is
null-terminated.

May 31, 2004 Manifests 1121

io connect link reply 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

See also:
io connect, io connect ftype reply,
resmgr connect funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

1122 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ioctl()
Control a device

Synopsis:
#include <sys/ioctl.h>

int ioctl(int fd,
int request,
...);

Arguments:
fd An open file descriptor for the file or device that you want

to manipulate.

request What you want to do to the file. The macros and
definitions that you use in specifying a request are located
in the file <sys/ioctl.h>.

Additional arguments

As required by the request.

Library:
libc

Description:
The ioctl() function manipulates the underlying parameters of files. In
particular, it can be used to control many of the operating attributes of
files (such as the attributes of terminals).

The request argument determines whether the subsequent arguments
are an “in” or “out” parameter; it also specifies the size of the
arguments in bytes.

Returns:
A value based on the request, or -1 if an error occurs (errno is set).

May 31, 2004 Manifests 1123

ioctl() 2004, QNX Software Systems Ltd.

Errors:
EBADF Invalid descriptor fd.

EINVAL The request or optional variables aren’t valid.

ENOTTY The fd argument isn’t associated with a character
special device; the specified request doesn’t apply to
the kind of object that the descriptor fd references.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

Caveats:
The ioctl() function is a Unix function that varies greatly from
platform to platform.

See also:
devctl()

1124 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofdinfo()
Retrieve server attributes

Synopsis:
#include <sys/iomgr.h>

int iofdinfo(int filedes,
unsigned flags,
struct fdinfo * info,
char * path,
int maxlen);

Arguments:
filedes A file descriptor for the connection that you want to query.

flags Specify FDINFO FLAG LOCALPATH to return only the
local path info (i.e. exclude the network path info).

info NULL, or a pointer to an fdinfo structure that contains
the connection information defined in <sys/iomgr.h>.
Specify NULL if it’s not required.

path A pointer to a buffer where the function can store the path
associated with the file descriptor. Specify NULL if it’s
not required.

maxlen The length of the buffer pointed to path.

Library:
libc

Description:
The iofdinfo() function retrieves the server’s attribute information for
the connection referred to by filedes.

May 31, 2004 Manifests 1125

iofdinfo() 2004, QNX Software Systems Ltd.

Returns:
The length of the associated filedes pathname, or -1 if an error occurs
(errno is set).

Errors:
EFAULT A fault occurred in a server’s address space when it

tried to access the caller’s message buffers.

EMSGSIZE Insufficient space available in the server’s buffer for
the fdinfo data structure.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc fdinfo(), iofunc fdinfo default(), resmgr pathname()

1126 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc attr init()
Initialize the default attribute structure

Synopsis:
#include <sys/iofunc.h>

void iofunc attr init (iofunc attr t *attr,
mode t mode,
iofunc attr t *dattr,
struct client info *info);

Arguments:
attr A pointer to the iofunc attr t structure that you want to

initialize.

mode The type and access permissions that you want to use for
the resource. For more information, see “Access
permissions” in the documentation for stat().

dattr NULL, or a pointer to a iofunc attr t structure that you
want to use to initialize the structure pointed to by attr.

info NULL, or a pointer to a client info structure that
contains the information about a client connection. For
information about this structure, see ConnectClientInfo().

Library:
libc

Description:
The iofunc attr init() function initializes the passed attr structure with
the information derived from the optional dattr, the mode, and the
user and group IDs from the optional info client information structure.

The count, rcount, wcount, rlocks and wlocks counters are reset to
zero in the iofunc attr t structure that attr points to.

May 31, 2004 Manifests 1127

iofunc attr init() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc attr lock(), iofunc attr t, iofunc attr unlock(),
iofunc ocb attach(), iofunc ocb detach(), resmgr attach()

Writing a Resource Manager chapter of the Programmer’s Guide.

1128 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc attr lock()
Lock the attribute structure

Synopsis:
#include <sys/iofunc.h>

int iofunc attr lock(iofunc attr t *attr);

Arguments:
attr A pointer to the iofunc attr t structure that you want to

lock.

Library:
libc

Description:
The iofunc attr lock() function locks the attribute structure that attr
points to, preventing other threads in the resource manager from
changing information.

Call this function (or iofunc attr trylock()) before you make any
modifications to the attribute structure. After you’re finished making
modifications, call iofunc attr unlock() to release the lock.

Note that this is a counting locking mechanism. This means that a
given thread can lock the attributes structure multiple times; it must
then unlock the attributes structure a corresponding number of times
in order to have the attributes structure considered unlocked. If
another thread attempts to lock the structure while a thread has the
structure locked, the other thread blocks.

Returns:
EOK Success.

EAGAIN On the first use, all kernel mutex objects were in use.

May 31, 2004 Manifests 1129

iofunc attr lock() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc attr init(), iofunc attr t, iofunc attr trylock(),
iofunc attr unlock()

Writing a Resource Manager chapter of the Programmer’s Guide.

1130 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc attr t
I/O attribute structure

Synopsis:
#include <sys/iofunc.h>

typedef struct iofunc attr {
IOFUNC MOUNT T *mount; /* Used to find iofunc
uint32 t flags; /* Dirty and invalid f
int32 t lock tid; /* Thread that has att
uint16 t lock count; /* Lock count (0 == un
uint16 t count; /* File use count */
uint16 t rcount; /* File reader count *
uint16 t wcount; /* File writer count *
uint16 t rlocks; /* Number of read lock
uint16 t wlocks; /* Number of write loc
struct iofunc mmap list *mmap list; /* List of mmap ids */
struct iofunc lock list *lock list; /* Lock lists */
void *list; /* Reserved for future
uint32 t list size; /* Size of reserved ar

#if !defined(IOFUNC OFFSET BITS) || IOFUNC OFFSET BITS == 64
#if FILE OFFSET BITS - 0 == 64

off t nbytes; /* Always Number of by
ino t inode; /* mount point specifi

#else
off64 t nbytes; /* Always Number of by
ino64 t inode; /* mount point specifi

#endif
#elif IOFUNC OFFSET BITS - 0 == 32
#if !defined(FILE OFFSET BITS) || FILE OFFSET BITS == 32
#if defined(LITTLEENDIAN)

off t nbytes; /* Always Number of by
off t nbytes hi;
ino t inode; /* mount point specifi
ino t inode hi;

#elif defined(BIGENDIAN)
off t nbytes hi;
off t nbytes; /* Always Number of by
ino t inode hi;
ino t inode; /* mount point specifi

#else
#error endian not configured for system

#endif
#else
#if defined(LITTLEENDIAN)

May 31, 2004 Manifests 1131

iofunc attr t 2004, QNX Software Systems Ltd.

int32 t nbytes; /* Always Number of bytes
int32 t nbytes hi;
int32 t inode; /* mount point specific i
int32 t inode hi;

#elif defined(BIGENDIAN)
int32 t nbytes hi;
int32 t nbytes; /* Always Number of bytes
int32 t inode hi;
int32 t inode; /* mount point specific i

#else
#error endian not configured for system

#endif
#endif

#else
#error IOFUNC OFFSET BITS value is unsupported

#endif
uid t uid; /* User id */
gid t gid; /* Group id */
time t mtime; /* Modification time (wri
time t atime; /* Access time (read upda
time t ctime; /* Change time (write/ch*
mode t mode; /* File mode (S * from st
nlink t nlink; /* Number of links to the
dev t rdev; /* dev num for CHR specia

} iofunc attr t;

Description:
The iofunc attr t structure describes the attributes of the device
that’s associated with a resource manager. The members include the
following:

mount A pointer a structure information about the
mountpoint. By default, this structure is of type
iofunc mount t, but you can specify your own
structure by changing the IOFUNC MOUNT T
manifest.

1132 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc attr t

flags Flags that your resource manager can set to indicate
the state of the device. This member is a combination
of the following flags:

IOFUNC ATTR ATIME

The access time is no longer valid. Typically set
on a read from the resource.

IOFUNC ATTR CTIME

The change of status time is no longer valid.
Typically set on a file info change.

IOFUNC ATTR DIRTY NLINK

The number of links has changed.

IOFUNC ATTR DIRTY MODE

The mode has changed.

IOFUNC ATTR DIRTY OWNER

The uid or the gid has changed.

IOFUNC ATTR DIRTY RDEV

The rdev member has changed, e.g. mknod().

IOFUNC ATTR DIRTY SIZE

The size has changed.

IOFUNC ATTR DIRTY TIME

One or more of mtime, atime, or ctime has
changed.

IOFUNC ATTR MTIME

The modification time is no longer valid.
Typically set on a write to the resource.

In addition to the above, your resource manager can
use in any way the bits in the range defined by
IOFUNC ATTR PRIVATE (see <sys/iofunc.h>).

lock tid The ID of the thread that has locked the attributes. To
support multiple threads in your resource manager,

May 31, 2004 Manifests 1133

iofunc attr t 2004, QNX Software Systems Ltd.

you’ll need to lock the attribute structure so that only
one thread at a time is allowed to change it.

The resource manager layer automatically locks the
attribute (using for you when certain handler
functions are called (i.e. IO *).

lock count The number of times the thread has locked the
attribute structure. You can lock the attributes by
calling iofunc attr lock() or iofunc attr trylock();
unlock them by calling iofunc attr unlock()

A thread must unlock the attributes as many times as it locked them.
�

count The number of OCBs using this attribute in any
manner. When this count is zero, no one is using this
attribute.

rcount The number of OCBs using this attribute for reading.

wcount The number of OCBs using this attribute for writing.

rlocks The number of read locks currently registered on the
attribute.

wlocks The number of write locks currently registered on the
attribute.

mmap list and lock list

To manage their particular functionality on the
resource, the mmap list member is used by
iofunc mmap() and iofunc mmap default(); the
lock list member is used by iofunc lock default().
Generally, you shouldn’t need to modify or examine
these members.

list Reserved for future use.

list size Size of reserved area; reserved for future use.

1134 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc attr t

nbytes The number of bytes in the resource; your resource
manager can change this value.

For a file, this would contain the file’s size. For
special devices (e.g. /dev/null) that don’t support
lseek() or have a radically different interpretation for
lseek(), this field isn’t used (because you wouldn’t use
any of the helper functions, but would supply your
own instead.) In these cases, we recommend that you
set this field to zero, unless there’s a meaningful
interpretation that you care to put to it.

inode This is a mountpoint-specific inode that must be
unique per mountpoint. You can specify your own
value, or 0 to have the Process manager fill it in for
you. For filesystem type of applications, this may
correspond to some on-disk structure. In any case, the
interpretation of this field is up to you.

uid and gid The user ID and group ID of the owner of this
resource. These fields are updated automatically by
the chown() helper functions (e.g.
iofunc chown default()) and are referenced in
conjunction with the mode member for
access-granting purposes by the open() help functions
(e.g. iofunc open default()).

mtime, atime, and ctime

POSIX time members:

� mtime — modification time (write() updates this).

� atime — access time (read() updates this).

� ctime — change of status time (write(), chmod()
and chown() update this).

May 31, 2004 Manifests 1135

iofunc attr t 2004, QNX Software Systems Ltd.

One or more of the three time members may be invalidated as a result
of calling an iofunc-layer function. To see if a time member is invalid,
check the flags member. This is to avoid having each and every I/O
message handler go to the kernel and request the current time of day,
just to fill in the attribute structure’s time member(s).

�

To fill the members with the correct time, call
iofunc time update().

mode The resource’s mode (e.g. type, permissions). Valid
modes may be selected from the S * series of
constants in <sys/stat.h>; see “Access
permissions” in the documentation for stat().

nlink The number of links to this particular name; your
resource manager can modify this member. For
names that represent a directory, this value must be
greater than 2.

rdev The device number for a character special device and
the rdev number for a named special device.

Classification:
QNX Neutrino

See also:
iofunc attr lock(), iofunc attr trylock(), iofunc attr unlock(),
iofunc lock default(), iofunc mmap(), iofunc mmap default(),
iofunc ocb t, iofunc time update()

Writing a Resource Manager chapter of the Programmer’s Guide.

1136 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc attr trylock()
Try to lock the attribute structure

Synopsis:
#include <sys/iofunc.h>

int iofunc attr trylock(iofunc attr t *attr);

Arguments:
attr A pointer to the iofunc attr t structure that you want to

lock.

Library:
libc

Description:
The iofunc attr trylock() function attempts to lock the attribute
structure attr, preventing other threads in the resource manager from
changing information. If it can’t lock attr immediately, it returns
EBUSY.

Call this function (or iofunc attr lock()) before you make any
modifications to the attribute structure. After you’re finished making
modifications, call iofunc attr unlock() to release the lock.

Note that this is a counting locking mechanism. This means that a
given thread can lock the attributes structure multiple times; it must
then unlock the attributes structure a corresponding number of times
in order to have the attributes structure considered unlocked. If
another thread attempts to lock the structure while a thread has the
structure locked, the other thread will block.

Returns:
EOK Success.

EBUSY The calling thread couldn’t lock the attributes
immediately.

EAGAIN On the first use, all kernel mutex objects were in use.

May 31, 2004 Manifests 1137

iofunc attr trylock() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc attr init(), iofunc attr lock(), iofunc attr t,
iofunc attr unlock()

Writing a Resource Manager chapter of the Programmer’s Guide.

1138 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc attr unlock()
Unlock the attribute structure

Synopsis:
#include <sys/iofunc.h>

int iofunc attr unlock(iofunc attr t *attr);

Arguments:
attr A pointer to the iofunc attr t structure that you want to

unlock.

Library:
libc

Description:
The iofunc attr unlock() function unlocks the attribute structure attr,
allowing other threads in the resource manager to change information.

Use this function in conjunction with iofunc attr lock() or
iofunc attr trylock(); call iofunc attr unlock() after you’ve made
modifications to the attribute structure. You must unlock the structure
as many times as you locked it.

Returns:
EOK Success.

EAGAIN On the first use, all kernel mutex objects were in use.

Classification:
QNX Neutrino

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 1139

iofunc attr unlock() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc attr init(), iofunc attr lock(), iofunc attr t,
iofunc attr trylock()

Writing a Resource Manager chapter of the Programmer’s Guide.

1140 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc check access()
Check access permissions

Synopsis:
#include <sys/iofunc.h>

int iofunc check access(
resmgr context t *ctp,
const iofunc attr t *attr,
mode t checkmode,
const struct client info *info);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context
information between functions.

attr A pointer to the iofunc attr t structure that
defines the characteristics of the device that’s
associated with the resource manager.

checkmode The type and access permissions that you want to
check for the resource. For more information, see
below.

info A pointer to a client info structure that contains
the information about a client connection. For
information about this structure, see
ConnectClientInfo(). You can get this structure by
calling iofunc client info().

Library:
libc

Description:
The iofunc check access() function verifies that the client is allowed
access to the resource, as specified by a combination of who the client
is (info), and the resource attributes attr->mode, attr->uid and
attr->gid. Access is tested based upon the checkmode parameter.

May 31, 2004 Manifests 1141

iofunc check access() 2004, QNX Software Systems Ltd.

The checkmode parameter determines which checks are done. It’s a
bitwise OR of the following constants:

S ISUID Verifies that the effective user ID of the client is equal
to the user ID specified by the attr->uid member.

S ISGID Verifies that the effective group ID or one of the
supplementary group IDs of the client is equal to the
group ID specified by the attr->gid member.

S IREAD Verifies that the client has READ access to the resource
as specified by attr->mode.

If the client’s effective user ID matches that of
attr->uid, then the permission check is made against
the owner permission field of attr->mode (mask 0700
octal).

If the client’s effective user ID doesn’t match that of
attr->uid, then if the client’s effective group ID
matches that of attr->gid, or one of the client’s
supplementary group IDs matches attr->gid, the check
is made against the group permission field of
attr->mode (mask 0070 octal).

If none of the group fields match, the check is made
against the other permission field of attr->mode (mask
0007 octal).

S IWRITE Same as S IREAD, except WRITE access is tested.

S IEXEC Same as S IREAD, except EXECUTE access is tested.
Note that since most resource managers don’t actually
execute code, the execute access is typically used in its
directory sense, i.e. to test for directory accessibility,
rather than execute access.

The S ISUID and S ISGID flags are mutually exclusive, that is, you
may specify at most one of them. In conjunction with the S ISUID and
S ISGID flags, you may specify zero or more of the S IREAD,

1142 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc check access()

S IWRITE, and S IEXEC flags. If no flags are specified, the permission
checks are performed for privileged (root) access.

Here’s some pseudo-code to try to explain this:

if superuser:
return EOK

if S ISUID and effective user ID == file user ID:
return EOK

if S ISGID and effective group ID == file group ID:
return EOK

if S IREAD or S IWRITE or S IEXEC:
if caller’s user ID == effective user ID:

if all permissions are set in file’s owner mode bits:
return EOK

else:
return EACCESS

if (caller’s group ID or supplementary group IDs) ==
effective group ID:
if all permissions are set in file’s group mode bits:

return EOK
else:

return EACCESS

if all permissions are set in file’s other mode bits:
return EOK

else:
return EACCESS

return EPERM

Returns:
EACCES The client doesn’t have permissions to do the operation.

ENOSYS NULL was passed for info structure.

EOK Successful completion.

EPERM The group ID or owner ID didn’t match.

May 31, 2004 Manifests 1143

iofunc check access() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc client info(), iofunc open(), iofunc read verify(),
iofunc write verify()

Writing a Resource Manager chapter of the Programmer’s Guide.

1144 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc chmod()
Handle an IO CHMOD message

Synopsis:
#include <sys/iofunc.h>

int iofunc chmod (resmgr context t *ctp,
io chmod t *msg,
iofunc ocb t *ocb,
iofunc attr t *attr);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io chmod t structure that contains the
message that the resource manager received; see below.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

attr A pointer to the iofunc attr t structure that describes the
characteristics of the device that’s associated with your
resource manager.

Library:
libc

Description:
The iofunc chmod() helper function implements POSIX semantics for
the client’s chmod() call, which is received as an IO CHMOD
message by the resource manager.

The iofunc chmod() function verifies that the client has the necessary
permissions to effect a chmod() on the attribute. If so, the chmod() is
performed, modifying elements of the ocb->attr structure. This

May 31, 2004 Manifests 1145

iofunc chmod() 2004, QNX Software Systems Ltd.

function takes care of updating the IOFUNC ATTR CTIME,
IOFUNC ATTR DIRTY TIME, and IOFUNC ATTR DIRTY MODE bits
in ocb->attr->flags. You can use iofunc time update(), to update the
appropriate time fields in ocb->attr.

You can use iofunc chmod(), for example, in a filesystem manager,
where an IO CHMOD message was received, and the filesystem code
must now write the values to the medium. The filesystem code may
wish to block the client thread until the data was actually written to
the medium. Contrast this scenario to the behavior of
iofunc chmod default(), which calls this routine, and replies to the
client thread.

io chmod t structure

The io chmod t structure holds the IO CHMOD message received
by the resource manager:

struct io chmod {
uint16 t type;
uint16 t combine len;
mode t mode;

};

typedef union {
struct io chmod i;

} io chmod t;

The I/O message structures are unions of an input message (coming to
the resource manager) and an output or reply message (going back to
the client). In this case, there’s only an input message, i.

The i member is a structure of type io chmod that contains the
following members:

type IO CHMOD.

combine len If the message is a combine message,
IO COMBINE FLAG is set in this member. For more

information, see “Combine messages” in the Writing
a Resource Manager chapter of the Programmer’s
Guide.

1146 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc chmod()

mode The new mode. For more information, see “Access
permissions” in the documentation for stat().

Returns:
EOK Successful completion.

EROFS An attempt was made to chmod on a read-only
filesystem.

EACCES The client doesn’t have permissions to do the operation.

EPERM The group ID or owner ID didn’t match.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc attr t, iofunc chmod default(), iofunc ocb t,
iofunc time update(), resmgr context t

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1147

iofunc chmod default() 2004, QNX Software Systems Ltd.

Default handler for IO CHMOD messages

Synopsis:
#include <sys/iofunc.h>

int iofunc chmod default(resmgr context t *ctp,
io chmod t *msg,
iofunc ocb t *ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io chmod t structure that contains the
message that the resource manager received. For more
information, see the documentation for iofunc chmod().

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

Library:
libc

Description:
The iofunc chmod default() function implements POSIX semantics
for the client’s chmod() call, which is received as an IO CHMOD
message by the resource manager.

You can place this function directly into the io funcs table passed to
resmgr attach(), at the chmod position, or you can call
iofunc func init() to initialize all the functions to their default values.

The iofunc chmod default() function calls iofunc chmod() to do the
actual work, and (if installed in the io funcs table) issues the reply
back to the client.

1148 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc chmod default()

Returns:
EOK Successful completion.

EROFS An attempt was made to chmod() on a read-only
filesystem.

EACCES The client doesn’t have permissions to do the operation.

EPERM The group ID or owner ID didn’t match.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc chmod(), iofunc func init(), iofunc ocb t,
iofunc time update(), resmgr attach(), resmgr context t,
resmgr io funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1149

iofunc chown() 2004, QNX Software Systems Ltd.

Handle an IO CHOWN message

Synopsis:
#include <sys/iofunc.h>

int iofunc chown (resmgr context t *ctp,
io chown t *msg,
iofunc ocb t *ocb,
iofunc attr t *attr);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io chown t structure that contains the
message that the resource manager received; see below.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

attr A pointer to the iofunc attr t structure that describes the
characteristics of the device that’s associated with your
resource manager.

Library:
libc

Description:
The iofunc chown() helper function implements POSIX semantics for
the client’s chown() call, which is received as an IO CHOWN
message by the resource manager.

The iofunc chown() function verifies that the client has the necessary
permissions to effect a chown on the attribute. If so, the chown is
performed, modifying elements of the ocb->attr structure. As per

1150 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc chown()

POSIX 1003.1, if the client isn’t root, iofunc chown() clears the
set-user-id and set-group-id bits in the ocb->attr->mode member.

This function takes care of updating the IOFUNC ATTR CTIME,
IOFUNC ATTR DIRTY TIME, and IOFUNC ATTR DIRTY MODE bits
in ocb->attr->flags. You can use iofunc time update(), to update the
appropriate time fields in ocb->attr.

io chown t structure

The io chown t structure holds the IO CHOWN message received
by the resource manager:

struct io chown {
uint16 t type;
uint16 t combine len;
int32 t gid;
int32 t uid;

};

typedef union {
struct io chown i;

} io chown t;

The I/O message structures are unions of an input message (coming to
the resource manager) and an output or reply message (going back to
the client). In this case, there’s only an input message, i.

The i member is a structure of type io chown that contains the
following members:

type IO CHOWN.

combine len If the message is a combine message,
IO COMBINE FLAG is set in this member. For more

information, see “Combine messages” in the Writing
a Resource Manager chapter of the Programmer’s
Guide.

gid The new group ID.

uid The new user ID.

May 31, 2004 Manifests 1151

iofunc chown() 2004, QNX Software Systems Ltd.

Returns:
EOK Successful completion.

EROFS An attempt was made to chown on a read-only
filesystem.

EACCES The client doesn’t have permissions to do the operation.

EPERM The group ID or owner ID didn’t match.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc attr t, iofunc chmod(), iofunc chown default(),
iofunc ocb t, iofunc time update(), resmgr attach(),
resmgr context t

Writing a Resource Manager chapter of the Programmer’s Guide.

1152 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc chown default()
Default handler for IO CHOWN messages

Synopsis:
#include <sys/iofunc.h>

int iofunc chown default(resmgr context t *ctp,
io chown t *msg,
iofunc ocb t *ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io chown t structure that contains the
message that the resource manager received. For more
information, see the documentation for iofunc chown().

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

Library:
libc

Description:
The iofunc chown default() function implements POSIX semantics
for the client’s chown() call, which is received as an IO CHOWN
message by the resource manager.

You can place this function directly into the io funcs table passed to
resmgr attach(), at the chown position, or you can call
iofunc func init() to initialize all of the functions to their default
values.

The iofunc chown default() function calls iofunc chown() to do the
actual work, and (if installed in the io funcs table) issues the reply
back to the client.

May 31, 2004 Manifests 1153

iofunc chown default() 2004, QNX Software Systems Ltd.

Returns:
EOK Successful completion.

EROFS An attempt was made to chown on a read-only
filesystem.

EACCES The client doesn’t have permissions to do the operation.

EPERM The group ID or owner ID didn’t match.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc chown(), iofunc func init(), iofunc ocb t,
iofunc time update(), resmgr attach(), resmgr context t,
resmgr io funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

1154 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc client info()
Return information about a client connection

Synopsis:
#include <sys/iofunc.h>

int iofunc client info (resmgr context t * ctp,
int ioflag,
struct client info * info);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

ioflag Zero, or the constant O REALIDS. This argument is passed
in the IO OPEN message during an open request. If
O REALIDS is specified, iofunc client info() swaps the real
and effective values of the user and group IDs before
returning. This is a QNX Neutrino extension, to swap real
and effective user and group IDs in an atomic operation.

info A pointer to a client info structure that the function
fills with information about a client connection. For
information about this structure, see ConnectClientInfo().

Library:
libc

Description:
The iofunc client info() function fetches the info structure for the
client. It calls ConnectClientInfo() to gather the information, based on
the server connection ID found in ctp->info.scoid.

May 31, 2004 Manifests 1155

iofunc client info() 2004, QNX Software Systems Ltd.

Returns:
EFAULT A fault occurred when the kernel tried to access the info

buffer provided.

EINVAL The client process is no longer valid.

EOK Successful completion.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ConnectClientInfo()

Writing a Resource Manager chapter of the Programmer’s Guide.

1156 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc close dup()
Free all locks allocated for the client process

Synopsis:
#include <sys/iofunc.h>

int iofunc close dup(resmgr context t* ctp,
io close t* msg,
iofunc ocb t* ocb,
iofunc attr t* attr);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io close t structure that contains the
message that the resource manager received; see below.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

attr A pointer to the iofunc attr t structure that describes the
characteristics of the device that’s associated with your
resource manager.

Library:
libc

Description:
The iofunc close dup() helper function handles a IO CLOSE
message. This function frees all locks allocated for the client process
on the file descriptor and performs any POSIX-related cleanup
required when a duplicated ocb is detached.

May 31, 2004 Manifests 1157

iofunc close dup() 2004, QNX Software Systems Ltd.

io close t structure

The io close t structure holds the IO CLOSE message received by
the resource manager:

struct io close {
uint16 t type;
uint16 t combine len;

};

typedef union {
struct io close i;

} io close t;

The I/O message structures are unions of an input message (coming to
the resource manager) and an output or reply message (going back to
the client). In this case, there’s only an input message, i.

The i member is a structure of type io close that contains the
following members:

type IO CLOSE.

combine len If the message is a combine message,
IO COMBINE FLAG is set in this member. For more

information, see “Combine messages” in the Writing
a Resource Manager chapter of the Programmer’s
Guide.

Returns:
EOK Success.

Anything else An error occurred.

Classification:
QNX Neutrino

1158 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc close dup()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc close dup default(), iofunc close ocb()

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1159

iofunc close dup default() 2004, QNX Software Systems Ltd.

Default handler for IO CLOSE messages

Synopsis:
#include <sys/iofunc.h>

int iofunc close dup default(
resmgr context t *ctp,
io close t *msg,
iofunc ocb t *ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io close t structure that contains the
message that the resource manager received. For more
information, see the documentation for iofunc close dup().

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

Library:
libc

Description:
The iofunc close dup default() function implements default actions
for the IO CLOSE message. This function simply calls
iofunc close dup(), which does the actual work.

You can place iofunc close dup default() directly into the io funcs
table passed to resmgr attach(), at the close dup position, or you can
call iofunc func init() to initialize all of the functions to their default
values.

1160 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc close dup default()

If your resource manager uses iofunc lock default(), you must use
both this function (iofunc close dup default()) and
iofunc unblock default(), as they provide necessary ancillary
functionality for managing file locks. This is because file locks are
owned by the process, and aren’t inherited by the child process.

�

Returns:
EOK Successful completion.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc close dup(), iofunc func init(), iofunc ocb t,
iofunc time update(), resmgr attach(), resmgr context t,
resmgr io funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1161

iofunc close ocb() 2004, QNX Software Systems Ltd.

Return the memory allocated for an OCB

Synopsis:
#include <sys/iofunc.h>

int iofunc close ocb(resmgr context t* ctp,
iofunc ocb t* ocb,
iofunc attr t* attr);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

attr A pointer to the iofunc attr t structure that describes the
characteristics of the device that’s associated with your
resource manager.

Library:
libc

Description:
The iofunc close ocb() function detaches the OCB specified by ocb,
and releases the memory associated with it.

1162 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc close ocb()

This function assumes that ocb points to an iofunc ocb t. If you
encapsulate iofunc ocb t in your own OCB it must be the first
field of your OCB; otherwise, you can’t call this function. If you
provide an ocb free() function in the mount structure then it’s called
at this point. This means that at least the iofunc ocb t portion of
your OCB is no longer valid after iofunc close ocb() returns.

�

The iofunc close ocb() function calls iofunc ocb detach() on your
behalf.

Returns:
EOK Success.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc attr t, iofunc close dup(), iofunc close ocb default(),
iofunc ocb free(), iofunc ocb t, resmgr context t

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1163

iofunc close ocb default() 2004, QNX Software Systems Ltd.

Return the memory allocated for an OCB

Synopsis:
#include <sys/iofunc.h>

int iofunc close ocb default(resmgr context t* ctp,
void* reserved,
iofunc ocb t* ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context
information between functions.

reserved This argument must be passed as NULL.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened
the resource.

Library:
libc

Description:
The iofunc close ocb default() function detaches the OCB specified
by ocb, and releases the memory associated with it.

You can place this function directly into the io funcs table passed to
resmgr attach(), at the close ocb position, or you can call
iofunc func init() to initialize all of the functions to their default
values.

1164 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc close ocb default()

This function assumes that ocb points to an iofunc ocb t. If you
encapsulate iofunc ocb t in your own OCB, it must be the first
field of your OCB; otherwise, you can’t call this function. If you
provide an ocb free() function in the mount structure, it’s called at this
point. This means that at least the iofunc ocb t portion of your
OCB is no longer valid after iofunc close ocb() returns.

�

The iofunc close ocb default() function calls iofunc close ocb().

Returns:
EOK Success.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc close ocb(), iofunc func init(), iofunc ocb t,
iofunc time update(), resmgr attach(), resmgr context t,
resmgr io funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1165

iofunc devctl() 2004, QNX Software Systems Ltd.

Handle an IO DEVCTL message

Synopsis:
#include <sys/iofunc.h>

int iofunc devctl(resmgr context t *ctp,
io devctl t *msg,
iofunc ocb t *ocb,
iofunc attr t *attr);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io devctl t structure that contains the
message that the resource manager received; see below.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

attr A pointer to the iofunc attr t structure that describes the
characteristics of the device that’s associated with your
resource manager.

Library:
libc

Description:
The iofunc devctl() helper function implements POSIX semantics for
the client’s devctl() call, which is received as an IO DEVCTL
message by the resource manager. This function handles the
DCMD ALL* functionality.

This function handles at least the following device control messages:

DCMD ALL GETFLAGS

Implements the functionality of the fcntl() get-flags command.

1166 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc devctl()

DCMD ALL SETFLAGS

Implements the functionality of the fcntl() set-flags command.

DCMD ALL GETMOUNTFLAGS

Returns the mount flag (mount->flags) for a resource that has a
mount structure defined, else returns a mount flag of zero.

The supported mount flags (bitmask values) for
DCMD ALL GETMOUNTFLAGS include:

MOUNT READONLY

Read only.

MOUNT NOEXEC

Can’t exec from filesystem.

MOUNT NOSUID

Don’t honor setuid bits on filesystem.

Any other device control messages return ENOTTY.

io devctl t structure

The io devctl t structure holds the IO message received by the
resource manager:

struct io devctl {
uint16 t type;
uint16 t combine len;
int32 t dcmd;
int32 t nbytes;
int32 t zero;

/* char data[nbytes]; */
};

struct io devctl reply {
uint32 t zero;
int32 t ret val;
int32 t nbytes;
int32 t zero2;

/* char data[nbytes]; */

May 31, 2004 Manifests 1167

iofunc devctl() 2004, QNX Software Systems Ltd.

} ;

typedef union {
struct io devctl i;
struct io devctl reply o;

} io devctl t;

The I/O message structures are unions of an input message (coming to
the resource manager) and an output or reply message (going back to
the client).

The i member is a structure of type io devctl that contains the
following members:

type IO DEVCTL.

combine len If the message is a combine message,
IO COMBINE FLAG is set in this member. For more

information, see “Combine messages” in the Writing
a Resource Manager chapter of the Programmer’s
Guide.

dcmd The device-control command to execute.

nbytes The number of bytes of data being passed with the
command.

The commented-out declaration for data indicates that nbytes bytes of
data immediately follow the io devctl structure.

The DEVCTL DATA() macro gets a pointer to the data that follows
the message. Call it like this:

data = DEVCTL DATA (msg->i);

The o member of the io devctl t message is a structure of type
io devctl reply that contains the following members:

ret val The value returned by the command.

nbytes The number of bytes of data being returned.

1168 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc devctl()

The commented-out declaration for data indicates that nbytes bytes of
data immediately follow the io devctl reply structure.

Returns:
EOK Successful completion.

EINVAL An attempt to set the flags for a resource that is
synchronized, with no mount structure defined, or no
synchronized I/O defined.

ENOTTY An unsupported device control message was decoded.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
fcntl(), iofunc attr t, iofunc devctl default(), iofunc ocb t,
resmgr context t

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1169

iofunc devctl default() 2004, QNX Software Systems Ltd.

Default handler for IO DEVCTL messages

Synopsis:
#include <sys/iofunc.h>

int iofunc devctl default(resmgr context t *ctp,
io devctl t *msg,
iofunc ocb t *ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io devctl t structure that contains the
message that the resource manager received. For more
information, see the documentation for iofunc devctl().

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

Library:
libc

Description:
The iofunc devctl default() function implements POSIX semantics for
the client’s devctl() call, which is received as an IO DEVCTL
message by the resource manager.

You can place this function directly into the io funcs table passed to
resmgr attach(), at the devctl position, or you can call
iofunc func init() to initialize all of the functions to their default
values.

The iofunc devctl default() function calls iofunc devctl(), to do the
actual work, and (if installed in the io funcs table) issues the reply
back to the client.

1170 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc devctl default()

Returns:
EOK Successful completion.

EINVAL An attempt to set the flags for a resource that is
synchronized, with no mount structure defined, or no
synchronized I/O defined.

ENOTTY An unsupported device control message was decoded.

RESMGR DEFAULT

An supported device control message that isn’t a known
DCMD ALL * command was decoded.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc devctl(), iofunc func init(), iofunc ocb t,
iofunc time update(), resmgr attach(), resmgr context t,
resmgr io funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1171

iofunc fdinfo() 2004, QNX Software Systems Ltd.

Handle an IO FDINFO message

Synopsis:
#include <sys/iofunc.h>

int iofunc fdinfo(resmgr context t * ctp,
iofunc ocb t * ocb,
iofunc attr t * attr,
struct fdinfo * info);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

attr NULL, or a pointer to the iofunc attr t structure that
describes the characteristics of the device that’s associated
with your resource manager.

info A pointer to a fdinfo structure that the function fills with
the information. This structure is defined in
<sys/iomgr.h> as:

struct fdinfo {
uint32 t mode; /* File mode */
uint32 t ioflag; /* Current io flags */
uint64 t offset; /* Current seek position */
uint64 t size; /* Current size of file */
uint32 t flags; /* FDINFO * */
uint16 t sflag; /* Share flags */
uint16 t count; /* File use count */
uint16 t rcount; /* File reader count */
uint16 t wcount; /* File writer count */
uint16 t rlocks; /* Number of read locks */
uint16 t wlocks; /* Number of write locks */
uint32 t zero[6];

};

1172 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc fdinfo()

The fdinfo structure is included in the reply part of a
io fdinfo t structure; for more information, see the
documentation for iofunc fdinfo default().

Library:
libc

Description:
The iofunc fdinfo() helper function provides the implementation for
the client’s iofdinfo() call, which is received as an IO FDINFO
message by the resource manager.

The iofunc fdinfo() function transfers the appropriate fields from the
ocb and attr structures to the info structure. If attr is NULL, then the
attr information comes from the structure pointed to by ocb->attr.

Returns:
EOK Successful completion.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1173

iofunc fdinfo() 2004, QNX Software Systems Ltd.

See also:
iofdinfo(), iofunc attr t, iofunc fdinfo default(),
iofunc ocb t, resmgr context t, resmgr pathname()

Writing a Resource Manager chapter of the Programmer’s Guide.

1174 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc fdinfo default()
Default handler for IO FDINFO messages

Synopsis:
#include <sys/iomgr.h>

int iofunc fdinfo default(resmgr context t * ctp,
io fdinfo t * msg,
iofunc ocb t * ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io fdinfo t structure that contains the
message that the resource manager received; see below.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

Library:
libc

Description:
The iofunc fdinfo default() function provides the default handler for
the client’s iofdinfo() call, which is received as an IO FDINFO
message by the resource manager.

You can place this function directly into the io funcs table passed to
resmgr attach(), at the fdinfo position, or you can call
iofunc func init() to initialize all of the functions to their default
values.

The iofunc fdinfo default() function calls iofunc fdinfo() and
resmgr pathname() to do the actual write, and (if installed in the
io funcs table) replies back to the client.

May 31, 2004 Manifests 1175

iofunc fdinfo default() 2004, QNX Software Systems Ltd.

io fdinfo t structure

The io fdinfo t structure holds the IO FDINFO message received
by the resource manager:

struct io fdinfo {
uint16 t type;
uint16 t combine len;
uint32 t flags;
int32 t path len;
uint32 t reserved;

};

struct io fdinfo reply {
uint32 t zero[2];
struct fdinfo info;

/* char path[path len + 1]; */
};

typedef union {
struct io fdinfo i;
struct io fdinfo reply o;

} io fdinfo t;

The I/O message structures are unions of an input message (coming to
the resource manager) and an output or reply message (going back to
the client).

The i member is a structure of type io fdinfo that contains the
following members:

type IO FDINFO.

combine len If the message is a combine message,
IO COMBINE FLAG is set in this member. For more

information, see “Combine messages” in the Writing
a Resource Manager chapter of the Programmer’s
Guide.

flags Specify FDINFO FLAG LOCALPATH to return only
the local path info (i.e. exclude the network path
info).

path len The size of the path reply buffers that follow the
reply.

1176 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc fdinfo default()

The o member is a structure of type io fdinfo reply that
contains the following members:

info A fdinfo structure that’s defined (in <sys/iomgr.h>) as:

struct fdinfo {
uint32 t mode; /* File mode */
uint32 t ioflag; /* Current io flags */
uint64 t offset; /* Current seek position */
uint64 t size; /* Current size of file */
uint32 t flags; /* FDINFO * */
uint16 t sflag; /* Share flags */
uint16 t count; /* File use count */
uint16 t rcount; /* File reader count */
uint16 t wcount; /* File writer count */
uint16 t rlocks; /* Number of read locks */
uint16 t wlocks; /* Number of write locks */
uint32 t zero[6];

};

The commented-out declaration for path indicates that path len + 1
bytes of data immediately follow the io fdinfo reply structure.

Returns:
The length of the path, or -1 if an error occurs (errno is set).

Errors:
EMSGSIZE Insufficient space available in the server’s buffer to

receive the entire message.

Classification:
QNX Neutrino

May 31, 2004 Manifests 1177

iofunc fdinfo default() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofdinfo(), iofunc fdinfo default(), iofunc func init(), iofunc ocb t,
resmgr attach(), resmgr context t, resmgr io funcs t,
RESMGR NPARTS(), resmgr pathname()

Writing a Resource Manager chapter of the Programmer’s Guide.

1178 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc func init()
Initialize the default POSIX-layer function tables

Synopsis:
#include <sys/iofunc.h>

void iofunc func init(
unsigned nconnect,
resmgr connect funcs t *connect,
unsigned nio,
resmgr io funcs t *io);

Arguments:
nconnect The number of entries in the connect table that you want

to fill. Typically, you pass
RESMGR CONNECT NFUNCS for this argument.

connect A pointer to a resmgr connect funcs t structure
that you want to fill with the default connect functions.

nio The number of entries in the io table that you want to
fill. Typically, you pass RESMGR IO NFUNCS for this
argument.

io A pointer to a resmgr io funcs t structure that you
want to fill with the default I/O functions.

Library:
libc

Description:
The iofunc func init() function initializes the passed connect and io
structures with the POSIX-layer default functions. For information
about the default functions, see resmgr connect funcs t and
resmgr io funcs t.

The nconnect and nio arguments indicate how many entries this
function should fill. This is in place to support forward compatibility.

May 31, 2004 Manifests 1179

iofunc func init() 2004, QNX Software Systems Ltd.

Examples:
Fill a connect and I/O function table with the POSIX-layer defaults:

#include <sys/iofunc.h>

static resmgr connect funcs t my connect functions;
static resmgr io funcs t my io functions;

int main (int argc, char **argv)
{
...

iofunc func init (RESMGR CONNECT NFUNCS, &my connect functions,
RESMGR IO NFUNCS, &my io functions);

/*
* At this point, the defaults have been filled in.
* You may now override some of the default functions with
* functions that you have written:

*/

my io functions.io read = my io read;
...
}

The above example initializes your connect and I/O function
structures (my connect functions and my io functions) with the
POSIX-layer defaults. If you didn’t override any of the functions,
your resource manager would behave like /dev/null — any data
written to it would be discarded, and an attempt to read data from it
would immediately return an EOF.

Since this isn’t desirable in most cases, you’ll often provide
functionality for some functions, such as reading, writing, and device
control to your device. In the example above, we’ve explicitly
supplied our own handler for reading from the device, via a function
called my io read().

Classification:
QNX Neutrino

1180 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc func init()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc attr init(), resmgr attach(), resmgr connect funcs t,
resmgr io funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1181

iofunc link() 2004, QNX Software Systems Ltd.

Link two directories

Synopsis:
#include <sys/iofunc.h>

int iofunc link(resmgr context t* ctp,
io link t* msg,
iofunc attr t* attr,
iofunc attr t* dattr,
struct client info* info);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io link t structure that contains the
message that the resource manager received; see below.

attr A pointer to the iofunc attr t structure that describes
the characteristics of the resource.

dattr NULL, or a pointer to the iofunc attr t structure that
describes the characteristics of the parent directory.

info NULL, or a pointer to a client info structure that
contains information about the client. For information about
this structure, see ConnectClientInfo().

Library:
libc

Description:
The iofunc link() helper function links directory attr to dattr for
context ctp. It’s similar to the iofunc open() function:

The iofunc link() function checks to see if the client (described by the
optional info structure) has access to open the resource (name passed

1182 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc link()

in the msg structure). The attr structure describes the resource’s
attributes, and the optional dattr structure defines the attributes of the
parent directory (i.e. if dattr isn’t NULL, it implies that the resource
identified by attr is being created within the directory specified by
dattr).

You can pass the info argument as NULL, in which case iofunc link()
obtains the client information itself via a call to iofunc client info(). It
is, of course, more efficient to get the client info once, rather than
calling this function with NULL every time.

If you pass NULL in info, the function returns information about a
client’s connection in info, and an error constant.

io link t structure

The io link t structure holds the IO CONNECT message received
by the resource manager:

typedef union {
struct io connect connect;
struct io connect link reply link reply;
struct io connect ftype reply ftype reply;

} io link t;

This message structure is a union of an input message (coming to the
resource manager), io connect, and two possible output or reply
messages (going back to the client):

� io connect link reply if the reply is redirecting the client
to another resource

Or:

� io connect ftype reply if the reply consists of a status and
a file type.

The reply includes the following additional information:

struct io resmgr link extra {
uint32 t nd;
int32 t pid;
int32 t chid;
uint32 t handle;

May 31, 2004 Manifests 1183

iofunc link() 2004, QNX Software Systems Ltd.

uint32 t flags;
uint32 t file type;
uint32 t reserved[2];

};

typedef union io link extra {
struct msg info info; /* EXTRA LINK (from client) */
void *ocb; /* EXTRA LINK (from resmgr functions) *
char path[1]; /* EXTRA SYMLINK */
struct io resmgr link extra resmgr; /* EXTRA RESMGR LINK */

} io link extra t;

info A pointer to a msg info structure.

Returns:
EOK Success.

EBADFSYS. NULL was passed in attr and dattr.

EFAULT A fault occurred when the kernel tried to access the
info buffer.

EINVAL The client process is no longer valid.

ENOSYS NULL was passed in info.

EPERM The group ID or owner ID didn’t match.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

1184 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc link()

See also:
ConnectClientInfo(), iofunc attr t, iofunc client info(),
iofunc open(), msg info, resmgr context t

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1185

iofunc lock() 2004, QNX Software Systems Ltd.

Lock a resource

Synopsis:
#include <sys/iofunc.h>

int iofunc lock(resmgr context t * ctp,
io lock t * msg,
iofunc ocb t * ocb,
iofunc attr t * attr);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io lock t structure that contains the
message that the resource manager received.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

attr A pointer to the iofunc attr t structure that describes the
characteristics of the device that’s associated with your
resource manager.

Library:
libc

Description:
The function iofunc lock() does what is required for POSIX locks.
This function isn’t currently implemented.

Returns:
ENOSYS The iofunc lock() function isn’t currently supported.

1186 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc lock()

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc lock calloc(), iofunc lock free()

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1187

iofunc lock calloc() 2004, QNX Software Systems Ltd.

Allocate memory to lock structures

Synopsis:
#include <sys/iofunc.h>

iofunc lock list t *iofunc lock calloc
(resmgr context t *ctp,
IOFUNC OCB T *ocb,
size t size);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

ocb A pointer to the the Open Control Block (typically a
iofunc ocb t structure) that was created when the client
opened the resource.

size The amount of memory that you want to allocate.

Library:
libc

Description:
The function iofunc lock calloc() is used by iofunc lock() to allocate
memory to lock structures.

Returns:
A pointer to a zeroed buffer that the POSIX layer uses for locks, or
NULL if no memory could be allocated.

Classification:
QNX Neutrino

1188 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc lock calloc()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc lock(), iofunc lock free()

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1189

iofunc lock default() 2004, QNX Software Systems Ltd.

Default handler for IO LOCK messages

Synopsis:
#include <sys/iofunc.h>

int iofunc lock default(resmgr context t * ctp,
io lock t * msg,
iofunc ocb t * ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io lock t structure that contains the
message that the resource manager received; see
iofunc lock().

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

Library:
libc

Description:
The iofunc lock default() function implements POSIX semantics for
the IO LOCK message (generated as a result of a client fcntl() call).

You can place this function directly into the io funcs table passed to
resmgr attach(), at the lock position, or you can call iofunc func init()
to initialize all of the functions to their default values.

The iofunc lock default() function verifies that the client has the
necessary permissions to effect a lock on the resource. This includes
checking for read and write permissions against the type of lock being
effected. If so, the lock is performed, modifying elements of the
ocb->attr structure, and updating ocb->attr->locklist to reflect the

1190 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc lock default()

new lock. This function calls iofunc lock(), which does the actual
work.

If your resource manager calls iofunc lock default(), it must call
iofunc close dup default() and iofunc unblock default() in their
respective handlers.

�

Returns:
EOK Successful completion.

EINVAL An invalid range was specified for the lock operation,
or an invalid lock operation was attempted.

EBADF An attempt to perform a read lock on a write-only
resource, or a write lock on a read-only resource was
attempted.

ENOMEM Insufficient memory exists to allocate an internal lock
structure.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1191

iofunc lock default() 2004, QNX Software Systems Ltd.

See also:
iofunc func init(), iofunc lock(), iofunc ocb t,
iofunc time update(), resmgr attach(), resmgr context t,
resmgr io funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

1192 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc lock free()
Return memory allocated for lock structures

Synopsis:
#include <sys/iofunc.h>

void iofunc lock free(iofunc lock list t* lock,
size t size);

Arguments:
lock A pointer to the iofunc lock list t list that you want to

free.

size The amount of memory that you want to free.

Library:
libc

Description:
The function iofunc lock free() frees lock structures allocated by
iofunc lock calloc().

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1193

iofunc lock free() 2004, QNX Software Systems Ltd.

See also:
iofunc lock(), iofunc lock calloc()

Writing a Resource Manager chapter of the Programmer’s Guide.

1194 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc lock ocb default()
Default handler for the lock ocb callout

Synopsis:
#include <sys/iofunc.h>

int iofunc lock ocb default(resmgr context t *ctp,
void *reserved,
iofunc ocb t *ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context
information between functions.

reserved This argument must be NULL.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened
the resource.

Library:
libc

Description:
The iofunc lock ocb default() function calls iofunc attr lock() to
enforce locking on the attributes for the group of messages that were
sent by the client.

You can place this function directly into the io funcs table passed to
resmgr attach(), at the lock ocb position, or you can call
iofunc func init() to initialize all of the functions to their default
values.

Returns:
EOK Success.

EAGAIN On the first use, all kernel mutex objects were in use.

May 31, 2004 Manifests 1195

iofunc lock ocb default() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc attr lock(), iofunc func init(), iofunc ocb t,
resmgr attach(), resmgr context t, resmgr io funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

1196 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc lseek()
Handle an IO LSEEK message

Synopsis:
#include <sys/iofunc.h>

int iofunc lseek (resmgr context t* ctp,
io lseek t* msg,
iofunc ocb t* ocb,
iofunc attr t* attr);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io lseek t structure that contains the
message that the resource manager received; see below.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

attr A pointer to the iofunc attr t structure that describes the
characteristics of the device that’s associated with your
resource manager.

Library:
libc

Description:
The iofunc lseek() helper function implements POSIX semantics for
the client’s lseek() call, which is received as an IO LSEEK message
by the resource manager.

The iofunc lseek() function handles the three different whence cases:
SEEK SET, SEEK CUR, and SEEK END, updating the ocb->offset
field with the new position.

May 31, 2004 Manifests 1197

iofunc lseek() 2004, QNX Software Systems Ltd.

Note that if the IOFUNC MOUNT 32BIT flag isn’t set in the mount
structure, iofunc lseek() handles 64-bit position offsets. If the flag is
set (meaning this device supports only 32-bit offsets), the resulting
offset value is treated as a 32-bit offset, and if it overflows 32 bits, it’s
truncated to LONG MAX. Also, this function handles combine
messages correctly, simplifying the work required to support lseek.

io lseek t structure

The io lseek t structure holds the IO LSEEK message received by
the resource manager:

struct io lseek {
uint16 t type;
uint16 t combine len;
short whence;
uint16 t zero;
uint64 t offset;

};

typedef union {
struct io lseek i;
uint64 t o;

} io lseek t;

The I/O message structures are unions of an input message (coming to
the resource manager) and an output or reply message (going back to
the client).

The i member is a structure of type io lseek that contains the
following members:

type IO LSEEK.

combine len If the message is a combine message,
IO COMBINE FLAG is set in this member. For more

information, see “Combine messages” in the Writing
a Resource Manager chapter of the Programmer’s
Guide.

whence SEEK SET, SEEK CUR, or SEEK END.

1198 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc lseek()

offset The relative offset from the file position determined
by the whence member.

The o member is the offset after the operation is complete.

Returns:
EOK Successful completion.

EINVAL The whence member in the IO LSEEK message wasn’t
one of SEEK SET, SEEK CUR, or SEEK END, or the
resulting position after the offset was applied resulted in
a negative number (overflow).

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc attr t, iofunc lseek default(), iofunc ocb t, lseek(),
resmgr context t

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1199

iofunc lseek default() 2004, QNX Software Systems Ltd.

Default handler for IO LSEEK messages

Synopsis:
#include <sys/iofunc.h>

int iofunc lseek default(resmgr context t* ctp,
io lseek t* msg,
iofunc ocb t* ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io lseek t structure that contains the
message that the resource manager received. For more
information, see the documentation for iofunc lseek().

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

Library:
libc

Description:
The iofunc lseek default() function implements POSIX semantics for
the client’s lseek() call, which is received as an IO LSEEK message
by the resource manager.

You can place this function directly into the io funcs table passed to
resmgr attach(), at the lseek position, or you can call
iofunc func init() to initialize all of the functions to their default
values.

The iofunc lseek default() function calls iofunc lseek() to do the
actual work, and (if installed in the io funcs table) issues the reply
back to the client.

1200 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc lseek default()

Returns:
EOK Successful completion.

EINVAL The whence member in the IO LSEEK message wasn’t
one of SEEK SET, SEEK CUR, or SEEK END, or the
resulting position after the offset was applied resulted in
a negative number (overflow).

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc func init(), iofunc lseek(), iofunc ocb t, lseek(),
resmgr attach(), resmgr context t, resmgr io funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1201

iofunc mknod() 2004, QNX Software Systems Ltd.

Verify a client’s ability to make a new filesystem entry point

Synopsis:
#include <sys/iofunc.h>

int iofunc mknod(resmgr context t *ctp,
io mknod t *msg,
iofunc attr t *attr,
iofunc attr t *dattr,
struct client info *info);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io mknod t structure that contains the
message that the resource manager received; see below.

attr NULL, or a pointer to the iofunc attr t structure that
describes the characteristics of the resource.

dattr A pointer to the iofunc attr t structure that you must
set. The iofunc attr t structure describes the attributes
of the parent directory.

info NULL, or a pointer to a client info structure that
contains information about the client. For information about
this structure, see ConnectClientInfo().

Library:
libc

Description:
The iofunc mknod() helper function supports mknod() requests by
verifying that the client can make a new filesystem entry point. It’s
similar to iofunc open().

1202 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc mknod()

The iofunc mknod() function checks to see if the client (described by
the optional info structure) has access to open the resource (name
passed in the msg structure). The attr structure describes the
resource’s attributes, and the optional dattr structure defines the
attributes of the parent directory (i.e. if dattr isn’t NULL, it implies
that the resource identified by attr is being created within the
directory specified by dattr).

The info argument can be passed as NULL, in which case
iofunc mknod() obtains the client information itself via a call to
iofunc client info(). It is, of course, more efficient to get the client
info once, rather than calling this function with NULL every time.

If an error occurs, the function returns information about a client’s
connection in info and a constant.

io mknod t structure

The io mknod t structure holds the IO CONNECT message
received by the resource manager:

typedef union {
struct io connect connect;
struct io connect link reply link reply;
struct io connect ftype reply ftype reply;

} io mknod t;

This message structure is a union of an input message (coming to the
resource manager), io connect, and two possible output or reply
messages (going back to the client):

� io connect link reply if the reply is redirecting the client
to another resource

Or:

� io connect ftype reply if the reply consists of a status and
a file type.

May 31, 2004 Manifests 1203

iofunc mknod() 2004, QNX Software Systems Ltd.

Returns:
EOK Success.

EBADFSYS NULL was passed in dattr.

EFAULT A fault occurred when the kernel tried to access the
info buffer.

EINVAL The client process is no longer valid.

ENOSYS NULL was passed in info.

EPERM The group ID or owner ID didn’t match.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
io connect, io connect link reply,
io connect ftype reply, iofunc client info(), iofunc open(),

mknod()

Writing a Resource Manager chapter of the Programmer’s Guide.

1204 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc mmap()
Handle an IO MMAP message

Synopsis:
#include <sys/iofunc.h>

int iofunc mmap (resmgr context t * hdr,
io mmap t * msg,
iofunc ocb t * ocb,
iofunc attr t * attr);

Arguments:
hdr A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io mmap t structure that contains the
message that the resource manager received; see below.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

attr A pointer to the iofunc attr t structure that describes the
characteristics of the device that’s associated with your
resource manager.

Library:
libc

Description:
The iofunc mmap() helper function provides functionality for the
IO MMAP message. The IO MMAP message is an outcall from the

Memory Manager (a part of the QNX Neutrino microkernel’s
procnto).

Note that if the Process Manager is to be able to execute from this
resource, then you must use the iofunc mmap() function.

May 31, 2004 Manifests 1205

iofunc mmap() 2004, QNX Software Systems Ltd.

io mmap t structure

The io mmap t structure holds the IO MMAP message received by
the resource manager:

struct io mmap {
uint16 t type;
uint16 t combine len;
uint32 t prot;
uint64 t offset;
struct msg info info;
uint32 t zero[6];

};

struct io mmap reply {
uint32 t zero;
uint32 t flags;
uint64 t offset;
int32 t coid;
int32 t fd;

};

typedef union {
struct io mmap i;
struct io mmap reply o;

} io mmap t;

The I/O message structures are unions of an input message (coming to
the resource manager) and an output or reply message (going back to
the client).

The i member is a structure of type io mmap that contains the
following members:

type IO MMAP.

combine len If the message is a combine message,
IO COMBINE FLAG is set in this member. For more

information, see “Combine messages” in the Writing
a Resource Manager chapter of the Programmer’s
Guide.

prot The access capabilities that the client wants to use
for the memory region being mapped. This can be a

1206 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc mmap()

combination of at least the following protection bits,
as defined in <sys/mman.h>:

� PROT EXEC — the region can be executed.

� PROT NOCACHE — disable caching of the region
(e.g. so it can be used to access dual-ported
memory).

� PROT NONE — the region can’t be accessed.

� PROT READ — the region can be read.

� PROT WRITE — the region can be written.

offset The offset into shared memory of the location that
the client wants to start mapping.

info A pointer to a msg info, structure that contains
information about the message received by the
resource manager.

The o member of the io mmap t structure is a structure of type
io mmap reply that contains the following members:

flags Reserved for future use.

offset Reserved for future use.

coid A file descriptor that the process manager can use to access
the mapped file.

fd Reserved for future use.

Returns:
A nonpositive value (i.e. ≤ 0)

Successful completion.

EROFS An attempt to memory map (mmap) a read-only file,
using the PROT WRITE page protection mode.

EACCES The client doesn’t have the appropriate permissions.

May 31, 2004 Manifests 1207

iofunc mmap() 2004, QNX Software Systems Ltd.

ENOMEM Insufficient memory exists to allocate internal
resources required to effect the mapping.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc attr t, iofunc mmap default(), iofunc ocb t,
msg info, resmgr context t

Writing a Resource Manager chapter of the Programmer’s Guide.

1208 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc mmap default()
Default handler for IO MMAP messages

Synopsis:
#include <sys/iofunc.h>

int iofunc mmap default (resmgr context t * hdr,
io mmap t * msg,
iofunc ocb t * ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io mmap t structure that contains the
message that the resource manager received. For more
information, see the documentation for iofunc mmap().

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

Library:
libc

Description:
The iofunc mmap default() function provides functionality for the
IO MMAP message. This message is private to the Memory Manager

(a part of the Neutrino microkernel’s procnto).

You can place this function directly into the io funcs table passed to
resmgr attach(), at the mmap position, or you can call
iofunc func init() to initialize all of the functions to their default
values.

Note that if the Process Manager is to be able to execute from this
resource, then you must use the iofunc mmap() function.

May 31, 2004 Manifests 1209

iofunc mmap default() 2004, QNX Software Systems Ltd.

The iofunc mmap default() function calls iofunc mmap(), to do the
actual work, and (if installed in the io funcs table) issues the reply
back to the client.

Returns:
A nonpositive value (i.e. ≤ 0)

Successful completion.

EROFS An attempt to memory map (mmap) a read-only file,
using the PROT WRITE page protection mode.

EACCES The client doesn’t have the appropriate permissions.

ENOMEM Insufficient memory exists to allocate internal
resources required to effect the mapping.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc func init(), iofunc mmap(), iofunc ocb t, resmgr attach(),
resmgr context t, resmgr io funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

1210 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc notify()
Install, poll, or remove a notification handler

Synopsis:
#include <sys/iofunc.h>

int iofunc notify(resmgr context t *ctp,
io notify t *msg,
iofunc notify t *nop,
int trig,
const int *notifycounts,
int *armed);

Arguments:
ctp A pointer to a resmgr context t structure that

the resource-manager library uses to pass context
information between functions.

msg A pointer to the io notify t structure that
contains the message that the resource manager
received; see below.

nop An array of iofunc notify t structures that
represent the events supported by the calling
resource manager. Traditionally this array contained
three members which represent, in order, the input,
output, and out-of-band notification lists. Since the
addition of extended events (see below), three is now
the minimum size of this array. The actual size must
support indexing by the conditions being triggered
up to NOTIFY MAXCOND.

Generally, this structure is maintained by the
resource manager within an extended attributes
structure.

trig A bitmask indicating which sources are currently
satisfied, and could cause a trigger to occur. This
bitmask may be indicated via two sets of flags.
Traditionally, the value was any combination of
NOTIFY COND INPUT, NOTIFY COND OUTPUT

May 31, 2004 Manifests 1211

iofunc notify() 2004, QNX Software Systems Ltd.

and NOTIFY COND OBAND. With the addition of
extended events, this can also be any combination of
the NOTIFY CONDE* flags. Note the following
flags are considered equivalent:

NOTIFY COND INPUT == NOTIFY CONDE RDNORM
NOTIFY COND OUTPUT == NOTIFY CONDE WRNORM
NOTIFY COND OBAND == NOTIFY CONDE RDBAND

Setting the NOTIFY COND EXTEN flag may affect
the “armed” parameter as indicated below.

You typically set this value, based on the conditions
in effect at the time of the call.

notifycounts NULL, or an array of integers representing the
number of elements that must be present in the queue
of each event represented by the nop array in order
for the event to be triggered. Both this array and the
nop array should contain the same number of
elements. Note that if any condition is met, nothing
is armed. Only if none of the conditions are met,
does the event get armed in accordance with the
notifycounts parameter. If this parameter isn’t
specified (passed as NULL), a value of 1 is assumed
for all counts.

armed NULL, or a pointer to a location where the function
can store a 1 to indicate that a notification entry is
armed, or a 0 otherwise. If the
NOTIFY COND EXTEN bit is set in the trig

parameter and armed is not NULL, it is promoted
from being a strictly resultant parameter to value
resultant and must contain the number of elements in
the nop and notifycounts array (provided notifycounts
is not NULL) at the time of the call. If either of the
above conditions is not met, armed remains strictly a
resultant parameter, and the traditional number of
three elements is assumed in nop and notifycounts.

1212 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc notify()

Library:
libc

Description:
The POSIX layer helper function iofunc notify() is used by a resource
manager to implement notification.

This routine examines the message that the resource manager received
(passed in the msg argument), and determines what action the client
code is attempting to perform:

NOTIFY ACTION POLL

Return a one-part IOV with the flags field set to indicate which
conditions (input, output, or out-of-band) are available. The
caller should return (RESMGR NPARTS(1)) to the resource
manager library, which returns a one-part message to the client.

NOTIFY ACTION POLLARM

Similar to NOTIFY ACTION POLL, with the additional
characteristic of arming the event if none of the conditions is
met.

NOTIFY ACTION TRANARM

For each of the sources specified, create a notification entry and
store the client’s struct sigevent event structure in it. Note
that only one transition arm is allowed at a time per device. If
the client specifies an event of SIGEV NONE, the action is to
disarm. When the event is triggered, the notification is
automatically disarmed.

io notify t structure

The io notify t structure holds the IO NOTIFY message received
by the resource manager:

struct io notify {
uint16 t type;
uint16 t combine len;

May 31, 2004 Manifests 1213

iofunc notify() 2004, QNX Software Systems Ltd.

int32 t action;
int32 t flags;
struct sigevent event;

};

struct io notify reply {
uint32 t zero;
uint32 t flags;

};

typedef union {
struct io notify i;
struct io notify reply o;

} io notify t;

The I/O message structures are unions of an input message (coming to
the resource manager) and an output or reply message (going back to
the client).

The i member is a structure of type io notify that contains the
following members:

type IO NOTIFY.

combine len If the message is a combine message,
IO COMBINE FLAG is set in this member. For more

information, see “Combine messages” in the Writing
a Resource Manager chapter of the Programmer’s
Guide.

action NOTIFY ACTION POLL,
NOTIFY ACTION POLLARM, or
NOTIFY ACTION TRANARM, as described above.

flags One of the following:

� NOTIFY COND INPUT — this condition is met
when there are one or more units of input data
available (i.e. clients can now issue reads).

� NOTIFY COND OUTPUT — this condition is
met when there’s room in the output buffer for
one or more units of data (i.e. clients can now
issue writes).

1214 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc notify()

� NOTIFY COND OBAND — the condition is met
when one or more units of out-of-band data are
available.

event A pointer to a sigevent structure that defines the
event that the resource manager is to deliver once a
condition is met.

The o member is a structure of type io notify reply that
contains the following members:

flags Which of the conditions were triggered; see the flags for
io notify, above.

iofunc notify t structure

The iofunc notify t structure is defined in <sys/iofunc.h> as
follows:

typedef struct iofunc notify {
int cnt;
struct iofunc notify event *list;

} iofunc notify t;

The members of the iofunc notify t structure include:

cnt The smallest cnt member in the list; see below.

list A pointer to a linked list of iofunc notify event t

structures that represent (in order), the input, output, and
out-of-band notification lists.

The iofunc notify event t is defined as:

typedef struct iofunc notify event {
struct iofunc notify event *next;
int rcvid;
int scoid;
int cnt;
struct sigevent event;

} iofunc notify event t;

May 31, 2004 Manifests 1215

iofunc notify() 2004, QNX Software Systems Ltd.

The members of the iofunc notify event t structure include:

next A pointer to the next element in the list.

rcvid The receive ID of the client to notify.

scoid The server connection ID.

cnt The number of bytes available. Some clients, such as
io-char, may want a sufficiently large amount of data to
be available before they access it.

event A pointer to a sigevent structure that defines the event
that the resource manager is to deliver once a condition is
met.

Returns:
EBUSY A notification was already armed for this resource, and

this library function enforces a restriction of one per
resource.

RESMGR NPARTS (1)

Normal return, indicates a one-part IOV should be
returned to the client.

Examples:
See the Writing a Resource Manager chapter of Programmer’s Guide.

Classification:
QNX Neutrino

Safety

Cancellation point No

continued. . .

1216 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc notify()

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc notify remove(), iofunc notify trigger(), RESMGR NPARTS(),
sigevent

“Handling ionotify() and select()” in the Writing a Resource Manager
chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1217

iofunc notify remove() 2004, QNX Software Systems Ltd.

Remove notification entries from list

Synopsis:
#include <sys/iofunc.h>

void iofunc notify remove(resmgr context t * ctp,
iofunc notify t * nop);

Arguments:
ctp NULL, or a pointer to a resmgr context t structure for

the client whose entries you want to remove.

nop An array of three iofunc notify t structures that
represent (in order), the input, output, and out-of-band
notification lists whose entries you want to remove; for
information about this structure, see the documentation for
iofunc notify().

Library:
libc

Description:
The iofunc notify remove() function removes all of the entries
associated with the current client from the notification list passed in
nop. The client information is obtained from the ctp.

If the ctp pointer is NULL, then all of the notify entries will be
removed. A resource manager generally calls this function, with
NULL as the ctp in the close ocb callout, to clean up all handles
associated with this connection. If the handles are shared between
several connections, then the ctp should be provided to clean up after
each client.

Examples:
See the “Writing a Resource Manager” chapter in the Programmer’s
Guide.

1218 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc notify remove()

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc notify(), iofunc notify trigger()

“Handling ionotify() and select()” in the Writing a Resource Manager
chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1219

iofunc notify trigger() 2004, QNX Software Systems Ltd.

Send notifications to queued clients

Synopsis:
#include <sys/iofunc.h>

void iofunc notify trigger(iofunc notify t *nop,
int count,
int index);

Arguments:
nop An array of three iofunc notify t structures that

represent (in order), the input, output, and out-of-band
notification lists whose entries you want to examine; for
information about this structure, see the documentation for
iofunc notify().

count The count that you want to compare to the trigger value for
the event.

index The index into the nop array that you want to check; one of
the following:

� IOFUNC NOTIFY INPUT

� IOFUNC NOTIFY OUTPUT

� IOFUNC NOTIFY OBAND

Library:
libc

Description:
The iofunc notify trigger() function examines all entries given in the
list maintained at nop [index] to see if the event should be delivered to
the client. If the specified count is greater than the trigger count for
the particular notification list element, this function calls
MsgDeliverEvent() to deliver the event to the client whose rcvid is
stored in the notification list element, and the list element is disarmed.

1220 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc notify trigger()

Note that if the client has specified a code of SI NOTIFY, then the
value that the client specified (e.g. the value member of the struct
sigevent) has the top three bits ORed with the reason for the trigger
(this is the expression NOTIFY COND INPUT << index), as in the
following table:

index = IOFUNC NOTIFY INPUT

0x10000000, or NOTIFY COND INPUT

index = IOFUNC NOTIFY OUTPUT

0x20000000, or NOTIFY COND OUTPUT

index = IOFUNC NOTIFY OBAND

0x40000000, or NOTIFY COND OBAND

If the client has specified a code of something other than SI NOTIFY
then this routine doesn’t modify the value member in any way.

Examples:
See the Writing a Resource Manager chapter of Programmer’s Guide.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1221

iofunc notify trigger() 2004, QNX Software Systems Ltd.

See also:
iofunc notify(), iofunc notify remove(), sigevent

“Handling ionotify() and select()” in the Writing a Resource Manager
chapter of the Programmer’s Guide.

1222 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc ocb attach()
Initialize an Open Control Block

Synopsis:
#include <sys/iofunc.h>

int iofunc ocb attach(
resmgr context t * ctp,
io open t * msg,
iofunc ocb t * ocb,
iofunc attr t * attr,
const resmgr io funcs t * io funcs);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context
information between functions.

msg A pointer to the io open t structure that contains the
message that the resource manager received. For more
information, see the documentation for iofunc open().

ocb NULL, or a pointer to the iofunc ocb t structure for
the Open Control Block that was created when the client
opened the resource.

attr A pointer to a iofunc attr t structure that defines the
characteristics of the device that the resource manager
handles.

io funcs A pointer to a resmgr io funcs t that specifies the
I/O functions for the resource manager.

Library:
libc

May 31, 2004 Manifests 1223

iofunc ocb attach() 2004, QNX Software Systems Ltd.

Description:
The iofunc ocb attach() function examines the mode specified by the
io open msg, and increments the read and write count flags
(ocb->attr->rcount and ocb->attr->wcount), and the locking flags
(ocb->attr->rlocks and ocb->attr->wlocks), as specified by the open
mode.

This function is called by iofunc open default() as part of its
initialization.

This function allocates the memory for the OCB if you pass NULL as
the ocb.

Returns:
EOK Successful completion.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc attr init(), iofunc attr t, iofunc ocb detach(),
iofunc ocb t, iofunc open default(), resmgr context t,
resmgr io funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

1224 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc ocb calloc()
Allocate an iofunc Open Control Block

Synopsis:
#include <sys/iofunc.h>

iofunc ocb t * iofunc ocb calloc(
resmgr context t * ctp,
iofunc attr t * attr);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

attr A pointer to a iofunc attr t structure that defines the
characteristics of the device that the resource manager
handles.

Library:
libc

Description:
The iofunc ocb calloc() function allocates an iofunc OCB. It has a
number of uses:

� It can be used as a helper function to encapsulate the allocation of
the iofunc OCB, so that your routines don’t have to know the
details of the iofunc OCB structure.

� Because it’s in the resource manager shared library, you can
override this function with your own, allowing you to manage an
OCB that has additional members, perhaps specific to your
particular resource manager. If you do this, be sure to place the
iofunc OCB structure as the first element of your extended OCB,
and also override the iofunc ocb free() function to release memory.

� Another reason to override iofunc ocb calloc() might be to place
limits on the number of OCBs that are in existence at any one

May 31, 2004 Manifests 1225

iofunc ocb calloc() 2004, QNX Software Systems Ltd.

time; the current function simply allocates OCBs until the free
store is exhausted.

You should fill in the attribute’s mount structure (i.e. the attr->mount
pointer) instead of replacing this function.

If you specify iofunc ocb calloc() and iofunc ocb free() callouts in
the attribute’s mount structure, then you should use the callouts
instead of calling the standard iofunc ocb calloc() and
iofunc ocb free() functions.

�

Returns:
A pointer to an iofunc ocb t OCB structure.

Examples:
Override iofunc ocb calloc() and iofunc ocb free() to manage an
extended OCB:

typedef struct
{

iofunc ocb t iofuncOCB; /* the OCB used by iofunc * */
int myFlags;
char moreOfMyStuff;

} MyOCBT;

MyOCBT *iofunc ocb calloc (resmgr context t *ctp,
iofunc attr t *attr)

{
return ((MyOCBT *) calloc (1, sizeof (MyOCBT));

}

void iofunc ocb free (MyOCBT *ocb)
{

free (ocb);
}

1226 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc ocb calloc()

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc ocb free(), iofunc ocb t

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1227

iofunc ocb detach() 2004, QNX Software Systems Ltd.

Release Open Control Block resources

Synopsis:
#include <sys/iofunc.h>

int iofunc ocb detach(resmgr context t * ctp,
iofunc ocb t * ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

Library:
libc

Description:
The iofunc ocb detach() function releases any resources allocated to
the passed ocb, such as any memory map (mmap) entries.

This function doesn’t free the memory associated with the OCB itself.�

The iofunc ocb detach() function also updates the time structure, by
calling iofunc time update(), and decrements the read, write, lock,
and use counters, according to the mode that was used to open the
resource (from ocb->ioflag).

The counters are incremented in iofunc ocb attach(), and represent
the number of OCBs that are using the managed resource in the
respective manners (e.g.: ocb->attr->rcount keeps count of how many
OCBs are using the resource specified by attr for read access).

1228 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc ocb detach()

If you’re are using iofunc mmap() or iofunc mmap default(), you
must call iofunc ocb detach() to clean up. This function is called by
iofunc close ocb().

Returns:
A bitwise OR of flags describing the state of the managed resource:

IOFUNC OCB LAST READER

This OCB was the last one performing read operations on the
resource. This flag is set when the ocb->attr->rcount flag is
decremented to zero.

IOFUNC OCB LAST WRITER

This OCB was the last one performing write operations on the
resource. This flag is set when the ocb->attr->wcount flag is
decremented to zero.

IOFUNC OCB LAST RDLOCK

This OCB was the last one holding a read lock on the resource.
This flag is set when the ocb->attr->rlocks flag is decremented
to zero.

IOFUNC OCB LAST WRLOCK

This OCB was the last one holding a write lock on the resource.
This flag is set when the ocb->attr->wlocks flag is decremented
to zero.

IOFUNC OCB LAST INUSE

This OCB was the last one using the resource. This flag is set
when the ocb->attr->count flag is decremented to zero.

Classification:
QNX Neutrino

May 31, 2004 Manifests 1229

iofunc ocb detach() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc close ocb(), iofunc close ocb default(), iofunc mmap(),
iofunc mmap default(), iofunc ocb attach(), iofunc ocb t,
iofunc time update(), resmgr context t

Writing a Resource Manager chapter of the Programmer’s Guide.

1230 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc ocb free()
Deallocate an iofunc Open Control Block’s memory

Synopsis:
#include <sys/iofunc.h>

void iofunc ocb free(iofunc ocb t * ocb);

Arguments:
ocb A pointer to the iofunc ocb t structure for the Open

Control Block that was created when the client opened the
resource.

Library:
libc

Description:
The iofunc ocb free() function returns the memory allocated to an
iofunc OCB to the free store pool. This function is the complement of
iofunc ocb calloc().

If you’ve overridden the definition of iofunc ocb calloc(), you should
also override the definition of iofunc ocb free() to correctly handle the
release of the memory. This is because the iofunc ocb calloc()
functions uses an internal memory management function to allocate
the memory, and the default iofunc ocb free() function also uses this
internal function to deallocate memory. Therefore, you can’t mix
internal memory management functions (scalloc() and sfree()) with
user-level memory management functions (calloc() and free()).

May 31, 2004 Manifests 1231

iofunc ocb free() 2004, QNX Software Systems Ltd.

You should fill in the attribute’s mount structure (i.e. the attr->mount
pointer) instead of replacing this function.

If you specify iofunc ocb free() and iofunc ocb calloc() callouts in
the attribute’s mount structure, then you should use the callouts
instead of calling the standard iofunc ocb free() and
iofunc ocb calloc() functions.

�

Examples:
See iofunc ocb calloc().

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc close ocb(), iofunc ocb calloc(), iofunc ocb t

Writing a Resource Manager chapter of the Programmer’s Guide.

1232 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc ocb t
Open Control Block structure

Synopsis:
#include <sys/iofunc.h>

typedef struct iofunc ocb {
IOFUNC ATTR T *attr; /* Used to find iofunc
int32 t ioflag; /* open’s oflag + 1 */

#if !defined(IOFUNC OFFSET BITS) || IOFUNC OFFSET BITS == 64
#if FILE OFFSET BITS - 0 == 64

off t offset;
#else

off64 t offset;
#endif

#elif IOFUNC OFFSET BITS - 0 == 32
#if !defined(FILE OFFSET BITS) || FILE OFFSET BITS == 32
#if defined(LITTLEENDIAN)

off t offset;
off t offset hi;

#elif defined(BIGENDIAN)
off t offset hi;
off t offset;

#else
#error endian not configured for system

#endif
#else
#if defined(LITTLEENDIAN)

int32 t offset;
int32 t offset hi;

#elif defined(BIGENDIAN)
int32 t offset hi;
int32 t offset;

#else
#error endian not configured for system

#endif
#endif

#else
#error IOFUNC OFFSET BITS value is unsupported

#endif
uint16 t sflag;
uint16 t flags;
void *reserved;

} iofunc ocb t;

May 31, 2004 Manifests 1233

iofunc ocb t 2004, QNX Software Systems Ltd.

Description:
The iofunc ocb t structure is an Open Control Block, a block of
data that’s established by a resource manager during its handling of
the client’s open() function.

A resource manager creates an instance of this structure whenever a
client opens a resource. For example, iofunc open default() calls
iofunc ocb calloc() to allocate an OCB. The OCB exists until the
client closes the file descriptor associated with the open operation.
The resource manager passes this structure to all of the functions that
implement the I/O operations for the file descriptor.

The iofunc ocb t structure includes the following members:

attr A pointer to the OCB’s attributes. By default, this structure
is of type iofunc attr t, but you can redefine the
IOFUNC ATTR T manifest if you want to use a different
structure in your resource manager.

ioflag The mode (e.g. reading, writing, blocking) that the resource
was opened with.

The bits in this member are the same as those for the oflag argument
to open() plus 1.

�

This information is inherited from the io connect t

structure that’s available in the message passed to the open
handler.

offset, offset hi

The read/write offset into the resource (e.g. our current
lseek() position within a file), defined in a variety of ways
to suit 32- and 64-bit offsets. Your resource manager can
modify this offset.

sflag The sharing mode; see sopen(). This information is
inherited from the io connect t structure that’s
available in the message passed to the open handler.

1234 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc ocb t

flags When the IOFUNC OCB PRIVILEGED bit is set, a
privileged process (i.e. root) performed the open().
Additionally, you can use flags in the range defined by
IOFUNC OCB FLAGS PRIVATE (see <sys/iofunc.h>)
for your own purposes. Your resource manager can modify
these flags.

Classification:
QNX Neutrino

See also:
iofunc attr t, iofunc ocb calloc(), iofunc open default()

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1235

iofunc open() 2004, QNX Software Systems Ltd.

Verify a client’s ability to open a resource

Synopsis:
#include <sys/iofunc.h>

int iofunc open(resmgr context t *ctp,
io open t *msg,
iofunc attr t *attr,
iofunc attr t *dattr,
struct client info *info);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io open t structure that contains the
message that the resource manager received; see below.

attr A pointer to the iofunc attr t structure that describes
the characteristics of the resource.

dattr NULL, or a pointer to the iofunc attr t structure that
describes the characteristics of the parent directory.

info NULL, or a pointer to a client info structure that
contains the information about a client connection. For
information about this structure, see ConnectClientInfo().

Library:
libc

Description:
The iofunc open() function checks to see if the client (described by
the optional info structure) has access to open the resource whose
name is passed in msg->connect.path.

The attr structure describes the resource’s attributes. The optional
dattr structure defines the attributes of the parent directory; if dattr

1236 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc open()

isn’t NULL, the resource identified by attr is being created within the
directory specified by dattr.

The info argument can be passed as NULL, in which case
iofunc open() obtains the client information itself via a call to
iofunc client info(). It is, of course, more efficient to get the client
info once, rather than calling this function with NULL every time.

Note that if you’re handling a request to read directory entry, you
must return data formatted to match the struct dirent type. A
helper function, iofunc stat(), can aid in this.

A resource manager’s response to an open() request isn’t always a
yes-or-no answer. It’s possible to return a connect message indicating
that the server would like some other action taken. For example, if the
open occurs on a path that represents a symbolic link to some other
path, the server could respond using the IO SET CONNECT RET()
macro and the IO CONNECT RET LINK value.

For example, an open handler that only redirects pathnames might
look something like:

io open(resmgr context t *ctp, io open t *msg,
iofunc attr t *dattr, void *extra) {

char *newpath;

/* Do all the error/access checking ... */

/* Lookup the redirected path and store
the new path in ’newpath’ */

newpath = get a new path(msg->connect.path);

IO SET CONNECT RET(ctp, IO CONNECT RET LINK);
len = strlen(newpath) + 1;

msg->link reply.eflag = msg->connect.eflag;
msg->link reply.nentries = 0;
msg->link reply.path len = len;
strcpy((char *)(msg->link reply + 1), newpath);

len += sizeof(msg->link reply);

return(RESMGR PTR(ctp, &msg->link reply, len));
}

May 31, 2004 Manifests 1237

iofunc open() 2004, QNX Software Systems Ltd.

In this example, we use the macro IO SET CONNECT RET()
(defined in <sys/iomsg.h>) to set the ctp->status field to
IO CONNECT RET LINK. This value indicates to the

resource-manager framework that the return value isn’t actually a
simple return code, but a new request to be processed.

The path for this new request follows directly after the link reply
structure and is path len bytes long. The final few lines of the code
just stuff an IOV with the reply message (and the new path to be
queried) and return to the resource-manager framework.

io open t structure

The io open t structure holds the IO CONNECT message received
by the resource manager:

typedef union {
struct io connect connect;
struct io connect link reply link reply;
struct io connect ftype reply ftype reply;

} io open t;

This message structure is a union of an input message (coming to the
resource manager), io connect, and two possible output or reply
messages (going back to the client):

� io connect link reply if the reply is redirecting the client
to another resource

Or:

� io connect ftype reply if the reply consists of a status and
a file type.

Returns:
EOK Successful completion.

Other There was an error, as defined by the POSIX semantics for
the open call. This error should be returned to the next
higher level.

1238 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc open()

Examples:
This is a sample skeleton for a typical filesystem, in pseudo-code, to
illustrate the steps that need to be taken to handle an open request for
a file:

if the open request is for a path (i.e. multiple
directory levels)

call iofunc client info to get information
about client

for each directory component
call iofunc check access to check execute
permission for access

/*
recall that execute permission on a
directory is really the "search"
permission for that directory
*/

next
/*
at this point you have verified access
to the target

*/
endif

if O CREAT is set and the file doesn’t exist
call iofunc open, passing the attribute of the
parent as dattr

if the iofunc open succeeds,
do the work to create the new inode,
or whatever

endif
else

call iofunc open, passing the attr of the file
and NULL for dattr

endif

/*
at this point, check for things like o trunc,
etc. -- things that you have to do for the attr

*/

call iofunc ocb attach
return EOK

For a device (i.e. resmgr attach() didn’t specify that the managed
resource is a directory), the following steps apply:

/*

May 31, 2004 Manifests 1239

iofunc open() 2004, QNX Software Systems Ltd.

at startup time (i.e.: in the main() of the
resource manager)

*/
call iofunc attr init to initialize an attribute
structure

/* in the io open message handler: */
call iofunc open, passing in the attribute of the
device and NULL for dattr

call iofunc ocb attach
return EOK

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
io connect, io connect link reply,
io connect ftype reply, iofunc attr init(),

iofunc check access(), iofunc client info(), iofunc ocb attach(),
iofunc stat(), resmgr open bind()

Writing a Resource Manager chapter of the Programmer’s Guide.

1240 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc open default()
Default handler for IO CONNECT messages

Synopsis:
#include <sys/iofunc.h>

int iofunc open default(resmgr context t *ctp,
io open t *msg,
iofunc attr t *attr,
void *extra);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io open t structure that contains the
message that the resource manager received. For more
information, see the documentation for iofunc open().

attr A pointer to the iofunc attr t structure that defines the
characteristics of the device that the resource manager is
controlling.

Library:
libc

Description:
The iofunc open default() function implements the default actions for
the IO CONNECT message in a resource manager. This function
calls:

� iofunc open() to check the client’s open mode against the resources
attributes to see if the client can open the resource in that mode

� iofunc ocb calloc() to allocate an Open Control Block (OCB)

� iofunc ocb attach() to initialize the OCB

� resmgr open bind() to bind the newly-created OCB to the request.

May 31, 2004 Manifests 1241

iofunc open default() 2004, QNX Software Systems Ltd.

You can place this function directly into the connect funcs table
passed to resmgr attach(), at the open position, or you can call
iofunc func init() to initialize all of the functions to their default
values.

See the “Examples” section in the description of iofunc open() for the
skeleton outline of the functionality (the second example, where
resmgr attach() doesn’t specify that the managed resource is a
directory).

Returns:
EOK Successful completion.

ENOSPC There’s insufficient memory to allocate the OCB.

ENOMEM There’s insufficient memory to allocate an internal
data structure required by resmgr open bind().

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc func init(), iofunc ocb attach(), iofunc ocb calloc(),
iofunc open(), iofunc time update(), resmgr attach(),
resmgr connect funcs t,, resmgr open bind()

Writing a Resource Manager chapter of the Programmer’s Guide.

1242 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc openfd()
Increment count and locking flags

Synopsis:
#include <sys/iofunc.h>

int iofunc openfd(resmgr context t *ctp,
io openfd t *msg,
iofunc ocb t *ocb,
iofunc attr t *attr);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io openfd t structure that contains the
message that the resource manager received; see below.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

attr A pointer to the iofunc attr t structure that describes the
characteristics of the device that’s associated with your
resource manager.

Library:
libc

Description:
The iofunc openfd() helper function examines the mode specified by
the IO OPENFD message, and increments the read and write count
flags (ocb->attr->rcount and ocb->attr->wcount), and the locking
flags (ocb->attr->rlocks and ocb->attr->wlocks), as specified by the
open mode.

The function does what’s needed to support the openfd() function.

May 31, 2004 Manifests 1243

iofunc openfd() 2004, QNX Software Systems Ltd.

io openfd t structure

The io openfd t structure holds the IO OPENFD message received
by the resource manager:

struct io openfd {
uint16 t type;
uint16 t combine len;
uint32 t ioflag;
uint16 t sflag;
uint16 t xtype;
struct msg info info;
uint32 t reserved2;
uint32 t key;

};

typedef union {
struct io openfd i;

} io openfd t;

The I/O message structures are unions of an input message (coming to
the resource manager) and an output or reply message (going back to
the client). In this case, there’s only an input message, i.

The i member is a structure of type io openfd that contains the
following members:

type IO OPENFD.

combine len If the message is a combine message,
IO COMBINE FLAG is set in this member. For more

information, see “Combine messages” in the Writing
a Resource Manager chapter of the Programmer’s
Guide.

ioflag How the client wants to open the file; a combination
of the following bits:

� O RDONLY — permit the file to be only read.

� O WRONLY — permit the file to be only written.

� O RDWR — permit the file to be both read and
written.

1244 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc openfd()

� O APPEND — cause each record that’s written to
be written at the end of the file.

� O TRUNC — if the file exists, truncate it to
contain no data. This flag has no effect if the file
doesn’t exist.

sflag How the client wants the file to be shared; a
combination of the following bits:

� SH COMPAT — set compatibility mode.

� SH DENYRW — prevent read or write access to
the file.

� SH DENYWR — prevent write access to the file.

� SH DENYRD — prevent read access to the file.

� SH DENYNO — permit both read and write
access to the file.

xtype Extended type information that can change the
behavior of an I/O function. One of:

� IO OPENFD NONE — no extended type
information.

� IO OPENFD PIPE — a pipe is being opened.

� IO OPENFD RESERVED — reserved

info A pointer to a msg info structure that contains
information about the message received by the
resource manager.

key Reserved for future use.

Returns:
EOK Success.

EACCES You don’t have permission to open the file.

EBUSY The file has shared locks that are in use.

May 31, 2004 Manifests 1245

iofunc openfd() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc ocb attach(), iofunc openfd default(), msg info, openfd()

Writing a Resource Manager chapter of the Programmer’s Guide.

1246 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc openfd default()
Default handler for IO OPENFD messages

Synopsis:
#include <sys/iofunc.h>

int iofunc openfd default(resmgr context t *ctp,
io openfd t *msg,
iofunc ocb t *ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io openfd t structure that contains the
message that the resource manager received. For more
information, see the documentation for iofunc openfd().

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

Library:
libc

Description:
The function iofunc openfd default() function implements POSIX
semantics for the client’s openfd() call, which is received as an
IO OPENFD message by the resource manager.

You can place this function directly into the io funcs table passed to
resmgr attach(), at the openfd position, or you can call
iofunc func init() to initialize all of the functions to their default
values.

The iofunc openfd default() function calls iofunc openfd() to do the
actual work, and (if installed in the io funcs table) issues the reply
back to the client.

May 31, 2004 Manifests 1247

iofunc openfd default() 2004, QNX Software Systems Ltd.

Returns:
EOK Success.

EACCES You don’t have permission to open the file.

EBUSY The file has shared locks that are in use.

EINVAL The message type is invalid.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc chown default(), iofunc func init(), iofunc ocb t,
iofunc openfd(), iofunc sync default(), resmgr attach(),
resmgr context t, resmgr io funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

1248 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc pathconf()
Support pathconf() requests

Synopsis:
#include <sys/iofunc.h>

int iofunc pathconf(resmgr context t *ctp,
io pathconf t *msg,
iofunc ocb t *ocb,
iofunc attr t *attr);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io pathconf t structure that contains the
message that the resource manager received; see below.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

attr A pointer to the iofunc attr t structure that describes the
characteristics of the device that’s associated with your
resource manager.

Library:
libc

Description:
The iofunc pathconf() helper function does what’s needed to support
pathconf() with the mount and attr passed to it. Other fsys pathconf()
requests need to be handled by the caller.

If you write your own pathconf callout for your resource manager, use
the following macro to pass the requested value back to the caller:

IO SET PATHCONF VALUE(resmgr context t *ctp,
int value)

May 31, 2004 Manifests 1249

iofunc pathconf() 2004, QNX Software Systems Ltd.

io pathconf t structure

The io pathconf t structure holds the IO PATHCONF message
received by the resource manager:

struct io pathconf {
uint16 t type;
uint16x t combine len;
short name;
uint16 t zero;

};

typedef union {
struct io pathconf i;

/* value is returned with MsgReply */
} io pathconf t;

The I/O message structures are unions of an input message (coming to
the resource manager) and an output or reply message (going back to
the client). In this case, there’s only an input message, i.

The i member is a structure of type io pathconf that contains the
following members:

type IO PATHCONF.

combine len If the message is a combine message,
IO COMBINE FLAG is set in this member. For more

information, see “Combine messages” in the Writing
a Resource Manager chapter of the Programmer’s
Guide.

name The name of the configurable limit; see pathconf().

Returns:
EOK, or RESMGR DEFAULT if the function didn’t handle the
pathconf() request.

1250 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc pathconf()

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc attr t, iofunc ocb t, iofunc pathconf default(),
pathconf(), resmgr context t

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1251

iofunc pathconf default() 2004, QNX Software Systems Ltd.

Default handler for IO PATHCONF messages

Synopsis:
#include <sys/iofunc.h>

int iofunc pathconf default(resmgr context t *ctp,
io pathconf t *msg,
iofunc ocb t *ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io pathconf t structure that contains the
message that the resource manager received. For more
information, see the documentation for iofunc pathconf().

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

Library:
libc

Description:
The iofunc pathconf default() function implements POSIX semantics
for the client’s pathconf() call, which is received as an IO PATHCONF
message by the resource manager.

You can place this function directly into the io funcs table passed to
resmgr attach(), at the pathconf position, or you can call
iofunc func init() to initialize all of the functions to their default
values.

The iofunc pathconf default() function returns information about the
resource, as per the POSIX specifications for pathconf(). The
iofunc pathconf default() function simply calls iofunc pathconf(),
which does the actual work.

1252 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc pathconf default()

Returns:
EOK Successful completion.

EINVAL The pathconf parameter being ascertained wasn’t one of
PC CHOWN RESTRICTED, PC NO TRUNC, or
PC SYNC IO.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc func init(), iofunc ocb t, iofunc pathconf(),
resmgr attach(), resmgr context t, resmgr io funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1253

iofunc read default() 2004, QNX Software Systems Ltd.

Default handler for IO READ messages

Synopsis:
#include <sys/iofunc.h>

int iofunc read default(resmgr context t *ctp,
io read t *msg,
iofunc ocb t *ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io read t structure that contains the
message that the resource manager received. For more
information, see the documentation for iofunc read verify().

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

Library:
libc

Description:
The iofunc read default() function implements POSIX semantics for
the client’s read() call, which is received as an IO READ message by
the resource manager.

You can place this function directly into the io funcs table passed to
resmgr attach(), at the read position, or you can call iofunc func init()
to initialize all of the functions to their default values.

The iofunc read default() function calls iofunc read verify() to do the
actual work, and (if installed in the io funcs table) issues the reply
back to the client.

1254 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc read default()

Returns:
EBADF The client doesn’t have read access to this resource.

EINVAL The extended type information is invalid.

EOK The client has read access to this resource.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc func init(), iofunc ocb t, iofunc read verify(),
resmgr attach(), resmgr context t, resmgr io funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1255

iofunc read verify() 2004, QNX Software Systems Ltd.

Verify a client’s read access to a resource

Synopsis:
#include <sys/iofunc.h>

int iofunc read verify(resmgr context t* ctp,
io read t* msg,
iofunc ocb t* ocb,
int* nonblock);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context
information between functions.

msg A pointer to the io read t structure that contains the
message that the resource manager received; see below.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened
the resource.

nonblock NULL, or a pointer to a location where the function can
store a value that indicates whether or not the device is
nonblocking:

� Zero — the client doesn’t want to be blocked (i.e.
O NONBLOCK was set).

� Nonzero — the client wants to be blocked.

Library:
libc

Description:
The iofunc read verify() helper function checks that the client that
sent the IO READ message actually has read access to the resource,
and, if nonblock isn’t NULL, sets nonblock to O NONBLOCK or 0).

1256 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc read verify()

The read permission check is done against ocb->ioflag.

Note that the io read t message has an override flag called
msg->i.xtype. This flag allows the client to override the default
blocking behavior for the resource on a per-request basis. This
override flag is checked, and returned in the optional nonblock.

Note that if you’re reading from a directory entry, you must return
struct dirent structures in the read callout for your resource
manager.

You’ll also need to indicate how many bytes were read. You can do
this with the macro:

IO SET READ NBYTES(resmgr context t *ctp,
int nbytes)

io read t structure

The io read t structure holds the IO READ message received by
the resource manager:

struct io read {
uint16 t type;
uint16 t combine len;
int32 t nbytes;
uint32 t xtype;
uint32 t zero;

};

typedef union {
struct io read i;

/* unsigned char data[nbytes]; */
/* nbytes is returned with MsgReply */
} io read t;

The I/O message structures are unions of an input message (coming to
the resource manager) and an output or reply message (going back to
the client). In this case, there’s only an input message, i.

The i member is a structure of type io read that contains the
following members:

May 31, 2004 Manifests 1257

iofunc read verify() 2004, QNX Software Systems Ltd.

type IO READ.

combine len If the message is a combine message,
IO COMBINE FLAG is set in this member. For more

information, see “Combine messages” in the Writing
a Resource Manager chapter of the Programmer’s
Guide.

nbytes The number of bytes that the client wants to read.

xtype Extended type information; one of:

� IO XTYPE NONE

� IO XTYPE READCOND

� IO XTYPE MQUEUE

� IO XTYPE TCPIP

� IO XTYPE TCPIP MSG

� IO XTYPE OFFSET

� IO XTYPE REGISTRY

� IO XFLAG DIR EXTRA HINT — this flag is
valid only when reading from a directory. The
filesystem should normally return extra directory
information when it’s easy to get. If this flag is
set, it is a hint to the filesystem to try harder
(possibly causing media lookups) to return the
extra information. The most common use would
be to return DTYPE LSTAT information.

� IO XFLAG NONBLOCK

� IO XFLAG BLOCK

For more information, see “Handling other
read/write details” in the Writing a Resource
Manager chapter of the Programmer’s Guide.

The commented-out declaration for data indicates that nbytes bytes of
data immediately follow the io read t structure.

1258 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc read verify()

Returns:
EOK The client has read access to this resource.

EBADF The client doesn’t have read access to this resource.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc open(), iofunc write verify()

Writing a Resource Manager chapter of the Programmer’s Guide

May 31, 2004 Manifests 1259

iofunc readlink() 2004, QNX Software Systems Ltd.

Verify a client’s ability to read a symbolic link

Synopsis:
#include <sys/iofunc.h>

int iofunc readlink(resmgr context t *ctp,
io readlink t *msg,
iofunc attr t *attr,
struct client info *info);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io readlink t structure that contains the
message that the resource manager received; see below.

attr A pointer to the iofunc attr t structure that describes the
characteristics of the device that’s associated with your
resource manager.

info A pointer to a client info structure that contains the
information about a client connection. For information about
this structure, see ConnectClientInfo().

Library:
libc

Description:
The iofunc readlink() helper function supports readlink() requests by
verifying that the client can read a symbolic link. It’s similar to
iofunc open().

The iofunc read() function checks to see if the client (described by
the optional info structure) has access to open the resource (name
passed in the msg structure). The attr structure describes the
resource’s attributes.

1260 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc readlink()

The info argument can be passed as NULL, in which case
iofunc read() obtains the client information itself via a call to
iofunc client info(). It is, of course, more efficient to get the client
info once, rather than calling this function with NULL every time.

The iofunc readlink() function handles the readlink verification for
the POSIX layer.

io readlink t structure

The io readlink t structure holds the IO CONNECT message
received by the resource manager:

typedef union {
struct io connect connect;
struct io connect link reply link reply;
struct io connect ftype reply ftype reply;

} io readlink t;

This message structure is a union of an input message (coming to the
resource manager), io connect, and two possible output or reply
messages (going back to the client):

� io connect link reply if the reply is redirecting the client
to another resource

Or:

� io connect ftype reply if the reply consists of a status and
a file type.

Returns:
EBADFSYS NULL was passed in attr.

EOK Successful completion.

Classification:
QNX Neutrino

May 31, 2004 Manifests 1261

iofunc readlink() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
io connect, io connect link reply,
io connect ftype reply, iofunc open(), readlink()

Writing a Resource Manager chapter of the Programmer’s Guide.

1262 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc rename()
Do permission checks for a IO CONNECT RENAME message

Synopsis:
#include <sys/iofunc.h>

int iofunc rename(resmgr context t* ctp,
io rename t* msg,
iofunc attr t* oldattr,
iofunc attr t* olddattr,
iofunc attr t* newattr,
iofunc attr t* newdattr,
struct client info* info);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context
information between functions.

msg A pointer to the io rename t structure that contains
the message that the resource manager received; see
below.

oldattr A pointer to the iofunc attr t structure that
describes the characteristics of the resource.

olddattr NULL, or a pointer to the iofunc attr t structure
that describes the characteristics of the parent directory.

newattr A pointer to the iofunc attr t structure that
describes the characteristics of the target, if it exists.

newdattr NULL, or a pointer to the iofunc attr t structure
that describes the characteristics of the parent directory
of the target.

info NULL, or a pointer to a client info structure that
contains the information about a client connection. For
information about this structure, see
ConnectClientInfo().

May 31, 2004 Manifests 1263

iofunc rename() 2004, QNX Software Systems Ltd.

Library:
libc

Description:
The function iofunc rename() does permission checks for the
IO CONNECT message (subtype IO CONNECT RENAME) for

context ctp. The newattr argument is the attribute of the target if it
already exists.

This function is similar to iofunc open(). The iofunc rename()
function checks to see if the client (described by the optional info
structure) has access to open the resource (name passed in the msg
structure). The attr structure describes the resource’s attributes.

The info argument can be passed as NULL, in which case
iofunc rename() obtains the client information itself via a call to
iofunc client info(). It is, of course, more efficient to get the client
information once, rather than call this function with NULL every time.

io rename t structure

The io rename t structure holds the IO CONNECT message
received by the resource manager:

typedef union {
struct io connect connect;
struct io connect link reply link reply;
struct io connect ftype reply ftype reply;

} io rename t;

This message structure is a union of an input message (coming to the
resource manager), io connect, and two possible output or reply
messages (going back to the client):

� io connect link reply if the reply is redirecting the client
to another resource

Or:

� io connect ftype reply if the reply consists of a status and
a file type.

1264 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc rename()

The reply includes the following extra information:

typedef union io rename extra {
char path[1];

} io rename extra t;

Returns:
EACCES The client doesn’t have permissions to do the

operation.

EBADFSYS NULL was passed in oldattr, olddattr, or newdattr.

EFAULT A fault occurred when the kernel tried to access the
info buffer.

EINVAL The oldattr and newdattr have identical values, the
client process is no longer valid, or attempt to
remove the parent (".") directory.

EISDIR The old link is a directory but the new link isn’t a
directory.

ENOTDIR Attempt to unlink a nondirectory entry using
directory semantics (e.g. rmdir file).

ENOTEMPTY Attempt to remove a directory that isn’t empty.

EOK Successful completion or there was already a
newattr entry.

EPERM The group ID or owner ID didn’t match.

EROFS Attempt to remove an entry on a read-only
filesystem.

Classification:
QNX Neutrino

May 31, 2004 Manifests 1265

iofunc rename() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
io connect, io connect link reply,
io connect ftype reply, iofunc client info(), iofunc open()

Writing a Resource Manager chapter of the Programmer’s Guide.

1266 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc space verify()
Do permission checks for the IO SPACE message

Synopsis:
#include <sys/iofunc.h>

int iofunc space verify(resmgr context t *ctp,
io space t *msg,
iofunc ocb t *ocb,
int *nonblock);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context
information between functions.

msg A pointer to the io space t structure that contains the
message that the resource manager received; see below.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened
the resource.

nonblock NULL, or a pointer to a location where the function can
store a value that indicates whether or not the device is
nonblocking:

� Zero — the client doesn’t want to be blocked (i.e.
O NONBLOCK was set).

� Nonzero — the client wants to be blocked.

Library:
libc

Description:
The iofunc space verify() helper function checks the client’s
permission for an IO SPACE message.

May 31, 2004 Manifests 1267

iofunc space verify() 2004, QNX Software Systems Ltd.

io space t structure

The io space t structure holds the IO SPACE message received by
the resource manager:

struct io space {
uint16 t type;
uint16 t combine len;
uint16 t subtype;
short whence;
uint64 t start;
uint64 t len;

};

typedef union {
struct io space i;
uint64 t o;

} io space t;

The I/O message structures are unions of an input message (coming to
the resource manager) and an output or reply message (going back to
the client).

The i member is a structure of type io space that contains the
following members:

type IO SPACE.

combine len If the message is a combine message,
IO COMBINE FLAG is set in this member. For more

information, see “Combine messages” in the Writing
a Resource Manager chapter of the Programmer’s
Guide.

subtype F ALLOCSP or F FREESP.

whence The position in the file. The possible values (defined
in <unistd.h>) are:

SEEK CUR The new file position is computed
relative to the current file position. The
value of start may be positive, negative
or zero.

1268 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc space verify()

SEEK END The new file position is computed
relative to the end of the file.

SEEK SET The new file position is computed
relative to the start of the file. The
value of start must not be negative.

start The relative offset from the file position determined
by the whence member.

len The relative size by which to increase the file.

A value of zero means to end of file.

The o member is the file size.

Returns:
EBADF The client doesn’t have read access to this resource.

EISDIR The resource is a directory.

EOK The client has read access to this resource.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1269

iofunc space verify() 2004, QNX Software Systems Ltd.

See also:
iofunc ocb t, iofunc open(), iofunc write default(),
iofunc write verify(), resmgr context t

Writing a Resource Manager chapter of the Programmer’s Guide.

1270 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc stat()
Populate a stat structure

Synopsis:
#include <sys/iofunc.h>

int iofunc stat(resmgr context t* ctp,
iofunc attr t* attr,
struct stat* stat);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

attr A pointer to the iofunc attr t structure that describes the
characteristics of the device that’s associated with your
resource manager.

stat A pointer to the stat structure that you want to fill. For more
information, see stat().

Library:
libc

Description:
The iofunc stat() function populates the passed stat structure based on
information from the passed attr structure and the context pointer, ctp.

This is typically used when the resource manager is handling the
IO STAT message, and needs to format the current status information

for the resource.

Returns:
EOK Successful completion.

May 31, 2004 Manifests 1271

iofunc stat() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc attr t, iofunc stat default(), iofunc time update(),
resmgr context t, stat()

Writing a Resource Manager chapter of the Programmer’s Guide.

1272 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc stat default()
Default handler for IO STAT messages

Synopsis:
#include <sys/iofunc.h>

int iofunc stat default(resmgr context t *ctp,
io stat t *msg,
iofunc ocb t *ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io stat t structure that contains the
message that the resource manager received; see below.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

Library:
libc

Description:
The iofunc stat default() function implements POSIX semantics for
the client’s stat() or fstat() call, which is received as an IO STAT
message by the resource manager.

You can place this function directly into the io funcs table passed to
resmgr attach(), at the stat position, or you can call iofunc func init()
to initialize all of the functions to their default values.

The iofunc stat default() function calls:

� iofunc time update(), to ensure that the time entries in the
ocb->attr structure are current and valid

� iofunc stat() to construct a status entry based on the information in
the ocb->attr structure.

May 31, 2004 Manifests 1273

iofunc stat default() 2004, QNX Software Systems Ltd.

io stat t structure

The io stat t structure holds the IO STAT message received by
the resource manager:

struct io stat {
uint16 t type;
uint16 t combine len;
uint32 t zero;

};

typedef union {
struct io stat i;
struct stat o;

} io stat t;

The I/O message structures are unions of an input message (coming to
the resource manager) and an output or reply message (going back to
the client).

The i member is a structure of type io stat that contains the
following members:

type IO STAT.

combine len If the message is a combine message,
IO COMBINE FLAG is set in this member. For more

information, see “Combine messages” in the Writing
a Resource Manager chapter of the Programmer’s
Guide.

The o member is a structure of type stat; for more information, see
stat().

Returns:
EOK Successful completion.

1274 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc stat default()

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc func init(), iofunc ocb t, iofunc stat(),
iofunc time update(), resmgr attach(), resmgr context t,
resmgr io funcs t, stat()

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1275

iofunc sync() 2004, QNX Software Systems Ltd.

Indicate if synchronization is needed

Synopsis:
#include <sys/iofunc.h>

int iofunc sync(resmgr context t* ctp,
iofunc ocb t* ocb,
int ioflag);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

ioflag The operation being performed on the OCB:

� IO FLAG WR — writing.

� IO FLAG RD — reading.

Library:
libc

Description:
The iofunc sync() function indicates if some form of synchronization
is needed.

Returns:
O DSYNC Data integrity is needed.

O SYNC File integrity is needed.

0 Synchronization isn’t needed.

1276 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc sync()

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc open(), iofunc write default(), iofunc write verify()

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1277

iofunc sync default() 2004, QNX Software Systems Ltd.

Default handler for IO SYNC messages

Synopsis:
#include <sys/iofunc.h>

int iofunc sync default(resmgr context t *ctp,
io sync t *msg,
iofunc ocb t *ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io sync t structure that contains the
message that the resource manager received. For more
information, see iofunc sync verify().

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

Library:
libc

Description:
The function iofunc sync default() function implements POSIX
semantics for the client’s sync() call, which is received as an
IO SYNC message by the resource manager.

You can place this function directly into the io funcs table passed to
resmgr attach(), at the sync position, or you can call iofunc func init()
to initialize all of the functions to their default values.

The iofunc sync default() function calls iofunc sync verify() which
checks to see if the client can synchronize the resource, and (if
installed in the io funcs table) issues the reply back to the client.

1278 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc sync default()

Returns:
EINVAL The resource doesn’t support synchronizing.

EOK The client can synchronize the resource.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc func init(), iofunc ocb t, iofunc sync(),
iofunc sync verify(), resmgr attach(), resmgr context t,
resmgr io funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1279

iofunc sync verify() 2004, QNX Software Systems Ltd.

Verify permissions to sync

Synopsis:
#include <sys/iofunc.h>

int iofunc sync verify(resmgr context t *ctp,
io sync t *msg,
iofunc ocb t *ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io sync t structure that contains the
message that the resource manager received; see below.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

Library:
libc

Description:
The iofunc sync verify() function verifies that the client has
permission to synchronize.

io sync t structure

The io sync t structure holds the IO SYNC message received by
the resource manager:

struct io sync {
uint16 t type;
uint16 t combine len;
uint32 t flag;

};

1280 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc sync verify()

typedef union {
struct io sync i;

} io sync t;

The I/O message structures are unions of an input message (coming to
the resource manager) and an output or reply message (going back to
the client). In this case, there’s only an input message, i.

The i member is a structure of type io sync that contains the
following members:

type IO SYNC.

combine len If the message is a combine message,
IO COMBINE FLAG is set in this member. For more

information, see “Combine messages” in the Writing
a Resource Manager chapter of the Programmer’s
Guide.

flag One of:

� O DSYNC

� O RSYNC

� O SYNC

For more information about these flags, see open().

Returns:
EINVAL The resource doesn’t support syncing.

EOK The client has read access to this resource.

Classification:
QNX Neutrino

May 31, 2004 Manifests 1281

iofunc sync verify() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc ocb t, iofunc open(), iofunc write default(),
iofunc write verify(), resmgr context t

Writing a Resource Manager chapter of the Programmer’s Guide.

1282 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc time update()
Update time stamps

Synopsis:
#include <sys/iofunc.h>

int iofunc time update(iofunc attr t* attr);

Arguments:
attr A pointer to the iofunc attr t structure that describes the

characteristics of the device that’s associated with your
resource manager.

Library:
libc

Description:
The iofunc time update() function examines the flags member in the
passed attr structure against the bits IOFUNC ATTR ATIME,
IOFUNC ATTR MTIME, and IOFUNC ATTR CTIME. If any of these
bits are set, the corresponding time member of attr (e.g. attr->atime)
isn’t valid. This function updates all invalid attr members to the
current time.

If iofunc time update() makes any change to the attr structure’s time
members, it sets IOFUNC ATTR DIRTY TIME in the attr structure’s
flags member. This function always clears the IOFUNC ATTR ATIME,
IOFUNC ATTR MTIME, and IOFUNC ATTR CTIME bits from
attr->flags.

Returns:
EOK Successful completion.

May 31, 2004 Manifests 1283

iofunc time update() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc attr t

Writing a Resource Manager chapter of the Programmer’s Guide.

1284 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc unblock()
Unblock OCBs

Synopsis:
#include <sys/iofunc.h>

int iofunc unblock(resmgr context t * ctp,
iofunc attr t * attr);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

attr A pointer to the iofunc attr t structure that describes the
characteristics of the device that’s associated with your
resource manager.

Library:
libc

Description:
The iofunc unblock() function unblocks any clients that are blocked
on any internal resource manager structures.

Currently, this involves only the advisory lock list that’s maintained
by the attribute.

�

If a client connection is found:

� that client is unblocked, and is replied to with the error EINTR.

� iofunc unblock() returns RESMGR NOREPLY.

If no client connection is found, iofunc unblock() returns
RESMGR DEFAULT.

May 31, 2004 Manifests 1285

iofunc unblock() 2004, QNX Software Systems Ltd.

Returns:
RESMGR DEFAULT

No client connection was found.

RESMGR NOREPLY

A client connection has been unblocked.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc unblock default()

Writing a Resource Manager chapter of the Programmer’s Guide.

1286 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc unblock default()
Default unblock handler

Synopsis:
#include <sys/iofunc.h>

int iofunc unblock default(resmgr context t * ctp,
io pulse t * msg,
iofunc ocb t * ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io pulse t structure that describes the
pulse that the resource manager received.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

Library:
libc

Description:
The iofunc unblock default() function calls iofunc unblock().

The iofunc unblock default() function implements the functionality
required when the client requests to be unblocked (e.g. a signal or
timeout).

You can place this function directly into the io funcs table passed to
resmgr attach(), at the unblock position, or you can call
iofunc func init() to initialize all of the functions to their default
values.

The unblock message is synthesized by the resource-manager shared
library when a client wishes to unblock from its MsgSendv() to the

May 31, 2004 Manifests 1287

iofunc unblock default() 2004, QNX Software Systems Ltd.

resource manager. The iofunc unblock default() function takes care of
freeing up any locks that the client may have placed on the resource.

Returns:
RESMGR DEFAULT

No client connection was found.

RESMGR NOREPLY

A client connection has been unblocked.

Examples:
If you’re calling iofunc lock default(), your unblock handler should
call iofunc unblock default():

if((status = iofunc unblock default(...)) != RESMGR DEFAULT) {
return status;
}

/* Do your own thing to look for a client to unblock */

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

1288 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc unblock default()

See also:
iofunc func init(), iofunc lock default(), iofunc ocb t,
resmgr attach(), resmgr context t, resmgr io funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1289

iofunc unlink() 2004, QNX Software Systems Ltd.

Verify that an entry can be unlinked

Synopsis:
#include <sys/iofunc.h>

int iofunc unlink(resmgr context t* ctp,
io unlink t* msg,
iofunc attr t* attr,
iofunc attr t* dattr,
struct client info* info);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io unlink t structure that contains the
message that the resource manager received; see below.

attr A pointer to the iofunc attr t structure that describes
the characteristics of the resource.

dattr NULL, or a pointer to the iofunc attr t structure that
describes the characteristics of the parent directory.

info NULL, or a pointer to a client info structure that
contains information about the client. For information about
this structure, see ConnectClientInfo().

Library:
libc

Description:
The iofunc unlink() function verifies that the msg specifies valid
semantics for an unlink, and that the client is allowed to unlink the
resource, as specified by a combination of who the client is (info), and
the resource attributes attr, dattr, attr->uid and attr->gid.

1290 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc unlink()

If a directory entry is being removed, iofunc unlink() checks to see
that the directory is empty. The iofunc unlink() function also updates
the time stamps, and decrements the link count for the entry.

io unlink t structure

The io unlink t structure holds the IO CONNECT message
received by the resource manager:

typedef union {
struct io connect connect;
struct io connect link reply link reply;
struct io connect ftype reply ftype reply;

} io unlink t;

This message structure is a union of an input message (coming to the
resource manager), io connect, and two possible output or reply
messages (going back to the client):

� io connect link reply if the reply is redirecting the client
to another resource

Or:

� io connect ftype reply if the reply consists of a status and
a file type.

Returns:
EOK Successful completion.

ENOTDIR Attempt to unlink a nondirectory entry using
directory semantics, (e.g. rmdir file).

EINVAL Attempt to remove the "." directory.

ENOTEMPTY Attempt to remove a directory that isn’t empty.

EROFS Attempt to remove an entry on a read-only
filesystem.

EACCES The client doesn’t have permissions to do the
operation.

EPERM The group ID or owner ID didn’t match.

May 31, 2004 Manifests 1291

iofunc unlink() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
io connect, io connect link reply,
io connect ftype reply, ConnectClientInfo(),
iofunc attr t, iofunc check access(), resmgr context t

Writing a Resource Manager chapter of the Programmer’s Guide.

1292 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc unlock ocb default()
Default handler for the unlock ocb callout

Synopsis:
#include <sys/iofunc.h>

int iofunc unlock ocb default(
resmgr context t * ctp,
void * reserved,
iofunc ocb t * ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context
information between functions.

reserved This argument must be NULL.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened
the resource.

Library:
libc

Description:
The iofunc unlock ocb default() function calls iofunc attr unlock() to
enforce unlocking on the attributes for the group of messages that
were sent by the client.

You can place this function directly into the io funcs table passed to
resmgr attach(), at the unlock ocb position, or you can call
iofunc func init() to initialize all of the functions to their default
values.

May 31, 2004 Manifests 1293

iofunc unlock ocb default() 2004, QNX Software Systems Ltd.

Returns:
EOK Success.

EAGAIN On the first use, all kernel mutex objects were in use.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc attr unlock(), iofunc func init(), iofunc ocb t,
resmgr attach(), resmgr context t, resmgr io funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

1294 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc utime()
Update time stamps

Synopsis:
#include <sys/iofunc.h>

int iofunc utime(resmgr context t* ctp,
io utime t* msg,
iofunc ocb t* ocb,
iofunc attr t* attr);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io utime t structure that contains the
message that the resource manager received; see below.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

attr A pointer to the iofunc attr t structure that describes the
characteristics of the device that’s associated with your
resource manager.

Library:
libc

Description:
The iofunc utime() helper function examines the flags member in the
passed attr structure and sets the IOFUNC ATTR ATIME and
IOFUNC ATTR MTIME bits if requested.

The function sets the IOFUNC ATTR CTIME and
IOFUNC ATTR DIRTY TIME bits. It then calls iofunc time update()
to update the file times.

May 31, 2004 Manifests 1295

iofunc utime() 2004, QNX Software Systems Ltd.

io utime t structure

The io utime t structure holds the IO UTIME message received by
the resource manager:

struct io utime {
uint16 t type;
uint16 t combine len;
int32 t cur flag;
struct utimbuf times;

};

typedef union {
struct io utime i;

} io utime t;

The I/O message structures are unions of an input message (coming to
the resource manager) and an output or reply message (going back to
the client). In this case, there’s only an input message, i.

The i member is a structure of type io utime that contains the
following members:

type IO UTIME.

combine len If the message is a combine message,
IO COMBINE FLAG is set in this member. For more

information, see “Combine messages” in the Writing
a Resource Manager chapter of the Programmer’s
Guide.

cur flag If set, iofunc utime() ignores the times member, and
set the appropriate file times to the current time.

times A utimbuf structure that specifies the time to use
when setting the file times. For more information
about this structure, see utime().

1296 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc utime()

Returns:
EACCES The client doesn’t have permissions to do the operation.

EFAULT A fault occurred when the kernel tried to access the info
buffer.

EINVAL The client process is no longer valid.

ENOSYS NULL was passed in info.

EOK Successful completion.

EPERM The group ID or owner ID didn’t match.

EROFS Attempt to remove an entry on a read-only filesystem.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc time update(), iofunc utime default(), utime()

Writing a Resource Manager chapter of the Programmer’s Guide.

May 31, 2004 Manifests 1297

iofunc utime default() 2004, QNX Software Systems Ltd.

Default handler for IO UTIME messages

Synopsis:
#include <sys/iofunc.h>

int iofunc utime default(resmgr context t* ctp,
io utime t* msg,
iofunc ocb t* ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io utime t structure that contains the
message that the resource manager received; see
iofunc utime().

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

Library:
libc

Description:
The iofunc utime default() function implements POSIX semantics for
the client’s utime() call, which is received as an IO UTIME message
by the resource manager.

You can place this function directly into the io funcs table passed to
resmgr attach(), at the utime position, or you can call
iofunc func init() to initialize all of the functions to their default
values.

The iofunc utime default() function calls iofunc utime(), which does
the actual work. It verifies that the client has the necessary
permissions to effect a utime on the device. If so, the utime is

1298 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc utime default()

performed, modifying elements of the ocb->attr structure. This
function takes care of updating these bits in the flags member of
ocb->attr:

� IOFUNC ATTR ATIME

� IOFUNC ATTR CTIME

� IOFUNC ATTR MTIME

� IOFUNC ATTR DIRTY TIME

� IOFUNC ATTR DIRTY MODE

The iofunc utime() function then calls iofunc time update() to update
the appropriate time fields in ocb->attr.

Returns:
EOK Successful completion.

EROFS An attempt was made to utime a read-only filesystem.

EACCES The client doesn’t have permissions to do the operation.

EPERM The group ID or owner ID didn’t match.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1299

iofunc utime default() 2004, QNX Software Systems Ltd.

See also:
iofunc func init(), iofunc time update(), iofunc ocb t,
iofunc utime(), resmgr attach(), resmgr context t,
resmgr io funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

1300 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc write default()
Default handler for IO WRITE messages

Synopsis:
#include <sys/iofunc.h>

int iofunc write default(resmgr context t* ctp,
io write t* msg,
iofunc ocb t* ocb);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg A pointer to the io write t structure that contains the
message that the resource manager received. For more
information, see iofunc write verify().

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened the
resource.

Library:
libc

Description:
The iofunc write default() function implements POSIX semantics for
the client’s write() call, which is received as an IO WRITE message
by the resource manager.

You can place this function directly into the io funcs table passed to
resmgr attach(), at the write position, or you can call
iofunc func init() to initialize all of the functions to their default
values.

The iofunc write default() function calls iofunc write verify() to do
the actual work, and (if installed in the io funcs table) issues the reply
back to the client.

May 31, 2004 Manifests 1301

iofunc write default() 2004, QNX Software Systems Ltd.

Returns:
EBADF The client doesn’t have read access to this resource.

EINVAL An unknown xtype was given.

EOK The client has read access to this resource.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc func init(), iofunc ocb t, iofunc open(),
iofunc write verify(), resmgr attach(), resmgr context t,
resmgr io funcs t

Writing a Resource Manager chapter of the Programmer’s Guide.

1302 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc write verify()
Verify a client’s write access to a resource

Synopsis:
#include <sys/iofunc.h>

int iofunc write verify(resmgr context t* ctp,
io write t* msg,
iofunc ocb t* ocb,
int* nonblock);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context
information between functions.

msg A pointer to the io write t structure that contains the
message that the resource manager received; see below.

ocb A pointer to the iofunc ocb t structure for the Open
Control Block that was created when the client opened
the resource.

nonblock NULL, or a pointer to a location where the function can
store a value that indicates whether or not the device is
nonblocking:

� Zero — the client doesn’t want to be blocked (i.e.
O NONBLOCK was set).

� Nonzero — the client wants to be blocked.

Library:
libc

Description:
The iofunc write verify() function checks that the client that sent the
write message actually has write access to the resource, and,
optionally (if nonblock isn’t NULL), sets nonblock to O NONBLOCK
or 0.

May 31, 2004 Manifests 1303

iofunc write verify() 2004, QNX Software Systems Ltd.

The write permission check is done against ocb->ioflag.

Note that the io write t message has an override flag called
msg->i.xtype. This flag allows the client to override the default
blocking behavior for the resource on a per-request basis. This
override flag is checked, and returned in the optional nonblock.

In write callout for your resource manager, you’ll need to indicate
how many bytes were written. You can do this with the macro:

IO SET WRITE NBYTES(resmgr context t *ctp,
int nbytes)

io write t structure

The io write t structure holds the IO WRITE message received by
the resource manager:

struct io write {
uint16 t type;
uint16 t combine len;
int32 t nbytes;
uint32 t xtype;
uint32 t zero;

/* unsigned char data[nbytes]; */
};

typedef union {
struct io write i;

/* nbytes is returned with MsgReply */
} io write t;

The I/O message structures are unions of an input message (coming to
the resource manager) and an output or reply message (going back to
the client). In this case, there’s only an input message, i.

The i member is a structure of type io write that contains the
following members:

type IO WRITE.

1304 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iofunc write verify()

combine len If the message is a combine message,
IO COMBINE FLAG is set in this member. For more

information, see “Combine messages” in the Writing
a Resource Manager chapter of the Programmer’s
Guide.

nbytes The number of bytes that the client wants to write.

xtype Extended type information; one of:

� IO XTYPE NONE

� IO XTYPE READCOND

� IO XTYPE MQUEUE

� IO XTYPE TCPIP

� IO XTYPE TCPIP MSG

� IO XTYPE OFFSET

� IO XTYPE REGISTRY

� IO XFLAG DIR EXTRA HINT — this flag is
valid only when reading from a directory. The
filesystem should normally return extra directory
information when it’s easy to get. If this flag is
set, it is a hint to the filesystem to try harder
(possibly causing media lookups) to return the
extra information. The most common use would
be to return DTYPE LSTAT information.

� IO XFLAG NONBLOCK

� IO XFLAG BLOCK

For more information, see “Handling other
read/write details” in the Writing a Resource
Manager chapter of the Programmer’s Guide.

The commented-out declaration for data indicates that nbytes bytes of
data immediately follow the io write structure.

May 31, 2004 Manifests 1305

iofunc write verify() 2004, QNX Software Systems Ltd.

Returns:
EOK The client has write access to this resource.

EBADF The client doesn’t have write access to this resource.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
iofunc read verify()

Writing a Resource Manager chapter of the Programmer’s Guide.

1306 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ionotify()
Arm a resource manager

Synopsis:
#include <unistd.h>
#include <sys/iomsg.h>

int ionotify (int fd,
int action,
int flags,
const struct sigevent* event);

Arguments:
fd The file descriptor associated with the resource manager

that you want to notify.

action The type of arming action to take; see “Actions,” below.

flags The types of conditions that can be checked for
notification; see “Flags,” below.

event A pointer to a sigevent structure that defines the event
that you want the resource manager to send as a
notification, or NULL to disarm a notification.

Library:
libc

Description:
The ionotify() function arms the resource manager associated with fd
to send the event notification event. The event is sent when a
condition specified by a combination of action and flags occurs.

Flags

The flags argument specifies the types of conditions that can be
checked for notification. Each resource manager maintains a different
context for each notification condition. Only those notification bits
specified are affected. In the following example, the second call to

May 31, 2004 Manifests 1307

ionotify() 2004, QNX Software Systems Ltd.

ionotify() doesn’t affect the first, since it specifies a different
notification:

ionotify(fd, NOTIFY ACTION POLLARM,
NOTIFY COND INPUT, &event);

ionotify(fd, NOTIFY ACTION POLLARM,
NOTIFY COND OUTPUT, &event);

The conditions specified by flags are:

NOTIFY COND OBAND

Out-of-band data is available. The definition of out-of-band
data depends on the resource manager.

NOTIFY COND OUTPUT

There’s room in the output buffer for more data. The amount of
room available needed to satisfy this condition depends on the
resource manager. Some resource managers may default to an
empty output buffer, while others may choose some percentage
of the buffer empty.

NOTIFY COND INPUT

There’s input data available. The amount of data available
defaults to 1. For a character device such as a serial port, this
would be a character. For a POSIX message queue, it would be
a message. Each resource manager selects an appropriate
object.

The method for changing the default number for
NOTIFY COND OUTPUT and NOTIFY COND INPUT depends on the

device. For example, character special devices can call readcond().

For resource managers that support both an edited and raw mode, the
mode should be set to raw to ensure proper operation of ionotify().

The above flags are located in the top bits of flags. They are defined
by NOTIFY COND MASK.

In the case of an asynchronous notification using the passed event,
such as a Neutrino pulse or queued realtime signal, the 32-bit value in

1308 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ionotify()

event->sigev value.sival int is returned to you unmodified,
unless you’ve selected the SI NOTIFY code, in which case the top bits
(defined by NOTIFY COND MASK) are set to the active notifications.
In this case, you should limit the sival int to the mask defined by
NOTIFY DATA MASK.

For example, the Unix select() function specifies SI NOTIFY and uses
the allowable data bits of sival int as a serial number.

If you’re using the SI NOTIFY code, then you should clear the bits as
specified by NOTIFY COND MASK in the sigev value field — the
resource manager only ever ORs in a value, it never clears the bits.

�

Actions

The action argument specifies the type of arming action to take.
When a condition is armed, the resource manager monitors it and,
when met, delivers event using MsgDeliverEvent(). When an event is
delivered, it’s always disarmed except where noted below.

Note that for transition arming (as specified by an action of
NOTIFY ACTION TRANARM, only one notification of that type can

be outstanding per device. When the transition arm fires, it’s removed.

Each action is designed to support a specific notification type as
follows:

NOTIFY ACTION POLL

This action does a poll of the notification conditions specified
by flags. It never arms an event, and it cancels all other
asynchronous event notifications set up by a previous call to
ionotify(). This also allows it to be used as a simple “disarm”
call.

Returns active conditions as requested by flags.

NOTIFY ACTION POLLARM

This action does a poll in the same way as
NOTIFY ACTION POLL. However, if none of the conditions

May 31, 2004 Manifests 1309

ionotify() 2004, QNX Software Systems Ltd.

specified in flags are present then each condition specified in
flags is armed. If any condition is met, none of the conditions
are armed. The Unix select() function uses ionotify() with this
action.

Returns active conditions as requested by flags.

NOTIFY ACTION TRANARM

This action arms for transitions of the notification conditions
specified by flags. A transition is defined as a data transition
from empty to nonempty on input. Its use on output isn’t
defined. Note that if there is data available when this call is
used, a data transition won’t occur. To generate an event using
this type of notification, you must arm the event and then drain
the input using a nonblocking read. After this point, new input
data causes the event to be delivered. The mq notify() function
uses ionotify() with this action.

Since this arms for a transition, the return value is always zero.

You can use the NOTIFY ACTION POLLARM or
NOTIFY ACTION POLL action to generate events that are level- as

opposed to transition-oriented.

When an action is armed in a resource manager, it remains armed
until:

� A thread sets a new action (this disarms any current action and
possibly arms a new action),

� The event is delivered and the action wasn’t a continuous one,

� The thread closes the device.

Returns:
Active conditions as requested by flags. In the case of a transition
action, a zero is returned. If an error occurs, -1 is returned (errno is
set).

1310 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ionotify()

Errors:
EBADF The connection indicated by fd doesn’t exist, or fd

is no longer connected to a channel.

EFAULT A fault occurred when the kernel tried to access
the buffers provided. This may have occurred on
the receive or the reply.

EINTR The call was interrupted by a signal.

ENOMEM The resource manager couldn’t allocate a notify
entry to save the request.

ENOSYS The requested action isn’t supported by this
resource manager.

ESRVRFAULT A fault occurred in a server’s address space while
accessing the server’s message buffers. This may
have occurred on the receive or the reply.

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1311

ionotify() 2004, QNX Software Systems Ltd.

See also:
sigevent

1312 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. IP
Internet Protocol

Synopsis:
#include <sys/socket.h>
#include <netinet/in.h>

int socket(AF INET,
SOCK RAW,
proto);

Description:
IP is the transport layer protocol used by the Internet protocol family.
You may set options at the IP level when you’re using higher-level
protocols based on IP, such as TCP and UDP. You may also access IP
through a “raw socket” (when you’re developing new protocols or
special-purpose applications).

There are several IP-level setsockopt() and getsockopt() options. You
can use IP OPTIONS to provide IP options to be transmitted in the IP
header of each outgoing packet or to examine the header options on
incoming packets. IP options may be used with any socket type in the
Internet family. The format of IP options to be sent is that specified by
the IP protocol specification (RFC-791), with one exception: the list
of addresses for Source Route options must include the first-hop
gateway at the beginning of the list of gateways. The first-hop
gateway address is extracted from the option list and the size adjusted
accordingly before use. To disable previously specified options, use a
zero-length buffer:

setsockopt(s, IPPROTO IP, IP OPTIONS, NULL, 0);

You can use IP TOS and IP TTL to set the type-of-service and
time-to-live fields in the IP header for SOCK STREAM and
SOCK DGRAM sockets. For example:

int tos = IPTOS LOWDELAY; /* see <netinet/ip.h> */
setsockopt(s, IPPROTO IP, IP TOS, &tos, sizeof(tos));

int ttl = 60; /* max = 255 */
setsockopt(s, IPPROTO IP, IP TTL, &ttl, sizeof(ttl));

May 31, 2004 Manifests 1313

IP 2004, QNX Software Systems Ltd.

If the IP RECVDSTADDR option is enabled on a SOCK DGRAM or
SOCK RAW socket, the recvmsg() call returns the destination IP
address for a UDP datagram. The msg control field in the msghdr
structure points to a buffer that contains a cmsghdr structure followed
by the IP address. The cmsghdr fields have the following values:

cmsg len = sizeof(struct cmsghdr) + sizeof(struct in addr)
cmsg level = IPPROTO IP
cmsg type = IP RECVDSTADDR

If the IP RECVIF option is enabled on a SOCK DGRAM or
SOCK RAW socket, the recvmsg() call returns a struct
sockaddr dl corresponding to the interface on which the packet
was received. The msg control field in the msghdr structure points to
a buffer that contains a cmsghdr structure followed by the struct
sockaddr dl. The cmsghdr fields have the following values:

cmsg len = sizeof(struct cmsghdr) + sizeof(struct sockaddr dl)
cmsg level = IPPROTO IP
cmsg type = IP RECVIF

Raw IP sockets are connectionless, and are normally used with the
sendto() and recvfrom() calls, although you can also use connect() to
fix the destination for future packets (in which case you can use the
read() or recv() and write() or send() system calls).

If the proto parameter to socket() is 0, the default protocol
IPPROTO RAW is used for outgoing packets, and only incoming
packets destined for that protocol are received. If proto is nonzero,
that protocol number will be used on outgoing packets and to filter
incoming packets.

Outgoing packets automatically have an IP header prepended to them
(based on the destination address and the protocol number the socket
is created with), unless the IP HDRINCL option has been set.
Incoming packets are received with IP header and options intact.

IP HDRINCL indicates the complete IP header is included with the
data and may be used only with the SOCK RAW type.

1314 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. IP

#include <netinet/ip.h>

int hincl = 1; /* 1 = on, 0 = off */
setsockopt(s, IPPROTO IP, IP HDRINCL, &hincl, sizeof(hincl));

The program must set all the fields of the IP header, including the
following:

ip->ip v = IPVERSION;
ip->ip hl = hlen >> 2;
ip->ip id = 0; /* 0 means kernel set appropriate value */
ip->ip off = offset;

If the header source address is set to INADDR ANY, the kernel
chooses an appropriate address.

Multicasting

IP multicasting is supported only on AF INET sockets of type
SOCK DGRAM and SOCK RAW, and only on networks where the
interface driver supports multicasting.

Multicast Options

IP MULTICAST TTL

Change the time-to-live (TTL) for outgoing multicast
datagrams in order to control the scope of the multicasts:

u char ttl; /* range: 0 to 255, default = 1 */

setsockopt(s, IPPROTO IP, IP MULTICAST TTL, &ttl, sizeof(ttl));

Datagrams with a TTL of 1 aren’t forwarded beyond the local
network. Multicast datagrams with a TTL of 0 aren’t
transmitted on any network, but may be delivered locally if the
sending host belongs to the destination group and if multicast
loopback hasn’t been disabled on the sending socket (see
below). Multicast datagrams with TTL greater than 1 may be
forwarded to other networks if a multicast router is attached to
the local network.

May 31, 2004 Manifests 1315

IP 2004, QNX Software Systems Ltd.

IP MULTICAST IF

For hosts with multiple interfaces, each multicast transmission
is sent from the primary network interface. The
IP MULTICAST IF option overrides the default for subsequent
transmissions from a given socket:

struct in addr addr;

setsockopt(s, IPPROTO IP, IP MULTICAST IF, &addr, sizeof(addr));

where addr is the local IP address of the desired interface or
INADDR ANY to specify the default interface. You can get an
interface’s local IP address and multicast capability by sending
the SIOCGIFCONF and SIOCGIFFLAGS requests to ioctl().
Normal applications shouldn’t need to use this option.

IP MULTICAST LOOP

If a multicast datagram is sent to a group to which the sending
host itself belongs (on the outgoing interface), a copy of the
datagram is, by default, looped back by the IP layer for local
delivery. The IP MULTICAST LOOP option gives the sender
explicit control over whether or not subsequent datagrams are
looped back:

u char loop; /* 0 = disable, 1 = enable (default) */
setsockopt(s, IPPROTO IP, IP MULTICAST LOOP, &loop, sizeof(loop));

This option improves performance for applications that may
have no more than one instance on a single host (such as a
router demon), by eliminating the overhead of receiving their
own transmissions. It shouldn’t generally be used by
applications for which there may be more than one instance on
a single host (such as a conferencing program) or for which the
sender doesn’t belong to the destination group (such as a time
querying program).

A multicast datagram sent with an initial TTL greater than 1
may be delivered to the sending host on a different interface
from that on which it was sent, if the host belongs to the

1316 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. IP

destination group on that other interface. The loopback control
option has no effect on such delivery.

IP ADD MEMBERSHIP

A host must become a member of a multicast group before it
can receive datagrams sent to the group. To join a multicast
group, use the IP ADD MEMBERSHIP option:

struct ip mreq mreq;
setsockopt(s, IPPROTO IP, IP ADD MEMBERSHIP, &mreq, sizeof(mreq));

where mreq is the following structure:

struct ip mreq {

struct in addr imr multiaddr; /* multicast group to join */
struct in addr imr interface; /* interface to join on */

}

Set imr interface to INADDR ANY to choose the default
multicast interface, or to the IP address of a particular
multicast-capable interface if the host is multihomed.
Membership is associated with a single interface; programs
running on multihomed hosts may need to join the same group
on more than one interface. Up to IP MAX MEMBERSHIPS
(currently 20) memberships may be added on a single socket.

IP DROP MEMBERSHIP

To drop a membership, use:

struct ip mreq mreq;
setsockopt(s, IPPROTO IP, IP DROP MEMBERSHIP, &mreq, sizeof(mreq));

where mreq contains the same values as used to add the
membership. Memberships are dropped when the socket is
closed or the process exits.

May 31, 2004 Manifests 1317

IP 2004, QNX Software Systems Ltd.

Returns:
A descriptor referencing the socket, or -1 if an error occurs (errno is
set).

Errors:
EADDRNOTAVAIL

You tried to create a socket with a network address
for which no network interface exists.

EISCONN You tried to establish a connection on a socket that
already has one or to send a datagram with the
destination address specified, but the socket is
already connected.

ENOBUFS The system ran out of memory for an internal data
structure.

ENOTCONN You tried to send a datagram, but no destination
address was specified and the socket hasn’t been
connected.

The following error specific to IP may occur when setting or getting
IP options:

EINVAL An unknown socket option name was given. The IP
option field was improperly formed — an option field
was shorter than the minimum value or longer than the
option buffer provided.

�

See also:
ICMP protocol

connect(), getsockopt(), ioctl(), read(), recv(), recvfrom(), recvmsg(),
send(), sendto(), setsockopt(), socket(), write()

1318 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. IP

RFC 791

May 31, 2004 Manifests 1319

IPsec 2004, QNX Software Systems Ltd.

Internet security protocol

Synopsis:
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet6/ipsec.h>

int socket(PF KEY,
SOCK RAW,
PF KEY V2);

Description:
IPsec is a security protocol for the Internet Protocol layer. It consists
of these sub-protocols:

AH (Authentication Header)

Guarantees the integrity of the IP packet and protects it from
intermediate alteration or impersonation by attaching a
cryptographic checksum computed by one-way hash functions.

ESP (Encapsulated Security Payload)

Protects the IP payload from wire-tapping by encrypting it
using secret-key cryptography algorithms.

IPsec has these modes of operation:

� Transport — protects peer-to-peer communication between end
nodes.

� Tunnel — supports IP-in-IP encapsulation operation and is
designed for security gateways, like VPN configurations.

Kernel interface

The IPsec protocol behavior is controlled by these engines:

� Key management engine — accessed from an application using
PF KEY sockets. The RFC 2367 specification defines the PF KEY
socket API.

1320 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. IPsec

� Policy engine — accessed with the PF KEY API, the setsockopt()
operations, and the sysctl() interface. (The sysctl utility is a
cover for the sysctl() function.) The setsockopt() function defines
per-socket behavior and the sysctl() interface defines host-wide
default behavior.

These engines are located in the socket manager. The socket manager
implements the PF KEY interface and allows you to define IPsec
policy similar to per-packet filters. Note that the socket manager code
doesn’t implement the dynamic encryption key exchange protocol
IKE (Internet Key Exchange) — that implementation should be done
at the application level (usually as daemons), using the previously
described APIs.

Policy management

The socket manager implements experimental policy management.
You can manage the IPsec policy in these ways:

� Configure a per-socket policy using setsockopt().

� Configure the socket manager packet filter-based policy using the
PF KEY interface or via the setkey utility.

In this case, the default policy is allowed with the setkey. By
configuring the policy to default, you can use the system-wide
sysctl utility variables. (The sysctl utility displays various
runtime options.)

If the socket manager finds no matching policy, the system-wide
default value is applied.

For a list of net.inet6.ipsec6.* variables, see the sysctl utility in the
Utilities Reference.

Miscellaneous sysctl variables

The following variables are accessible via the sysctl utility for
tweaking socket manager IPsec behavior:

May 31, 2004 Manifests 1321

IPsec 2004, QNX Software Systems Ltd.

Name Type Changeable?

net.inet.ipsec.ah cleartos Integer Yes

net.inet.ipsec.ah offsetmask Integer Yes

net.inet.ipsec.dfbit Integer Yes

net.inet.ipsec.ecn Integer Yes

net.inet.ipsec.debug Integer Yes

net.inet6.ipsec6.ecn Integer Yes

net.inet6.ipsec6.debug Integer Yes

The variables are interpreted as follows:

ipsec.ah cleartos

When computing AH authentication data, the socket
manager clears the type-of-service field in the IPv4
header if the value is set to a nonzero value. The
variable tweaks AH behavior to interoperate with
devices that implement RFC 1826 AH. Set this to a
nonzero value (clear the type-of-service field) if you
want to conform to RFC 2402.

ipsec.ah offsetmask

When computing AH authentication data, the socket
manager includes the 16-bit fragment offset field
(including flag bits) in the IPv4 header, after
computing a logical “AND” with the variable. This
variable tweaks the AH behavior to interoperate with
devices that implement RFC 1826 AH. Set this value
to zero (clear the fragment offset field during
computation) if you want to conform to RFC 2402.

ipsec.dfbit Configures the socket manager behavior for IPv4
IPsec tunnel encapsulation. The variable is supplied
to conform to RFC 2403 Chapter 6.1.

1322 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. IPsec

If the value is set to: Then:

0 The DF bit on the outer IPv4
header is cleared.

1 The outer DF bit on the
header is set from the inner
DF bit.

2 The DF bit is copied from the
inner header to the outer.

ipsec.ecn If set to nonzero, the IPv4 IPsec tunnel
encapsulation/decapsulation behavior supports ECN
(Explicit Congestion Notification), as documented in
the IETF draft draft-ietf-ipsec-ecn-02.txt.

ipsec.debug If set to nonzero, debug messages are generated to
the syslog.

Variables under the net.inet6.ipsec6 tree have meaning similar to their
net.inet.ipsec counterparts.

Protocols

Because the IPsec protocol works like a plugin to the INET and
INET6 protocols, IPsec supports most of the protocols defined upon
those IP-layer protocols. Some of the protocols, like ICMP or ICMP6,
may behave differently with IPsec. This is because IPsec can prevent
ICMP or ICMP6 routines from looking into the IP payload.

Setting the policy

You can set the policy manually by calling setkey, or set it
permanently in /etc/inetd.conf. Valid policy settings include:

for setkey: -P direction discard
-P direction ipsec request ...
-P direction none

May 31, 2004 Manifests 1323

IPsec 2004, QNX Software Systems Ltd.

for /etc/inetd.conf:

direction bypass
direction entrust
direction ipsec request ...

where:

direction The direction in which the policy is applied. It’s either
in or out.

bypass (/etc/inetd.conf only) Bypass the IPsec
processing and transmit the packet in clear text. This
option is for privileged sockets.

discard (setkey only) Discard the packet matching indexes.

entrust (/etc/inetd.conf only) Consult the Security Policy
Database (SPD) in the stack. The SPD is set by
setkey (see the Utilities Reference).

ipsec request ...

Put the IPsec operation into the packet. You can specify
one or more request strings using the following format:

protocol/mode/src-dst[/level]

For detailed descriptions of the arguments in the
request string, see below.

none (setkey only) Don’t put the IPsec operation into the
packet.

Arguments
for request

protocol One of:

1324 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. IPsec

� ah — Authentication Header. Guarantees the
integrity of the IP packets and protects them from
intermediate alteration or impersonation, by attaching
cryptographic checksums computed by one-way hash
functions.

� esp — Encapsulated Security Payload. Protects the
IP payload from wire-tapping by encrypting it with
secret key cryptography algorithms.

� ipcomp — IP Payload Compression Protocol.

mode Security protocol to be used, which is one of:

� transport — Protects peer-to-peer communication
between end nodes.

� tunnel — Includes IP-in-IP encapsulation
operations and is designed for security gateways, like
VPN configurations.

dst,
src The “receiving node” (dst) and “sending node” (src)

endpoint addresses of the Security Association (SA).
When the direction specified is in, dst would represent
this node and src the other node (peer).

If transport is specified as the mode, you can omit
these values.

level One of:

� default — The stack should consult the system
default policy that’s set by the sysctl utility.

� require — An SA is required whenever the kernel
deals with the packet.

� use — Use an SA if it’s available; otherwise, keep
the normal operation.

� unique — (setkey only) Similar to require, but
adds the restriction that the SA for outbound traffic is
used only for this policy.

May 31, 2004 Manifests 1325

IPsec 2004, QNX Software Systems Ltd.

You may need the identifier in order to relate the
policy and the SA when you define the SA by manual
keying. You can put the decimal number as the
identifier after unique, such as:
unique: number

The value of number must be between 1 and 32767.
If the request string is kept unambiguous, the level
and slash prior to level can be omitted. However, you
should specify them explicitly to avoid unintended
behaviors.

If the level isn’t specified in the setkey command, unique is used
by default.

�

Caveats:
The IPsec support is subject to change as the IPsec protocols develop.

There’s no single standard for policy engine API, so the policy engine
API described herein is just for KAME implementation.

The AH tunnel may not work as you might expect. If you configure
the require policy against AH tunnel for inbound, tunneled packets
will be rejected. This is because AH authenticates the encapsulating
(outer) packet, not the encapsulated (inner) packet.

Under certain conditions, a truncated result may be returned from the
socket manager from SADB DUMP and SADB SPDDUMP operations
on a PF KEY socket. This occurs if there are too many database
entries in the socket manager and the socket buffer for the PF KEY
socket is too small. If you manipulate many IPsec key/policy database
entries, increase the size of socket buffer.

See also:
ICMP, ICMP6, INET6, IP, IPv6 protocols

ioctl(), socket(), sysctl()

/etc/inetd.conf, setkey in the Utilities Reference.

1326 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. IPsec

RFC 2367, RFC 1826, RFC 2402, RFC 2403

Detailed documentation about the IP security protocol may be found
at the IPsec FAQ website at
http://www.netbsd.org/Documentation/network/ipsec/.

May 31, 2004 Manifests 1327

ipsec dump policy() 2004, QNX Software Systems Ltd.

Generate a readable string from an IPsec policy specification

Synopsis:
#include <netinet6/ipsec.h>

char* ipsec dump policy(char *buf,
char *delim);

Arguments:
buf A pointer to an IPsec policy structure struct

sadb x policy.

delim Delimiter string, usually a NULL which indicates a space
(“ ”).

Library:
libipsec

Description:
The function ipsec dump policy() generates a readable string from an
IPSEC policy specification. Please refer to ipsec set policy() for
details about the policies.

The ipsec dump policy() function converts IPsec policy structure into
a readable form. Therefore, ipsec dump policy() is the inverse of
ipsec set policy(). If you set delim to NULL, a single whitespace is
assumed. The function ipsec dump policy() returns a pointer to a
dynamically allocated string. It is the caller’s responsibility to reclaim
the region, by using free().

Returns:
A pointer to dynamically allocated string, or NULL if an error occurs.

1328 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ipsec dump policy()

Examples:
See ipsec set policy().

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
IPsec, ipsec get policylen(), ipsec set policy(), ipsec strerror()

setkey in the Utilities Reference

May 31, 2004 Manifests 1329

ipsec get policylen() 2004, QNX Software Systems Ltd.

Get the length of the IPsec policy

Synopsis:
#include <netinet6/ipsec.h>

int ipsec get policylen(char *buf);

Arguments:
buf A pointer to an IPsec policy structure struct

sadb x policy.

Library:
libipsec

Description:
The function ipsec get policylen() gets the length of the IPsec policy.
Please refer to ipsec set policy() for details about the policies.

You may want the length of the generated buffer when calling
setsockopt(). The function ipsec get policylen() returns the length.

Returns:
The size of the buffer, or a negative value if an error occurs.

Examples:
See ipsec set policy().

Classification:
Unix

Safety

Cancellation point No

Interrupt handler Yes

continued. . .

1330 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ipsec get policylen()

Safety

Signal handler Yes

Thread Yes

See also:
IPsec, ipsec dump policy(), ipsec set policy(), ipsec strerror()

setkey in the Utilities Reference

May 31, 2004 Manifests 1331

ipsec strerror() 2004, QNX Software Systems Ltd.

Error code for IPsec policy manipultion library

Synopsis:
#include <netinet6/ipsec.h>

const char *
ipsec strerror(void);

Library:
libipsec

Description:
This ipsec strerror() function is used to obtain the error message
string from the last failed ipsec call.

Returns:
A pointer to an error message.

Don’t modify the string that this function returns.�

Examples:
#include <netinet6/ipsec.h>
#include <sys/socket.h>
#include <stdio.h>
#include <malloc.h>
#include <string.h>

int
main(void)
{

char *sadb;
char *policy = "in discard";
int len;

sadb = ipsec set policy(policy, strlen(policy));

if (sadb == NULL) {
fprintf(stderr, "ipsec set policy: %s\n", ipsec strerror());
return 1;

}

1332 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ipsec strerror()

len = ipsec get policylen(sadb);
printf("len: %d\n", len);

policy = NULL;
policy = ipsec dump policy(sadb, NULL);

if (policy == NULL) {
fprintf(stderr, "ipsec dump policy: %s\n", ipsec strerror());
return 1;

}

printf("policy: %s\n", policy);

free(policy);
free(sadb);

return 0;
}

Classification:
Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
IPsec, ipsec dump policy(), ipsec get policylen(), ipsec set policy(),
setkey

May 31, 2004 Manifests 1333

ipsec set policy() 2004, QNX Software Systems Ltd.

Generate an IPsec policy specification structure from a readable string

Synopsis:
#include <netinet6/ipsec.h>

char* ipsec set policy(char *policy,
int len);

Arguments:
len The length of the policy string.

policy A string that describes a struct sadb x policy and
optionally a struct sadb x ipsecrequest, formatted
as described below.

Library:
libipsec

Description:
The function ipsec set policy() generates an IPsec policy specification
structure, namely a struct sadb x policy and potentially a
struct sadb x ipsecrequest from a human-readable policy
specification. This function returns a pointer to the IPsec policy
specification structure.

You should release the buffer returned by ipsec set policy() by calling
free(). See the example below.

�

The policy is formatted as one of the following:

direction discard

The direction must be in or out. It specifies which direction
the policy needs to be applied. With the discard policy, packets
are dropped if they match the policy.

direction entrust

Consultation to SPD — defined by setkey.

1334 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ipsec set policy()

direction bypass

Bypass the IPsec processing, i.e. packets are transmitted in
clear. This is for privileged sockets.

direction ipsec request ...

The matching packets are subject to IPsec processing. The
ipsec string can be followed by one or more request strings,
which are formatted as below:

protocol / mode / src - dst [/level]

protocol Either ah, esp, or ipcomp.

mode Either transport or tunnel.

src and dst The IPsec endpoints; src is the sending node and
dst is the receiving node. Therefore, when
direction is in, dst is this node and src is the other
node (peer).

level Either default, use, require or unique.

� default — the kernel should consult the
system default policy defined by sysctl().

� use — a relevant SA (security association) is
used when available, since the kernel may
perform IPsec operation against packets when
possible. In this case, packets are transmitted in
clear (when SA is not available), or encrypted
(when SA is available).

� require — a relevant SA is required, since the
kernel must perform IPsec operation against
packets.

� unique is the same as require. However, it
adds the restriction that the SA for outbound
traffic is used only for this policy. You may
need the identifier in order to relate the policy
and the SA when you define the SA by manual
keying. You put the decimal number as the
identifier like:

May 31, 2004 Manifests 1335

ipsec set policy() 2004, QNX Software Systems Ltd.

unique: number
where number must be between 1 and 32767. If
the request string is kept unambiguous, you can
omit the level and the slash (“/”) prior to level.
However, you should specify them explicitly to
avoid unintended behavior. If level is omitted, it
will be interpreted as default.

Here’s an example of policy information:

in discard
out ipsec esp/transport//require
in ipsec ah/transport//require
out ipsec esp/tunnel/10.1.1.2-10.1.1.1/use
in ipsec ipcom/transport//use esp/transport//use

It differs from the specification of setkey, where both entrust and
bypass are not used. Please refer to setkey for detail.

�

Returns:
A pointer to the allocated policy specification, or NULL if an error
occurs.

Examples:
#include <netinet6/ipsec.h>
#include <sys/socket.h>
#include <stdio.h>
#include <malloc.h>
#include <string.h>

int
main(void)
{

char *sadb;
char *policy = "in discard";
int len;

sadb = ipsec set policy(policy, strlen(policy));

if (sadb == NULL) {

1336 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ipsec set policy()

fprintf(stderr, "ipsec set policy: %s\n", ipsec strerror());
return 1;

}

len = ipsec get policylen(sadb);
printf("len: %d\n", len);

policy = NULL;
policy = ipsec dump policy(sadb, NULL);

if (policy == NULL) {
fprintf(stderr, "ipsec dump policy: %s\n", ipsec strerror());
return 1;

}

printf("policy: %s\n", policy);

free(policy);
free(sadb);

return 0;
}

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
IPsec, ipsec dump policy(), ipsec get policylen(), ipsec strerror()

setkey in the Utilities Reference

May 31, 2004 Manifests 1337

IP6 2004, QNX Software Systems Ltd.

Internet Protocol version 6

Synopsis:
#include <sys/socket.h>
#include <netinet/in.h>

int socket(AF INET6,
SOCK RAW,
proto);

Description:
The IP6 protocol is the network-layer protocol used by the Internet
Protocol version 6 family (AF INET6). Options may be set at the IP6
level when using higher-level protocols based on IP6 (such as TCP
and UDP). It may also be accessed through a “raw socket” when
developing new protocols, or special-purpose applications.

There are several IP6-level setsockopt()/getsockopt() options. They
are separated into the basic IP6 sockets API (defined in RFC2553),
and the advanced API (defined in RFC2292). The basic API looks
very similar to the API presented in IP. The advanced API uses
ancillary data and can handle more complex cases.

Specifying some of the socket options requires root privileges.�

Basic IP6 sockets API

You can use the IPV6 UNICAST HOPS option to set the hoplimit field
in the IP6 header on unicast packets. If you specify -1, the socket
manager uses the default value. If you specify a value of 0 to 255, the
packet uses the specified value as it hoplimit. Other values are
considered invalid and result in an error code of EINVAL. For
example:

int hlim = 60; /* max = 255 */
setsockopt(s, IPPROTO IPV6, IPV6 UNICAST HOPS,

&hlim, sizeof(hlim));

1338 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. IP6

The IP6 multicasting is supported only on AF INET6 sockets of type
SOCK DGRAM and SOCK RAW, and only on networks where the
interface driver supports multicasting.

The IPV6 MULTICAST HOPS option changes the hoplimit for
outgoing multicast datagrams in order to control the scope of the
multicasts:

unsigned int hlim; /* range: 0 to 255, default = 1 */
setsockopt(s, IPPROTO IPV6, IPV6 MULTICAST HOPS,

&hlim, sizeof(hlim));

Datagrams with a hoplimit of 1 aren’t forwarded beyond the local
network. Multicast datagrams with a hoplimit of 0 won’t be
transmitted on any network, but may be delivered locally if the
sending host belongs to the destination group and if multicast
loopback hasn’t been disabled on the sending socket (see below).
Multicast datagrams with a hoplimit greater than 1 may be forwarded
to other networks if a multicast router is attached to the local network.

For hosts with multiple interfaces, each multicast transmission is sent
from the primary network interface. The IPV6 MULTICAST IF option
overrides the default for subsequent transmissions from a given
socket:

unsigned int outif;
outif = if nametoindex("ne0");
setsockopt(s, IPPROTO IPV6, IPV6 MULTICAST IF,

&outif, sizeof(outif));

(The outif argument is an interface index of the desired interface, or 0
to specify the default interface.)

If a multicast datagram is sent to a group to which the sending host
itself belongs (on the outgoing interface), a copy of the datagram is,
by default, looped back by the IP6 layer for local delivery. The
IPV6 MULTICAST LOOP option gives the sender explicit control over
whether or not subsequent datagrams are looped back:

u char loop; /* 0 = disable, 1 = enable (default) */
setsockopt(s, IPPROTO IPV6, IPV6 MULTICAST LOOP,

&loop, sizeof(loop));

May 31, 2004 Manifests 1339

IP6 2004, QNX Software Systems Ltd.

This option improves performance for applications that may have no
more than one instance on a single host (such as a router daemon), by
eliminating the overhead of receiving their own transmissions. Don’t
use the IPV6 MULTICAST LOOP option if there might be more than
one instance of your application on a single host (e.g. a conferencing
program), or if the sender doesn’t belong to the destination group (e.g.
a time-querying program).

A multicast datagram sent with an initial hoplimit greater than 1 may
be delivered to the sending host on a different interface from that on
which it was sent, if the host belongs to the destination group on that
other interface. The loopback control option has no effect on such a
delivery.

A host must become a member of a multicast group before it can
receive datagrams sent to the group. To join a multicast group, use the
IPV6 JOIN GROUP option:

struct ipv6 mreq mreq6;
setsockopt(s, IPPROTO IPV6, IPV6 JOIN GROUP,

&mreq6, sizeof(mreq6));

Note that the mreq6 argument has the following structure:

struct ipv6 mreq {
struct in6 addr ipv6mr multiaddr;
unsigned int ipv6mr interface;

};

Set the ipv6mr interface member to 0 to choose the default multicast
interface, or set it to the interface index of a particular
multicast-capable interface if the host is multihomed. Membership is
associated with a single interface; programs running on multihomed
hosts may need to join the same group on more than one interface.

To drop a membership, use:

struct ipv6 mreq mreq6;
setsockopt(s, IPPROTO IPV6, IPV6 LEAVE GROUP,

&mreq6, sizeof(mreq6));

1340 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. IP6

The mreq6 argument contains the same values as used to add the
membership. Memberships are dropped when the socket is closed or
the process exits.

The IPV6 PORTRANGE option controls how ephemeral ports are
allocated for SOCK STREAM and SOCK DGRAM sockets. For
example:

int range = IPV6 PORTRANGE LOW; /* see <netinet/in.h> */
setsockopt(s, IPPROTO IPV6, IPV6 PORTRANGE, &range,

sizeof(range));

The IPV6 BINDV6ONLY option controls the behavior of the AF INET6
wildcard listening socket. The following example sets the option to 1:

int on = 1;
setsockopt(s, IPPROTO IPV6, IPV6 BINDV6ONLY,

&on, sizeof(on));

If you set the IPV6 BINDV6ONLY option to 1, the AF INET6 wildcard
listening socket accepts IP6 traffic only. If set to 0, the socket accepts
IPv4 traffic as well, as if it were from an IPv4 mapped address, such
as ::ffff:10.1.1.1. Note that if you set the option to 0, IPv4
access control gets much more complicated. For example, even if you
have no listening AF INET socket on port X, you’ll end up accepting
IPv4 traffic by an AF INET6 listening socket on the same port. The
default value for this flag is copied at socket-instantiation time, from
the net.inet6.ip6.bindv6only variable from the sysctl utility. The
option affects TCP and UDP sockets only.

Advanced IP6 sockets API

The advanced IP6 sockets API lets applications specify or obtain
details about the IP6 header and extension headers on packets. The
advanced API uses ancillary data for passing data to or from the
socket manager.

There are also setsockopt() / getsockopt() options to get optional
information on incoming packets:

� IPV6 PKTINFO

May 31, 2004 Manifests 1341

IP6 2004, QNX Software Systems Ltd.

� IPV6 HOPLIMIT

� IPV6 HOPOPTS

� IPV6 DSTOPTS

� IPV6 RTHDR

int on = 1;

setsockopt(fd, IPPROTO IPV6, IPV6 PKTINFO,
&on, sizeof(on));

setsockopt(fd, IPPROTO IPV6, IPV6 HOPLIMIT,
&on, sizeof(on));

setsockopt(fd, IPPROTO IPV6, IPV6 HOPOPTS,
&on, sizeof(on));

setsockopt(fd, IPPROTO IPV6, IPV6 DSTOPTS,
&on, sizeof(on));

setsockopt(fd, IPPROTO IPV6, IPV6 RTHDR,
&on, sizeof(on));

When any of these options are enabled, the corresponding data is
returned as control information by recvmsg(), as one or more ancillary
data objects.

If IPV6 PKTINFO is enabled, the destination IP6 address and the
arriving interface index are available via struct in6 pktinfo on
an ancillary data stream. You can pick the structure by checking for
an ancillary data item by setting the cmsg level argument to
IPPROTO IPV6 and the cmsg type argument to IPV6 PKTINFO.

If IPV6 HOPLIMIT is enabled, the hoplimit value on the packet is
made available to the application. The ancillary data stream contains
an integer data item with a cmsg level of IPPROTO IPV6 and a
cmsg type of IPV6 HOPLIMIT.

The inet6 option space() family of functions help you parse ancillary
data items for IPV6 HOPOPTS and IPV6 DSTOPTS. Similarly, the
inet6 rthdr space() family of functions help you parse ancillary data
items for IPV6 RTHDR.

1342 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. IP6

The IPV6 HOPOPTS and IPV6 DSTOPTS values may appear multiple
times on an ancillary data stream (note that the behavior is slightly
different from the specification). Other ancillary data items appear no
more than once.

�

You can pass ancillary data items with normal payload data, using the
sendmsg() function. Ancillary data items are parsed by the socket
manager, and are used to construct the IP6 header and extension
headers. For the cmsg level values listed above, the ancillary data
format is the same as the inbound case.

Additionally, you can specify a IPV6 NEXTHOP data object. The
IPV6 NEXTHOP ancillary data object specifies the next hop for the
datagram as a socket address structure. In the cmsghdr structure
containing this ancillary data, the cmsg level argument is
IPPROTO IPV6, the cmsg type argument is IPV6 NEXTHOP, and the
first byte of cmsg data is the first byte of the socket address structure.

If the socket address structure contains an IP6 address (e.g. the
sin6 family argument is AF INET6), then the node identified by that
address must be a neighbor of the sending host. If that address equals
the destination IP6 address of the datagram, then this is equivalent to
the existing SO DONTROUTE socket option.

For applications that don’t, or can’t use the sendmsg() or the
recvmsg() function, the IPV6 PKTOPTIONS socket option is defined.
Setting the socket option specifies any of the optional output fields:

setsockopt(fd, IPPROTO IPV6, IPV6 PKTOPTIONS,
&buf, len);

The buf argument points to a buffer containing one or more ancillary
data objects; the len argument is the total length of all these objects.
The application fills in this buffer exactly as if the buffer were being
passed to the sendmsg() function as control information.

The options set by calling setsockopt() for IPV6 PKTOPTIONS are
called “sticky” options because once set, they apply to all packets sent
on that socket. The application can call setsockopt() again to change

May 31, 2004 Manifests 1343

IP6 2004, QNX Software Systems Ltd.

all the sticky options, or it can call setsockopt() with a length of 0 to
remove all the sticky options for the socket.

The corresponding receive option:

getsockopt(fd, IPPROTO IPV6, IPV6 PKTOPTIONS,
&buf, &len);

returns a buffer with one or more ancillary data objects for all the
optional receive information that the application has previously
specified that it wants to receive. The buf argument points to the
buffer that the call fills in. The len argument is a pointer to a
value-result integer; when the function is called, the integer specifies
the size of the buffer pointed to by buf , and on return this integer
contains the actual number of bytes that were stored in the buffer. The
application processes this buffer exactly as if it were returned by
recvmsg() as control information.

Advanced API and TCP sockets

When using getsockopt() with the IPV6 PKTOPTIONS option and a
TCP socket, only the options from the most recently received segment
are retained and returned to the caller, and only after the socket option
has been set. The application isn’t allowed to specify ancillary data in
a call to sendmsg() on a TCP socket, and none of the ancillary data
described above is ever returned as control information by recvmsg()
on a TCP socket.

Conflict resolution

In some cases, there are multiple APIs defined for manipulating an
IP6 header field. A good example is the outgoing interface for
multicast datagrams: it can be manipulated by IPV6 MULTICAST IF
in the basic API, by IPV6 PKTINFO in the advanced API, and by the
sin6 scope id field of the socket address structure passed to the
sendto() function.

In QNX Neutrino, when conflicting options are given to the socket
manager, the socket manager gets the value in the following order:

1 options specified by using ancillary data

1344 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. IP6

2 options specified by a sticky option of the advanced API

3 options specified by using the basic API

4 options specified by a socket address.

The conflict resolution is undefined in the API specification and
depends on the implementation.

�

Raw IP6 Sockets

Raw IP6 sockets are connectionless, and are normally used with
sendto() and recvfrom(), although you can also use connect() to fix the
destination for future packets (in which case you can use read() or
recv(), and write() or send()).

If proto is 0, the default protocol IPPROTO RAW is used for outgoing
packets, and only incoming packets destined for that protocol are
received. If proto is nonzero, that protocol number is used on
outgoing packets and to filter incoming packets.

Outgoing packets automatically have an IP6 header prepended to
them (based on the destination address and the protocol number the
socket is created with). Incoming packets are received without the IP6
header or extension headers.

All data sent via raw sockets must be in network byte order; all data
received via raw sockets is in network-byte order. This differs from
the IPv4 raw sockets, which didn’t specify a byte ordering and
typically used the host’s byte order.

Another difference from IPv4 raw sockets is that complete packets
(i.e. IP6 packets with extension headers) can’t be read or written
using the IP6 raw sockets API. Instead, ancillary data objects are used
to transfer the extension headers, as described above.

All fields in the IP6 header that an application might want to change
(i.e. everything other than the version number) can be modified using
ancillary data and/or socket options by the application for output. All
fields in a received IP6 header (other than the version number and

May 31, 2004 Manifests 1345

IP6 2004, QNX Software Systems Ltd.

Next Header fields) and all extension headers are also made available
to the application as ancillary data on input. Hence, there’s no need
for a socket option similar to the IPv4 IP HDRINCL socket option.

When writing to a raw socket, the socket manager automatically
fragments the packet if the size exceeds the path MTU, inserting the
required fragmentation headers. On input, the socket manager
reassembles received fragments, so the reader of a raw socket never
sees any fragment headers.

Most IPv4 implementations give special treatment to a raw socket
created with a third argument to socket() of IPPROTO RAW, whose
value is normally 255. We note that this value has no special meaning
to an IP6 raw socket (and the IANA currently reserves the value of
255 when used as a next-header field).

For ICMP6 raw sockets, the socket manager calculates and inserts the
mandatory ICMP6 checksum.

For other raw IP6 sockets (i.e. for raw IP6 sockets created with a third
argument other than IPPROTO ICMPV6), the application must:

1 Set the new IPV6 CHECKSUM socket option to have the socket
manager compute and store a pseudo header checksum for
output.

2 Verify the received pseudo header checksum on input,
discarding the packet if the checksum is in error.

This option prevents applications from having to perform
source-address selection on the packets they send. The checksum
incorporates the IP6 pseudo-header, defined in Section 8.1 of RFC
2460. This new socket option also specifies an integer offset into the
user data of where the checksum is located.

int offset = 2;
setsockopt(fd, IPPROTO IPV6, IPV6 CHECKSUM,

&offset, sizeof(offset));

By default, this socket option is disabled. Setting the offset to -1 also
disables the option. Disabled means:

1346 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. IP6

1 The socket manager won’t calculate and store a checksum for
outgoing packets.

2 The socket manager kernel won’t verify a checksum for
received packets.

� Since the checksum is always calculated by the socket manager for
an ICMP6 socket, applications can’t generate ICMPv6 packets
with incorrect checksums (presumably for testing purposes) using
this API.

� The IPV6 NEXTHOP object/option isn’t fully implemented.

�

See also:
getsockopt(), ICMP6 protocol, INET6 protocol, recv(), send(),
setsockopt()

May 31, 2004 Manifests 1347

isalnum() 2004, QNX Software Systems Ltd.

Test a character to see if it’s alphanumeric

Synopsis:
#include <ctype.h>

int isalnum(int c);

Arguments:
c The character you want to test.

Library:
libc

Description:
The isalnum() function tests if the argument c is an alphanumeric
character (a to z, A to Z, or 0 to 9). An alphanumeric character is any
character for which isalpha() or isdigit() is true.

Returns:
Nonzero if c is a letter or decimal digit; otherwise, zero.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

int main(void)
{

if(isalnum(getchar())) {
printf("That’s alpha-numeric!\n");

}

return EXIT SUCCESS;
}

1348 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. isalnum()

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
The result is only valid for char arguments and EOF.

See also:
isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), tolower(), toupper()

May 31, 2004 Manifests 1349

isalpha() 2004, QNX Software Systems Ltd.

Test a character to see if it’s alphabetic

Synopsis:
#include <ctype.h>

int isalpha(int c);

Arguments:
c The character you want to test.

Library:
libc

Description:
The isalpha() function tests if the argument c is an alphabetic
character (a to z and A to Z). An alphabetic character is any character
for which isupper() or islower() is true.

Returns:
Nonzero if c is an alphabetic character; otherwise, zero.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

int main(void)
{

if(isalpha(getchar())) {
printf("That’s alphabetic\n");

}

return EXIT SUCCESS;
}

1350 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. isalpha()

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
isalnum(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), tolower(), toupper()

May 31, 2004 Manifests 1351

isascii() 2004, QNX Software Systems Ltd.

Test a character to see if it’s a 7-bit ASCII character

Synopsis:
#include <ctype.h>

int isascii(int c);

Arguments:
c The character you want to test.

Library:
libc

Description:
The isascii() function tests for an ASCII character (in the range 0 to
127).

Returns:
Nonzero if c is an ASCII character; otherwise, zero.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

char the chars[] = { ’A’, 0x80, ’Z’ };

#define SIZE sizeof(the chars) / sizeof(char)

int main(void)
{

int i;

for(i = 0; i < SIZE; i++) {
if(isascii(the chars[i])) {

printf("Char %c is an ASCII character\n",
the chars[i]);

} else {
printf("Char %c is not an ASCII character\n",

the chars[i]);
}

1352 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. isascii()

}

return EXIT SUCCESS;
}

produces the output:

Char A is an ASCII character
Char is not an ASCII character
Char Z is an ASCII character

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
isalpha(), isalnum(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), isxdigit(), tolower(), toupper()

May 31, 2004 Manifests 1353

isatty() 2004, QNX Software Systems Ltd.

Test to see if a file descriptor is associated with a terminal

Synopsis:
#include <unistd.h>

int isatty(int fildes);

Arguments:
fildes The file descriptor that you want to test.

Library:
libc

Description:
The isatty() function allows the calling process to determine if the file
descriptor fildes is associated with a terminal.

Returns:
0 The fildes file descriptor doesn’t refer to a terminal.

1 The fildes file descriptor refers to a terminal.

Examples:
/*
* The following program exits with a status of
* EXIT SUCCESS if stderr is a tty; otherwise,
* EXIT FAILURE
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(void)
{

return(isatty(3) ? EXIT SUCCESS : EXIT FAILURE);
}

1354 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. isatty()

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
open()

May 31, 2004 Manifests 1355

iscntrl() 2004, QNX Software Systems Ltd.

Test a character to see if it’s a control character

Synopsis:
#include <ctype.h>

int iscntrl(int c);

Arguments:
c The character you want to test.

Library:
libc

Description:
The iscntrl() function tests for any control character. An ASCII
control character is any character whose value is between 0 and 31.

Returns:
Nonzero if c is a control character; otherwise, zero.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

char the chars[] = { ’A’, 0x09, ’Z’ };

#define SIZE sizeof(the chars) / sizeof(char)

int main(void)
{

int i;

for(i = 0; i < SIZE; i++) {
if(iscntrl(the chars[i])) {

printf("Char %c is a Control character\n",
the chars[i]);

} else {
printf("Char %c is not a Control character\n",

the chars[i]);
}

1356 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iscntrl()

}

return EXIT SUCCESS;
}

produces the output:

Char A is not a Control character
Char is a Control character
Char Z is not a Control character

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
isalnum(), isalpha(), isdigit(), isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), tolower(), toupper()

May 31, 2004 Manifests 1357

isdigit() 2004, QNX Software Systems Ltd.

Test a character to see if it’s a decimal digit

Synopsis:
#include <ctype.h>

int isdigit(int c);

Arguments:
c The character you want to test.

Library:
libc

Description:
The isdigit() function tests for a decimal digit (characters 0 through
9).

Returns:
Nonzero if c is a decimal digit; otherwise, zero.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

char the chars[] = { ’A’, ’5’, ’$’ };

#define SIZE sizeof(the chars) / sizeof(char)

int main(void)
{

int i;

for(i = 0; i < SIZE; i++) {
if(isdigit(the chars[i])) {

printf("Char %c is a digit character\n",
the chars[i]);

} else {
printf("Char %c is not a digit character\n",

the chars[i]);
}

1358 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. isdigit()

}

return EXIT SUCCESS;
}

produces the output:

Char A is not a digit character
Char 5 is a digit character
Char $ is not a digit character

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
isalnum(), isalpha(), iscntrl(), isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), tolower(), toupper()

May 31, 2004 Manifests 1359

isfdtype() 2004, QNX Software Systems Ltd.

Determine whether a file descriptor refers to a socket

Synopsis:
#include <sys/stat.h>

int isfdtype(int filedes,
int fdtype);

Arguments:
fildes The file descriptor that you want to test.

fdtype The properties you want to test for. The valid values for
fdtype include:

� S IFSOCK — test whether filedes is a socket.

Library:
libc

Description:
The isfdtype() function determines whether the file descriptor filedes
has the properties identified by fdtype.

Returns:
1 The filedes file descriptor matches fdtype.

0 The filedes file descriptor doesn’t match fdtype.

-1 An error occurred (errno is set).

Errors:
EBADF Invalid file descriptor filedes.

1360 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. isfdtype()

Classification:
POSIX 1003.1g (draft)

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
isatty(), socket(), stat()

May 31, 2004 Manifests 1361

isgraph() 2004, QNX Software Systems Ltd.

Test a character to see if it’s any printable character except a space

Synopsis:
#include <ctype.h>

int isgraph(int c);

Arguments:
c The character you want to test.

Library:
libc

Description:
The isgraph() function tests for any printable character except a space
(’ ’). The isprint() function is similar, except that the space character
is also included.

Returns:
Nonzero if c is a printable character (except a space); otherwise, zero.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

char the chars[] = { ’A’, 0x09, ’ ’, 0x7d };

#define SIZE sizeof(the chars) / sizeof(char)

int main(void)
{

int i;

for(i = 0; i < SIZE; i++) {
if(isgraph(the chars[i])) {

printf("Char %c is a printable character\n",
the chars[i]);

} else {
printf("Char %c is not a printable character\n",

1362 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. isgraph()

the chars[i]);
}

}

return EXIT SUCCESS;
}

produces the output:

Char A is a printable character
Char is not a printable character
Char is not a printable character
Char } is a printable character

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
isalnum(), isalpha(), iscntrl(), isdigit(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), tolower(), toupper()

May 31, 2004 Manifests 1363

isinf(), isinff() 2004, QNX Software Systems Ltd.

Test for infinity

Synopsis:
#include <math.h>

int isinf (double x);

int isinff (float x);

Arguments:
x The number that you want to test.

Library:
libm

Description:
The isinf() and isinff() functions test to see if a number is “infinity.”

Returns:
1 The value of x is infinity.

≠ 1 The value of x isn’t infinity.

Examples:
#include <stdio.h>
#include <errno.h>
#include <inttypes.h>
#include <math.h>
#include <fpstatus.h>

int main(int argc, char** argv)
{

double a, b, c, d;

a = 2;
b = -0.5;
c = NAN;
fp exception mask(FP EXC DIVZERO, 1);
d = 1.0/0.0;
printf("%f is %s \n", a,

1364 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. isinf(), isinff()

(isinf(a)) ? "infinite" : "not infinite");
printf("%f is %s \n", b,

(isinf(b)) ? "infinite" : "not infinite");
printf("%f is %s \n", c,

(isinf(c)) ? "infinite" : "not infinite");
printf("%f is %s \n", d,

(isinf(d)) ? "infinite" : "not infinite");

return(0);
}

produces the output:

2.000000 is not infinite
-0.500000 is not infinite
NAN is not infinite
Inf is infinite

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
sin(), sinh()

May 31, 2004 Manifests 1365

islower() 2004, QNX Software Systems Ltd.

Test a character to see if it’s a lowercase letter

Synopsis:
#include <ctype.h>

int islower(int c);

Arguments:
c The character you want to test.

Library:
libc

Description:
The islower() function tests for any lowercase letter a through z.

Returns:
Nonzero if c is a lowercase letter; otherwise, zero.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

char the chars[] = { ’A’, ’a’, ’z’, ’Z’ };

#define SIZE sizeof(the chars) / sizeof(char)

int main(void)
{

int i;

for(i = 0; i < SIZE; i++) {
if(islower(the chars[i])) {

printf("Char %c is a lowercase character\n",
the chars[i]);

} else {
printf("Char %c is not a lowercase character\n",

the chars[i]);
}

}

1366 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. islower()

return EXIT SUCCESS;
}

produces the output:

Char A is not a lowercase character
Char a is a lowercase character
Char z is a lowercase character
Char Z is not a lowercase character

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), tolower(), toupper()

May 31, 2004 Manifests 1367

isnan(), isnanf() 2004, QNX Software Systems Ltd.

Test for not-a-number (NAN)

Synopsis:
#include <math.h>

int isnan (double x);

int isnanf (float x);

Arguments:
x The number you want to test.

Library:
libm

Description:
The isnan() and isnanf() functions determine if x is Not-A-Number
(NAN).

Returns:
1 The value of x is NAN.

≠ 1 The value of x is a number.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <inttypes.h>
#include <math.h>
#include <fpstatus.h>

int main(int argc, char** argv)
{
double a, b, c, d;

a = 2;
b = -0.5;
c = NAN;

1368 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. isnan(), isnanf()

fp exception mask(FP EXC DIVZERO, 1);
d = 1.0/0.0;
printf("%f is %s \n", a,

(isnan(a)) ? "not a number" : "a number");
printf("%f is %s \n", b,

(isnan(b)) ? "not a number" : "a number");
printf("%f is %s \n", c,

(isnan(c)) ? "not a number" : "a number");
printf("%f is %s \n", d,

(isnan(d)) ? "not a number" : "a number");
return EXIT SUCCESS;

}

produces the output:

2.000000 is a number
-0.500000 is a number
NAN is not a number
Inf is a number

Classification:
isnan() is standard Unix; isnanf() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
finite()

May 31, 2004 Manifests 1369

isprint() 2004, QNX Software Systems Ltd.

Test a character to see if it’s any printable character, including a space

Synopsis:
#include <ctype.h>

int isprint(int c);

Arguments:
c The character you want to test.

Library:
libc

Description:
The isprint() function tests for any printable character, including a
space (’ ’). The isgraph() function is similar, except that the space
character is excluded from the character set being tested.

Returns:
Nonzero if c is a printable character; otherwise, zero.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

char the chars[] = { ’A’, 0x09, ’ ’, 0x7d };

#define SIZE sizeof(the chars) / sizeof(char)

int main(void)
{

int i;

for(i = 0; i < SIZE; i++) {
if(isprint(the chars[i])) {

printf("Char %c is a printable character\n",
the chars[i]);

} else {
printf("Char %c is not a printable character\n",

1370 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. isprint()

the chars[i]);
}

}

return EXIT SUCCESS;
}

produces the output:

Char A is a printable character
Char is not a printable character
Char is a printable character
Char } is a printable character

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), ispunct(),
isspace(), isupper(), isxdigit(), tolower(), toupper()

May 31, 2004 Manifests 1371

ispunct() 2004, QNX Software Systems Ltd.

Test a character to see if it’s any punctuation character

Synopsis:
#include <ctype.h>

int ispunct(int c);

Arguments:
c The character you want to test.

Library:
libc

Description:
The ispunct() function tests for any punctuation character such as a
comma (,) or a period (.).

Returns:
Nonzero if c is punctuation; otherwise, zero.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

char the chars[] = { ’A’, ’!’, ’.’, ’,’, ’:’, ’;’ };

#define SIZE sizeof(the chars) / sizeof(char)

int main(void)
{

int i;

for(i = 0; i < SIZE; i++) {
if(ispunct(the chars[i])) {

printf("Char %c is a punctuation character\n",
the chars[i]);

} else {
printf("Char %c is not a punctuation character\n",

the chars[i]);
}

1372 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ispunct()

}

return EXIT SUCCESS;
}

produces the output:

Char A is not a punctuation character
Char ! is a punctuation character
Char . is a punctuation character
Char , is a punctuation character
Char : is a punctuation character
Char ; is a punctuation character

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
isspace(), isupper(), isxdigit(), tolower(), toupper()

May 31, 2004 Manifests 1373

isspace() 2004, QNX Software Systems Ltd.

Test a character to see if it’s a whitespace character

Synopsis:
#include <ctype.h>

int isspace(int c);

Arguments:
c The character you want to test.

Library:
libc

Description:
The isspace() function tests for the following whitespace characters:

’ ’ space

’\f’ form feed

’\n’ newline or linefeed

’\r’ carriage return

’\t’ horizontal tab

’\v’ vertical tab

Returns:
Nonzero if c is a whitespace character; otherwise, zero.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

char the chars[] = { ’A’, 0x09, ’ ’, 0x7d };

1374 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. isspace()

#define SIZE sizeof(the chars) / sizeof(char)

int main(void)
{

int i;

for(i = 0; i < SIZE; i++) {
if(isspace(the chars[i])) {

printf("Char %c is a space character\n",
the chars[i]);

} else {
printf("Char %c is not a space character\n",

the chars[i]);
}

}

return EXIT SUCCESS;
}

This program produces the output:

Char A is not a space character
Char is a space character
Char is a space character
Char } is not a space character

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1375

isspace() 2004, QNX Software Systems Ltd.

See also:
isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isupper(), isxdigit(), tolower(), toupper()

1376 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. isupper()
Test a character to see if it’s an uppercase letter

Synopsis:
#include <ctype.h>

int isupper(int c);

Arguments:
c The character you want to test.

Library:
libc

Description:
The isupper() function tests for any uppercase letter A through Z.

Returns:
Nonzero if c is an uppercase letter; otherwise, zero.

Examples:
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>

char the chars[] = { ’A’, ’a’, ’z’, ’Z’ };

#define SIZE sizeof(the chars) / sizeof(char)

int main(void)
{

int i;

for(i = 0; i < SIZE; i++) {
if(isupper(the chars[i])) {

printf("Char %c is an uppercase character\n",
the chars[i]);

} else {
printf("Char %c is not an uppercase character\n",

the chars[i]);
}

}

May 31, 2004 Manifests 1377

isupper() 2004, QNX Software Systems Ltd.

return EXIT SUCCESS;
}

produces the output:

Char A is an uppercase character
Char a is not an uppercase character
Char z is not an uppercase character
Char Z is an uppercase character

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isxdigit(), tolower(), toupper()

1378 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iswalnum()
Test a wide character to see if it’s alphanumeric

Synopsis:
#include <wctype.h>

int iswalnum(wint t wc);

Arguments:
wc The wide character you want to test.

Library:
libc

Description:
The iswalnum() function tests if the argument wc is an alphanumeric
wide character of the class alpha or digit. In the C locale, they’re a
to z, A to Z, 0 to 9.

Returns:
A nonzero value if the character is a member of the class alpha or
digit, or 0 otherwise.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1379

iswalnum() 2004, QNX Software Systems Ltd.

Caveats:
The result is valid only for wchar t arguments and WEOF.

See also:
setlocale()

“Character manipulation functions” and “Wide-character functions”
in the summary of functions chapter.

1380 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iswalpha()
Test a wide character to see if it’s alphabetic

Synopsis:
#include <wctype.h>

int iswalpha(wint t wc);

Arguments:
wc The wide character you want to test.

Library:
libc

Description:
The iswalpha() function tests if the argument wc is an alphabetic wide
character of the class alpha. In the C locale, they are: a to z, A to Z.

Returns:
A nonzero value if the character is a member of the class alpha, or 0
otherwise.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1381

iswalpha() 2004, QNX Software Systems Ltd.

Caveats:
The result is valid only for wchar t arguments and WEOF.

See also:
setlocale()

“Character manipulation functions” and “Wide-character functions”
in the summary of functions chapter.

1382 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iswcntrl()
Test a wide character to see if it’s a control character

Synopsis:
#include <wctype.h>

int iswcntrl(wint t wc);

Arguments:
wc The wide character you want to test.

Library:
libc

Description:
The iswcntrl() function tests if the argument wc is a control wide
character of the class cntrl. In the C locale, this class consists of the
ASCII characters from 0 through 31.

Returns:
A nonzero value if the character is a member of the class cntrl, or 0
otherwise.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1383

iswcntrl() 2004, QNX Software Systems Ltd.

Caveats:
The result is valid only for wchar t arguments and WEOF.

See also:
setlocale()

“Character manipulation functions” and “Wide-character functions”
in the summary of functions chapter.

1384 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iswctype()
Test a wide character to see if it’s a given character class

Synopsis:
#include <wctype.h>

int iswctype(wint t wc,
wctype t charclass);

Arguments:
wc The wide character you want to test.

charclass The character class you want to test for. Get this class
by calling wctype().

Library:
libc

Description:
The iswctype() function tests if the argument wc is a member of one
or several character classes.

This function: Is equivalent to:

iswalnum(wc) iswctype(wc , wctype("alnum")
)

iswalpha(wc) iswctype(wc , wctype("alpha")
)

ispunct(wc) iswctype(wc , wctype("punct")
)

The results are unreliable if you didn’t use wctype() to obtain
charclass, or if a call to setlocale() affects LC CTYPE.

�

May 31, 2004 Manifests 1385

iswctype() 2004, QNX Software Systems Ltd.

Returns:
A nonzero value if the character is a member of the specified
character class (or classes), or zero if the character isn’t a member or
charclass is 0.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The result is valid only for wchar t arguments and WEOF.

See also:
setlocale()

“Character manipulation functions” and “Wide-character functions”
in the summary of functions chapter.

1386 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iswdigit()
Test a wide character to see if it’s a decimal digit

Synopsis:
#include <wctype.h>

int iswdigit(wint t wc);

Arguments:
wc The wide character that you want to test.

Library:
libc

Description:
The iswdigit() function tests if the argument wc is a decimal digit
wide character of the class digit. In the C locale, this class consists
of the characters 0 through 9.

Returns:
A nonzero value if the character is a member of the class digit, or 0
otherwise.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1387

iswdigit() 2004, QNX Software Systems Ltd.

Caveats:
The result is valid only for wchar t arguments and WEOF.

See also:
setlocale()

“Character manipulation functions” and “Wide-character functions”
in the summary of functions chapter.

1388 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iswgraph()
Test a wide character to see if it’s any printable character except space

Synopsis:
#include <wctype.h>

int iswgraph(wint t wc);

Arguments:
wc The wide character you want to test.

Library:
libc

Description:
The iswgraph() function tests if the argument wc is a graphical wide
character of the class graph. In the C locale, this class consists of all
the printable characters, except the space character.

Returns:
A nonzero value if the character is a member of the class graph, or 0
otherwise.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1389

iswgraph() 2004, QNX Software Systems Ltd.

Caveats:
The result is valid only for wchar t arguments and WEOF.

See also:
setlocale()

“Character manipulation functions” and “Wide-character functions”
in the summary of functions chapter.

1390 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iswlower()
Test a wide character to see if it’s a lowercase letter

Synopsis:
#include <wctype.h>

int iswlower(wint t wc);

Arguments:
wc The wide character you want to test.

Library:
libc

Description:
The iswlower() function tests if the argument wc is a lowercase wide
character of the class lower. In the C locale, this class consists of the
characters from a through z.

Returns:
A nonzero value if the character is a member of the class lower, or 0
otherwise.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1391

iswlower() 2004, QNX Software Systems Ltd.

Caveats:
The result is valid only for wchar t arguments and WEOF.

See also:
setlocale()

“Character manipulation functions” and “Wide-character functions”
in the summary of functions chapter.

1392 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iswprint()
Test a wide character to see if it’s any printable character, including space

Synopsis:
#include <wctype.h>

int iswprint(wint t wc);

Arguments:
wc The wide character you want to test.

Library:
libc

Description:
The iswprint() function tests if the argument wc is a printable wide
character of the class print. In the C locale, this class consists of all
the printable characters, including the space character.

Returns:
A nonzero value if the character is a member of the class print, or 0
otherwise.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1393

iswprint() 2004, QNX Software Systems Ltd.

Caveats:
The result is valid only for wchar t arguments and WEOF.

See also:
setlocale()

“Character manipulation functions” and “Wide-character functions”
in the summary of functions chapter.

1394 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iswpunct()
Test a wide character to see if it’s any punctuation character

Synopsis:
#include <wctype.h>

int iswpunct(wint t wc);

Arguments:
wc The wide character you want to test.

Library:
libc

Description:
The iswpunct() function tests if the argument wc is a punctuation wide
character of the class punct. In the C locale, this class includes the
comma (,) and the period (.), among others.

Returns:
A nonzero value if the character is a member of the class punct, or 0
otherwise.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1395

iswpunct() 2004, QNX Software Systems Ltd.

Caveats:
The result is valid only for wchar t arguments and WEOF.

See also:
setlocale()

“Character manipulation functions” and “Wide-character functions”
in the summary of functions chapter.

1396 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iswspace()
Test a wide character to see if it’s a whitespace character

Synopsis:
#include <wctype.h>

int iswspace(wint t wc);

Arguments:
wc The wide character you want to test.

Library:
libc

Description:
The iswspace() function tests if the argument wc is a whitespace wide
character of the class space. In the C locale, this class includes the
space character, \f (form feed), \n (newline or linefeed), \r (carriage
return), \t (horizontal tab), and \v (vertical tab).

Returns:
A nonzero value if the character is a member of the class space, or 0
otherwise.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1397

iswspace() 2004, QNX Software Systems Ltd.

Caveats:
The result is valid only for wchar t arguments and WEOF.

See also:
setlocale()

“Character manipulation functions” and “Wide-character functions”
in the summary of functions chapter.

1398 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iswupper()
Test a character to see if it’s an uppercase letter

Synopsis:
#include <wctype.h>

int iswupper(wint t wc);

Arguments:
wc The wide character you want to test.

Library:
libc

Description:
The iswupper() function tests if the argument wc is an uppercase wide
character of the class upper. In the C locale, this class includes the
characters from A through Z.

Returns:
A nonzero value if the character is a member of the class upper, or 0
otherwise.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1399

iswupper() 2004, QNX Software Systems Ltd.

Caveats:
The result is valid only for wchar t arguments and WEOF.

See also:
setlocale()

“Character manipulation functions” and “Wide-character functions”
in the summary of functions chapter.

1400 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. iswxdigit()
Test a wide character to see if it’s a hexadecimal digit

Synopsis:
#include <wctype.h>

int iswxdigit(wint t wc);

Arguments:
wc The wide character you want to test.

Library:
libc

Description:
The iswxdigit() function tests if the argument wc is a hexadecimal
wide character of the class xdigit. In the C locale, this class
includes the characters 0 to 9, and A to F.

Returns:
A nonzero value if the character is a member of the class xdigit, or
0 otherwise.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1401

iswxdigit() 2004, QNX Software Systems Ltd.

Caveats:
The result is valid only for wchar t arguments and WEOF.

See also:
setlocale()

“Character manipulation functions” and “Wide-character functions”
in the summary of functions chapter.

1402 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. isxdigit()
Test a character to see if it’s a hexadecimal digit

Synopsis:
#include <ctype.h>

int isxdigit(int c);

Arguments:
c The character you want to test.

Library:
libc

Description:
The isxdigit() function tests for any hexadecimal-digit character.
These characters are the digits 0 through 9 and the letters a through f
(or A through F).

Returns:
Nonzero if c is a hexadecimal digit; otherwise, zero.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

char the chars[] = { ’A’, ’5’, ’$’ };

#define SIZE sizeof(the chars) / sizeof(char)

int main(void)
{

int i;

for(i = 0; i < SIZE; i++) {
if(isxdigit(the chars[i])) {

printf("Char %c is a hexadecimal digit",
the chars[i]);

} else {
printf("Char %c is not a hexadecimal digit",

May 31, 2004 Manifests 1403

isxdigit() 2004, QNX Software Systems Ltd.

the chars[i]);
}

}

return EXIT SUCCESS;
}

produces the output:

Char A is a hexadecimal digit character
Char 5 is a hexadecimal digit character
Char $ is not a hexadecimal digit character

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), tolower(), toupper()

1404 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. itoa()
Convert an integer into a string, using a given base

Synopsis:
#include <stdlib.h>

char* itoa(int value,
char* buffer,
int radix);

Arguments:
value The value to convert into a string.

buffer A buffer in which the function stores the string. The size of
the buffer must be at least:

8 � sizeof(int) + 1

bytes when converting values in base 2 (binary).

radix The base to use when converting the number.

If the value of radix is 10, and value is negative, then a
minus sign is prepended to the result.

Library:
libc

Description:
The itoa() function converts the integer value into the equivalent
string in base radix notation, storing the result in the specified buffer.
The function terminates the string with a NUL character.

Returns:
A pointer to the resulting string.

May 31, 2004 Manifests 1405

itoa() 2004, QNX Software Systems Ltd.

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

char buffer[20];
int base;

for(base = 2; base <= 16; base += 2) {
printf("%2d %s\n", base,

itoa(12765, buffer, base));
}

return EXIT SUCCESS;
}

produces the output:

2 11000111011101
4 3013131
6 135033
8 30735

10 12765
12 7479
14 491b
16 31dd

Classification:
QNX 4

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

1406 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. itoa()

See also:
atoi(), atol(), ltoa(), sscanf(), strtol(), strtoul(), ultoa(), utoa()

May 31, 2004 Manifests 1407

j0(), j0f() 2004, QNX Software Systems Ltd.

Compute a Bessel function of the first kind

Synopsis:
#include <math.h>

double j0(double x);

float j0f(float x);

Arguments:
x The number that you want to compute the Bessel function for.

Library:
libbessel

Description:
Compute the Bessel function of the first kind for x.

Returns:
The result of the Bessel function of x.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

int main(void)
{

double x, y, z;

x = j0(2.4);
y = y1(1.58);
z = jn(3, 2.4);

1408 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. j0(), j0f()

printf("j0(2.4) = %f, y1(1.58) = %f\n", x, y);
printf("jn(3,2.4) = %f\n", z);

return EXIT SUCCESS;
}

Classification:
j0() is standard Unix; j0f() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, j1(), jn(), y0(), y1(), yn()

May 31, 2004 Manifests 1409

j1(), j1f() 2004, QNX Software Systems Ltd.

Compute a Bessel function of the first kind

Synopsis:
#include <math.h>

double j1(double x);

float j1f(float x);

Arguments:
x The number that you want to compute the Bessel function for.

Library:
libbessel

Description:
Compute the Bessel function of the first kind for x.

Returns:
The result of the Bessel function of x.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Classification:
j1() is standard Unix; j1f() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

continued. . .

1410 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. j1(), j1f()

Safety

Signal handler No

Thread Yes

See also:
errno, j0(), jn(), y0(), y1(), yn()

May 31, 2004 Manifests 1411

jn(), jnf() 2004, QNX Software Systems Ltd.

Compute a Bessel function of the first kind

Synopsis:
#include <math.h>

double jn(int n, double x);

float jnf(int n, float x);

Arguments:
n, x The numbers that you want to compute the Bessel function

for.

Library:
libbessel

Description:
Compute the Bessel function of the first kind for n and x.

Returns:
The result of the Bessel function of n and x.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

int main(void)
{

double x, y, z;

x = j0(2.4);

1412 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. jn(), jnf()

y = y1(1.58);
z = jn(3, 2.4);

printf("j0(2.4) = %f, y1(1.58) = %f\n", x, y);
printf("jn(3,2.4) = %f\n", z);

return EXIT SUCCESS;
}

Classification:
jn() is standard Unix; jnf() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, j0(), j1(), y0(), y1(), yn()

May 31, 2004 Manifests 1413

jrand48() 2004, QNX Software Systems Ltd.

Generate a pseudo-random signed long integer in a thread-safe manner

Synopsis:
#include <stdlib.h>

long jrand48(unsigned short xsubi[3]);

Arguments:
xsubi An array that comprises the 48 bits of the initial value that

you want to use.

Library:
libc

Description:
The jrand48() function uses a linear congruential algorithm and 48-bit
integer arithmetic to generate a signed long integer uniformly
distributed over the interval [-231, 231). It’s a thread-safe version of
mrand48().

The xsubi array should contain the desired initial value; this makes
jrand48() thread-safe, and lets you start a sequence of random
numbers at any known value.

Returns:
A pseudo-random long integer.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

continued. . .

1414 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. jrand48()

Safety

Signal handler No

Thread Yes

See also:
drand48(), erand48(), lcong48(), lrand48(), mrand48(), nrand48(),
seed48(), srand48()

May 31, 2004 Manifests 1415

kill() 2004, QNX Software Systems Ltd.

Send a signal to a process or a group of processes

Synopsis:
#include <sys/types.h>
#include <signal.h>

int kill(pid t pid,
int sig);

Arguments:
pid The ID of the process or process group that you want to send

a signal to:

If pid is: Then sig is sent to:

> 0 The single process with that process ID

0 All processes that are in the same process group as
the sending process

< 0 Every process that’s a member of the process group
-pid

sig Zero, or the signal that you want to send. For a complete list
of signals, see “POSIX signals” in the documentation for
SignalAction().

Library:
libc

Description:
The kill() function sends the signal sig to a process or group of
processes specified by pid. If sig is zero, no signal is sent, but the pid
is still checked for validity.

For a process to have permission to send a signal to a process, the real
or effective user ID of the sending process must either:

1416 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. kill()

� match the real or effective user ID of the receiving process

Or:

� equal zero.

If the value of pid causes sig to be generated for the sending process,
and if sig isn’t blocked, either sig or at least one pending unblocked
signal is delivered before the kill function returns.

This call doesn’t block. However, in the network case, lower priority
threads may run.

Returns:
Zero, or -1 if an error occurs (errno is set).

Errors:
EAGAIN Insufficient system resources are available to deliver the

signal.

EINVAL The sig is invalid.

EPERM The process doesn’t have permission to send this signal
to any receiving process.

ESRCH The given pid doesn’t exist.

Examples:
See sigprocmask().

Classification:
POSIX 1003.1

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 1417

kill() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
getpid(), killpg(), setsid(), sigaction(), signal(), SignalKill(),
sigqueue()

1418 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. killpg()
Send a signal to a process group

Synopsis:
#include <sys/types.h>
#include <signal.h>

int killpg(pid t pgrp,
int sig);

Arguments:
pid The ID of the process group that you want to send a signal to.

sig Zero, or the signal that you want to send. For a complete list
of signals, see “POSIX signals” in the documentation for
SignalAction().

Library:
libc

Description:
The killpg() function sends the signal sig to the process group
specified by pgrp. If sig is zero, no signal is sent, but pgrp is still
checked for validity.

If pgrp is greater than 1, killpg (pgrp, sig) is equivalent to kill (−pgrp,
sig).

Returns:
Zero, or -1 if an error occurs (errno is set).

Errors:
EAGAIN Insufficient system resources are available to deliver the

signal.

EINVAL The signal sig is invalid or not supported.

May 31, 2004 Manifests 1419

killpg() 2004, QNX Software Systems Ltd.

EPERM The process doesn’t have permission to send this signal
to any receiving process.

ESRCH No process group can be found corresponding to the
specified pgrp or pgrp is less than or equal to 1.

Examples:
See sigprocmask().

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
getpid(), kill(), setsid(), sigaction(), signal(), SignalKill(), sigqueue()

1420 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. labs()
Calculate the absolute value of a long integer

Synopsis:
#include <stdlib.h>

long labs(long j);

Arguments:
j The number you want the absolute value of.

Library:
libc

Description:
The labs() function returns the absolute value of its long-integer
argument j.

Returns:
The absolute value of j.

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

long x, y;

x = -50000;
y = labs(x);
printf("labs(%d) = %d\n", x, y);
return EXIT SUCCESS;

}

produces the output:

labs(-50000) = 50000

May 31, 2004 Manifests 1421

labs() 2004, QNX Software Systems Ltd.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
abs(), cabs(), fabs()

1422 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. lchown()
Change the user ID and group ID of a file or symbolic link

Synopsis:
#include <sys/types.h>
#include <unistd.h>

int lchown(const char * path,
uid t owner,
gid t group);

Arguments:
path The name of the file whose ownership you want to change.

owner The user ID of the new owner.

group The group ID of the new owner.

Library:
libc

Description:
The lchown() function changes the user ID and group ID of the file
specified by path to be the numeric values contained in owner and
group, respectively. It’s similar to chown(), except in the case where
the named file is a symbolic link. In this case, lchown() changes the
ownership of the symbolic link file itself, while chown() changes the
ownership of the file or directory to which the symbolic link refers.

Only processes with an effective user ID equal to the user ID of the
file or with appropriate privileges (for example, the superuser) may
change the ownership of a file.

In QNX Neutrino, the POSIX CHOWN RESTRICTED flag is
enforced. This means that only the superuser may change the
ownership of a file. The group of a file may be changed by the
superuser, or also by a process with the effective user ID equal to the
user ID of the file, if (and only if) owner is equal to the user ID of the
file and group is equal to the effective group ID of the calling process.

May 31, 2004 Manifests 1423

lchown() 2004, QNX Software Systems Ltd.

If the path argument refers to a regular file, the set-user-ID (S ISUID)
and set-group-ID (S ISGID) bits of the file mode are cleared, if the
function is successful.

If lchown() succeeds, the st ctime field of the file is marked for
update.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EACCES Search permission is denied on a component of the

path prefix.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of the path string exceeds PATH MAX, or a
pathname component is longer than NAME MAX.

ENOENT A component of the path prefix doesn’t exist, or the
path arguments points to an empty string.

ENOSYS The lchown() function isn’t implemented for the
filesystem specified in path.

ENOTDIR A component of the path prefix isn’t a directory.

EPERM The effective user ID does not match the owner of the
file, or the calling process does not have appropriate
privileges.

EROFS The named file resides on a read-only filesystem.

1424 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. lchown()

Examples:
/*
* Change the ownership of a list of files
* to the current user/group
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int main(int argc, char **argv)
{

int i;
int ecode = 0;

for(i = 1; i < argc; i++) {
if(lchown(argv[i], getuid(), getgid()) == -1) {

perror(argv[i]);
ecode++;

}
}
return(ecode);

}

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
chmod(), chown(), errno, fchown(), fstat(), open(), stat()

May 31, 2004 Manifests 1425

lcong48() 2004, QNX Software Systems Ltd.

Initialize a sequence of pseudo-random numbers

Synopsis:
#include <stdlib.h>

void lcong48(unsigned short int param[7]);

Arguments:
param An array of 7 short integers that are used to initialize the

sequence;

� The first three entries are used to initialize the seed.

� The next three are used to initialize the multiplicand.

� The last entry is used to initialize the addend. You can’t
use values greater than 0xFFFF as the addend.

Library:
libc

Description:
The lcong48() function gives you full control over the multiplicand
and addend used in drand48(), erand48(), lrand48(), nrand48(),
mrand48(), and jrand48(), and the seed used in drand48(), lrand48(),
and mrand48().

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

1426 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. lcong48()

See also:
drand48(), erand48(), jrand48(), lrand48(), mrand48(), nrand48(),
seed48(), srand48()

May 31, 2004 Manifests 1427

ldexp(), ldexpf() 2004, QNX Software Systems Ltd.

Multiply a floating-point number by an integral power of 2

Synopsis:
#include <math.h>

double ldexp(double x,
int exp);

float ldexp(float x,
int exp);

Arguments:
x A floating-point number.

exp The exponent of 2 to multiply x by.

Library:
libm

Description:
These functions multiply the floating-point number x by 2exp.

A range error may occur.

Returns:
x � 2exp

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

1428 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ldexp(), ldexpf()

int main(void)
{

double value;

value = ldexp(4.7072345, 5);
printf("%f\n", value);

return EXIT SUCCESS;
}

produces the output:

150.631504

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
frexp(), modf()

May 31, 2004 Manifests 1429

ldiv() 2004, QNX Software Systems Ltd.

Perform division on long integers

Synopsis:
#include <stdlib.h>

ldiv t ldiv(long int numer,
long int denom);

Arguments:
numer The numerator.

denom The denominator.

Library:
libc

Description:
The ldiv() function calculates the quotient and remainder of:

numer � denom

Returns:
A structure of type ldiv t that contains the following members:

typedef struct {
long int quot; /* quotient */
long int rem; /* remainder */

} ldiv t;

Examples:
#include <stdio.h>
#include <stdlib.h>

void print time(long ticks)
{

ldiv t sec ticks;
ldiv t min sec;

1430 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ldiv()

sec ticks = ldiv(ticks, 100);
min sec = ldiv(sec ticks.quot, 60);

printf("It took %d minutes and %d seconds.\n",
min sec.quot, min sec.rem);

}

int main(void)
{

print time(86712);

return EXIT SUCCESS;
}

produces the output:

It took 14 minutes and 27 seconds.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
div()

May 31, 2004 Manifests 1431

lfind() 2004, QNX Software Systems Ltd.

Find an entry in a linear search table

Synopsis:
#include <search.h>

void * lfind(const void * key,
const void * base,
unsigned * num,
unsigned width,
int (* compare)(

const void * element1,
const void * element2));

Arguments:
key The object to search for.

base A pointer to the first element in the table.

num A pointer to an integer containing the current number of
elements in the table.

width The size of an element, in bytes.

compare A pointer to a user-supplied function that lfind() calls to
compare an array element with the key. The arguments
to the comparison function are:

� element1 — the same pointer as key

� element2 — a pointer to one of the array elements.

The comparison function must return 0 if element1
equals element2, or a nonzero value if the elements
aren’t equal.

Library:
libc

1432 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. lfind()

Description:
The lfind() function returns a pointer into a table indicating where an
entry may be found.

The lfind() function is the same as lsearch(), except that if the entry
isn’t found, it isn’t added to the table, and a NULL pointer is returned.

�

Returns:
A pointer to the matching element, or NULL if there’s no match or an
error occurred.

Examples:
This example program lets you know if the first command-line
argument is a C keyword (assuming you fill in the keywords array
with a complete list of C keywords):

#include <stdio.h>

#include <stdlib.h>
#include <string.h>

#include <search.h>

static const char *keywords[] = {

"auto",

"break",
"case",

"char",

/* . */
/* . */

/* . */

"while"
};

int compare(const void *, const void *);

int main(int argc, const char *argv[])
{

unsigned num = 5;

char *ptr;

if(argc <= 1) return EXIT FAILURE;

ptr = lfind(&argv[1], keywords, &num, sizeof(char **), compare);

if(ptr == NULL) {

printf("’%s’ is not a C keyword\n", argv[1]);

return EXIT FAILURE;

} else {

May 31, 2004 Manifests 1433

lfind() 2004, QNX Software Systems Ltd.

printf("’%s’ is a C keyword\n", argv[1]);

return EXIT SUCCESS;

}

/* You’ll never get here. */

return EXIT SUCCESS;
}

int compare(const void *op1, const void *op2)

{

const char **p1 = (const char **) op1;
const char **p2 = (const char **) op2;

return(strcmp(*p1, *p2));
}

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
bsearch(), lsearch()

1434 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. lgamma(), lgamma r(), lgammaf(),
lgammaf r()
Log gamma function

Synopsis:
#include <math.h>

double lgamma(double x);

double lgamma r(double x,
int* signgamp);

float lgammaf(float x);

float lgammaf r(float x,
int* signgamp);

Arguments:
x An arbitrary number.

signgam (lgamma r(), lgammaf r() only) A pointer to a location
where the function can store the sign of �(x).

Library:
libm

Description:
The lgamma() and lgamma r() functions return the natural log (ln) of
the � function and are equivalent to gamma(). These functions return
ln|�(x)|, where �(x) is defined as follows:

For x > 0:

e
-t

t
x-1

dt

0

8

For x < 1: n / (�(1-x) * sin(nx))

The results converge when x is between 0 and 1. The � function has
the property:

May 31, 2004 Manifests 1435

lgamma(), lgamma r(), lgammaf(), lgammaf r() 2004,

QNX Software Systems Ltd.

�(N) = �(N-1)�N

The lgamma* functions compute the log because the � function
grows very quickly.

The lgamma() and lgammaf() functions use the external integer
signgam to return the sign of �(x), while lgamma r() and lgammaf r()
use the user-allocated space addressed by signgamp.

The signgam variable isn’t set until lgamma() or lgammaf() returns.
For example, don’t use the expression:

g = signgam * exp(lgamma(x));

to compute g = �(x)’. Instead, compute lgamma() first:

lg = lgamma(x);
g = signgam * exp(lg);

�

Note that �(x) must overflow when x is large enough, underflow when
-x is large enough, and generate a division by 0 exception at the
singularities x a nonpositive integer.

Returns:
ln|�(x)|

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <errno.h>
#include <inttypes.h>
#include <math.h>
#include <fpstatus.h>

1436 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. lgamma(), lgamma r(), lgammaf(),
lgammaf r()

int main(int argc, char** argv)
{

double a, b;

errno = EOK;
a = 0.5;
b = lgamma(a);
printf("lgamma(%f) = %f %d \n", a, b, errno);

return(0);
}

produces the output:

lgamma(0.500000) = 0.572365 0

Classification:
lgamma() is standard Unix; lgamma r(), lgammaf(), and lgammaf r()
are ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
gamma()

May 31, 2004 Manifests 1437

link() 2004, QNX Software Systems Ltd.

Create a link to an existing file

Synopsis:
#include <unistd.h>

int link(const char* existing,
const char* new);

Arguments:
existing The path of an existing file.

new The path for the new link.

Library:
libc

Description:
The link() function creates a new directory entry named by new to
refer to (that is, to be a link to) an existing file named by existing. The
function atomically creates a new link for the existing file, and
increments the link count of the file by one.

This implementation doesn’t support using link() on directories or the
linking of files across filesystems (different logical disks).

�

If the function fails, no link is created, and the link count of the file
remains unchanged.

If link() succeeds, the st ctime field of the file and the st ctime and
st mtime fields of the directory that contains the new entry are marked
for update.

Returns:
0 Success.

-1 An error occurred (errno is set).

1438 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. link()

Errors:
EACCES A component of either path prefix denies search

permission, or the link named by new is in a directory
with a mode that denies write permission.

EEXIST The link named by new already exists.

ELOOP Too many levels of symbolic links or prefixes.

EMLINK The number of links to the file named by existing
would exceed LINK MAX.

ENAMETOOLONG

The length of the existing or new string exceeds
PATH MAX, or a pathname component is longer than
NAME MAX.

ENOENT This error code can mean the following:

� A component of either path prefix doesn’t exist.

� The file named by existing doesn’t exist.

� Either existing or new points to an empty string.

ENOSPC The directory that would contain the link can’t be
extended.

ENOSYS The link() function isn’t implemented for the
filesystem specified in existing or new.

ENOTDIR A component of either path prefix isn’t a directory.

EPERM The file named by existing is a directory.

EROFS The requested link requires writing in a directory on a
read-only file system.

EXDEV The link named by new and the file named by existing
are on different logical disks.

May 31, 2004 Manifests 1439

link() 2004, QNX Software Systems Ltd.

Examples:
/*
* The following program performs a rename
* operation of argv[1] to argv[2].
* Please note that this example, unlike the
* library function rename(), ONLY works if
* argv[2] doesn’t already exist.
*/

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main(int argc, char** argv)
{

/* Create a link of argv[1] to argv[2].
*/

if(link(argv[1], argv[2]) == -1) {
perror("link");
return(EXIT FAILURE);

}
if(unlink(argv[1]) == -1) {
perror(argv[1]);
return(EXIT FAILURE);

}
return(EXIT SUCCESS);

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

1440 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. link()

See also:
errno, rename(), symlink(), unlink()

May 31, 2004 Manifests 1441

lio listio() 2004, QNX Software Systems Ltd.

Initiate a list of I/O requests

Synopsis:
#include <aio.h>

int lio listio(int mode,
struct aiocb* const list[],
int nent,
struct sigevent* sig);

Arguments:
mode The mode of operation; one of:

� LIO WAIT — lio listio() behaves synchronously, waiting
until all I/O is completed, and ignores the sig argument.

� LIO NOWAIT — lio listio() behaves asynchronously,
returning immediately, and the signal specified by the
sig argument is delivered to the calling process when all
the I/O operations from this function complete.

list An array of pointers to aiocb structures that specify the
I/O operations that you want to initiate. The array may
contain NULL pointers, which the function ignores.

nent The number of entries in the list array. This must not
exceed the system-wide limit, POSIX AIO MAX.

sig NULL, or a pointer to a sigevent structure that specifies
the signal that you want to deliver to the calling process
when all of the I/O operations complete. The function
ignores this argument if mode is LIO WAIT.

Library:
libc

1442 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. lio listio()

Description:
The lio listio() function lets the calling process, lightweight process
(LWP), or thread initiate a list of I/O requests within a single function
call.

The aio lio opcode field of each aiocb structure in list specifies the
operation to be performed (see <aio.h>):

� LIO READ requests aio read().

� LIO WRITE requests aio write().

� LIO NOP causes the list entry to be ignored.

If mode is LIO NOWAIT, lio listio() uses the sigevent structure
pointed to by sig to define both the signal to be generated and how the
calling process is notified when the I/O operations are complete:

� If sig is NULL, or the sigev signo member of the sigevent
structure is zero, then no signal delivery occurs. Otherwise, the
signal number indicated by sigev signo is delivered when all the
requests in the list have completed.

� If sig->sigev notify is SIGEV NONE, no signal is posted upon I/O
completion, but the error status and the return status for the
operation are set appropriately.

� If sig->sigev notify is SIGEV SIGNAL, the signal specified in
sig->sigev signo is sent to the process. If the SA SIGINFO flag is
set for that signal number, the signal is queued to the process, and
the value specified in sig->sigev value is the si value component
of the generated signal.

For regular files, no data transfer occurs past the offset maximum
established in the open file description associated with
aiocbp->aio fildes.

The behavior of this function is altered according to the definitions of
synchronized I/O data integrity completion and synchronized I/O file
integrity completion if synchronized I/O is enabled on the file

May 31, 2004 Manifests 1443

lio listio() 2004, QNX Software Systems Ltd.

associated with aio fildes. (see the definitions of O DSYNC and
O SYNC in the description of fcntl().)

Returns:
If the mode argument is LIO NOWAIT, and the I/O operations are
successfully queued, lio listio() returns 0; otherwise, it returns -1, and
sets errno.

If the mode argument is LIO WAIT, and all the indicated I/O has
completed successfully, lio listio() returns 0; otherwise, it returns -1,
and sets errno.

In either case, the return value indicates only the success or failure of
the lio listio() call itself, not the status of the individual I/O requests.
In some cases, one or more of the I/O requests contained in the list
may fail. Failure of an individual request doesn’t prevent completion
of any other individual request. To determine the outcome of each I/O
request, examine the error status associated with each aiocb control
block. Each error status so returned is identical to that returned as a
result of calling aio read() or aio write().

Errors:
EAGAIN The resources necessary to queue all the I/O requests

weren’t available. The error status for each request is
recorded in the aio error member of the corresponding
aiocb structure, and can be retrieved using aio error().

The number of entries, nent, exceeds the system-wide
limit, POSIX AIO MAX.

EINVAL The mode argument is invalid.

The value of nent is greater than
POSIX AIO LISTIO MAX.

EINTR A signal was delivered while waiting for all I/O requests
to complete during an LIO WAIT operation. However,
the outstanding I/O requests aren’t canceled. Use
aio fsync() to determine if any request was initiated;

1444 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. lio listio()

aio return() to determine if any request has completed;
or aio error() to determine if any request was canceled.

EIO One or more of the individual I/O operations failed. Use
aio error() with each aiocb structure to determine
which request(s) failed.

ENOSYS The lio listio() function isn’t supported by this
implementation.

If either lio listio() succeeds in queuing all of its requests, or errno is
set to EAGAIN, EINTR, or EIO, then some of the I/O specified from
the list may have been initiated. In this event, each aiocb structure
contains errors specific to the read() or write() function being
performed:

EAGAIN The requested I/O operation wasn’t queued due to
resource limitations.

ECANCELED The requested I/O was canceled before the I/O
completed due to an explicit aio cancel() request.

EINPROGRESS The requested I/O is in progress.

The following additional error codes may be set for each aiocb
control block:

EOVERFLOW The aiocbp->aio lio opcode is LIO READ, the file
is a regular file, aiocbp->aio nbytes is greater than
0, and the aiocbp->aio offset is before the
end-of-file and is greater than or equal to the offset
maximum in the open file description associated
with aiocbp->aio fildes.

EFBIG The aiocbp->aio lio opcode is LIO WRITE, the file
is a regular file, aiocbp->aio nbytes is greater than
0, and the aiocbp->aio offset is greater than or
equal to the offset maximum in the open file
description associated with aiocbp->aio fildes.

May 31, 2004 Manifests 1445

lio listio() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
aio cancel(), aio error(), aio fsync(), aio read(), aio return(),
aio write(), close(), execl(), execle(), execlp(), execlpe(), execv(),
execve(), execvp(), execvpe(), exit(), fcntl(), fork(), lseek(), read(),
sigevent, write()

1446 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. listen()
Listen for connections on a socket

Synopsis:
#include <sys/socket.h>

int listen(int s,
int backlog);

Arguments:
s The descriptor for the socket that you want to listen on.

You can create a socket by calling socket().

backlog The maximum length that the queue of pending
connections may grow to.

Library:
libsocket

Description:
The listen() function listens for connections on a socket and puts the
socket into the LISTEN state. For connections to be accepted, you
must:

1 Create a socket by calling socket().

2 Indicate a willingness to accept incoming connections and a
queue limit for them by calling listen().

3 Call accept() to accept the connections.

If a connection request arrives with the queue full, the client may
receive an error with an indication of ECONNREFUSED. But if the
underlying protocol supports retransmission, the request may be
ignored so that retries may succeed.

May 31, 2004 Manifests 1447

listen() 2004, QNX Software Systems Ltd.

The listen() call applies only to SOCK STREAM sockets.�

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Invalid descriptor s.

EOPNOTSUPP

The socket isn’t of a type that supports the listen()
operation.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
accept(), connect(), socket()

1448 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. localeconv()
Set numeric formatting according to the current locale

Synopsis:
#include <locale.h>

struct lconv * localeconv(void);

Library:
libc

Description:
The localeconv() function gets the values appropriate for formatting
numeric quantities using the current locale. It returns a pointer to a
struct lconv with the following members:

char * decimal point

The decimal-point character used for nonmonetary quantities.

char * thousands sep

The character used to separate groups of digits on the left of the
decimal-point character formatted nonmonetary quantities.

char * int curr symbol

The international currency symbol for the current locale. The
first three characters contain the alphabetic international
currency symbol in accordance with those specified in ISO
4217: Codes for the Representation of Currency and Funds.
The fourth character (immediately preceding the NUL
character) is the character used to separate the international
currency symbol from the monetary quantity.

char * currency symbol

The local currency symbol applicable to the current locale.

char * mon decimal point

The decimal-point character used to format monetary quantities.

May 31, 2004 Manifests 1449

localeconv() 2004, QNX Software Systems Ltd.

char * mon thousands sep

The character used to separate groups of digits on the left of the
decimal-point character in formatted monetary quantities.

char * mon grouping

A string whose elements indicate the size of each group of
digits in formatted monetary quantities.

char * grouping

A string whose elements indicate the size of each group of
digits in formatted nonmonetary quantities.

char * positive sign

The string used to indicate a nonnegative monetary quantity.

char * negative sign

The string used to indicate a negative monetary quantity.

char int frac digits

The number of fractional digits (to the right of the decimal
point) to display in an internationally formatted monetary
quantity.

char frac digits

The number of fractional digits (to the right of the decimal
point) to display in a formatted monetary quantity.

char p cs precedes

Set to 1 or 0 if the currency symbol precedes or follows the
value for a nonnegative monetary quantity.

char p sep by space

Set to 1 or 0 if the currency symbol is or isn’t separated by a
space from the value for a nonnegative monetary quantity.

char n cs precedes

Set to 1 or 0 if the currency symbol precedes or follows the
value for a negative monetary quantity.

1450 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. localeconv()

char n sep by space

Set to 1 or 0 if the currency symbol is or isn’t separated by a
space from the value for a negative monetary quantity.

char p sign posn

The position of the positive sign for a nonnegative monetary
quantity.

char n sign posn

The position of the positive sign for a negative monetary
quantity.

The grouping and mon grouping members have the following values:

CHAR MAX Perform no further grouping.

0 Repeat the previous element used for the remainder
of the digits.

other The value is the number of digits that comprise the
current group. Examine the next element to
determine the size of the next group of digits (to the
left of the current group).

The p sign posn and n sign posn members have the following values:

0 Parentheses surround the quantity and currency symbol.

1 The sign string precedes the quantity and currency symbol.

2 The sign string follows the quantity and currency symbol.

3 The sign string immediately precedes the quantity and
currency symbol.

4 The sign string immediately follows the quantity and
currency symbol.

May 31, 2004 Manifests 1451

localeconv() 2004, QNX Software Systems Ltd.

Returns:
A pointer to the struct lconv.

Examples:
#include <stdio.h>
#include <locale.h>
#include <stdlib.h>

int main(void)
{

struct lconv *lc;

lc = localeconv();
printf("decimal point (%s)\n",

lc->decimal point);

printf("thousands sep (%s)\n",
lc->thousands sep);

printf("int curr symbol (%s)\n",
lc->int curr symbol);

printf("currency symbol (%s)\n",
lc->currency symbol);

printf("mon decimal point (%s)\n",
lc->mon decimal point);

printf("mon thousands sep (%s)\n",
lc->mon thousands sep);

printf("mon grouping (%s)\n",
lc->mon grouping);

printf("grouping (%s)\n",
lc->grouping);

printf("positive sign (%s)\n",
lc->positive sign);

printf("negative sign (%s)\n",
lc->negative sign);

printf("int frac digits (%d)\n",
lc->int frac digits);

printf("frac digits (%d)\n",
lc->frac digits);

1452 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. localeconv()

printf("p cs precedes (%d)\n",
lc->p cs precedes);

printf("p sep by space (%d)\n",
lc->p sep by space);

printf("n cs precedes (%d)\n",
lc->n cs precedes);

printf("n sep by space (%d)\n",
lc->n sep by space);

printf("p sign posn (%d)\n",
lc->p sign posn);

printf("n sign posn (%d)\n",
lc->n sign posn);

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
isalpha(), isascii(), printf(), scanf(), setlocale(), strcat(), strchr(),
strcmp(), strcoll(), strcpy(), strftime(), strlen(), strpbrk(), strspn(),
strtod(), strtok(), strxfrm()

May 31, 2004 Manifests 1453

localtime() 2004, QNX Software Systems Ltd.

Convert calendar time to local time

Synopsis:
#include <time.h>

struct tm *localtime(const time t *timer);

Arguments:
timer A pointer to a time t object that contains the calendar

time that you want to convert.

Library:
libc

Description:
The localtime() function converts the calendar time pointed to by
timer into local time, storing the information in a struct tm.
Whenever you call localtime(), it calls tzset().

You typically get a calendar time by calling time(). That time is
Coordinated Universal Time (UTC, formerly known as Greenwich
Mean Time or GMT).

The localtime() function places the converted time in a static structure
that’s reused each time you call localtime(). Use localtime r() if you
want a thread-safe version.

You typically use the date command to set the computer’s internal
clock using Coordinated Universal Time (UTC). Use the TZ
environment variable or CS TIMEZONE configuration string to
establish the local time zone. For more information, see “Setting the
time zone” in the Configuring Your Environment chapter of the
Neutrino User’s Guide.

1454 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. localtime()

Returns:
A pointer to the static struct tm containing the time information.

Classification:
ANSI, POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

See also:
asctime(), asctime r(), clock(), ctime(), ctime r(), difftime(), gmtime(),
gmtime r(), mktime(), localtime r(), strftime(), time(), tm, tzset()

“Setting the time zone” in the Configuring Your Environment chapter
of the Neutrino User’s Guide

May 31, 2004 Manifests 1455

localtime r() 2004, QNX Software Systems Ltd.

Convert calendar time to local time

Synopsis:
#include <time.h>

struct tm* localtime r(const time t* timer,
struct tm* result);

Arguments:
timer A pointer to a time t object that contains the calendar

time that you want to convert.

result A pointer to a tm structure where the function can store the
converted time.

Library:
libc

Description:
The localtime r() function converts the calendar time pointed to by
timer into local time, storing the information in the struct tm that
result points to. Whenever you call localtime r(), it calls tzset().

You typically get a calendar time by calling time(). That time is
Coordinated Universal Time (UTC, formerly known as Greenwich
Mean Time or GMT).

You typically use the date command to set the computer’s internal
clock using Coordinated Universal Time (UTC). Use the TZ
environment variable or CS TIMEZONE configuration string to
establish the local time zone. For more information, see “Setting the
time zone” in the Configuring Your Environment chapter of the
Neutrino User’s Guide.

1456 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. localtime r()

Returns:
A pointer to result, the struct tm.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
asctime(), asctime r(), clock(), ctime(), ctime r(), difftime(), gmtime(),
gmtime r(), localtime(), mktime(), strftime(), time(), tm, tzset()

“Setting the time zone” in the Configuring Your Environment chapter
of the Neutrino User’s Guide

May 31, 2004 Manifests 1457

lockf() 2004, QNX Software Systems Ltd.

Lock or unlock a section of a file

Synopsis:
#include <unistd.h>

int lockf(int filedes,
int function,
off t size);

Arguments:
fildes The file descriptor for the file that you want to lock.

Open the file with write-only permission (O WRONLY)
or with read/write permission (O RDWR).

function A control value that specifies the action to be taken. The
permissible values (defined in <unistd.h>) are as
follows:

F LOCK Lock a section for exclusive use if the
section is available. A read-only lock is one
of O RDONLY, O WRONLY, or O RDWR.
An exclusive lock is one of O WRONLY, or
O RDWR. (For descriptions of the locks, see
open()).

F TEST Test a specified section for locks obtained by
other processes.

F TLOCK Test and lock a section for exclusive use if
the section is available.

F ULOCK Remove locks from a specified section of
the file.

size The number of contiguous bytes that you want to lock or
unlock. The section to be locked or unlocked starts at the
current offset in the file and extends forward for a
positive size or backward for a negative size (the
preceding bytes up to but not including the current
offset). If size is 0, the section from the current offset

1458 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. lockf()

through the largest possible file offset is locked (that is,
from the current offset through to the present or any
future end-of-file). An area need not be allocated to the
file to be locked because locks may exist past the
end-of-file.

Library:
libc

Description:
You can use the lockf() function to lock a section of a file, using
advisory-mode locks. If other threads call lockf() to try to lock the
locked file section, those calls either return an error value or block
until the section becomes unlocked.

All the locks for a process are removed when the process terminates.
Record locking with lockf() is supported for regular files and may be
supported for other files.

The sections locked with F LOCK or F TLOCK may in whole or in
part, contain or be contained by a previously locked section for the
same process. When this occurs, or if adjacent locked sections occur,
the sections are combined into a single locked section.

File locks are released on the first close by the locking process of any
file descriptor for the file.

F ULOCK requests may release (wholly or in part) one or more locked
sections controlled by the process. Locked sections are unlocked
starting at the current file offset through size bytes or to the end of file
if size is (off t)0. When all of a locked section isn’t released (that is,
when the beginning or end of the area to be unlocked falls within a
locked section), the remaining portions of that section are still locked
by the process. Releasing the center portion of a locked section causes
the remaining locked beginning and end portions to become two
separate locked sections.

A potential for deadlock occurs if the threads of a process controlling
a locked section are blocked by accessing another process’s locked

May 31, 2004 Manifests 1459

lockf() 2004, QNX Software Systems Ltd.

section. If the system detects that deadlock could occur, lockf() fails
with EDEADLK.

The interaction between fcntl() and lockf() locks is unspecified.
Blocking on a section is interrupted by any signal.

If size is the maximum value of type off t and the process has an
existing lock of size 0 in this range (indicating a lock on the entire
file), then an F ULOCK request is treated the same as an F ULOCK
request of size 0. Otherwise an F ULOCK request attempts to unlock
only the requested section. Attempting to lock a section of a file that’s
associated with a buffered stream produces unspecified results.

Returns:
0 Success.

-1 An error occurred (errno is set). Existing locks aren’t changed.

Errors:
EACCES or EAGAIN

The function argument is F TLOCK or F TEST and
the section is already locked by another process.

EAGAIN The function argument is F LOCK or F TLOCK and
the file is mapped with mmap().

EBADF The fildes argument isn’t a valid open file
descriptor; or function is F LOCK or F TLOCK and
fildes isn’t a valid file descriptor open for writing.

EDEADLK The function argument is F LOCK and a deadlock
is detected.

EINTR A signal was caught during execution of the
function.

EINVAL The function argument isn’t one of F LOCK,
F TLOCK, F TEST or F ULOCK; or size plus the
current file offset is less than 0.

1460 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. lockf()

ENOMEM The system can’t allocate sufficient memory to
store lock resources.

EOPNOTSUPP or EINVAL

The implementation doesn’t support the locking of
files of the type indicated by fildes.

EOVERFLOW The offset of the first, or if size isn’t 0 then the last,
byte in the requested section can’t be represented
correctly in an object of type off t.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
fcntl(), flock(), open()

May 31, 2004 Manifests 1461

log(), logf() 2004, QNX Software Systems Ltd.

Compute the natural logarithm of a number

Synopsis:
#include <math.h>

double log(double x);

float logf(float x);

Arguments:
x The number that you want to compute the natural log of.

Library:
libm

Description:
The log() and logf() functions compute the natural logarithm (base e)
of x:

loge x

A domain error occurs if x is negative. A range error occurs if x is
zero.

Returns:
The natural logarithm of x.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

1462 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. log(), logf()

int main(void)
{

printf("%f\n", log(.5));

return EXIT SUCCESS;
}

produces the output:

-0.693147

Classification:
log() is ANSI; logf() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, exp(), log10(), pow()

May 31, 2004 Manifests 1463

log1p(), log1pf() 2004, QNX Software Systems Ltd.

Log(1+x)

Synopsis:
#include <math.h>

double log1p (double x);

float log1pf (float x);

Arguments:
x The number that you want to add 1 to and compute the natural

log of.

Library:
libm

Description:
The log1p() and log1pf() functions compute the value of log(1+x),
where x > -1.0.

Returns:
If: log1p() returns:

x = NAN NAN

x < -1.0 -HUGE VAL, or NAN (errno is set to EDOM).

x = -1.0 -HUGE VAL (errno may be set to ERANGE).

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

1464 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. log1p(), log1pf()

Classification:
log1p() is standard Unix; log1pf() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ilogb(), log(), logb(), log10()

May 31, 2004 Manifests 1465

log10(), log10f() 2004, QNX Software Systems Ltd.

Compute the logarithm (base 10) of a number

Synopsis:
#include <math.h>

double log10(double x);

float log10f(float x);

Arguments:
x The number that you want to compute the log of.

Library:
libm

Description:
The log10() and log10f() functions compute the base 10 logarithm of
x:

log10 x

A domain error occurs if x is negative. A range error occurs if x is
zero.

Returns:
The base 10 logarithm of x.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

1466 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. log10(), log10f()

int main(void)
{

printf("%f\n", log10(.5));

return EXIT SUCCESS;
}

produces the output:

-0.301030

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, exp(), log(), pow()

May 31, 2004 Manifests 1467

logb(), logbf() 2004, QNX Software Systems Ltd.

Compute the radix-independent exponent

Synopsis:
#include <math.h>

double logb (double x);

float logbf (float x);

Arguments:
x The number that you want to compute the radix-independent

exponent of.

Library:
libm

Description:
The logb() and logbf() functions compute the exponent part of x,
which is the integral part of:

logr |x|

as a signed floating point value, for nonzero finite x, where r is the
radix of the machine’s floating point arithmetic.

Returns:
The binary exponent of x, a signed integer converted to
double-precision floating-point.

If x is: logb() returns:

0.0 -HUGE VAL (errno is set to EDOM)

<0.0 -HUGE VAL (errno may be set to ERANGE)

�infinity +infinity

1468 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. logb(), logbf()

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <errno.h>
#include <inttypes.h>
#include <math.h>
#include <fpstatus.h>

int main(int argc, char** argv)
{

double a, b;

a = 0.5;
b = logb(a);
printf("logb(%f) = %f (%f = 2ˆ%f) \n", a, b, a, b);

return(0);
}

produces the output:

logb(0.500000) = -1.000000 (0.500000 = 2ˆ-1.000000)

Classification:
logb() is standard Unix; logbf() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 1469

logb(), logbf() 2004, QNX Software Systems Ltd.

See also:
ilogb(), log(), log10(), log1p()

1470 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. login tty()
Prepare for a login in a tty

Synopsis:
#include <unix.h>

int login tty(int fd);

Arguments:
fd A file descriptor that you want to use as the controlling

terminal for the current process.

Library:
libc

Description:
The login tty() function prepares for a login on the tty fd (which may
be a real tty device, or the slave of a pseudo-tty as returned by
openpty()) by creating a new session, making fd the controlling
terminal for the current process, setting fd to be the standard input,
output, and error streams of the current process, and closing fd.

This function fails if ioctl() fails to set fd to the controlling terminal of
the current process.

Returns:
0 Success.

-1 An error occurred; errno is set.

Classification:
Unix

May 31, 2004 Manifests 1471

login tty() 2004, QNX Software Systems Ltd.

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
forkpty(), ioctl(), openpty()

1472 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. longjmp()
Restore the environment saved by setjmp()

Synopsis:
#include <setjmp.h>

void longjmp(jmp buf env,
int return value);

Arguments:
env The environment saved by the most recent call to

setjmp().

return value The value that you want setjmp() to return.

Library:
libc

Description:
The longjmp() function restores the environment saved in env by the
most recent call to the setjmp() function.

Using longjmp() to jump out of a signal handler can cause
unpredictable behavior, unless the signal was generated by the raise()
function.

�

Returns:
After the longjmp() function restores the environment, program
execution continues as if the corresponding call to setjmp() had just
returned the value specified by return value. If the value of
return value is 0, the value returned is 1.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <setjmp.h>

May 31, 2004 Manifests 1473

longjmp() 2004, QNX Software Systems Ltd.

jmp buf env;

void rtn(void)
{

printf("about to longjmp\n");
longjmp(env, 14);

}

int main(void)
{

int ret val = 293;

if(0 == (ret val = setjmp(env))) {
printf("after setjmp %d\n", ret val);
rtn();
printf("back from rtn %d\n", ret val);

} else {
printf("back from longjmp %d\n", ret val);

}

return EXIT SUCCESS;
}

produces the following output:

after setjmp 0
about to longjmp
back from longjmp 14

Classification:
ANSI, POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

1474 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. longjmp()

Caveats:
A strictly-conforming POSIX application can’t assume that the
longjmp() function is signal-safe on other platforms.

WARNING: Don’t use longjmp() or siglongjmp() to restore an
environment saved by a call to setjmp() or sigsetjmp() in another
thread. If you’re lucky, your application will crash; if not, it’ll
look as if it works for a while, until random scribbling on the
stack causes it to crash.

See also:
setjmp(), siglongjmp(), sigsetjmp()

May 31, 2004 Manifests 1475

lrand48() 2004, QNX Software Systems Ltd.

Generate a pseudo-random nonnegative long integer

Synopsis:
#include <stdlib.h>

long lrand48(void);

Library:
libc

Description:
The lrand48() function uses a linear congruential algorithm and 48-bit
integer arithmetic to generate a nonnegative long integer uniformly
distributed over the interval [0, 231].

Call one of lcong48(), seed48(), or srand48() to initialize the
random-number generator before calling drand48(), lrand48(), or
mrand48(),

The nrand48() function is a thread-safe version of lrand48().

Returns:
A pseudo-random long integer.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

1476 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. lrand48()

See also:
drand48(), erand48(), jrand48(), lcong48(), mrand48(), nrand48(),
seed48(), srand48()

May 31, 2004 Manifests 1477

lsearch() 2004, QNX Software Systems Ltd.

Perform a linear search in an array

Synopsis:
#include <search.h>

void * lsearch(const void * key,
const void * base,
unsigned * num,
unsigned width,
int (* compare)(

const void * element1,
const void * element2));

Arguments:
key The object to search for.

base A pointer to the first element in the table.

num A pointer to an integer containing the current number of
elements in the table.

width The size of an element, in bytes.

compare A pointer to a user-supplied function that lsearch() calls
to compare an array element with the key. The
arguments to the comparison function are:

� element1 — the same pointer as key

� element2 — a pointer to one of the array elements.

The comparison function must return 0 if element1
equals element2, or a nonzero value if the elements
aren’t equal.

Library:
libc

1478 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. lsearch()

Description:
The lsearch() function searches a linear table and returns a pointer
into the table indicating where the entry was found.

If key isn’t found, it’s added to the end of the array and num is
incremented.

�

Returns:
A pointer to the element that was found or created, or NULL if an
error occurred.

Examples:
This program builds an array of pointers to the argv arguments by
searching for them in an array of NULL pointers. Because none of the
items will be found, they’ll all be added to the array.

#include <stdio.h>

#include <stdlib.h>
#include <string.h>

#include <search.h>

int compare(const void *, const void *);

int main(int argc, const char **argv)

{

int i;
unsigned num = 0;

char **array = (char **)calloc(argc, sizeof(char **));

for(i = 1; i < argc; ++i) {

lsearch(&argv[i], array, &num, sizeof(char **), compare);
}

for(i = 0; i < num; ++i) {
printf("%s\n", array[i]);

}

return EXIT SUCCESS;

}

int compare(const void *op1, const void *op2)

{
const char **p1 = (const char **) op1;

const char **p2 = (const char **) op2;

return(strcmp(*p1, *p2));

}

May 31, 2004 Manifests 1479

lsearch() 2004, QNX Software Systems Ltd.

Using the program above, this input:

one two one three four

produces the output:

one
two
three
four

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
bsearch(), lfind()

1480 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. lseek(), lseek64()
Set the current file position at the operating-system level

Synopsis:
#include <sys/types.h>
#include <unistd.h>

off t lseek(int filedes,
off t offset,
int whence);

off64 t lseek64(int filedes,
off64 t offset,
int whence);

Arguments:
filedes The file descriptor of the file whose position you want to

set.

offset The relative offset from the file position determined by
the whence argument.

whence The position in the file. The possible values (defined in
<unistd.h>) are:

SEEK CUR The new file position is computed relative
to the current file position. The value of
offset may be positive, negative or zero.

SEEK END The new file position is computed relative
to the end of the file.

SEEK SET The new file position is computed relative
to the start of the file. The value of offset
must not be negative.

Library:
libc

May 31, 2004 Manifests 1481

lseek(), lseek64() 2004, QNX Software Systems Ltd.

Description:
These functions set the current file position for the file descriptor
specified by filedes at the operating system level. File descriptors are
returned by a successful execution of one of the creat(), dup(), dup2(),
fcntl(), open() or sopen() functions.

An error occurs if the requested file position is before the start of the
file.

If the requested file position is beyond the end of the file and data is
written at this point, subsequent reads of data in the gap will return
bytes whose value is equal to zero (’\0’) until data is actually written
into the gap.

These functions don’t extend the size of a file (see chsize()).

Returns:
The current file position, with 0 indicating the start of the file, or -1 if
an error occurs (errno is set).

Errors:
EBADF The filedes argument isn’t a valid file descriptor.

EINVAL The whence argument isn’t a proper value, or the
resulting file offset is invalid.

ENOSYS The lseek() function isn’t implemented for the
filesystem specified by filedes.

EOVERFLOW The resulting file offset is a value that can’t be
represented correctly in an object of type off t.

ESPIPE The filedes argument is associated with a pipe or
FIFO.

1482 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. lseek(), lseek64()

Examples:
Using the lseek() function, you can get the current file position (in
fact, tell() is implemented this way). You can then use this value with
another call to lseek() to reset the file position:

off t file posn;
int filedes;

/* get current file position */
file posn = lseek(filedes, 0L, SEEK CUR);

...

/* return to previous file position */
file posn = lseek(filedes, file posn, SEEK SET);

If all records in the file are the same size, the position of the nth
record can be calculated and read like this:

#include <sys/types.h>
#include <unistd.h>

int read record(int filedes, long rec numb,
int rec size, char *buffer)

{
if(lseek(filedes , rec numb * rec size,

SEEK SET) == -1L) {
return -1;

}

return(read(filedes , buffer, rec size));
}

The read record() function in this example assumes records are
numbered starting with zero, and that rec size contains the size of a
record in the file, including any record-separator characters.

Classification:
lseek() is POSIX 1003.1; lseek64() is for large-file support

May 31, 2004 Manifests 1483

lseek(), lseek64() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
chsize(), close(), creat(), dup(), dup2(), eof(), errno, execl(), execle(),
execlp(), execlpe(), execv(), execve(), execvp(), execvpe(), fcntl(),
fileno(), fstat(), isatty(), open(), read(), sopen(), stat(), tell(), umask(),
write()

1484 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. lstat(), lstat64()
Get information about a file or directory

Synopsis:
#include <sys/stat.h>

int lstat(const char* path,
struct stat* buf);

int lstat64(const char* path,
struct stat64* buf);

Arguments:
path The path of the file or directory that you want information

about.

buf A pointer to a buffer where the function can store the
information.

Library:
libc

Description:
These functions obtain information about the file or directory
referenced in path. This information is placed in the structure located
at the address indicated by buf .

The results of the lstat() function are the same as the results of stat()
when used on a file that isn’t a symbolic link. If the file is a symbolic
link, lstat() returns information about the symbolic link, while stat()
continues to resolve the pathname using the contents of the symbolic
link, and returns information about the resulting file.

Returns:
0 Success.

-1 An error occurred (errno is set).

May 31, 2004 Manifests 1485

lstat(), lstat64() 2004, QNX Software Systems Ltd.

Errors:
See stat() for details.

Examples:
/*
* Iterate through a list of files, and report
* for each if it is a symbolic link
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <unistd.h>

int main(int argc, char **argv)
{

int ecode = 0;
int n;
struct stat sbuf;

for(n = 1; n < argc; ++n) {
if(lstat(argv[n], &sbuf) == -1) {

perror(argv[n]);
ecode++;

} else if(S ISLNK(sbuf.st mode)) {
printf("%s is a symbolic link\n", argv[n]);

} else {
printf("%s is not a symbolic link\n", argv[n]);

}
}
return(ecode);

}

Classification:
lstat() is POSIX 1003.1a; lstat64() is for large-file support

Safety

Cancellation point No

Interrupt handler No

continued. . .

1486 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. lstat(), lstat64()

Safety

Signal handler Yes

Thread No

See also:
errno, fstat(), readlink(), stat()

May 31, 2004 Manifests 1487

ltoa(), lltoa() 2004, QNX Software Systems Ltd.

Convert a long integer into a string, using a given base

Synopsis:
#include <stdlib.h>

char* ltoa(long value,
char* buffer,
int radix);

char* lltoa(int64 t value,
char* buffer,
int radix);

Arguments:
value The value to convert into a string.

buffer A buffer in which the function stores the string. The size of
the buffer must be at least 33 bytes when converting values
in base 2 (binary).

radix The base to use when converting the number. This value
must be in the range:

2 ≤ radix ≤ 36

If the value of radix is 10, and value is negative, then a
minus sign is prepended to the result.

Library:
libc

Description:
The ltoa() and lltoa() functions convert the given long integer value
into the equivalent string in base radix notation, storing the result in
the character array pointed to by buffer. A NUL character is appended
to the result.

1488 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ltoa(), lltoa()

Returns:
A pointer to the result.

Examples:
#include <stdio.h>
#include <stdlib.h>

void print value(long value)
{

int base;
char buffer[33];

for(base = 2; base <= 16; base = base + 2) {
printf("%2d %s\n", base,

ltoa(value, buffer, base));
}

}

int main(void)
{

print value(12765);

return EXIT SUCCESS;
}

produces the output:

2 11000111011101
4 3013131
6 135033
8 30735

10 12765
12 7479
14 491b
16 31dd

Classification:
ltoa() is QNX 4; lltoa() is Unix

May 31, 2004 Manifests 1489

ltoa(), lltoa() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
atoi(), atol(), itoa(), sscanf(), strtol(), strtoul(), ultoa(), utoa()

1490 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ltrunc()
Truncate a file at a given position

Synopsis:
#include <sys/types.h>
#include <unistd.h>

off t ltrunc(int fildes,
off t offset,
int whence);

Arguments:
fildes The file descriptor of the file that you want to truncate.

offset The relative offset from the file position determined by
the whence argument.

whence The position in the file. The possible values (defined in
<unistd.h>) are:

SEEK CUR The new file position is computed relative
to the current file position. The value of
offset may be positive, negative or zero.

SEEK END The new file position is computed relative
to the end of the file.

SEEK SET The new file position is computed relative
to the start of the file. The value of offset
must not be negative.

Library:
libc

Description:
The ltrunc() function attempts to truncate the file at a specified
position. The file, referenced by the open file descriptor fildes, must
have been opened O WRONLY or O RDWR. The truncation point is
calculated using the value of offset as a relative offset from a file
position determined by the value of the argument whence. The value

May 31, 2004 Manifests 1491

ltrunc() 2004, QNX Software Systems Ltd.

of offset may be negative, although a negative truncation point (one
before the beginning of the file) is an error.

The ltrunc() function ignores advisory locks that may have been set
by fcntl().

�

The calculated truncation point, if within the existing bounds of the
file, determines the new file size; all data after the truncation point no
longer exists. If the truncation point is past the existing end of file, the
file size isn’t changed. An error occurs if you attempt to truncate
before the beginning of the file (that is, a negative truncation point).

The current seek position isn’t changed by this function under any
circumstance, including the case where the current seek position is
beyond the truncation point.

�

Returns:
Upon successful completion, this function returns the new file size. If
a truncation point beyond the existing end of file was specified, the
existing file size is returned, and the file size remains unchanged.
Otherwise, ltrunc() returns a value of -1 and sets errno to indicate the
error. The file size remains unchanged in the event of an error.

Errors:
EBADF The fildes argument isn’t a valid file descriptor, open for

writing.

EINVAL The whence argument isn’t a proper value, or the
resulting file size would be invalid.

ENOSYS An attempt was made to truncate a file of a type that
doesn’t support truncation (for example, a file
associated with the device manager).

ESPIPE The fildes argument is associated with a pipe or FIFO.

1492 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ltrunc()

Examples:
#include <stdio.h>
#include <fcntl.h>
#include <sys/types.h>
#include <unistd.h>

char buffer[1000];

int main(void)
{

int fd, stat;

fd = open("test", O CREAT | O RDWR, 0666);
if(fd == -1) {

fprintf(stderr, "Open error\n");
exit(-1);

}

/* Create a 1000-byte file */
write(fd, buffer, 1000);

/* Seek back to offset 500 and truncate the file */
if(ltrunc(fd, 500, SEEK SET) == -1) {

fprintf(stderr, "ltrunc error\n");
exit(-1);

}
close(fd);
fd = open("test", O CREAT | O RDWR, 0666);
printf("File size = %ld\n",

lseek(fd, 0, SEEK END));
close(fd);

return 0;
}

Classification:
QNX 4

Safety

Cancellation point Yes

Interrupt handler No

continued. . .

May 31, 2004 Manifests 1493

ltrunc() 2004, QNX Software Systems Ltd.

Safety

Signal handler No

Thread Yes

Caveats:
The ltrunc() function isn’t portable, and shouldn’t be used in new
code. Use ftruncate() instead.

See also:
errno, ftruncate(), lseek()

1494 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. main()
Program entry function

Synopsis:
int main(void);

int main(int argc,
const char *argv[]);

int main(int argc,
const char *argv[],
char *envp[]);

Arguments:
The arguments depend on which form of main() that you use.

argc The number of entries in the argv array.

argv An array of pointers to strings that contain the arguments to
the program.

envp An array of pointers to strings that define the environment
for the program.

Library:
libc

Description:
The main() function is supplied by the user and is where program
execution begins. The command line to the program is broken into a
sequence of tokens separated by blanks, and are passed to main() as
an array of pointers to character strings in argv. The number of
arguments found is passed in the parameter argc.

The argv[0] argument is a pointer to a character string containing the
program name. The last element of the array pointed to by argv is
NULL (argv[argc] is NULL). Arguments containing blanks can be
passed to main() by enclosing them in quote characters (which are

May 31, 2004 Manifests 1495

main() 2004, QNX Software Systems Ltd.

removed from that element in the argv vector). See your shell’s
documentation for details.

The envp argument points to an array of pointers to character strings
that are the environment strings for the current process. This value is
identical to the environ variable, which is defined in the <stdlib.h>
header file.

Returns:
A value back to the calling program (usually the operating system).

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv)
{

int i;
for(i = 0; i < argc; ++i) {

printf("argv[%d] = %s\n", i, argv[i]);
}

return EXIT SUCCESS;
}

produces the output:

argv[0] = ./mypgm
argv[1] = hhhhh
argv[2] = another arg

when the program mypgm is run from the shell:

$./mypgm hhhhh "another arg"

Classification:
ANSI

1496 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. main()

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
abort(), atexit(), argc, argv, auxv, close(), execl(), execle(),
execlp(), execlpe(), execv(), execve(), execvp(), execvpe(), exit(),
exit(), getenv(), putenv(), sigaction(), signal(), spawn(), spawnl(),
spawnle(), spawnlp(), spawnlpe(), spawnp(), spawnv(), spawnve(),
spawnvp(), spawnvpe(), system(), wait(), waitpid()

May 31, 2004 Manifests 1497

mallinfo() 2004, QNX Software Systems Ltd.

Get memory allocation information

Synopsis:
#include <malloc.h>

struct mallinfo mallinfo (void);

Library:
libc

Description:
The mallinfo() function returns memory-allocation information in the
form of a struct mallinfo:

struct mallinfo {
int arena; /* size of the arena */
int ordblks; /* number of big blocks in use */
int smblks; /* number of small blocks in use */
int hblks; /* number of header blocks in use */
int hblkhd; /* space in header block headers */
int usmblks; /* space in small blocks in use */
int fsmblks; /* memory in free small blocks */
int uordblks; /* space in big blocks in use */
int fordblks; /* memory in free big blocks */
int keepcost; /* penalty if M KEEP is used

-- not used */
};

Returns:
A struct mallinfo.

Classification:
ANSI

Safety

Cancellation point No

continued. . .

1498 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mallinfo()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
calloc(), free(), malloc(), realloc()

May 31, 2004 Manifests 1499

malloc() 2004, QNX Software Systems Ltd.

Allocate memory

Synopsis:
#include <stdlib.h>

void* malloc(size t size);

Arguments:
size The number of bytes to allocate.

Library:
libc

Description:
The malloc() function allocates a buffer of size bytes.

This function allocates memory in blocks of amblksiz bytes (a global
variable defined in <stdlib.h>).

�

Returns:
A pointer to the start of the allocated memory, or NULL if an error
occurred (errno is set).

Errors:
ENOMEM Not enough memory.

EOK No error.

Examples:
#include <stdlib.h>

int main(void)
{

char* buffer;

buffer = (char*)malloc(80);

1500 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. malloc()

if(buffer != NULL) {
/* do something with the buffer */
...

free(buffer);
}

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
In QNX 4, nothing is allocated when you malloc() 0 bytes. Be careful
if your code is ported between QNX 4 and QNX Neutrino.

See also:
calloc(), free(), realloc(), sbrk()

May 31, 2004 Manifests 1501

mallopt() 2004, QNX Software Systems Ltd.

Control the memory allocation

Synopsis:
#include <malloc.h>

int mallopt(int cmd,
int value);

Arguments:
cmd Supported arguments are:

� MALLOC ARENA SIZE — Sets the size of the requests
to the system for additional core memory. The value
argument is rounded up to the nearest page size. An
argument of 0 returns the current arena size — any other
argument sets the arena size, and returns the previous
value.

� MALLOC MONOTONIC GROWTH — Changes the
strategy for growing blocks using the realloc() function.
Setting value to a nonzero number causes resize
requests that don’t fit in the existing block to grow the
block by a minimum of 100%.

These arguments are silently ignored. They’re included for
compatibility reasons:

� M GRAIN

� M KEEP

� M MMAP THRESHOLD

� M MMAP MAX

� M MXFAST

� M NLBLKS

� M TOP PAD

� M TRIM THRESHOLD

value The allocation size.

1502 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mallopt()

Library:
libc

Description:
The mallopt() function controls the memory allocation.

Returns:
Unless otherwise specified, the mallopt() returns 0 on success, or -1 if
an error occurs (errno is set).

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
calloc(), free(), mallinfo(), malloc(), realloc()

May 31, 2004 Manifests 1503

max() 2004, QNX Software Systems Ltd.

Return the greater of two numbers

Synopsis:
#include <stdlib.h>

#define max(a,b) ...

Arguments:
a,b The numbers that you want to get the greater of.

Library:
libc

Description:
The max() function returns the greater of two values.

The max() function is for C programs only. For C+ and C++
programs, use the max() or min() macros.

�

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int a;

a = max(1, 10);
printf("The value is: %d\n", a);
return EXIT SUCCESS;

}

Classification:
QNX 4

1504 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. max()

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
min()

May 31, 2004 Manifests 1505

mblen() 2004, QNX Software Systems Ltd.

Count the bytes in a multibyte character

Synopsis:
#include <stdlib.h>

int mblen(const char * s,
size t n);

Arguments:
s NULL (see below), or a pointer to a multibyte character.

n The maximum number of bytes that you want to count.

Library:
libc

Description:
The mblen() function counts the number of bytes in the multibyte
character pointed to by s, to a maximum of n bytes.

The mbrlen() function is a restartable version of mblen().

Returns:
� If s is NULL, mblen() determines whether or not the character

encoding is state-dependent:

0 The mblen() function uses locale-specific multibyte
character encoding that’s not state-dependent.

≠ 0 Character is state-dependent.

� If s isn’t NULL:

0 s points to the null character.

-1 The next n bytes don’t form a valid multibyte character.

> 0 The number of bytes that comprise the multibyte character
(if the next n or fewer bytes form a valid multibyte
character).

1506 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mblen()

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int len;
char *mbs = "string";

printf("Character encodings do ");
if(!mblen(NULL, 0)) {

printf("not ");
}
printf("have state-dependent \nencoding.\n");

len = mblen("string", 6);
if(len != -1) {

mbs[len] = ’\0’;
printf("Multibyte char ’%s’(%d)\n", mbs, len);

}

return EXIT SUCCESS;
}

This produces the output:

Character encodings do not have state-dependent
encoding.
Multibyte char ’s’(1)

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1507

mblen() 2004, QNX Software Systems Ltd.

See also:
“Character manipulation functions” and “Wide-character functions”
in the summary of functions chapter.

1508 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mbrlen()
Count the bytes in a multibyte character (restartable)

Synopsis:
#include <wchar.h>

size t mbrlen(const char * s,
size t n,
mbstate t * ps);

Arguments:
s A pointer to a multibyte character.

n The maximum number of bytes that you want to count.

ps An internal pointer that lets mbrlen() be a restartable version of
mblen(); if ps is NULL, mbrlen() uses its own internal variable.

You can call mbsinit() to determine the status of this variable.

Library:
libc

Description:
The mbrlen() function counts the bytes in the multibyte character
pointed to by s, to a maximum of n bytes.

Returns:
(size t)-2 The resulting conversion state indicates an

incomplete multibyte character after all n characters
were converted.

(size t)-1 The function detected an encoding error before
completing the next multibyte character, in which
case the function errno to EILSEQ and leaves the
resulting conversion state undefined.

0 The next completed character is a null character, in
which case the resulting conversion state is the
initial conversion state.

May 31, 2004 Manifests 1509

mbrlen() 2004, QNX Software Systems Ltd.

x The number of bytes needed to complete the next
multibyte character, in which case the resulting
conversion state indicates that x bytes have been
converted.

Errors:
EILSEQ Invalid character sequence.

EINVAL The ps argument points to an invalid object.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno

“Character manipulation functions” and “Wide-character functions”
in the summary of functions chapter.

1510 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mbrtowc()
Convert a multibyte character into a wide character (restartable)

Synopsis:
#include <wchar.h>

size t mbrtowc(wchar t * pwc,
const char * s,
size t n,
mbstate t * ps);

Arguments:
pwc A pointer to a wchar t object where the function can store

the wide character.

s A pointer to the multibyte character that you want to convert.

n The maximum number of bytes in the multibyte character to
convert.

ps An internal pointer that lets mbrtowc() be a restartable
version of mbtowc(); if ps is NULL, mbrtowc() uses its own
internal variable.

You can call mbsinit() to determine the status of this variable.

Library:
libc

Description:
The mbrtowc() function converts single multibyte characters pointed
to by s into wide characters pointed to by pwc, to a maximum of n
bytes (not characters).

This function is affected by LC TYPE.

May 31, 2004 Manifests 1511

mbrtowc() 2004, QNX Software Systems Ltd.

Returns:
(size t)-2 After converting all n characters, the resulting

conversion state indicates an incomplete multibyte
character.

(size t)-1 The function detected an encoding error before
completing the next multibyte character; the
function sets errno to EILSEQ and leaves the
resulting conversion state undefined.

0 The next completed character is a null character; the
resulting conversion state is the same as the initial
one.

x The number of bytes needed to complete the next
multibyte character, in which case the resulting
conversion state indicates that x bytes have been
converted.

Errors:
EILSEQ Invalid character sequence.

EINVAL The ps argument points to an invalid object.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

1512 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mbrtowc()

See also:
errno

“Multibyte character functions,” “Stream I/O functions,” and
“Wide-character functions” in the summary of functions chapter.

May 31, 2004 Manifests 1513

mbsinit() 2004, QNX Software Systems Ltd.

Determine the status of the conversion object used for restartable mb*() functions

Synopsis:
#include <wchar.h>

int mbsinit(const mbstate t * ps);

Arguments:
ps A pointer to the conversion object that you want to test.

Library:
libc

Description:
The following functions use an object of type mbstate t so that
they can be restarted:

� mbrlen()

� mbrtowc()

� mbsrtowcs()

� mbstowcs()

� wcsrtombs()

� wcrtomb()

The mbsinit() function determines whether or not the mbstate t

object pointed to by ps describes an initial conversion state.

If the object doesn’t describe an initial conversion state, it isn’t safe
for you to use it in one of the above functions, other than the one
you’ve already used it in.

�

1514 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mbsinit()

Returns:
A nonzero value if ps is NULL or *ps describes an initial conversion
state; otherwise zero.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
mbrlen(), mbrtowc(), mbsrtowcs(), mbstowcs(), wcsrtombs(),
wcrtomb()

“Multibyte character functions” and “Wide-character functions” in
the summary of functions chapter.

May 31, 2004 Manifests 1515

mbsrtowcs() 2004, QNX Software Systems Ltd.

Convert a multibyte-character string into a wide-character string (restartable)

Synopsis:
#include <wchar.h>

size t mbsrtowcs(wchar t * dst,
const char ** src,
size t n,
mbstate t * ps);

Arguments:
dst A pointer to a buffer where the function can store the

wide-character string.

src The string of multibyte characters that you want to convert.

n The maximum number of bytes that you want to convert.

ps An internal pointer that lets mbsrtowcs() be a restartable
version of mbstowcs(); if ps is NULL, mbsrtowcs() uses its
own internal variable.

You can call mbsinit() to determine the status of this variable.

Library:
libc

Description:
The mbsrtowcs() function converts a string of multibyte characters
pointed to by src into the corresponding wide characters pointed to by
dst, to a maximum of n bytes, including the terminating NULL
character.

The function converts each character as if by a call to mbtowc() and
stops early if:

� A sequence of bytes doesn’t conform to a valid character

Or:

1516 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mbsrtowcs()

� Converting the next character would exceed the limit of n total
bytes.

This function is affected by LC TYPE.

Returns:
(size t)-1 Failure; invalid wide-character code.

x Success; the number of total bytes successfully
converted, not including the terminating NULL byte.

Errors:
EILSEQ Invalid character sequence.

EINVAL The ps argument points to an invalid object.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno

“Multibyte character functions” and “Wide-character functions” in
the summary of functions chapter.

May 31, 2004 Manifests 1517

mbstowcs() 2004, QNX Software Systems Ltd.

Convert a multibyte-character string into a wide-character string

Synopsis:
#include <stdlib.h>

size t mbstowcs(wchar t * pwcs,
const char * s,
size t n);

Arguments:
pwcs A pointer to a buffer where the function can store the

wide-character string.

s The string of multibyte characters that you want to convert.

n The maximum number of bytes that you want to convert.

Library:
libc

Description:
The mbstowcs() function converts a sequence of multibyte characters
pointed to by s into their corresponding wide-character codes pointed
to by pwcs, to a maximum of n bytes. It doesn’t convert any multibyte
characters beyond a NULL character.

This function is affected by LC TYPE.

The mbsrtowcs() function is a restartable version of mbstowcs().

Returns:
The number of array elements modified, not including the terminating
zero code, if present, or (size t)-1 if an invalid multibyte
character was encountered.

1518 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mbstowcs()

Errors:
EILSEQ Invalid character sequence.

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

char *wc = "string";
wchar t wbuffer[50];
int i, len;

len = mbstowcs(wbuffer, wc, 50);
if(len != -1) {

wbuffer[len] = ’\0’;
printf("%s(%d)\n", wc, len);

for(i = 0; i < len; i++) {
printf("/%4.4x", wbuffer[i]);

}

printf("\n");
}

return EXIT SUCCESS;
}

This produces the output:

string(6)
/0073/0074/0072/0069/006e/0067

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

continued. . .

May 31, 2004 Manifests 1519

mbstowcs() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

See also:
errno

“Multibyte character functions” and “Wide-character functions” in
the summary of functions chapter.

1520 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mbtowc()
Convert a multibyte character into a wide character

Synopsis:
#include <stdlib.h>

int mbtowc(wchar t * pwc,
const char * s,
size t n);

Arguments:
pwc A pointer to a wchar t object where the function can store

the wide character.

s NULL (see below), or a pointer to the multibyte character that
you want to convert.

n The maximum number of bytes in the multibyte character to
convert.

Library:
libc

Description:
The mbtowc() function converts a single multibyte character pointed
to by s into a wide-character code pointed to by pwc, to a maximum of
n bytes. The function stops early if it encounters the NULL character.

This function is affected by LC TYPE.

The mbrtowc() function is a restartable version of mbtowc().

Returns:
� If s is NULL:

0 The mbtowc() function uses UTF-8 multibyte character
encoding that’s not state-dependent.

≠ 0 Everything else.

May 31, 2004 Manifests 1521

mbtowc() 2004, QNX Software Systems Ltd.

� If s isn’t NULL:

0 The s argument points to the NUL character.

> 0 The number of bytes that comprise the multibyte character,
to a maximum of MB CUR MAX (if the next n or fewer
bytes form a valid multibyte character).

-1 The next n bytes don’t form a valid multibyte character;
errno is set.

Errors:
EILSEQ Invalid character sequence.

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

char *wc = "string";
wchar t wbuffer[10];
int i, len;

printf("State-dependent encoding? ");
if(mbtowc(wbuffer, NULL, 0)) {

printf("Yes\n");
} else {

printf("No\n");
}

len = mbtowc(wbuffer, wc, 2);
wbuffer[len] = ’\0’;
printf("%s(%d)\n", wc, len);

for(i = 0; i < len; i++) {
printf("/%4.4x", wbuffer[i]);

}

printf("\n");

return EXIT SUCCESS;
}

This produces the output:

1522 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mbtowc()

State-dependent encoding? No
string(1)
/0073

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno

“Multibyte character functions” and “Wide-character functions” in
the summary of functions chapter

May 31, 2004 Manifests 1523

mcheck() 2004, QNX Software Systems Ltd.

Enable memory allocation routine consistency checks

Synopsis:
#include <malloc.h>

int mcheck(
void (* abort fn)(enum mcheck status status));

Arguments:
abort fn A pointer to the callback function to invoke when an

inconsistency in the memory-allocation routines is
found, or NULL if you want to use the default callback
routine.

The argument to the callback routine is one of the values
of the mcheck status enumeration described in the
documentation for mprobe().

The default abort callback prints a message to stderr and
aborts the application.

Library:
libc

Description:
The mcheck() function enables consistency checks within the memory
allocation routines. When enabled, consistency checks are
periodically performed on allocated memory blocks as blocks are
allocated or freed. If an inconsistency is found, the abort callback is
called with the status identifying the type of inconsistency found.

Consistency checking isn’t performed on blocks that you allocated
before calling mcheck().

�

The level of checking provided depends on which version of the
allocator you’ve linked the application with:

� C library — minimal consistency checking.

1524 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mcheck()

� Nondebug version of the malloc library — a slightly greater level
of consistency checking.

� Debug version of the malloc library — extensive consistency
checking, with tuning available through the use of the mallopt()
function.

Returns:
-1 Checking is already enabled.

0 Checking wasn’t already enabled.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
mallopt(), mprobe()

Heap Analysis in the Programmer’s Guide

May 31, 2004 Manifests 1525

mem offset(), mem offset64() 2004, QNX Software Systems Ltd.

Get the offset of a mapped typed memory block

Synopsis:
#include <sys/mman.h>

int mem offset(const void * addr,
int fd,
size t length,
off t * offset,
size t * contig len);

int mem offset64(const void * addr,
int fd,
size t length,
off64 t * offset,
size t * contig len);

Arguments:
addr The address of the memory block whose offset and

contiguous length you want to get.

fd The file descriptor that identifies the typed memory
object. This must be the descriptor that you used (in a
call to mmap()) to establish the mapping that contains
addr.

length The length of the block of memory that you want the
offset for.

offset A pointer to a location where the function can store the
offset of the memory block.

contig len A pointer to a location where the function can store
either length or the length of the largest contiguous
block of typed memory that’s currently mapped to the
calling process starting at addr, whichever is smaller.

1526 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mem offset(), mem offset64()

Library:
libc

Description:
The mem offset() and mem offset64() functions set the variable
pointed to by offset to the offset (or location), within a typed memory
object, of the memory block currently mapped at addr.

If you use the offset and contig len values obtained from calling
mem offset() in a call to mmap() with a file descriptor that refers to the
same memory pool as fd (either through the same port or through a
different port), the memory region that’s mapped must be exactly the
same region that was mapped at addr in the address space of the
process that called mem offset().

QNX extension

If you specify fd as NOFD, offset is the offset into /dev/mem of addr
(i.e. its physical address). If the memory object specified by fd isn’t a
typed memory object, or specified as NOFD, the call fails.

If the physical address is not a valid off t value, mem offset() will fail
with errno set to E2BIG. This is typically the case with many ARM
systems, and you should use mem offset64() to get the physical
address.

�

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EACCES The process hasn’t mapped memory at the given

address addr.

EBADF Invalid open file descriptor fildes.

May 31, 2004 Manifests 1527

mem offset(), mem offset64() 2004, QNX Software Systems Ltd.

EINVAL The file descriptor fildes doesn’t correspond to the
memory object mapped at addr.

ENODEV The file descriptor fildes isn’t connected to a memory
object supported by this function.

ENOSYS The mem offset() function isn’t supported by this
implementation.

Examples:
#include <unistd.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/mman.h>

paddr t mphys(void *addr) {
off64 t offset;

if(mem offset64(addr, NOFD, 1, &offset, 0) == -1) {
return -1;

}
return offset;

}

Classification:
mem offset() is POSIX 1003.1j (draft); mem offset64() is for large-file
support

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

1528 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mem offset(), mem offset64()

See also:
mmap(), posix mem offset(), posix mem offset64()

May 31, 2004 Manifests 1529

memalign() 2004, QNX Software Systems Ltd.

Allocate aligned memory

Synopsis:
#include <malloc.h>

void *memalign(size t alignment,
size t size);

Arguments:
alignment The alignment that you want to use for the memory.

This must be a multiple of size(void *).

size The amount of memory you want to allocate, in bytes.

Library:
libc

Description:
The memalign() function allocates size bytes aligned on a boundary
specified by alignment.

Returns:
A pointer to the allocated block, or NULL if an error occurred (errno
is set).

Errors:
EINVAL The value of alignment isn’t a multiple of size(

void *).

ENOMEM There’s insufficient memory available with the
requested alignment.

1530 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. memalign()

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
free(), malloc(), posix memalign()

May 31, 2004 Manifests 1531

memccpy() 2004, QNX Software Systems Ltd.

Copy bytes between buffers until a given byte is found

Synopsis:
#include <string.h>

void* memccpy(void* dest,
const void* src,
int c,
size t cnt);

Arguments:
dest A pointer to where you want the function to copy the data.

src A pointer to the buffer that you want to copy data from.

c The value that you want to stop copying at.

cnt The maximum number of bytes to copy.

Library:
libc

Description:
The memccpy() function copies bytes from src to dest, up to and
including the first occurrence of the character c, or until cnt bytes
have been copied, whichever comes first.

Returns:
A pointer to the byte in dest following the character c, if one is found
and copied; otherwise, NULL.

Examples:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

char* msg = "This is the string: not copied";

1532 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. memccpy()

int main(void)
{

char buffer[80];

memset(buffer, ’\0’, 80);
memccpy(buffer, msg, ’:’, 80);

printf("%s\n", buffer);

return EXIT SUCCESS;
}

produces the output:

This is the string:

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memchr(), memcmp(), memcpy(), memicmp(), memmove(), memset()

May 31, 2004 Manifests 1533

memchr() 2004, QNX Software Systems Ltd.

Find the first occurrence of a character in a buffer

Synopsis:
#include <string.h>

void* memchr(void* buf,
int ch,
size t length);

Arguments:
buf The buffer that you want to search.

ch The character that you’re looking for.

length The number of bytes to search in the buffer.

Library:
libc

Description:
The memchr() function locates the first occurrence of ch (converted to
an unsigned char) in the first length bytes of the buffer pointed to
by buf .

Returns:
A pointer to the located character, or NULL if ch couldn’t be found.

Examples:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{

char buffer[80];
char* where;

strcpy(buffer, "video x-rays");

1534 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. memchr()

where = (char *) memchr(buffer, ’x’, 6);
if(where == NULL) {

printf("’x’ not found\n");
} else {

printf("%s\n", where);
}

where = (char *) memchr(buffer, ’r’, 9);
if(where == NULL) {

printf("’r’ not found\n");
} else {

printf("%s\n", where);
}

return EXIT SUCCESS;
}

produces the output:

’x’ not found
rays

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memccpy(), memcmp(), memcpy(), memicmp(), memmove(), memset()
strchr(), strrchr(), wmemchr(), wmemcmp(), wmemcpy(),
wmemmove(), wmemset()

May 31, 2004 Manifests 1535

memcmp() 2004, QNX Software Systems Ltd.

Compare the bytes in two buffers

Synopsis:
#include <string.h>

int memcmp(const void* s1,
const void* s2,
size t length);

Arguments:
s1, s2 Pointers to the buffers that you want to compare.

length The number of bytes that you want to compare.

Library:
libc

Description:
The memcmp() function compares length bytes of the buffer pointed
to by s1 to the buffer pointed to by s2.

Returns:
< 0 The object pointed to by s1 is less than the object pointed to

by s2.

0 The object pointed to by s1 is equal to the object pointed to
by s2.

> 0 The object pointed to by s1 is greater than the object pointed
to by s2.

Examples:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{

1536 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. memcmp()

char buffer[80];
int retval;

strcpy(buffer, "World");

retval = memcmp(buffer, "hello", 5);
if(retval < 0) {

printf("Less than\n");
} else if(retval == 0) {

printf("Equal to\n");
} else {

printf("Greater than\n");
}

return EXIT SUCCESS;
}

produces the output:

Less than

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memccpy(), memchr(), memcpy(), memicmp(), memmove(), memset()

May 31, 2004 Manifests 1537

memcpy() 2004, QNX Software Systems Ltd.

Copy bytes from one buffer to another

Synopsis:
#include <string.h>

void* memcpy(void* dst,
const void* src,
size t length);

Arguments:
dest A pointer to where you want the function to copy the data.

src A pointer to the buffer that you want to copy data from.

length The number of bytes to copy.

Library:
libc

Description:
The memcpy() function copies length bytes from the buffer pointed to
by src into the buffer pointed to by dst.

Copying overlapping buffers isn’t guaranteed to work; use
memmove() to to copy buffers that overlap.

�

Returns:
A pointer to the destination buffer (that is, the value of dst).

Examples:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{

char buffer[80];

1538 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. memcpy()

memcpy(buffer, "Hello", 5);
buffer[5] = ’\0’;
printf("%s\n", buffer);

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memccpy(), memchr(), memcmp(), memicmp(), memmove(), memset()

May 31, 2004 Manifests 1539

memcpyv() 2004, QNX Software Systems Ltd.

Copy a given number of structures

Synopsis:
#include <string.h>

size t memcpyv(const struct iovec *dst,
int dparts,
int doff,
const struct iovec *src,
int sparts,
int soff);

Arguments:
dst An array of iovec structures that you want to copy the

data to.

dparts The number of entries in the dst array.

doff The offset into the dst array at which to start copying.

src An array of iovec structures that you want to copy the
data from.

sparts The number of entries in the src array.

soff The offset into the src array at which to start copying.

Library:
libc

Description:
The function memcpyv() copies data pointed to by the src I/O vector,
starting at offset soff , to dst structures, starting at offset doff . The
number of I/O vector parts copied is specified in sparts and dparts.

1540 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. memcpyv()

Returns:
The number of bytes copied.

Examples:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{

const struct iovec *dest, *source;
int dparts, doffset, sparts, soffset;
size t nbytes;

nbytes = memcpyv (dest, dparts, doffset,
source, sparts, soffset);

printf ("The number of bytes copied is %d. \n", nbytes);

return EXIT SUCCESS;
}

Classification:
QNX 4

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memccpy(), memcpy()

May 31, 2004 Manifests 1541

memicmp() 2004, QNX Software Systems Ltd.

Compare two buffers, ignoring case

Synopsis:
#include <string.h>

int memicmp(const void* s1,
const void* s2,
size t length);

Arguments:
s1, s2 Pointers to the buffers that you want to compare.

length The number of bytes that you want to compare.

Library:
libc

Description:
The memicmp() function compares (case insensitive) length bytes of
the buffer pointed to by s1 with those of the buffer pointed to by s2.

Returns:
0 The object pointed to by s1 is the same as the

object pointed to by s2.

Less than 0 The object pointed to by s1 is less than the object
pointed to by s2.

Greater than 0 The object pointed to by s1 is greater than the
object pointed to by s2.

Examples:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{

1542 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. memicmp()

char buffer[80];
int retval;

strcpy(buffer, "World");

retval = memicmp(buffer, "hello", 5);
if(retval < 0) {

printf("Less than\n");
} else if(retval == 0) {

printf("Equal\n");
} else {

printf("Greater than\n");
}

return EXIT SUCCESS;
}

produces the output:

Less than

Classification:
QNX 4

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memccpy(), memchr(), memcmp(), memcpy(), memmove(), memset()

May 31, 2004 Manifests 1543

memmove() 2004, QNX Software Systems Ltd.

Copy bytes from one buffer to another, handling overlapping memory correctly

Synopsis:
#include <string.h>

void* memmove(void* dst,
const void* src,
size t length);

Arguments:
dest A pointer to where you want the function to copy the data.

src A pointer to the buffer that you want to copy data from.

length The number of bytes to copy.

Library:
libc

Description:
The memmove() function copies length bytes from the buffer pointed
to by src to the buffer pointed to by dst. Copying of overlapping
regions is handled safely. Use memcpy() for greater speed when
copying buffers that don’t overlap.

Returns:
A pointer to the destination buffer (that is, the value of dst).

Examples:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{

char buffer[80];

strcpy(buffer, "World");
memmove(buffer+1, buffer, 79);

1544 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. memmove()

printf ("%s\n", buffer);

return EXIT SUCCESS;
}

produces the output:

WWorld

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memccpy(), memchr(), memcmp(), memcpy(), memicmp(), memset(),
wmemmove()

May 31, 2004 Manifests 1545

memset() 2004, QNX Software Systems Ltd.

Set memory to a given value

Synopsis:
#include <string.h>

void* memset(void* dst,
int c,
size t length);

Arguments:
dst A pointer to the memory that you want to set.

c The value that you want to store in each byte.

length The number of bytes to set.

Library:
libc

Description:
The memset() function fills length bytes starting at dst with the value
c.

Returns:
A pointer to the destination buffer (that is, the value of dst).

Examples:
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

int main(void)
{

char buffer[80];

memset(buffer, ’=’, 80);
buffer[79] = ’\0’;

puts(buffer);

1546 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. memset()

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memccpy(), memchr(), memcmp(), memcpy(), memicmp(), memmove()

May 31, 2004 Manifests 1547

message attach() 2004, QNX Software Systems Ltd.

Attach a message range

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int message attach(dispatch t * dpp,
message attr t * attr,
int low,
int high,
int (* func) (

message context t * ctp,
int code,
unsigned flags,
void * handle),

void * handle);

Arguments:
dpp The dispatch handle, as returned by dispatch create().

attr A pointer to a message attr t structure that lets you
specify additional requirements for the message; see
“message attr t structure,” below.

low, high The range of messages that you’re interested in.

func The function that you want to call when a message in
the given range is received; see “Handler function,”
below.

handle An arbitrary handle that you want to associate with data
for the defined message range. This handle is passed to
func.

Library:
libc

1548 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. message attach()

Description:
The message attach() function attaches a handler to the message
range defined by the message type [low, high] (i.e. an inclusive
message range) for dispatch handle dpp.

It’s considered a programming error to attach overlapping message or
pulse ranges. Message types should be greater than IO MAX (defined
in <sys/iomsg.h>.

�

When a message with a type in that range is received,
dispatch handler() calls the user-supplied function func. You can also
use the same function with pulse attach(). By examining ctp->rcvid,
func can determine whether a pulse or message was received.

This function is responsible for doing any specific work needed to
handle the message pointed to by ctp->msg. The handle passed to the
function is the handle initially passed to message attach().

message attr t structure

The attr argument is a pointer to a message attr t structure:

typedef struct message attr {
unsigned flags;
unsigned nparts max;
unsigned msg max size;

} message attr t;

You can use this structure to specify:

� the maximum message size to be received (the context allocated
must be at least big enough to contain a message of that size)

� the maximum number of iovs to reserve in the
message context t structure (attr->nparts max)

� various flags:

Currently, the following attr->flags are defined:

May 31, 2004 Manifests 1549

message attach() 2004, QNX Software Systems Ltd.

MSG FLAG CROSS ENDIAN

Allow the server to receive messages from clients on
machines with different native endian formats.

MSG FLAG DEFAULT FUNC

Call this function if no other match is found, in this case, low
and high are ignored. This overrides the default behavior of
dispatch handler() which is to return MsgError() (ENOSYS)
to the sender when an unknown message is received.

Handler function

The user-supplied function func is called when a message in the
defined range is received. This function is passed the message context
ctp, in which the message was received, the message type, and the
handle (the one passed to message attach()). Currently, the argument
flags is reserved. Your function should return 0; other return values
are reserved.

Here’s a brief description of the context pointer fields:

ctp->rcvid The receive ID of the message.

ctp->msg A pointer to the message.

ctp->info Data from a msg info structure.

Returns:
Zero on success, or -1 on failure (errno is set).

Errors:
EINVAL The message code is out of range.

ENOMEM Insufficient memory to attach message type.

1550 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. message attach()

Examples:
In this example, we create a resource manager where we attach to a
private message range and attach a pulse, which is then used as a
timer event:

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>

#define THREAD POOL PARAM T dispatch context t
#include <sys/iofunc.h>
#include <sys/dispatch.h>

static resmgr connect funcs t connect func;
static resmgr io funcs t io func;
static iofunc attr t attr;

int
timer tick(message context t *ctp, int code,

unsigned flags, void *handle) {

union sigval value = ctp->msg->pulse.value;
/* Do some useful work on every timer firing... */
printf("received timer event, value %d\n", value.sival int);
return 0;

}

int
message handler(message context t *ctp, int code,

unsigned flags, void *handle) {
printf("received private message, type %d\n", code);
return 0;

}

int
main(int argc, char **argv) {

thread pool attr t pool attr;
thread pool t *tpp;
dispatch t *dpp;
resmgr attr t resmgr attr;
int id;
int timer id;
struct sigevent event;
struct itimer itime;

if((dpp = dispatch create()) == NULL) {
fprintf(stderr,

"%s: Unable to allocate dispatch handle.\n",

May 31, 2004 Manifests 1551

message attach() 2004, QNX Software Systems Ltd.

argv[0]);
return EXIT FAILURE;

}

memset(&pool attr, 0, sizeof pool attr);
pool attr.handle = dpp;
/* We are doing resmgr and pulse-type attaches */
pool attr.context alloc = dispatch context alloc;
pool attr.block func = dispatch block;
pool attr.unblock func = dispatch unblock;
pool attr.handler func = dispatch handler;
pool attr.context free = dispatch context free;
pool attr.lo water = 2;
pool attr.hi water = 4;
pool attr.increment = 1;
pool attr.maximum = 50;

if((tpp = thread pool create(&pool attr,
POOL FLAG EXIT SELF)) == NULL) {

fprintf(stderr,
"%s: Unable to initialize thread pool.\n",
argv[0]);

return EXIT FAILURE;
}

iofunc func init(RESMGR CONNECT NFUNCS, &connect func,
RESMGR IO NFUNCS, &io func);

iofunc attr init(&attr, S IFNAM | 0666, 0, 0);

memset(&resmgr attr, 0, sizeof resmgr attr);
resmgr attr.nparts max = 1;
resmgr attr.msg max size = 2048;

if((id = resmgr attach(dpp, &resmgr attr, "/dev/mynull",
FTYPE ANY, 0,

&connect func, &io func, &attr)) == -1) {
fprintf(stderr, "%s: Unable to attach name.\n", argv[0]);
return EXIT FAILURE;

}

/*
We want to handle our own private messages, of type
0x5000 to 0x5fff

*/
if(message attach(dpp, NULL, 0x5000, 0x5fff,

&message handler, NULL) == -1) {
fprintf(stderr,

"Unable to attach to private message range.\n");
return EXIT FAILURE;

}

1552 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. message attach()

/* Initialize an event structure, and attach a pulse to it */
if((event.sigev code = pulse attach(dpp,

MSG FLAG ALLOC PULSE, 0,
&timer tick, NULL)) == -1) {

fprintf(stderr, "Unable to attach timer pulse.\n");
return EXIT FAILURE;

}

/* Connect to our channel */
if((event.sigev coid = message connect(dpp,

MSG FLAG SIDE CHANNEL)) == -1) {
fprintf(stderr, "Unable to attach to channel.\n");
return EXIT FAILURE;

}

event.sigev notify = SIGEV PULSE;
event.sigev priority = -1;
/*
We could create several timers and use different
sigev values for each

*/
event.sigev value.sival int = 0;

if((timer id = TimerCreate(CLOCK REALTIME, &event)) == -1) {;
fprintf(stderr,

"Unable to attach channel and connection.\n");
return EXIT FAILURE;

}

/* And now setup our timer to fire every second */
itime.nsec = 1000000000;
itime.interval nsec = 1000000000;
TimerSettime(timer id, 0, &itime, NULL);

/* Never returns */
thread pool start(tpp);
return EXIT SUCCESS;

}

For more examples using the dispatch interface, see dispatch create(),
resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

May 31, 2004 Manifests 1553

message attach() 2004, QNX Software Systems Ltd.

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
dispatch block(), dispatch create(), dispatch handler(),
dispatch unblock(), message connect(), message detach(),
msg info, pulse attach()

“Components of a Resource Manager” section of the Writing a
Resource Manager chapter in the Programmer’s Guide.

1554 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. message connect()
Create a connection to a channel

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int message connect(dispatch t * dpp,
int flags);

Arguments:
dpp The dispatch handle, as returned by dispatch create().

flags Currently, the following flag is defined in
<sys/dispatch.h>:

� MSG FLAG SIDE CHANNEL — request the connection
ID be returned from a different space. This ID will be
greater than any valid file descriptor. Once created there’s
no difference in the use of the messaging primitives on
these IDs.

Library:
libc

Description:
The message connect() function creates a connection to the channel
used by dispatch handle dpp. This function calls the ConnectAttach()
kernel call. To detach the connection ID, you can call
ConnectDetach().

May 31, 2004 Manifests 1555

message connect() 2004, QNX Software Systems Ltd.

The message connect() function works only when the dispatch
blocking type is receive, i.e. attaches were done for resmgr, message,
or select “type” events. If no attaches were done yet, the
message connect() call fails, since dispatch can’t determine if receive
or sigwait blocking will be used.

�

Returns:
A connection ID used by the message primitives, or -1 if an error
occurs (errno is set).

Errors:
EAGAIN All kernel connection objects are in use.

EINVAL Dispatch dpp doesn’t have a channel.

Examples:
#include <sys/dispatch.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv) {
dispatch t *dpp;
int flags, coid, id;

if((dpp = dispatch create()) == NULL) {
fprintf(stderr,

"%s: Unable to allocate dispatch context.\n",
argv[0]);

return EXIT FAILURE;
}

id = resmgr attach (...);

...

if ((coid = message connect (dpp, flags)) == -1) {
fprintf (stderr, "Failed to create connection \

to channel used by dispatch.\n");
return 1;

1556 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. message connect()

}
/* else connection to channel used by dispatch is created */

...
}

For examples using the dispatch interface, see dispatch create(),
message attach(), resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
Dispatch dpp must block on messages.

See also:
ConnectAttach(), message attach()

“Components of a Resource Manager” section of the Writing a
Resource Manager chapter in the Programmer’s Guide.

May 31, 2004 Manifests 1557

message detach() 2004, QNX Software Systems Ltd.

Detach a message range

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int message detach(dispatch t * dpp,
int low,
int high,
int flags);

Arguments:
dpp The dispatch handle, as returned by dispatch create().

low, high The range of messages that you want to detach the
handler from. This range must be the same one that you
passed to message attach().

flags Reserved.

Library:
libc

Description:
The message detach() function detaches the message type [low, high],
for dispatch handle dpp, that was attached with message attach().

Returns:
Zero on success. If an error occurs, -1 or the following error constant:

EINVAL The range [low, high] doesn’t match the range that you
attached with message attach().

1558 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. message detach()

Examples:
#include <sys/dispatch.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int my func(...) {

...

}

int main(int argc, char **argv) {
dispatch t *dpp;
int lo=0x2000, hi=0x2fff, flags=0;

if((dpp = dispatch create()) == NULL) {
fprintf(stderr,
"%s: Unable to allocate dispatch handle.\n",
argv[0]);

return EXIT FAILURE;
}

...

if(message attach(dpp, NULL, lo, hi,
&my func, NULL) == -1) {

fprintf(stderr,
"%s: Failed to attach message range.\n",
argv[0]);

return 1;
}

...

if (message detach (dpp, lo, hi, flags) == -1) {
fprintf (stderr,

"Failed to detach message range from %d to %d.\n",
lo, hi);

return 1;
}
/* else message was detached */

...
}

For examples using the dispatch interface, see dispatch create(),
message attach(), resmgr attach(), and thread pool create().

May 31, 2004 Manifests 1559

message detach() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
message attach()

“Components of a Resource Manager” section of the Writing a
Resource Manager chapter in the Programmer’s Guide.

1560 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. min()
Return the lesser of two numbers

Synopsis:
#include <stdlib.h>

#define min(a,b) ...

Arguments:
a,b The numbers that you want to get the lesser of.

Library:
libc

Description:
The min() function returns the lesser of two values.

The min() function is for C programs only. For C+ and C++
programs, use the max() or min() macros.

�

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int a;

a = min(1, 10);
printf("The value is: %d\n", a);
return EXIT SUCCESS;

}

Classification:
QNX 4

May 31, 2004 Manifests 1561

min() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
max()

1562 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mkdir()
Create a subdirectory

Synopsis:
#include <sys/types.h>
#include <sys/stat.h>

int mkdir(const char *path,
mode t mode);

Arguments:
path The name of the directory that you want to create.

mode The permissions for the directory, modified by the process’s
file-creation mask (see umask()).

The access permissions for the file or directory are specified
as a combination of bits defined in the <sys/stat.h>
header file. For more information, see “Access
permissions” in the documentation for stat().

Library:
libc

Description:
The mkdir() function creates a new subdirectory named path. The
path can be relative to the current working directory or it can be an
absolute path name.

The directory’s owner ID is set to the process’s effective user ID. The
directory’s group ID is set to the group ID of the parent directory (if
the parent set-group ID bit is set) or to the process’s effective group
ID.

The newly created directory is empty.

The mkdir() function marks the st atime, st ctime, and st mtime fields
of the directory for update. Also, the st ctime and st mtime fields of
the parent directory are also updated.

May 31, 2004 Manifests 1563

mkdir() 2004, QNX Software Systems Ltd.

Returns:
0, or -1 if an error occurs (errno is set).

Errors:
EACCES Search permission is denied for a component of path,

or write permission is denied on the parent directory of
path.

EEXIST The directory named by path already exists.

ELOOP Too many levels of symbolic links.

EMLINK The link count of the parent directory would exceed
LINK MAX.

ENAMETOOLONG

The length of path exceeds PATH MAX, or a pathname
component is longer than NAME MAX.

ENOENT A pathname component in the specified path does not
exist, or path is an empty string.

ENOSPC The filesystem does not contain enough space to hold
the contents of the new directory or to extend the
parent directory.

ENOSYS This function is not supported for this path.

ENOTDIR A component of path is not a directory.

EROFS The parent directory resides on a read-only filesystem.

Examples:
To make a new directory called /src in /hd:

#include <sys/types.h>
#include <sys/stat.h>
#include <stdlib.h>

int main(void)

1564 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mkdir()

{
(void)mkdir("/hd/src",

S IRWXU |
S IRGRP | S IXGRP |
S IROTH | S IXOTH);

return EXIT SUCCESS;
}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
chdir(), chmod(), errno, getcwd(), mknod(), rmdir(), stat(), umask()

May 31, 2004 Manifests 1565

mkfifo() 2004, QNX Software Systems Ltd.

Create a FIFO special file

Synopsis:
#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char* path,
mode t mode);

Arguments:
path The pathname that you want to use for the FIFO special file.

mode The file permission bits for the new FIFO. For more
information, see “Access permissions” in the
documentation for stat().

Library:
libc

Description:
The mkfifo() function creates a new FIFO special file named by the
pathname pointed to by path. The file permission bits of the new
FIFO are initialized from mode, modified by the process’s creation
mask (see umask()). Bits that are set in mode other than the file
permission bits are ignored.

The FIFO owner ID is set to the process’s effective user ID and the
FIFO’s group ID is set to the process’s effective group ID.

If mkfifo() succeeds, the st ftime, st ctime, st atime and st mtime fields
of the file are marked for update. Also, the st ctime and st mtime
fields of the directory that contains the new entry are marked for
update.

1566 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mkfifo()

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EACCES A component of the path prefix denies search

permission.

EEXIST The named file already exists.

ENAMETOOLONG

The length of the path string exceeds PATH MAX, or a
pathname component is longer than NAME MAX.

ENOENT A component of the path prefix doesn’t exist, or the
path arguments points to an empty string.

ENOSPC The directory that would contain the new file cannot
be extended, or the filesystem is out of file allocation
resources (that is, the disk is full).

ENOSYS This function isn’t supported for this path.

ENOTDIR A component of the path prefix isn’t a directory.

EROFS The named file resides on a read-only filesystem.

Examples:
#include <sys/types.h>
#include <sys/stat.h>
#include <stdlib.h>

int main(void)
{

(void)mkfifo("hd/qnx", S IRUSR | S IWUSR);

return EXIT SUCCESS;
}

May 31, 2004 Manifests 1567

mkfifo() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
chmod(), errno, mknod(), pipe(), stat(), umask()

1568 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mknod()
Make a new filesystem entry point

Synopsis:
#include <sys/types.h>
#include <unistd.h>
#include <sys/stat.h>

int mknod(const char * path,
mode t mode,
dev t dev);

Arguments:
path The pathname that you want to use for the file.

mode A set of bits that define the file type and access permissions
that you want to use. The valid file types are:

� S IFDIR — create a directory.

� S IFIFO — create a FIFO.

For more information, see “Access permissions” in the
documentation for stat().

dev Ignored.

Library:
libc

Description:
The mknod() makes a file, named path, using the file type encoded in
the mode argument. Supported file types are directories and FIFOs.

This function is included to enhance portability with software written
for Unix-compatible operating systems. For POSIX portability, use
mkdir() or mkfifo() instead.

�

To make a directory with read-write-execute permissions for
everyone, you could use the following:

May 31, 2004 Manifests 1569

mknod() 2004, QNX Software Systems Ltd.

mknod (name, S IFDIR | 0777, 0);

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EACCES A component of the path prefix denies search

permission, or write permission is denied for the
parent directory.

EEXIST The named file already exists.

ELOOP Too many levels of symbolic links or prefixes.

EMLINK The link count of the parent directory would exceed
LINK MAX.

ENAMETOOLONG

The length of the path string exceeds PATH MAX, or a
pathname component is longer than NAME MAX.

ENOENT A component of the path prefix doesn’t exist, or the
path arguments points to an empty string.

ENOSPC The directory that would contain the new file cannot
be extended or the filesystem is out of file allocation
resources (that is, the disk is full).

ENOSYS The mknod() function isn’t implemented for the
filesystem specified in path.

ENOTDIR A component of the path prefix isn’t a directory.

EROFS The named file resides on a read-only filesystem.

1570 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mknod()

Examples:
/*
* Create special files as a directory or FIFO
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <unistd.h>

int main(int argc, char** argv)
{

int c;
mode t mode = 0666;
int ecode = 0;

if(argc == 1) {
printf("Use: %s [-d directory] ... [-f fifo] ... \n",

argv[0]);
return(0);

}

while((c = getopt(argc, argv, "d:f:")) != -1) {
switch(c) {

case ’d’: mode = S IFDIR | 0666; break;
case ’f’: mode = S IFIFO | 0666; break;

}

if(mknod(optarg, mode, 0) != 0) {
perror(optarg);
++ecode;

}
}

return(ecode);
}

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

continued. . .

May 31, 2004 Manifests 1571

mknod() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

See also:
errno, mkdir(), mkfifo()

1572 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mkstemp()
Make a unique temporary filename, and open the file

Synopsis:
#include <stdlib.h>

int mkstemp(char* template);

Arguments:
template A template for the filename that you want to use. This

template can be any file name with some number of Xs
appended to it, for example /tmp/temp.XXXX.

Library:
libc

Description:
The mkstemp() function takes the given file name template and
overwrites a portion of it to create a filename. This file name is unique
and suitable for use by the application. The trailing Xs are replaced
with the current process number and/or a unique letter combination.
The number of unique file names mkstemp() can return depends on
the number of Xs provided; if you specify six Xs, mkstemp() tests
roughly 266 combinations.

The mkstemp() function (unlike mktemp()) creates the template file,
mode 0600 (i.e. read-write for the owner), returning a file descriptor
opened for reading and writing. This avoids the race between testing
for a file’s existence and opening it for use.

Returns:
The file descriptor of the temporary file, or -1 if no suitable file could
be created; errno is set.

May 31, 2004 Manifests 1573

mkstemp() 2004, QNX Software Systems Ltd.

Errors:
ENOTDIR The pathname portion of the template isn’t an existing

directory.

This function may also set errno to any value specified by open() and
stat().

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
It’s possible to run out of letters. The mkstemp() function doesn’t
check to determine whether the file name part of template exceeds the
maximum allowable filename length.

For portability with X/Open standards prior to XPG4v2, use tmpfile()
instead.

See also:
chmod(). getpid(). mktemp(), open() stat(). tmpfile(), tmpnam()

1574 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mktemp()
Make a unique temporary filename

Synopsis:
#include <stdlib.h>

char* mktemp(char* template);

Arguments:
template A template for the filename that you want to use. This

template can be any file name with some number of Xs
appended to it, for example /tmp/temp.XXXX.

Library:
libc

Description:
The mktemp() function takes the given file name template and
overwrites a portion of it to create a filename. This file name is unique
and suitable for use by the application. The trailing Xs are replaced
with the current process number and/or a unique letter combination.
The number of unique file names mktemp() can return depends on the
number of Xs provided; if you specify six Xs, mktemp() tests roughly
266 combinations.

The mkstemp() function (unlike this function) creates the template
file, mode 0600 (i.e. read-write for the owner), returning a file
descriptor opened for reading and writing. This avoids the race
between testing for a file’s existence and opening it for use.

Returns:
A pointer to the template, or NULL on failure; errno is set.

Errors:
ENOTDIR The pathname portion of the template isn’t an existing

directory.

May 31, 2004 Manifests 1575

mktemp() 2004, QNX Software Systems Ltd.

This function may also set errno to any value specified by stat().

Classification:
Legacy Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
In general, avoid using mktemp(), because a hostile process can
exploit a race condition in the time between the generation of a
temporary filename by mktemp() and the invoker’s use of the
temporary name. Use mkstemp() instead.

This function can create only 26 unique file names per thread for each
unique template.

See also:
chmod(). getpid(). mkstemp(), open() stat(). tmpfile(), tmpnam()

1576 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mktime()
Convert local time to calendar time

Synopsis:
#include <time.h>

time t mktime(struct tm* timeptr);

Arguments:
timeptr A pointer to a tm structure that contains the local time

that you want to convert.

Library:
libc

Description:
The mktime() function converts the local time information in the
struct tm specified by timeptr into a calendar time (Coordinated
Universal Time) with the same encoding used by the time() function.

The original values of the tm sec, tm min, tm hour, tm mday and
tm mon fields aren’t restricted to the ranges described for struct tm.
If these fields aren’t in their proper ranges, they’re adjusted so that
they are. Values for the fields tm wday and tm yday are computed
after all the other fields have been adjusted.

The original value of tm isdst is interpreted as follows:

< 0 This field is computed as well.

0 Daylight savings time isn’t in effect.

> 0 Daylight savings time is in effect.

Whenever mktime() is called, the tzset() function is also called.

May 31, 2004 Manifests 1577

mktime() 2004, QNX Software Systems Ltd.

Returns:
The converted calendar time, or -1 if mktime() can’t convert it.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

static const char *week day[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

};

int main(void)
{

struct tm new year;
time t t;

new year.tm year = 2001 - 1900;
new year.tm mon = 0;
new year.tm mday = 1;
new year.tm hour = 0;
new year.tm min = 0;
new year.tm sec = 0;
new year.tm isdst = 0;

t = mktime(&new year);
if (t == (time t)-1)

printf("No conversion possible.\n");
else

printf("The 21st century begins on a %s.\n",
week day[new year.tm wday]);

return EXIT SUCCESS;
}

produces the output:

The 21st century begins on a Monday.

1578 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mktime()

Classification:
ANSI, POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
asctime(), asctime r(), clock(), ctime(), ctime r(), difftime(), gmtime(),
gmtime r(), localtime(), localtime r(), strftime(), time(), tm, tzset()

May 31, 2004 Manifests 1579

mlock() 2004, QNX Software Systems Ltd.

Lock a buffer in physical memory

Synopsis:
#include <sys/mman.h>

int mlock(const void * addr,
size t len);

Library:
libc

Description:
The mlock() function isn’t currently supported.

Returns:
-1 to indicate an error (errno is set).

Errors:
ENOSYS The mlock() function isn’t currently supported.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

1580 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mlock()

See also:
mlockall(), munlock(), munlockall()

May 31, 2004 Manifests 1581

mlockall() 2004, QNX Software Systems Ltd.

Lock a process’s address space

Synopsis:
#include <sys/mman.h>

int mlockall(int flags);

Library:
libc

Description:
The mlockall() function isn’t currently supported.

Returns:
-1 to indicate an error (errno is set.)

Errors:
ENOSYS The mlockall() function isn’t currently supported.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

1582 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mlockall()

See also:
mlock(), munlock(), munlockall()

May 31, 2004 Manifests 1583

mmap(), mmap64() 2004, QNX Software Systems Ltd.

Map a memory region into a process’s address space

Synopsis:
#include <sys/mman.h>

void * mmap(void * addr,
size t len,
int prot,
int flags,
int fildes,
off t off);

void * mmap64(void * addr,
size t len,
int prot,
int flags,
int fildes,
off64 t off);

Arguments:
addr NULL, or a pointer to where you want the object to be

mapped in the calling process’s address space.

len The number of bytes to map into the caller’s address space.
It can’t be 0.

prot The access capabilities that you want to use for the memory
region being mapped. You can combine at least the
following protection bits, as defined in <sys/mman.h>:

� PROT EXEC — the region can be executed.

� PROT NOCACHE — disable caching of the region (e.g.
so it can be used to access dual-ported memory).

� PROT NONE — the region can’t be accessed.

� PROT READ — the region can be read.

� PROT WRITE — the region can be written.

flags Flags that specify further information about handling the
mapped region; see below.

1584 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mmap(), mmap64()

fildes The file descriptor for a shared memory object, or NOFD if
you’re mapping physical memory.

off The offset into shared memory of the location that you want
to start mapping.

Library:
libc

Description:
The mmap() function maps a region within the object beginning at off
and continuing for len into the caller’s address space and returns the
location.

Typically, you don’t need to use addr; you can just pass NULL
instead. If you set addr to a non-NULL value, whether the object is
mapped depends on whether or not you set MAP FIXED in flags:

MAP FIXED is set

The object is mapped to the address in addr, or the function
fails.

MAP FIXED isn’t set

The value of addr is taken as a hint as to where to map the
object in the calling process’s address space. The mapped area
won’t overlay any current mapped areas.

There are two parts to the flags parameter. The first part is a type
(masked by the MAP TYPE bits), which you must specify as one of
the following:

MAP PRIVATE The mapping is private to the calling process. It
allocates system RAM and copies the current
object.

MAP SHARED The mapping may be shared by many processes.

May 31, 2004 Manifests 1585

mmap(), mmap64() 2004, QNX Software Systems Ltd.

You can OR the following flags into the above type to further specify
the mapping:

MAP ANON This is most commonly used with MAP PRIVATE.
The fildes parameter must be NOFD. The allocated
memory is zero-filled. This is equivalent to
opening /dev/zero.

MAP BELOW16M

Used with MAP PHYS | MAP ANON. The
allocated memory area resides in physical memory
below 16M. This is important for using DMA with
ISA bus devices.

MAP FIXED Map the object to the address specified by addr. If
this area is already mapped, the call changes the
existing mapping of the area.

Use MAP FIXED with caution. Not all memory models support it. In
general, you should assume that you can MAP FIXED only at an
address (and size) that a call to mmap() without MAP FIXED returned.

�

A memory area being mapped with MAP FIXED is
first unmapped by the system using the same
memory area. See munmap() for details.

MAP LAZY Delay acquiring system memory, and copying or
zero-filling the MAP PRIVATE or MAP ANON
pages, until an access to the area has occurred. If
you set this flag, and there’s no system memory at
the time of the access, the thread gets a SIGBUS
with a code of BUS ADRERR. This flag is a hint to
the memory manager.

MAP PHYS Physical memory is required. The fildes parameter
must be NOFD. When used with MAP PRIVATE or
MAP SHARED, the offset specifies the exact

1586 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mmap(), mmap64()

physical address to map (e.g. for video frame
buffers), and is equivalent to opening /dev/mem.
If used with MAP ANON, then physically
contiguous memory is allocated.

MAP NOX64K and MAP BELOW16M are used to
further define the MAP ANON allocated memory
(useful on x86 only).

You should use mmap device memory() instead of MAP PHYS.�

MAP NOX64K (Useful on x86 only). Used with
MAP PHYS | MAP ANON. Prevent the allocated
memory area from crossing a 64K boundary. This
may be important to some DMA devices. If more
than 64K is requested, the area begins on a 64K
boundary.

MAP STACK This flag tells the memory allocator what the
MAP ANON memory will be used for. It’s only a
hint.

Using the mapping flags described above, a process can easily share
memory between processes:

/* Map in a shared memory region */
fd = shm open("/datapoints", O RDWR, 0777);
addr = mmap(0, len, PROT READ|PROT WRITE, MAP SHARED, fd, 0);

To share memory with hardware such as video memory on an x86
platform:

/* Map in VGA display memory */
addr = mmap(0,

65536,
PROT READ|PROT WRITE,
MAP PHYS|MAP SHARED,
NOFD,
0xa0000);

To allocate a DMA buffer for a bus-mastering PCI network card:

May 31, 2004 Manifests 1587

mmap(), mmap64() 2004, QNX Software Systems Ltd.

/* Allocate a physically contiguous buffer */
addr = mmap(0,

262144,
PROT READ|PROT WRITE|PROT NOCACHE,
MAP PHYS|MAP ANON,
NOFD,
0);

Returns:
The address of the mapped-in object, or MAP FAILED if an error
occurred (errno is set).

Errors:
EACCES The file descriptor in fildes isn’t open for reading, or

you specified PROT WRITE and MAP SHARED, and
fildes isn’t open for writing.

EBADF Invalid file descriptor, fildes.

EINVAL Invalid flags type, or len is 0.

ENODEV The fildes argument refers to an object for which
mmap() is meaningless (e.g. a terminal).

ENOMEM You specified MAP FIXED, and the address range
requested is outside of the allowed process address
range, or there wasn’t enough memory to satisfy the
request.

ENXIO The address from off for len bytes is invalid for the
requested object, or you specified MAP FIXED, and
addr, len, and off are invalid for the requested object.

Examples:
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <stdlib.h>

1588 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mmap(), mmap64()

#include <sys/mman.h>

int main(int argc, char *argv[])
{
int i;
unsigned char *addr, c;

/* Map BIOS ROM */
addr = mmap(0, 0x10000, PROT READ | PROT WRITE,

MAP SHARED | MAP PHYS, NOFD, 0xf0000);
if (addr == MAP FAILED) {

fprintf(stderr, "mmap failed : %s\n",
strerror(errno));
return EXIT FAILURE;

}
printf("Map addr is %p\n",(void*) addr);

for (i = 0; i < 3 * 80; ++i) {
c = *addr++;
if (c >= ’ ’ && c <= 0x7f)
putchar(c);

else
putchar(’.’);

}

return EXIT SUCCESS;
}

Classification:
mmap() is POSIX 1003.1; mmap64() is for large-file support

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1589

mmap(), mmap64() 2004, QNX Software Systems Ltd.

See also:
mmap device memory(), munmap()

1590 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mmap device io()
Gain access to a device’s registers

Synopsis:
#include <stdint.h>
#include <sys/mman.h>

uintptr t mmap device io(size t len,
uint64 t io);

Arguments:
len The number of bytes of device I/O memory that you want to

access. It can’t be 0.

io The address of the area that you want to access.

Library:
libc

Description:
The mmap device io() function maps len bytes of device I/O memory
at io and makes it accessible via the in*() and out*() functions in
<hw/inout.h>.

Returns:
A handle to the device’s I/O memory, or MAP DEVICE FAILED if an
error occurs (errno is set).

Errors:
EINVAL Invalid flags type, or len is 0.

ENOMEM The address range requested is outside of the allowed
process address range, or there wasn’t enough
memory to satisfy the request.

ENXIO The address from io for len bytes is invalid.

May 31, 2004 Manifests 1591

mmap device io() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
You need I/O privileges to use the result of the mmap device io()
function. The calling thread may call ThreadCtl() with the
NTO TCTL IO command to establish these privileges.

See also:
mmap(), mmap device memory(), munmap device io()

1592 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mmap device memory()
Map a device’s physical memory into a process’s address space

Synopsis:
#include <sys/mman.h>

void * mmap device memory(void * addr,
size t len,
int prot,
int flags,
uint64 t physical);

Arguments:
addr NULL, or a pointer to where you want to map the object

in the calling process’s address space.

len The number of bytes you want to map into the caller’s
address space. It can’t be 0.

prot The access capabilities that you want to use for the
memory region being mapped. You can use a
combination of at least the following protection bits, as
defined in <sys/mman.h>:

� PROT EXEC — the region can be executed.

� PROT NOCACHE — disable the caching of the
region (e.g. to access dual-ported memory).

Read the architecture guide for your processor; you may need to add
special instructions. For example, if you specify PROT NOCACHE on
a PPC device, you may need to issue special eieio() instructions to
ensure that writes occur in a desired order.

�

� PROT NONE — the region can’t be accessed.

� PROT READ — the region can be read.

� PROT WRITE — the region can be written.

flags Specifies further information about handling the
mapped region. You can use the following flag:

May 31, 2004 Manifests 1593

mmap device memory() 2004, QNX Software Systems Ltd.

� MAP FIXED — map the object to the address
specified by addr. If this area is already mapped, the
call changes the existing mapping of the area.

Use MAP FIXED with caution. Not all memory models support it. In
general, you should assume that you can MAP FIXED only at an
address (and size) that a call to mmap() without MAP FIXED returned.
These restrictions will be removed from the user-to-user protection
model with the full VM (available with a later version of the QNX
Neutrino OS).

�

A memory area being mapped with MAP FIXED is
first unmapped by the system using the same
memory area. See munmap() for details.

This function already uses MAP SHARED ORed with
MAP PHYS (see mmap() for a description of these flags).

physical The physical address of the memory to map into the
caller’s address space.

Library:
libc

Description:
The mmap device memory() function maps len bytes of a device’s
physical memory address into the caller’s address space at the
location returned by mmap device memory().

You should use this function instead of using mmap() with the
MAP PHYS flag.

Typically, you don’t need to use addr; you can just pass NULL
instead. If you set addr to a non-NULL value, whether the object is
mapped depends on whether or not you set MAP FIXED in flags:

MAP FIXED is set

The object is mapped to the address in addr, or the function
fails.

1594 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mmap device memory()

MAP FIXED isn’t set

The value of addr is taken as a hint as to where to map the
object in the calling process’s address space. The mapped area
won’t overlay any current mapped areas.

Returns:
The address of the mapped-in object, or MAP FAILED if an error
occurs (errno is set).

Errors:
EINVAL Invalid flags type, or len is 0.

ENOMEM The address range requested is outside of the allowed
process address range, or there wasn’t enough
memory to satisfy the request.

ENXIO The address from physical for len bytes is invalid for
the requested object, or MAP FIXED was specified and
addr, len, and physical are invalid for the requested
object.

Examples:
/* map in the physical memory, 0xb8000 is text mode VGA video memory */

ptr = mmap device memory(0, len, PROT READ|PROT WRITE|PROT NOCACHE, 0, 0xb8000);

if (ptr == MAP FAILED) {

perror("mmap device memory for physical address 0xb8000 failed");
exit(EXIT FAILURE);

}

Classification:
QNX Neutrino

May 31, 2004 Manifests 1595

mmap device memory() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
You need I/O privileges to use the result of the
mmap device memory() function. The calling thread may call
ThreadCtl() with the NTO TCTL IO command to establish these
privileges.

See also:
mmap(), mmap device io(), munmap device memory()

1596 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. modem open()
Open a serial port

Synopsis:
#include <sys/modem.h>

int modem open(char* device,
speed t baud);

Arguments:
device The path name of the serial port that you want to open.

baud Zero, or the baud rate that you want to use.

Library:
libc

Description:
The modem open() function opens a serial port identified by device.
The device is set to raw mode by changing the control flags using
tcgetattr() and tcsetattr() as follows:

termio.c cflag = CS8|IHFLOW|OHFLOW|CREAD|HUPCL;

termio.c iflag = BRKINT;
termio.c lflag = IEXTEN;

termio.c oflag = 0;

Any pending input or output characters are discarded.

If baud is nonzero, then the baud rate is changed to that value.

Returns:
An open file descriptor, or -1 on failure (errno is set).

Errors:
EACCES Search permission is denied on a component of the

path prefix, or the file doesn’t exist.

May 31, 2004 Manifests 1597

modem open() 2004, QNX Software Systems Ltd.

EBADFSYS While attempting to open the named file, either the
file itself or a component of the path prefix was
found to be corrupted. A system failure — from
which no automatic recovery is possible — occurred
while the file was being written to, or while the
directory was being updated. You’ll need to invoke
appropriate systems-administration procedures to
correct this situation before proceeding.

EBUSY The file named by device is a block special device
that’s already open for writing, or device names a file
that’s on a filesystem mounted on a block special
device that’s already open for writing, or device is in
use.

EINTR The open operation was interrupted by a signal.

EISDIR The named device is a directory.

ELOOP Too many levels of symbolic links or prefixes.

EMFILE Too many file descriptors are currently in use by this
process.

ENAMETOOLONG

The length of the device string exceeds PATH MAX,
or a pathname component is longer than
NAME MAX.

ENFILE Too many files are currently open in the system.

ENOENT The named device doesn’t exist, or the path
argument points to an empty string.

ENOSYS The modem open() function isn’t implemented for
the filesystem specified in device.

ENOTDIR A component of the path prefix isn’t a directory.

ENXIO No process has the file open for reading.

1598 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. modem open()

Examples:
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <sys/modem.h>
#include <stdio.h>
#include <errno.h>

/*
curstate curflags newstate newflags newtimeout
newquiet retvalue pattern response

*/

struct modem script table[] ={
{1, 0, 1, 0, 2, 5, 0,
NULL, "ATZ\\r\\P0a"},

{1, 0, 2, 0, 30, 5, 0,
"*ok*", "ATDT5910934"},

{2, MODEM BAUD, 3, MODEM LASTLINE, 10, 5, 0,
"*connect*", NULL},

{3, 0, 4, 0, 8, 5, 0,
"*login:*", "guest"},

{4, MODEM NOECHO, 5, 0, 15, 5, 0,
"*password:*", "xxxx"},

{5, 0, 0, 0, 0, 0, 0,
"*$ *", NULL},

{0, 0, 0, 0, 0, 0, 1,
"*no carrier*", NULL},

{0, 0, 0, 0, 0, 0, 2,
"*no answer*", NULL},

{0, 0, 0, 0, 0, 0, 3,
"*no dialtone*", NULL},

{0, 0, 0, 0, 0, 0, 4,
"*busy*", NULL},

{ NULL }
};

void io(char* progress, char* in, char* out) {

if(progress)
printf("progress: %s\n", progress);

if(in)
printf("input: %s\n", in);

if(out)
printf("output: %s\n", out);

}

May 31, 2004 Manifests 1599

modem open() 2004, QNX Software Systems Ltd.

int main(int argc, char* argv[]) {
int fd, status;
speed t baud = -1;

if((fd = modem open(argv[1], 0)) == -1) {
fprintf(stderr, "Unable to open %s: %s\n",

argv[1], strerror(errno));
exit(1);

}

status = modem script(fd, table, &baud,
&io, NULL);

printf("status=%d baud=%d\n", status, baud);
exit(status);

}

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
modem read(), modem script(), modem write()

1600 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. modem read()
Read bytes from a file descriptor

Synopsis:
#include <sys/modem.h>

int modem read(int fd,
char* buf,
int bufsize,
int quiet,
int timeout,
int flags,
int (*cancel)(void));

Arguments:
fd The file descriptor for the device that you want to read

from; see modem open().

buf A pointer to a buffer where the function can store the data.

bufsize The size of the buffer, in bytes.

quiet The maximum time to wait for more input after receiving
at least one characters, in tenths of a second.

timeout The maximum time to wait for any input, in tenths of a
second.

flags Flags that you can use to filter and map received
characters; any combination of:

� MODEM ALLOWCASE — preserve the case of
incoming characters. Without this flag, all letters are
mapped to lower case.

� MODEM ALLOWCTRL — allow control characters.
Without this flag, control characters are discarded.

� MODEM ALLOW8BIT — preserve the top bit of
incoming characters. Without this flag, the top bit is
set to zero for all characters.

May 31, 2004 Manifests 1601

modem read() 2004, QNX Software Systems Ltd.

� MODEM LASTLINE — discard all previously received
characters when a newline is received followed by
more characters. Without this flag, buf may contain
multiple lines. If an automatic login script may be
presented with an arbitrary text screen before the login
prompt, you can use this flag to discard all but the
login line, reducing the possibility of false matches.

cancel NULL, or a callback that’s called whenever the quiet time
period expires while waiting for more input.

Library:
libc

Description:
The modem read() function reads up to bufsize bytes from the device
specified by the file descriptor, fd, and places them into the buffer
pointed to by buf .

If no characters are received within the given timeout, modem read()
returns with -1.

When at least one character has been received, modem read() returns
if the flow of incoming characters stops for at least the quiet time
period. The number of characters saved in buf is returned.

If you provide a cancel function, it’s called once each quiet time
period while waiting for input. If this function returns a nonzero
value, modem read() returns -1 immediately and sets errno to
ETIMEDOUT. You can use the cancel function as a callback in a
graphical dialer that needs to support a cancel button to stop a script
(see modem script()).

Returns:
Zero for success, or -1 on failure (errno is set).

1602 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. modem read()

Errors:
EAGAIN The O NONBLOCK flag is set on this fd, and the

process would have been blocked in trying to perform
this operation.

EBADF The argument fd is invalid, or the file isn’t opened for
reading.

EINTR The readcond() call was interrupted by the process
being signalled.

EIO This process isn’t currently able to read data from this
fd.

ENOSYS This function isn’t supported for this fd.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Read the Caveats

Thread Read the Caveats

Caveats:
Depending on what you do in your cancel function, modem read()
may or not be signal handler or thread-safe.

See also:
modem open(), modem script(), modem write()

May 31, 2004 Manifests 1603

modem script() 2004, QNX Software Systems Ltd.

Run a script on a device

Synopsis:
#include <sys/modem.h>

int modem script(int fd,
struct modem script* table,
speed t* baud,
void (*io)(

char* progress,
char* in,
char* out),

int (*cancel)(void));

Arguments:
fd The file descriptor for the device that you want to read

from; see modem open().

table An array of modem script structures that comprise a
script of commands that you want to run on the device; see
below.

baud A pointer to a speed t where the function can store the
baud rate (if you script says to do so).

io A function that’s called to process each string that’s
emitted or received.

cancel NULL, or a callback function that’s called whenever the
newquiet time period (specified in the script) expires while
waiting for input.

Library:
libc

1604 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. modem script()

Description:
The modem script() function runs the script table on the device
associated with the file descriptor fd. The script implements a simple
state machine that emits strings and waits for responses.

Each string that’s emitted or received is passed to the function io() as
follows:

Call Description

(*io)(str, 0, 0) Emitted progress string

(*io)(0, str, 0) Received string

(*io)(0, 0, str) Emitted response string

This lets an application set up a callback that can display the script’s
interaction in a status window.

If you provide a cancel function, it’s called once each newquiet 1/10
of a second while waiting for input. If this function returns a nonzero
value, the read returns immediately with -1 and errno is set to
ETIMEDOUT. You can use the cancel function as a callback in a
graphical dialer that needs to support a cancel button to stop a script.

The table is an array of modem script structures that contain the
following members:

char curstate The current state. Execution always begins at state
1, which must be the first array element of table.
Multiple elements may have the same current
state, in which case any received input is matched
against each pattern member for that state.

int curflags The flags to use on a pattern match of a response:

� MODEM NOECHO — don’t echo the response
through the io() callback.

� MODEM BAUD — extract any number in the
response and assign it to baud.

May 31, 2004 Manifests 1605

modem script() 2004, QNX Software Systems Ltd.

char newstate When a pattern match occurs with pattern, this is
the next state. A state transition causes response to
be output and newflags, newtimeout, and newquiet
to be saved and associated with the new state.
Changing to a new state of 0 causes
modem script() to return with the value in
retvalue.

int newflags Saved on a state transition and passed to
modem read() when waiting for a response in the
new state. For information about these flags, see
modem read().

int newtimeout Saved on a state transition and passed to
modem read() when waiting for a response in the
new state. This timeout is described in
modem read().

int newquiet Saved on a state transition and passed to
modem read() when waiting for a response in the
new state. This quiet timeout is described in
modem read().

short retvalue The return value when the script terminates with a
pattern match, and the new state is 0.

char* pattern A pattern to match against received characters.
The pattern is matched using fnmatch(). Only
patterns in the current state or the wildcard state of
0 are matched. On a match, the current state
changes to newstate.

char* response On a pattern match, this response is output to the
device. If the curflags don’t have
MODEM NOECHO set, the response is given to the
callback function passed as the io parameter.

char* progress On a pattern match, this progress string is passed
to the callback function passed as the io parameter.

1606 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. modem script()

Here’s an example that demonstrates the operation of the script:

/*
curstate curflags newstate newflags newtimeout
newquiet retvalue pattern response

*/

struct modem script table[] ={
{1, 0, 1, 0, 2, 5, 0,
NULL, "ATZ\\r\\P0a"},

{1, 0, 2, 0, 30, 5, 0,
"*ok*", "ATDT5910934"},

{2, MODEM BAUD, 3, MODEM LASTLINE, 10, 5, 0,
"*connect*", NULL},

{3, 0, 4, 0, 8, 5, 0,
"*login:*", "guest"},

{4, MODEM NOECHO, 5, 0, 15, 5, 0,
"*password:*", "xxxx"},

{5, 0, 0, 0, 0, 0, 0,
"*$ *", NULL},

{0, 0, 0, 0, 0, 0, 1,
"*no carrier*", NULL},

{0, 0, 0, 0, 0, 0, 2,
"*no answer*", NULL},

{0, 0, 0, 0, 0, 0, 3,
"*no dialtone*", NULL},

{0, 0, 0, 0, 0, 0, 4,
"*busy*", NULL},

{ NULL }
};

When this script is passed to modem script(), the current state is set to
1, and the output is ATZ (the response in the first array element).

While in any state, modem script() waits for input, matching it against
the current state or the wildcard state of 0.

State 1

May 31, 2004 Manifests 1607

modem script() 2004, QNX Software Systems Ltd.

Input Action

ok Go to state 2 and emit ATDT1-591-0934. The
flags to be used in the new state are set to 0,
the quiet time in the new state is set to 5/10 of
a second, and the timeout time in the new state
is set to 30 seconds.

no carrier Go to state 0 (the termination newstate), return
with the contents of retvalue (1).

no answer Go to state 0 (the termination newstate), return
with the contents of retvalue (2).

no dialtone Go to state 0 (the termination newstate), return
with the contents of retvalue (3).

busy Go to state 0 (the termination newstate), return
with the contents of retvalue (4).

State 2

Input Action

connect Go to state 3 and don’t emit anything to the
device. The flags to be used in the new state
are set to MODEM LASTLINE, the quiet time
in the new state is set to 5/10 of a second, and
the timeout time in the new state is set to 10
seconds. Since the current flags are
MODEM BAUD, the baud rate is extracted
from the connect message.

no carrier Same as previous table

no answer Same as previous table

no dialtone Same as previous table

busy Same as previous table

1608 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. modem script()

State 3

Input Action

login Go to state 4 and emit guest. The flags to be
used in the new state are set to 0, the quiet
time in the new state is set to 5/10 of a second,
and the timeout time in the new state is set to 8
seconds.

no carrier Same as previous table

no answer Same as previous table

no dialtone Same as previous table

busy Same as previous table

State 4

Input Action

password Go to state 5 and emit xxxx. The flags to be
used in the new state are set to 0, the quiet
time in the new state is set to 5/10 of a second,
and the timeout time in the new state is set to
15 seconds. Since the current flags are
MODEM NOECHO, the password response
xxxx isn’t sent to the io() callback.

no carrier Same as previous table

no answer Same as previous table

no dialtone Same as previous table

busy Same as previous table

State 5

May 31, 2004 Manifests 1609

modem script() 2004, QNX Software Systems Ltd.

Input Action

*$ * Go to state 0 (the termination newstate), return
with the contents of retvalue (0).

no carrier Same as previous table

no answer Same as previous table

no dialtone Same as previous table

busy Same as previous table

If you set the flag MODEM BAUD for a state, then any number
embedded in a matching response is extracted and assigned as a
number to the baud parameter.

If you don’t set the flag MODEM NOECHO for a state, then all emitted
strings are also given to the passed io function as (*io)(0, 0,

response).

Returns:
The retvalue member of a script entry that terminates the script. This
will always be a positive number. If modem script fails, it returns -1
and sets errno.

Errors:
EAGAIN The O NONBLOCK flag is set for the file descriptor, and

the process would be delayed in the write operation.

EBADF The file descriptor, fildes, isn’t a valid file descriptor
open for writing.

EINTR The write operation was interrupted by a signal, and
either no data was transferred, or the resource manager
responsible for that file doesn’t report partial transfers.

EIO A physical I/O error occurred. The precise meaning
depends on the device.

1610 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. modem script()

EPIPE An attempt was made to write to a pipe (or FIFO) that
isn’t open for reading by any process. A SIGPIPE signal
is also sent to the process.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Read the Caveats

Thread Read the Caveats

Caveats:
Depending on what you do in your cancel function, it might or might
not be safe to call modem script() from a signal handler or a
multithreaded program.

See also:
modem open(), modem read(), modem write()

May 31, 2004 Manifests 1611

modem write() 2004, QNX Software Systems Ltd.

Write a string to a device

Synopsis:
#include <sys/modem.h>

int modem write(int fd,
char* str);

Arguments:
fd The file descriptor for the device that you want to write to; see

modem open().

str The string that you want to write.

Library:
libc

Description:
The modem write() function writes the string str to the device
specified by the file descriptor fd. Just before writing each character,
all buffered input from the same device is flushed. After writing each
character, an attempt to read an echo is made. The intent is to write a
string without its appearing back in the input stream even if the device
is echoing each character written.

If the \ character appears in str, then the character following it is
interpreted by modem write(), and instead of both being written,
they’re treated as a special escape sequence that causes the following
actions to be taken:

Escape Description

\r Output a carriage return.

\n Output a newline.

continued. . .

1612 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. modem write()

Escape Description

\xhh Output the single character whose hex representation
follows as hh.

\B Send a 500 msec break on the line using tcsendbreak().

\D Drop the line for 1 second using tcdropline().

\Phh Pause for hh 1/10 of a second where hh is two hex
characters.

Returns:
Zero on success, -1 on failure (errno is set).

Errors:
EAGAIN The O NONBLOCK flag is set for the file descriptor, and

the process would be delayed in the write operation.

EBADF The file descriptor, fildes, isn’t a valid file descriptor
open for writing.

EINTR The write operation was interrupted by a signal, and
either no data was transferred, or the resource manager
responsible for that file doesn’t report partial transfers.

EIO A physical I/O error occurred. The precise meaning
depends on the device.

EPIPE An attempt was made to write to a pipe (or FIFO) that
isn’t open for reading by any process. A SIGPIPE signal
is also sent to the process.

Classification:
QNX Neutrino

May 31, 2004 Manifests 1613

modem write() 2004, QNX Software Systems Ltd.

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
modem open(), modem read(), modem script()

1614 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. modf(), modff()
Break a number into integral and fractional parts

Synopsis:
#include <math.h>

double modf(double value,
double* iptr);

float modff(float value,
float* iptr);

Arguments:
value The value that you want to break into parts.

iptr A pointer to a location where the function can store the
integral part of the number.

Library:
libm

Description:
The modf() and modff() functions break the given value into integral
and fractional parts, each of which has the same sign as the argument.
They store the integral part as a double in the object pointed to by
iptr.

Returns:
The signed fractional part of value.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

May 31, 2004 Manifests 1615

modf(), modff() 2004, QNX Software Systems Ltd.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main(void)
{

double integral value, fractional part;

fractional part = modf(4.5, &integral value);
printf("%f %f\n", fractional part, integral value);

fractional part = modf(-4.5, &integral value);
printf("%f %f\n", fractional part, integral value);

return EXIT SUCCESS;
}

produces the output:

0.500000 4.000000
-0.500000 -4.000000

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
frexp(), ldexp()

1616 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mount()
Mount a filesystem

Synopsis:
#include <sys/mount.h>

int mount(const char* spec,
const char* dir,
int flags,
const char* type,
const void* data,

int datalen);

Arguments:
spec A null-terminated string describing a special device (e.g.

/dev/hd0t77), or NULL if there’s no special device.

dir A null-terminated string that names the directory that
you want to mount (e.g. /mnt/home).

flags Flags that are passed to the driver:

� MFLAG OCB — ignore the special device string, and
contact all servers.

� MOUNT READONLY — mark the filesystem
mountpoint as read-only.

� MOUNT NOEXEC — don’t allow executables to
load.

� MOUNT NOSUID — don’t honor setuid bits on the
filesystem.

� MOUNT NOCREAT — don’t allow file creation on
the filesystem.

� MOUNT OFF32 — limit off t to 32 bits.

� MOUNT NOATIME — disable logging of file access
times.

� MOUNT BEFORE — call resmgr attach() with
RESMGR FLAG BEFORE.

May 31, 2004 Manifests 1617

mount() 2004, QNX Software Systems Ltd.

� MOUNT AFTER — call resmgr attach() with
RESMGR FLAG AFTER.

� MOUNT OPAQUE — call resmgr attach() with
RESMGR FLAG OPAQUE.

� MOUNT UNMOUNT — unmount this path.

� MOUNT REMOUNT — this path is already mounted;
perform an update.

� MOUNT FORCE — force an unmount or a remount
change.

� MOUNT ENUMERATE — autodetect on this device.

type A null-terminated string with the filesystem type (e.g.
nfs, cifs, qnx4, ext2, network).

data A pointer to additional data to be sent to the manager. If
datalen is <0, the data points to a null-terminated string.

datalen The length of the data, in bytes, that’s being sent to the
server, or <0 if the data is a null-terminated string.

Library:
libc

Description:
The mount() function sends a request to servers to mount the services
provided by spec and type at dir.

If you set MFLAG OCB in the flags, then the special device string is
ignored, and all servers are contacted. If you don’t set this bit, and the
special device spec exists, then only the server that created that device
is contacted, and the full path to spec is provided.

If datalen is any value <0, and there’s a data pointer, the function
assumes that the data pointer is a pointer to a string.

1618 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mount()

Returns:
-1 on failure; no server supports the request (errno is set).

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
resmgr attach(), umount()

Writing a Resource Manager in Programmer’s Guide

May 31, 2004 Manifests 1619

mount parse generic args() 2004, QNX Software Systems Ltd.

Strip off common mount arguments

Synopsis:
#include <sys/mount.h>

char * mount parse generic args(char * options,
int * flags);

Arguments:
options The string of options that you want to parse; see below.

flags A pointer to a location where the function can store a set
of bits corresponding to the options that it finds; see
below.

Library:
libc

Description:
The mount parse generic args() function allows you to strip out
common flags to help you parse mount arguments. This is useful
when you want to create a custom mount utility.

Here’s a list of the supported options that may be stripped:

Option: Set/Clear this bit: Description:

after Set MOUNT AFTER Call resmgr attach() with
RESMGR FLAG AFTER.

atime Clear MOUNT ATIME Log file access times (default).

before Set MOUNT BEFORE Call resmgr attach() with
RESMGR FLAG BEFORE.

creat Clear MOUNT CREAT Allow file creation on the
filesystem (default).

continued. . .

1620 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mount parse generic args()

Option: Set/Clear this bit: Description:

enumerate Set MOUNT ENUMERATE Auto-detect on this device.

exec Clear MOUNT NOEXEC Load executables (default).

force Set MOUNT FORCE Force an unmount or a remount
change.

noatime Set MOUNT NOATIME Disable logging of file access
times.

nocreat Set MOUNT NOCREAT Don’t allow file creation on the
filesystem.

noexec Set MOUNT NOEXEC Don’t allow executables to load.

nostat Set MFLAG OCB Don’t attempt to stat() the
special device before mounting
(i.e. -t).

nosuid Set MOUNT NOSUID Don’t honor setuid bits on the
filesystem.

opaque Set MOUNT OPAQUE Call resmgr attach() with
RESMGR FLAG OPAQUE.

remount Set MOUNT REMOUNT This path is already mounted;
perform an update.

ro Set MOUNT READONLY Mark the filesystem mountpoint
as read-only.

rw Clear MOUNT READONLY Mark the filesystem mountpoint
as read/write (default).

suid Clear MOUNT SUID Honor setuid bits on the
filesystem (default).

update Set MOUNT REMOUNT This path is already mounted,
perform an update.

May 31, 2004 Manifests 1621

mount parse generic args() 2004, QNX Software Systems Ltd.

Returns:
A string pointing to unprocessed options.

Examples:
while ((c = getopt(argv, argc, "o:"))) {
switch (c) {
case ’o’:

if ((mysteryop = mount parse generic args(optarg, &flags))) {
/*
You can do your own getsubopt type processing here
mysteryop is stripped of the common options.
*/

}
break;

}
}

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
mount(), resmgr attach(), umount()

mount in the Utilities Reference

Writing a Resource Manager in Programmer’s Guide

1622 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mprobe()
Perform consistency check on memory

Synopsis:
#include <malloc.h>

enum mcheck status mprobe(void * ptr);

Arguments:
ptr A pointer to the start of the heap block.

Library:
libc

Description:
The mprobe() function attempts to perform consistency checks on an
allocated heap block.

Consistency checks look for inconsistencies within the block header
or in the block trailer byte. They may also detect block overruns.

The level of checking provided depends on which version of the
allocator you’ve linked the application with:

� C library — minimal consistency checking.

� Nondebug version of the malloc library — a slightly greater level
of consistency checking.

� Debug version of the malloc library — extensive consistency
checking, with tuning available through the use of the mallopt()
function.

Returns:
One of the values of the mcheck status enumeration:

MCHECK DISABLED

Consistency checking isn’t currently enabled, or
consistency information isn’t available for this
block.

May 31, 2004 Manifests 1623

mprobe() 2004, QNX Software Systems Ltd.

MCHECK OK There are no inconsistencies in this block.

MCHECK HEAD

The block header is corrupted.

MCHECK TAIL The block trailer byte is corrupted or there has
been a block overrun.

MCHECK FREE The ptr argument doesn’t point to an allocated
heap block.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
mallopt(), mcheck()

The Heap Analysis chapter in the Programmer’s Guide.

1624 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mprotect()
Change memory protection

Synopsis:
#include <sys/mman.h>

int mprotect(const void * addr,
size t len,
int prot);

Arguments:
addr The beginning of the range of addresses whose protection

you want to change.

len The length of the range of addresses, in bytes.

prot The new access capabilities for the mapped memory
region(s). You can combine the following bits, which are
defined in <sys/mman.h>:

� PROT EXEC — the region can be executed.

� PROT NOCACHE — disable caching of the region (for
example, to access dual ported memory).

� PROT NONE — the region can’t be accessed.

� PROT READ — the region can be read.

� PROT WRITE — the region can be written.

Library:
libc

Description:
The mprotect() function changes the access protections on any
mappings residing in the range starting at addr, and continuing for len
bytes.

May 31, 2004 Manifests 1625

mprotect() 2004, QNX Software Systems Ltd.

Returns:
0 Success.

-1 An error occurred (errno is set).

If mprotect() fails, the protections on some of the pages in the address
range starting at addr and continuing for len bytes may have been
changed.

�

Errors:
EACCES The memory object wasn’t opened for read, regardless

of the protection specified.

The memory object wasn’t opened for write, and
PROT WRITE was specified for a MAP SHARED type
mapping.

EAGAIN The prot argument specifies PROT WRITE on a
MAP PRIVATE mapping, and there’s insufficient
memory resources to reserve for locking the private
pages (if required).

ENOMEM The addresses in the range starting at addr and
continuing for len bytes are outside the range allowed
for the address space of a process, or specify one or
more pages that are not mapped.

The prot argument specifies PROT WRITE on a
MAP PRIVATE mapping, and locking the private pages
(if required) would need more space than the system
can supply to reserve for doing so.

ENOSYS The function mprotect() isn’t supported by this
implementation.

1626 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mprotect()

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
mmap(), munmap(), shm open(), shm unlink()

May 31, 2004 Manifests 1627

mq close() 2004, QNX Software Systems Ltd.

Close a message queue

Synopsis:
#include <mqueue.h>

int mq close(mqd t mqdes);

Arguments:
mqdes The message-queue descriptor, returned by mq open(), of

the message queue that you want to close.

Library:
libc

Description:
The mq close() function removes the association between mqdes and
a message queue. If the current process attaches a notify to this queue
for notification, the attachment is eliminated. If this queue is unlinked
before the call to mq close(), and this process is the last process to
call mq close() on the queue, then the queue is destroyed, along with
its contents.

Calling close() with mqdes has the same effect as calling mq close().

Returns:
-1 if an error occurred (errno is set). Any other value indicates
success.

Errors:
EBADF Invalid queue mqdes.

Classification:
POSIX 1003.1 (Realtime Extensions)

1628 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mq close()

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
mq open(), mq unlink()

May 31, 2004 Manifests 1629

mq getattr() 2004, QNX Software Systems Ltd.

Get a message queue’s attributes

Synopsis:
#include <mqueue.h>

int mq getattr(mqd t mqdes,
struct mq attr* mqstat);

Arguments:
mqdes The message-queue descriptor, returned by mq open(), of

the message queue that you want to get the attributes of.

mqstat A pointer to a mq attr structure where the function can
store the attributes of the message queue. For more
information, see below.

Library:
libc

Description:
The mq getattr() function determines the current attributes of the
queue referenced by mqdes. These attributes are stored in the location
pointed to by mqstat. The fields of the mq attr structure are as
follows:

long mq flags The options set for this open message-queue
description (i.e. these options are for the given
mqdes, not the queue as a whole). This field may
have been changed by call to mq setattr() since
you opened the queue.

� O NONBLOCK — no call to mq receive() or
mq send() will ever block on this queue. If the
queue is in such a condition that the given
operation can’t be performed without blocking,
then an error is returned, and errno is set to
EAGAIN.

1630 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mq getattr()

This constant is specified by POSIX 1003.1b.

long mq maxmsg

The maximum number of messages that can be
stored on the queue. This value was set when the
queue was created.

long mq msgsize

The maximum size of each message on the given
message queue. This value was also set when the
queue was created.

long mq curmsgs

The number of messages currently on the given
queue.

long mq sendwait

The number of threads currently waiting to send a
message. This field was eliminated from the
POSIX standard after draft 9, but has been
resurrected for the QNX implementation. A
nonzero value in this field implies that the queue is
full.

long mq recvwait

The number of threads currently waiting to receive
a message. Like mq sendwait, this field was
resurrected for the QNX implementation. A
nonzero value in this field implies that the queue is
empty.

Returns:
-1 if an error occurred (errno is set). Any other value indicates
success.

May 31, 2004 Manifests 1631

mq getattr() 2004, QNX Software Systems Ltd.

Errors:
EBADF Invalid message queue mqdes.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
mq close(), mq open(), mq receive(), mq send(), mq setattr()

1632 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mq notify()
Ask to be notified when there is a message in the queue

Synopsis:
#include <mqueue.h>

int mq notify(
mqd t mqdes,
const struct sigevent* notification);

Arguments:
mqdes The message-queue descriptor, returned by

mq open(), of the message queue that you want to get
notification for.

notification NULL, or a pointer to a sigevent structure that
describes how you want to be notified.

Library:
libc

Description:
If notification isn’t NULL, the mq notify() function asks the server to
notify the calling process when the queue makes the transition from
empty to nonempty. The means by which the server is to notify the
process is passed in the sigevent structure pointed to by
notification. Once the message queue server has notified the process
of the transition, the notification is removed.

We recommend that you use the following event types in this case:

� SIGEV SIGNAL

� SIGEV SIGNAL CODE

� SIGEV SIGNAL THREAD

� SIGEV PULSE

� SIGEV INTR

May 31, 2004 Manifests 1633

mq notify() 2004, QNX Software Systems Ltd.

Under normal operation, only one process may register for
notification at a time. If a process attempts to attach a notification,
and another process is already attached, an error is returned and errno
is set to EBUSY.

If a process has registered for notification, and another process is
blocked on mq receive(), then the mq receive() call is satisfied by any
arriving message. The resulting behavior is as if the message queue
remained empty.

If notification is NULL and the current process is currently registered
for notification, then the existing registration is removed.

Returns:
-1 if an error occurred (errno is set). Any other value indicates
success.

Errors:
EBADF Invalid message queue mqdes.

EBUSY A process has already registered for notification for the
given queue.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

1634 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mq notify()

See also:
mq open(), mq receive(), mq send(), sigevent

May 31, 2004 Manifests 1635

mq open() 2004, QNX Software Systems Ltd.

Open a message queue

Synopsis:
#include <mqueue.h>

mqd t mq open(const char * name,
int oflag,
...)

Arguments:
name The name of the message queue that you want to open; see

below.

oflag You must specify one of O RDONLY (receive-only),
O WRONLY (send-only) or O RDWR (send-receive). In
addition, you can OR in the following constants to produce
the following effects:

� O CREAT — if name doesn’t exist, instruct the server to
create a new message queue with the given name. If you
specify this flag, mq open() uses its mode and mq attr
arguments; see below.

� O EXCL — if you set both O EXCL and O CREAT, and a
message queue name exists, the call fails and errno is set
to EEXIST. Otherwise, the queue is created normally. If
you set O EXCL without O CREAT, it’s ignored.

� O NONBLOCK — under normal message queue
operation, a call to mq send() or mq receive() could
block if the message queue is full or empty. If you set
this flag, these calls never block. If the queue isn’t in a
condition to perform the given call, errno is set to
EAGAIN and the call returns an error.

If you set O CREAT in the oflag argument, you must also pass these
arguments to mq open():

mode The file permissions for the new queue. For more
information, see “Access permissions” in the
documentation for stat().

1636 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mq open()

If you set any bits other than file permission bits, they’re
ignored. Read and write permissions are analogous to
receive and send permissions; execute permissions are
ignored.

mq attr NULL, or a pointer to an mq attr structure that contains
the attributes that you want to use for the new queue. For
more information, see mq getattr().

If mq attr is NULL, the following default attributes are
used (provided that no defaults were specified when
starting the message queue server):

� mq maxmsg: 1024

� mq msgsize: 4096

� mq flags: 0

If mq attr isn’t NULL, the new queue adopts the
mq maxmsg and mq msgsize of mq attr. The mq flags
flags field is ignored.

Library:
libc

Description:
The mq open() function opens a message queue referred to by name,
and returns a message queue descriptor by which the queue can be
referenced in the future. The name is interpreted as follows:

name Pathname space entry

entry CWD/entry

/entry /dev/mqueue/entry

entry/newentry CWD/entry/newentry

/entry/newentry /entry/newentry

May 31, 2004 Manifests 1637

mq open() 2004, QNX Software Systems Ltd.

where CWD is the current working directory for the program at the
point that it calls mq open().

If you want to open a queue on another node, you have to specify the
name as /net/node/mqueue location.

�

If name doesn’t exist, mq open() examines the third and fourth
parameters: a mode t and a pointer to an mq attr structure.

The only time that a call to mq open() with O CREAT set fails is if
you open a message queue and later unlink it, but never close it. Like
their file counterparts, an unlinked queue that hasn’t yet been closed
must continue to exist; an attempt to recreate such a message queue
fails, and errno is set to ENOENT.

Message queues persist — like files — even after the processes that
created them end. A message queue is destroyed when the last process
connected to it unlinks from the queue by calling mq unlink().

�

Returns:
A valid message queue descriptor if the queue is successfully created,
or -1 (errno is set).

Errors:
EACCES The message queue exists, and you don’t have

permission to open the queue under the given oflag, or
the message queue doesn’t exist, and you don’t have
permission to create one.

EEXIST You specified the O CREAT and O EXCL flags in oflag,
and the queue name exists.

EINTR The operation was interrupted by a signal.

1638 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mq open()

EINVAL You specified the O CREAT flag in oflag, and mq attr
wasn’t NULL, but some values in the mq attr

structure were invalid.

ELOOP Too many levels of symbolic links or prefixes.

EMFILE Too many file descriptors are in use by the calling
process.

ENAMETOOLONG

The length of name exceeds PATH MAX.

ENOENT You didn’t set the O CREAT flag, and the queue name
doesn’t exist.

ENOSPC The message queue server has run out of memory.

ENOSYS The mq open() function isn’t implemented for the
filesystem specified in name.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
mq close(), mq getattr(), mq notify(), mq receive(), mq send(),
mq setattr(), mq timedreceive(), mq timedsend(), mq unlink()

May 31, 2004 Manifests 1639

mq receive() 2004, QNX Software Systems Ltd.

Receive a message from a queue

Synopsis:
#include <mqueue.h>

ssize t mq receive(mqd t mqdes,
char* msg ptr,
size t msg len,
unsigned int* msg prio);

Arguments:
mqdes The message-queue descriptor, returned by mq open(),

of the message queue that you want to get a message
from.

msg ptr A pointer to a buffer where the function can store the
message received.

msg len The message size of the given queue.

msg prio NULL, or a pointer to a location where the function can
store the priority of the message received.

Library:
libc

Description:
The mq receive() function is used to receive the oldest of the highest
priority messages in the queue specified by mqdes. The priority of the
message received is put in the location pointed to by msg prio, the
data itself in the location pointed to by msg ptr, and the size received
is be returned.

If you call mq receive() with a msg len of anything other than the
mq msgsize of the specified queue, then mq receive() returns an error,
and errno is set to EINVAL.

If there are no messages on the queue specified, and O NONBLOCK
wasn’t set in oflag during mq open(), and MQ NONBLOCK isn’t

1640 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mq receive()

present in the queue’s mq flags, then the mq receive() call blocks. If
multiple mq receive() calls are blocked on a single queue, then they’re
unblocked in FIFO order as messages arrive.

Calling read() with mqdes is analogous to calling mq receive() with a
NULL msg prio.

Returns:
The size of the message removed from the queue. If the call fails, -1 is
returned as the size, no message is removed from the queue, and
errno is set.

Errors:
EAGAIN The O NONBLOCK or MQ NONBLOCK flags were

set and there are no messages currently on the
specified queue.

EBADF The mqdes argument doesn’t represent a valid queue
open for reading.

EINTR The operation was interrupted by a signal.

EINVAL The msg ptr argument isn’t a valid pointer, or
msg len is less than 0, or msg len is less than the
message size specified in mq open(). The default
message size is 4096 bytes.

EMSGSIZE The given msg len is shorter than the mq msgsize for
the given queue or the given msg len is too short for
the message that would have been received.

Classification:
POSIX 1003.1 (Realtime Extensions)

May 31, 2004 Manifests 1641

mq receive() 2004, QNX Software Systems Ltd.

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
mq close(), mq open(), mq send(), mq timedreceive(), read()

1642 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mq send()
Send a message to a queue

Synopsis:
#include <mqueue.h>

int mq send(mqd t mqdes,
const char * msg ptr,
size t msg len,
unsigned int msg prio);

Arguments:
mqdes The message-queue descriptor, returned by mq open(),

of the message queue that you want to send a message
to.

msg ptr A pointer to the message that you want to send.

msg len The size of the message.

msg prio The priority of the message, in the range from 0 to
(MQ PRIO MAX-1).

Library:
libc

Description:
The mq send() function puts a message of size msg len and pointed to
by msg ptr into the queue indicated by mqdes. The new message has
a priority of msg prio.

The queue is maintained in priority order, and in FIFO order within
the same priority.

If the number of elements on the specified queue is equal to its
mq maxmsg, and O NONBLOCK (in oflag of mq open()) has been set,
the call to mq send() blocks. It becomes unblocked when there’s
room on the queue to send the given message. If more than one
mq send() is blocked on a given queue, and space becomes available

May 31, 2004 Manifests 1643

mq send() 2004, QNX Software Systems Ltd.

in that queue to send, then the mq send() with the highest priority
message is unblocked.

Calling write() with mqdes is analogous to calling mq send() with a
msg prio of 0.

Returns:
-1 if an error occurred (errno is set). Any other value indicates
success.

Errors:
EAGAIN The O NONBLOCK flag was set when opening the

queue, and the specified queue is full.

EBADF The mqdes argument doesn’t represent a valid
message queue descriptor, or mqdes wasn’t opened
for writing.

EINTR The call was interrupted by a signal.

EINVAL One of the following cases is true:

� msg len was negative

� msg prio was greater than (MQ PRIO MAX-1)

� msg prio was less than 0

EMSGSIZE The msg len argument was greater than the msgsize
associated with the specified queue.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point Yes

Interrupt handler No

continued. . .

1644 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mq send()

Safety

Signal handler No

Thread Yes

See also:
mq close(), mq open(), mq receive(), mq timedsend()

May 31, 2004 Manifests 1645

mq setattr() 2004, QNX Software Systems Ltd.

Set a queue’s attributes

Synopsis:
#include <mqueue.h>

int mq setattr(mqd t mqdes,
const struct mq attr* mqstat,
struct mq attr* omqstat);

Arguments:
mqdes The message-queue descriptor, returned by mq open(), of

the message queue that you want to set the attributes of.

mqstat A pointer to a mq attr structure that specifies the
attributes that you want to use for the message queue.
For more information about this structure, see
mq getattr(); for information about which attributes you
can set, see below.

omqstat NULL, or a pointer to a mq attr structure where the
function can store the old attributes of the message
queue.

Library:
libc

Description:
The mq setattr() function sets the mq flags field for the specified
queue (passed as the mq flags field in mqstat). If omqstat isn’t NULL,
then the old attribute structure is stored in the location that it points to.

This function ignores the mq maxmsg, mq msgsize, and mq curmsgs
fields of mqstat. The mq flags field is the bit-wise OR of zero or more
of the following constants:

O NONBLOCK

No mq receive() or mq send() will ever block on this queue. If
the queue is in such a condition that the given operation can’t be

1646 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mq setattr()

performed without blocking, then an error is returned, and
errno is set to EAGAIN.

This constant is specified by POSIX 1003.1b.

The settings that you make for mq flags apply only to the given
message-queue description (i.e. locally), not to the queue itself.

�

Returns:
-1 if the function couldn’t change the attributes (errno is set). Any
other value indicates success.

Errors:
EBADF Invalid message queue mqdes.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
mq getattr(), mq open(), mq receive(), mq send()

May 31, 2004 Manifests 1647

mq timedreceive() 2004, QNX Software Systems Ltd.

Receive a message from a message queue

Synopsis:
#include <mqueue.h>
#include <time.h>

ssize t mq timedreceive(
mqd t mqdes,
char * msg ptr,
size t msg len,
unsigned int * msg prio,
const struct timespec * abs timeout);

Arguments:
mqdes The descriptor of the message queue you want to

receive a message from, returned by mq open().

msg ptr A pointer to a buffer where the function can store the
message data.

msg len The size of the buffer, in bytes.

msg prio NULL, or a pointer to a location where the function
can store the priority of the message that it removed
from the queue.

abs timeout A pointer to a timespec structure that specifies the
absolute time (not the relative time to the current
time) to wait before the function stops trying to
receive messages.

Library:
libc

Description:
The mq timedreceive() function receives the oldest of the highest
priority messages in the queue specified by mqdes.

1648 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mq timedreceive()

If you call mq timedreceive() with a msg len of anything other than
the mq msgsize of the specified queue, then mq timedreceive() returns
an error, and errno is set to EINVAL.

If there are no messages on the queue specified, and O NONBLOCK
isn’t set in oflag during mq open(), and MQ NONBLOCK isn’t present
in the queue’s mq flags, then the mq timedreceive() call blocks. If
multiple mq timedreceive() calls are blocked on a single queue, then
they’re unblocked in FIFO order as messages arrive.

Calling read() with mqdes is analogous to calling mq timedreceive()
with a NULL msg prio.

Returns:
The size of the message removed from the queue, or -1 if an error
occurred (no message is removed from the queue, and errno is set).

Errors:
EAGAIN The O NONBLOCK or MQ NONBLOCK flags were

set and there are no messages currently on the
specified queue.

EBADF The mqdes argument doesn’t represent a valid
queue open for reading.

EINTR The operation was interrupted by a signal.

EINVAL The msg ptr argument isn’t a valid pointer, or
msg len is less than 0, or msg len is less than the
message size specified in mq open(). The default
message size is 4096 bytes.

EMSGSIZE The given msg len is shorter than the mq msgsize
for the given queue or the given msg len is too
short for the message that would have been
received.

ETIMEDOUT The timeout value was exceeded.

May 31, 2004 Manifests 1649

mq timedreceive() 2004, QNX Software Systems Ltd.

Examples:
Specify an absolute timeout of 1 second:

struct timespec tm;

clock gettime(CLOCK REALTIME, &tm);
tm.tv sec += 1;
if(0 > mq timedreceive(fd, buf, 4096, NULL, t)) {
...

}

Classification:
POSIX 1003.1d (draft)

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
mq close(), mq open(), mq receive(), mq send(), mq timedsend(),
timespec

1650 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mq timedsend()
Send a message to a message queue

Synopsis:
#include <mqueue.h>
#include <time.h>

int mq timedsend(mqd t mqdes,
const char * msg ptr,
size t msg len,
unsigned int msg prio,
const struct timespec * abs timeout);

Arguments:
mqdes The descriptor of the message queue you want to put

the message into, returned by mq open().

msg ptr A pointer to the message data.

msg len The size of the buffer, in bytes.

msg prio The priority of the message, in the range from 0 to
(MQ PRIO MAX-1).

abs timeout A pointer to a timespec structure that specifies the
absolute time (not the relative time to the current
time) to wait before the function stops trying to
receive messages.

Library:
libc

Description:
The mq timedsend() function puts a message of size msg len and
pointed to by msg ptr into the queue indicated by mqdes. The new
message has a priority of msg prio.

The queue maintained is in priority order, and in FIFO order within
the same priority.

May 31, 2004 Manifests 1651

mq timedsend() 2004, QNX Software Systems Ltd.

If the number of elements on the specified queue is equal to its
mq maxmsg, and neither O NONBLOCK (in oflag of mq open()) nor
MQ NONBLOCK (in the queue’s mq flags) has been set, the call to
mq timedsend() blocks. It becomes unblocked when there’s room on
the queue to send the given message. If more than one
mq timedsend() is blocked on a given queue, and space becomes
available in that queue to send, then the mq timedsend() with the
highest priority message is unblocked.

Calling write() with mqdes is analogous to calling mq timedsend()
with a msg prio of 0.

Returns:
-1 if an error occurred (errno is set). Any other value indicates
success.

Errors:
EAGAIN The O NONBLOCK flag is set when opening the

queue, or the MQ NONBLOCK flag is set in its
attributes, and the specified queue is full.

EBADF The mqdes argument doesn’t represent a valid
message queue descriptor, or mqdes isn’t opened
for writing.

EINTR The call was interrupted by a signal.

EINVAL One of the following is true:

� The msg len is negative.

� The msg prio is greater than
(MQ PRIO MAX-1).

� The msg prio is less than 0.

� The MQ PRIO RESTRICT flag is set in the
mq attr member of mqdes, and msg prio is
greater than the priority of the calling process.

1652 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mq timedsend()

EMSGSIZE The msg len argument is greater than the msgsize
associated with the specified queue.

ETIMEDOUT The timeout value was exceeded.

Examples:
See the example for mq timedreceive().

Classification:
POSIX 1003.1d (draft)

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
mq close(), mq open(), mq receive(), mq send(), mq timedreceive(),
timespec

May 31, 2004 Manifests 1653

mq unlink() 2004, QNX Software Systems Ltd.

Remove a queue

Synopsis:
#include <mqueue.h>

int mq unlink(const char* name);

Arguments:
name The name of the message queue that you want to unlink.

Library:
libc

Description:
The mq unlink() function removes the queue with the given name.

If some process has the queue open when the call to mq unlink() is
made, then the actual deletion of the queue is postponed until it has
been closed. If a queue exists in the netherworld between unlinking
and the actual removal of the queue, then all calls to open a queue
with the given name fail (even if O CREAT is present in oflag). Once
the queue is deleted, all elements currently on it are freed. Due to the
lazy deletion of queues, it’s impossible for any process to be blocked
on the message queue when it’s deleted.

Calling unlink() with a name that resolves to the message queue
server’s namespace (e.g. /dev/mqueue/my queue) is analogous to
calling mq unlink() with name set to the last elements of the pathname
(e.g. my queue).

Returns:
-1 if the queue wasn’t successfully unlinked (errno is set). Any other
value indicates that the queue was successfully unlinked.

1654 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mq unlink()

Errors:
EACCES You don’t have permission to unlink the specified

queue.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of name exceeds PATH MAX.

ENOENT The queue name doesn’t exist.

ENOSYS The mq unlink() function isn’t implemented for the
filesystem specified in path.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
mq close(), mq open(), unlink()

May 31, 2004 Manifests 1655

mrand48() 2004, QNX Software Systems Ltd.

Generate a pseudo-random signed long integer

Synopsis:
#include <stdlib.h>

long mrand48(void);

Library:
libc

Description:
The mrand48() function uses a linear congruential algorithm and
48-bit integer arithmetic to generate a signed long integer uniformly
distributed over the interval [-231, 231).

Call one of lcong48(), seed48(), or srand48() to initialize the
random-number generator before calling drand48(), lrand48(), or
mrand48().

The jrand48() function is a thread-safe version of mrand48().

Returns:
A pseudo-random long integer.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

1656 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. mrand48()

See also:
drand48(), erand48(), jrand48(), lcong48(), lrand48(), nrand48(),
seed48(), srand48()

May 31, 2004 Manifests 1657

msg info 2004, QNX Software Systems Ltd.

Information about a message

Synopsis:
struct msg info { /* msg info server info */
uint32 t nd; /* client server */
uint32 t srcnd; /* server n/a */
pid t pid; /* client server */
int32 t tid; /* thread n/a */
int32 t chid; /* server server */
int32 t scoid; /* server server */
int32 t coid; /* client client */
int32 t msglen; /* msg n/a */
int32 t srcmsglen; /* thread n/a */
int32 t dstmsglen; /* thread n/a */
int16 t priority; /* thread n/a */
int16 t flags; /* n/a client */
uint32 t reserved;
};

Description:
The msg info structure contains information about a message. The
members include:

nd The node descriptor of the client machine as viewed by
the server. See “Node descriptors,” below.

srcnd The node descriptor of the server, as viewed by the
client.

pid The process ID of the sending thread.

tid The thread ID of the sending thread.

chid The channel ID that the message was received on.

scoid The server connection ID.

coid The client connection ID.

msglen The number of bytes received.

1658 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. msg info

srcmsglen The length of the source message, in bytes, as sent by
MsgSend*(). This may be greater than the value in
msglen. This member is valid only if you set
NTO CHF SENDER LEN in the flags argument to

ChannelCreate() for the channel that received the
message.

dstmsglen The length of the client’s reply buffer, in bytes, as
passed to MsgSend*(). This member is valid only if
you set NTO CHF REPLY LEN in the flags argument
to ChannelCreate() for the channel that received the
message.

priority The priority of the sending thread.

flags The client has an unblock pending
NTO MI UNBLOCK REQ (i.e. a timeout on the send

occurred or a signal was delivered and
NTO CHF UNBLOCK is set on the channel).

The msglen and srcmsglen members are valid only until the next call
to MsgRead*() or MsgWrite*().

�

If msglen is less than srcmsglen and is also less than the receive buffer
size, the message is a network transaction that requires more reading
of data with MsgRead*().

Node descriptors

The nd (node descriptor) is a temporary numeric description of a
remote node. For more information, see the Qnet Networking chapter
of the System Architecture guide.

To: Use this function:

Compare two nd objects ND NODE CMP()

continued. . .

May 31, 2004 Manifests 1659

msg info 2004, QNX Software Systems Ltd.

To: Use this function:

Convert a nd to text netmgr ndtostr()

Convert text to a nd netmgr strtond()

Classification:
QNX Neutrino

See also:
MsgInfo(), MsgReceive(), MsgReceivev(), ND NODE CMP(),
netmgr ndtostr(), netmgr remote nd(), netmgr strtond()

1660 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgDeliverEvent(),
MsgDeliverEvent r()

Deliver an event through a channel

Synopsis:
#include <sys/neutrino.h>

int MsgDeliverEvent(int rcvid,
const struct sigevent* event);

int MsgDeliverEvent r(
int rcvid,
const struct sigevent* event);

Arguments:
rcvid The value returned to the server when it receives a message

from a client using MsgReceive*().

event A pointer to a sigevent structure that contains the event
you want to send. These events are defined in
<sys/siginfo.h>. The type of event is placed in
event.sigev notify.

Library:
libc

Description:
The MsgDeliverEvent() and MsgDeliverEvent r() kernel calls deliver
an event from a server to a client through a channel connection.
They’re typically used to perform async IO and async event
notification to clients that don’t want to block on a server.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

Although the server can explicitly send any event it desires, it’s more
typical for the server to receive a struct sigevent in a message
from the client that already contains this data. The message also
contains information for the server indicating the conditions on when
to notify the client with the event. The server then saves the rcvid

May 31, 2004 Manifests 1661

MsgDeliverEvent(), MsgDeliverEvent r() 2004, QNX Software

Systems Ltd.

from MsgReceive*() and the event from the message without needing
to examine the event in any way. When the trigger conditions are met
in the server, such as data becoming available, the server calls
MsgDeliverEvent() with the saved rcvid and event.

You can use the SIGEV SIGNAL set of notifications to create an
asynchronous design in which the client is interrupted when the event
occurs. The client can make this synchronous by using the
SignalWaitinfo() kernel call to wait for the signal. Where possible,
you should use an event-driven synchronous design that’s based on
SIGEV PULSE. In this case, the client sends messages to servers, and
requests event notification via a pulse.

You’re not likely to use the event types SIGEV UNBLOCK and
SIGEV INTR with this call.

You should use MsgDeliverEvent() when two processes need to
communicate with each other without the possibility of deadlock. The
blocking nature of MsgSend*() introduces a hierarchy of processes in
which “sends” flow one way and “replies” the other way.

In the following diagram, processes at the A level can send to
processes at the B or C level. Processes at the B level can send to the
C level but they should never send to the A level. Likewise, processes
at the C level can never send to those at the A or B level. To A, B and
C are servers. To B, A is a client and C is a server.

"C" level processes

"B" level processes

"A" level processes

A hierarchy of processes.

These hierarchies are simple to establish and ensure a clean

1662 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgDeliverEvent(),
MsgDeliverEvent r()

deadlock-free design. If these rules are broken then deadlock can
occur as shown below:

"A" sends to "B"

"B" sends to "C"

"C" sends to "B"
"B" blocked on "C", "C" blocked on "B"

DEADLOCK

"C" sends to "A"
"A" blocked on "B", "B" blocked on "C", "C" blocked on "A"

DEADLOCK

A deadlock when sending messages improperly among processes.

There are common situations which require communication to flow
backwards through the hierarchy. For example, A sends to B
requesting notification when data is available. B immediately replies
to A. At some point in the future, B will have the data A requested
and will inform A. B can’t send a message to A because this might
result in deadlock if A decided to send to B at the same time.

The solution is to have B use a nonblocking MsgDeliverEvent() to
inform A. A receives this pulse and sends a message to B requesting
the data. B then replies with the data. This is the basis for
asynchronous IO. Clients send to servers and where necessary, servers
use pulses to request clients to resend to them as needed. This is
illustrated below:

Message Use

A sends to → B Async IO request

B replies to → A Request acknowledged

continued. . .

May 31, 2004 Manifests 1663

MsgDeliverEvent(), MsgDeliverEvent r() 2004, QNX Software

Systems Ltd.

Message Use

B sends pulse to → A Requested data available

A sends to → B Request for the data

B replies to → A Reply with data

In client/server designs, you typically use MsgDeliverEvent() in the
server, and MsgSendPulse() in the client.

�

Blocking states

None. In the network case, lower priority threads may run.

Native networking

When you use MsgDeliverEvent() to communicate across a network,
the return code isn’t “reliable”. In the local case, MsgDeliverEvent()
always returns a correct success or failure value. But since
MsgDeliverEvent() must be nonblocking, in the networked case, the
return value isn’t guaranteed to reflect the actual result on the client’s
node. This is because MsgDeliverEvent() would have to block waiting
for the communications between the two npm-qnets.

Generally, this isn’t a problem, because MsgDeliverEvent() is for the
benefit of the client anyway — if the client no longer exists, then the
client obviously doesn’t care that it didn’t get the event. The server
usually delivers the event and then goes about its business, regardless
of the success or failure of the event delivery.

Returns:
The only difference between these functions is the way they indicate
errors:

MsgDeliverEvent()

If an error occurs, -1 is returned and errno is set. Any other
value returned indicates success.

1664 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgDeliverEvent(),
MsgDeliverEvent r()

MsgDeliverEvent r()

EOK is returned on success. This function does NOT set errno.
If an error occurs, any value in the Errors section may be
returned.

Errors:
EAGAIN The kernel has insufficient resources to enqueue

the event.

EBADF The thread indicated by rcvid had its connection
detached.

EFAULT A fault occurred when the kernel tried to access
the buffers provided.

ESRCH The thread indicated by rcvid doesn’t exist.

ESRVRFAULT A fault occurred in the server’s address space
when it tried to write the pulse message to the
server’s receive message buffer (SIGEV PULSE
only).

Examples:
The following example demonstrates how a client can request a server
to notify it with a pulse at a later time (in this case, after the server has
slept for two seconds). The server side notifies the client using
MsgDeliverEvent().

Here’s the header file that’s used by client.c and server.c:

struct my msg
{

short type;
struct sigevent event;

};

#define MY PULSE CODE PULSE CODE MINAVAIL+5
#define MSG GIVE PULSE IO MAX+4
#define MY SERV "my server name"

May 31, 2004 Manifests 1665

MsgDeliverEvent(), MsgDeliverEvent r() 2004, QNX Software

Systems Ltd.

Here’s the client side that fills in a struct sigevent and then
receives a pulse:

/* client.c */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <sys/neutrino.h>
#include <sys/iomsg.h>

#include "my hdr.h"

int main(int argc, char **argv)
{
int chid, coid, srv coid, rcvid;
struct my msg msg;
struct pulse pulse;

/* we need a channel to receive the pulse notification on */
chid = ChannelCreate(0);

/* and we need a connection to that channel for the pulse to be
delivered on */

coid = ConnectAttach(0, 0, chid, NTO SIDE CHANNEL, 0);

/* fill in the event structure for a pulse */
SIGEV PULSE INIT(&msg.event, coid, SIGEV PULSE PRIO INHERIT,

MY PULSE CODE, 0);
msg.type = MSG GIVE PULSE;

/* find the server */
if ((srv coid = name open(MY SERV, 0)) == -1)
{

printf("failed to find server, errno %d\n", errno);
exit(1);

}

/* give the pulse event we initialized above to the server for
later delivery */

MsgSend(srv coid, &msg, sizeof(msg), NULL, 0);

/* wait for the pulse from the server */
rcvid = MsgReceivePulse(chid, &pulse, sizeof(pulse), NULL);
printf("got pulse with code %d, waiting for %d\n", pulse.code,

MY PULSE CODE);

return 0;

1666 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgDeliverEvent(),
MsgDeliverEvent r()

}

Here’s the server side that delivers the pulse defined by the struct
sigevent:

/* server.c */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <sys/neutrino.h>
#include <sys/iomsg.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>

#include "my hdr.h"

int main(int argc, char **argv)
{
int rcvid;
struct my msg msg;
name attach t *attach;

/* attach the name the client will use to find us */
/* our channel will be in the attach structure */
if ((attach = name attach(NULL, MY SERV, 0)) == NULL)
{

printf("server:failed to attach name, errno %d\n", errno);
exit(1);

}

/* wait for the message from the client */
rcvid = MsgReceive(attach->chid, &msg, sizeof(msg), NULL);
MsgReply(rcvid, 0, NULL, 0);
if (msg.type == MSG GIVE PULSE)
{

/* wait until it is time to notify the client */
sleep(2);

/* deliver notification to client that client requested */
MsgDeliverEvent(rcvid, &msg.event);
printf("server:delivered event\n");

} else
{

printf("server: unexpected message \n");
}

return 0;

May 31, 2004 Manifests 1667

MsgDeliverEvent(), MsgDeliverEvent r() 2004, QNX Software

Systems Ltd.

}

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
In the case of a pulse event, if the server faults on delivery, the pulse is
either lost or an error is returned.

See also:
MsgReceive(), MsgReceivev(), MsgSend(), MsgSendPulse(),
MsgSendv(), sigevent, SignalWaitinfo()

1668 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgError(), MsgError r()
Unblock a client and set its errno

Synopsis:
#include <sys/neutrino.h>

int MsgError(int rcvid,
int error);

int MsgError r(int rcvid,
int error);

Arguments:
rcvid The receive ID that MsgReceive*() returned.

error The error code that you want to set for the client.

Library:
libc

Description:
The MsgError() and MsgError r() kernel calls unblock the client’s
MsgSend*() call and set the client’s errno to error. No data is
transferred.

If error is EOK, the MsgSend*() call returns EOK; if error is any other
value, the MsgSend*() call returns -1.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

An error number of ERESTART causes the sender to immediately call
MsgSend*() again. Since send and receive buffers passed to
MsgSend() may overlap, you shouldn’t use ERESTART after a call to
MsgWrite().

�

May 31, 2004 Manifests 1669

MsgError(), MsgError r() 2004, QNX Software Systems Ltd.

Blocking states

None. In the network case, lower priority threads may run.

Native networking

MsgError() has increased latency when you use it to communicate
across a network — the server is now writing the error code to its
local npm-qnet, which may need to communicate with the client’s
npm-qnet to actually transfer the error code.

Returns:
The only difference between these functions is the way they indicate
errors:

MsgError() If an error occurs, the function returns -1 and and
sets errno. Any other value returned indicates
success.

MsgError r() Returns EOK on success. This function does NOT
set errno. If an error occurs, the function returns
one of the values listed in the Errors section.

Errors:
ESRCH The thread indicated by rcvid doesn’t exist.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

1670 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgError(), MsgError r()

See also:
ChannelCreate(), MsgRead(), MsgReadv(), MsgReceive(),
MsgReceivev(), MsgSend(), MsgSendv()

May 31, 2004 Manifests 1671

MsgInfo(), MsgInfo r() 2004, QNX Software Systems Ltd.

Get additional information about a message

Synopsis:
#include <sys/neutrino.h>

int MsgInfo(int rcvid,
struct msg info* info);

int MsgInfo r(int rcvid,
struct msg info* info);

Arguments:
rcvid The return value from MsgReceive*().

info A pointer to a msg info structure where the function can
store information about the message.

Library:
libc

Description:
The MsgInfo() and MsgInfo r() kernel calls get additional information
about a received message and store it in the specified msg info

structure.

These functions are identical, except in the way they indicate errors.
See the Returns section for details.

The info->msglen and info->srcmsglen members are valid only until
the next call to MsgRead*() or MsgWrite*().

�

Blocking states

This call doesn’t block.

1672 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgInfo(), MsgInfo r()

Returns:
The only difference between these functions is the way they indicate
errors:

MsgInfo() If an error occurs, -1 is returned and errno is set.
Any other value returned indicates success.

MsgInfo r() EOK is returned on success. This function does NOT
set errno. If an error occurs, any value in the Errors
section may be returned.

Errors:
EFAULT A fault occurred when the kernel tried to access the

buffers provided.

ESRCH The thread indicated by rcvid doesn’t exist.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ChannelCreate(), msg info, MsgRead(), MsgReadv(),
MsgReceive(), MsgReceivev(), MsgSend(), MsgSendv(),

May 31, 2004 Manifests 1673

MsgKeyData(), MsgKeyData r() 2004, QNX Software Systems Ltd.

Pass data through a common client

Synopsis:
#include <sys/neutrino.h>

int MsgKeyData(int rcvid,
int op,
uint32 t key,
uint32 t * key2,
const iov t * msg,
int parts);

int MsgKeyData r(int rcvid,
int op,
uint32 t key,
uint32 t * key2,
const iov t * msg,
int parts);

Arguments:
rcvid The return value from MsgReceive*().

op The operation to perform; one of:

� NTO KEYDATA CALCULATE — calculate a new key.

� NTO KEYDATA VERIFY — verify the key.

key A private value for key (this can be a value returned by the
rand() function).

key2 A pointer to a key. What the function stores in this location
depends on the op argument:

� NTO KEYDATA CALCULATE — the new key.

� NTO KEYDATA VERIFY — zero if no tampering has
occurred.

msg A pointer to a portion of the reply data to be keyed.

parts The number of parts in msg.

1674 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgKeyData(), MsgKeyData r()

Library:
libc

Description:
The MsgKeyData() and MsgKeyData r() kernel calls allow two
privileged processes to pass data through a common client while
verifying that the client hasn’t modified the data. This is best
explained by an example.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

A program calls open() with a filename. The open() function sends a
message to the Process Manager, which is responsible for pathname
management.

MsgSendv open "filename"Client Process
Manager

MsgSendv(), client to process manager.

The Process Manager resolves the pathname, resulting in a fully
qualified network path and the process ID to send the open() request
to. This information is replied to the client.

MsgReplyv pid,
"/net/dan/filename"

Client Process
Manager

MsgReplyv(), process manager to client.

The client now sends this message to pid with the fully qualified
pathname.

May 31, 2004 Manifests 1675

MsgKeyData(), MsgKeyData r() 2004, QNX Software Systems Ltd.

MsgSendv
"/net/dan/filename"

Client Filesystem
Manager

MsgSendv(), client to filesystem manager

Note that the client can change the pathname before it sends it to the
Filesystem Manager. In fact, it could skip the call to the Process
Manager and manufacture any pathname it desired. The Filesystem
Manager always performs permission checking. Therefore, changing
or manufacturing pathnames isn’t normally something to be
concerned about, except in one case: chroot() lets you specify a prefix
that must be applied to all pathnames.

In the above example, the client may have had a chroot() of
/net/node2/home/dan. This should limit the process from
accessing files outside of /net/node2/home/dan. For example:

User path Mapped to chroot() path

/bin/ls /net/node2/home/dan/bin/ls

/ /net/node2/home/dan

The process has had its root set to a subdirectory, limiting the files it
can access. For this to work, it’s necessary to prevent the client from
changing or manufacturing its own pathnames.

In QNX Neutrino, only the Process Manager handles a user chroot().
Unlike a monolithic kernel where the filesystem shares the same
address space as the kernel and the chroot() information, QNX I/O
managers reside in separate address spaces and might not even reside
on the same machine.

�

The solution to this problem is the MsgKeyData() call. When the
Process Manager receives the open() message, it generates the reply
data. Before replying, it calls MsgKeyData(), with these arguments:

1676 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgKeyData(), MsgKeyData r()

rcvid The return value from MsgReceive*().

op NTO KEYDATA CALCULATE

key A private value for key (this can be a value returned by the
rand() function).

key2 A pointer to a new key that should be returned to the client
in a unkeyed area of the message.

msg A pointer to a portion of the reply data to be keyed.

parts The number of parts in msg.

The client now sends the message to the File Manager. On receipt of
the message, the File Manager calls MsgKeyData() with the same
arguments as above, except for:

op NTO KEYDATA VERIFY

key The key that’s provided in the message.

MsgKeyData() sets the key pointed to by key2 to zero if no tampering
has occurred.

Note that there are actually two keys involved. A public key that’s
returned to the client and a private key that the Process Manager
generated. The algorithm uses both keys and the data for verification.

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

MsgKeyData() If an error occurs, -1 is returned and errno is set.
Any other value returned indicates success.

May 31, 2004 Manifests 1677

MsgKeyData(), MsgKeyData r() 2004, QNX Software Systems Ltd.

MsgKeyData r() EOK is returned on success. This function does
NOT set errno. If an error occurs, any value in the
Errors section may be returned.

Errors:
ESRCH The thread indicated by rcvid doesn’t exist.

EFAULT A fault occurred when the kernel tried to access the
buffers provided.

Examples:
/*
* This program demonstrates the use of MsgKeyData() as a way
* of a client handing off data from a source server to a
* destination server such that if the client tampers with
* the data, the destination server will know about it.
*/

#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <sys/neutrino.h>

typedef struct {
int public key;
char text[10];

} IPC t;

int chid src, chid dst;

void* server src thread(void* parm);
void* server dst thread(void* parm);

main()
{

pthread t tid[2];
IPC t msg;
int coid;
int status;

pthread create(&tid[0], NULL, server src thread, NULL);

1678 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgKeyData(), MsgKeyData r()

pthread create(&tid[1], NULL, server dst thread, NULL);
sleep(3);
/* give time for channels to be created, sloppy but simple */

/*
* Send to server src thread for some data.
* The data will include some text and a public
* key for that text.
*/

coid = ConnectAttach(0, 0, chid src, 0, 0);
MsgSend(coid, NULL, 0, &msg, sizeof(msg));
ConnectDetach(coid);

/*
* Now send to server dst thread with the reply from
* server src thread. We didn’t modify the ’text’ so it
* should reply success. Note that we’re including the
* public key.
*/

coid = ConnectAttach(0, 0, chid dst, 0, 0);
status = MsgSend(coid, &msg, sizeof(msg), &msg, sizeof(msg));
printf("Sent unmodified text to server dst thread.

Replied with %s\n", status == EOK ? "EOK" : "EINVAL");

/*
* Now tamper with the original ’text’ (which we aren’t
* supposed to do) and send to server dst thread again
* but with the modified ’text’ and the public key.
* Since we tampered with the ’text’, server dst thread
* should reply failure.
*/

strcpy(msg.text, "NEWDATA");
status = MsgSend(coid, &msg, sizeof(msg), &msg, sizeof(msg));
printf("Sent modified text to server dst thread.

Replied with %s\n", status == EOK ? "EOK" : "EINVAL");

return 0;
}

void* server src thread(void* parm)
{

int rcvid;
int private key; /* the kernel keeps this */
iov t keyed area iov;
IPC t msg;
struct timespec t;

May 31, 2004 Manifests 1679

MsgKeyData(), MsgKeyData r() 2004, QNX Software Systems Ltd.

chid src = ChannelCreate(0);
while (1) {

rcvid = MsgReceive(chid src, &msg, sizeof(msg), NULL);

/*
* Give MsgKeyData() the private key and it will
* calculate a public key for the ’text’ member of
* the message. The kernel will keep the private key
* and we reply with the public key.
* Note that we use the number of nanoseconds since the
* last second as a way of getting a 32-bit pseudo
* random number for the private key.
*/

clock gettime(CLOCK REALTIME, &t);
private key = t.tv nsec; /* nanoseconds since last second */
strcpy(msg.text, "OKDATA");
SETIOV(&keyed area iov, &msg.text, sizeof(msg.text));
MsgKeyData(rcvid, NTO KEYDATA CALCULATE, private key,

&msg.public key, &keyed area iov, 1);

MsgReply(rcvid, 0, &msg, sizeof(msg));
}
return NULL;

}

void* server dst thread(void* parm)
{

int rcvid, tampered, status;
iov t keyed area iov;
IPC t msg;

chid dst = ChannelCreate(0);
while (1) {

rcvid = MsgReceive(chid dst, &msg, sizeof(msg), NULL);

/*
* Use the public key to see if the data
* has been tampered with.
*/

SETIOV(&keyed area iov, &msg.text, sizeof(msg.text));
MsgKeyData(rcvid, NTO KEYDATA VERIFY, msg.public key,

&tampered, &keyed area iov, 1);

if (tampered)
status = EINVAL; /* reply: ’text’ was modified */

else
status = EOK; /* reply: ’text’ was okay */

MsgReply(rcvid, status, &msg, sizeof(msg));

1680 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgKeyData(), MsgKeyData r()

}
return NULL;

}

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
chroot(), MsgReceive(), MsgReceivev(), open(), rand()

May 31, 2004 Manifests 1681

MsgRead(), MsgRead r() 2004, QNX Software Systems Ltd.

Read data from a message

Synopsis:
#include <sys/neutrino.h>

int MsgRead(int rcvid,
void* msg,
int bytes,
int offset);

int MsgRead r(int rcvid,
void* msg,
int bytes,
int offset);

Arguments:
rcvid The value returned by MsgReceive*() when you received

the message.

msg A pointer to a buffer where the function can store the data.

bytes The number of bytes that you want to read. These functions
don’t let you read past the end of the thread’s message; they
return the number of bytes actually read.

offset An offset into the thread’s send message that indicates
where you want to start reading the data.

Library:
libc

Description:
The MsgRead() and MsgRead r() kernel calls read data from a
message sent by a thread identified by rcvid. The thread being read
from must not have been replied to and will be in the REPLY-blocked
state. Any thread in the receiving process is free to read the message.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

1682 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgRead(), MsgRead r()

The data transfer occurs immediately and the thread doesn’t block.
The state of the sending thread doesn’t change.

You’ll use these functions in these situations:

� A message is sent consisting of a fixed header and a variable
amount of data. The header contains the byte count of the data. If
the data is large and has to be inserted into one or more buffers
(like a filesystem cache), rather than read the data into one large
buffer and then copy it into several other buffers, MsgReceive()
reads only the header, and you can call MsgRead() one or more
times to read data directly into the required buffer(s).

� A message is received but can’t be handled at the present time. At
some point in the future, an event will occur that will allow the
message to be processed. Rather than saving the message until it
can be processed (thus using memory resources), you can use
MsgRead() to reread the message, during which time the sending
thread is still blocked.

� Messages that are larger than available buffer space are received.
Perhaps the process is an agent between two processes and simply
filters the data and passes it on. You can use MsgRead() to read the
message in small pieces, and use MsgWrite*() to write the
messages in small pieces.

When you’re finished using MsgRead(), you must use MsgReply*() to
ready the REPLY-blocked process and complete the message
exchange.

Blocking states

None. In the network case, lower priority threads may run.

Native networking

The MsgRead() function has increased latency when it’s used to
communicate across a network — a message pass is involved from the
server to the network manager (at least). Depending on the size of the
data transfer, the server’s npm-qnet and the client’s npm-qnet may

May 31, 2004 Manifests 1683

MsgRead(), MsgRead r() 2004, QNX Software Systems Ltd.

need to communicate over the link to read more data bytes from the
client.

Returns:
The only difference between the MsgRead() and MsgRead r()
functions is the way they indicate errors:

MsgRead() The number of bytes read. If an error occurs, -1 is
returned and errno is set.

MsgRead r() The number of bytes read. This function does NOT
set errno. If an error occurs, the negative of a value
from the Errors section is returned.

If you try to read past the end of the thread’s message, the functions
return the number of bytes they were actually able to read.

Errors:
EFAULT A fault occurred in a server’s address space when

it tried to access the caller’s message buffers.

ESRCH The thread indicated by rcvid doesn’t exist or has
had its connection detached.

ESRVRFAULT A fault occurred when the kernel tried to access
the buffers provided.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

continued. . .

1684 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgRead(), MsgRead r()

Safety

Signal handler Yes

Thread Yes

See also:
MsgReadv(), MsgReceive(), MsgReceivev(), MsgReply(),
MsgReplyv(), MsgWrite(), MsgWritev()

May 31, 2004 Manifests 1685

MsgReadv(), MsgReadv r() 2004, QNX Software Systems Ltd.

Read data from a message

Synopsis:
#include <sys/neutrino.h>

int MsgReadv(int rcvid,
const iov t* riov,
int rparts,
int offset);

int MsgReadv r(int rcvid,
const iov t* riov,
int rparts,
int offset);

Arguments:
rcvid The value returned by MsgReceive*() when you received

the message.

riov An array of buffers where the functions can store the data.

rparts The number of elements in the riov array.

offset An offset into the thread’s send message that indicates
where you want to start reading the data.

Library:
libc

Description:
The MsgReadv() and MsgReadv r() kernel calls read data from a
message sent by a thread identified by rcvid. The thread being read
from must not have been replied to and will be in the REPLY-blocked
state. Any thread in the receiving process is free to read the message.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

The data transfer occurs immediately and the thread doesn’t block.
The state of the sending thread doesn’t change.

1686 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgReadv(), MsgReadv r()

An attempt to read past the end of the thread’s message results in
fewer bytes returned than requested.

You’ll use these functions in these situations:

� A message is sent consisting of a fixed header and a variable
amount of data. The header contains the byte count of the data. If
the data is large and has to be inserted into one or more buffers
(like a filesystem cache), rather than read the data into one large
buffer and then copy it into several other buffers, MsgReceive()
reads only the header, and you can build a custom iov t list to let
MsgReadv() read data directly into the required buffers.

� A message is received but can’t be handled at the present time. At
some point in the future, an event will occur that will allow the
message to be processed. Rather than saving the message until it
can be processed (thus using memory resources), you can use
MsgReadv() to reread the message, during which time the sending
thread is still blocked.

� Messages that are larger than available buffer space are received.
Perhaps the process is an agent between two processes and simply
filters the data and passes it on. You can use MsgReadv() to read
the message in small pieces, and use MsgWrite*() to write the
messages in small pieces.

When you’re finished using MsgReadv(), you must use MsgReply*()
to ready the REPLY-blocked process and complete the message
exchange.

Blocking states

None. In the network case, lower priority threads may run.

Returns:
The only difference between the MsgReadv() and MsgReadv r()
functions is the way they indicate errors:

MsgReadv() The number of bytes read. If an error occurs, -1 is
returned and errno is set.

May 31, 2004 Manifests 1687

MsgReadv(), MsgReadv r() 2004, QNX Software Systems Ltd.

MsgReadv r() The number of bytes read. This function does
NOT set errno. If an error occurs, the negative of
a value from the Errors section is returned.

Errors:
EFAULT A fault occurred in a server’s address space when

it tried to access the caller’s message buffers.

ESRCH The thread indicated by rcvid doesn’t exist or has
had its connection detached.

ESRVRFAULT A fault occurred when the kernel tried to access
the buffers provided.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
MsgRead(), MsgReceive(), MsgReceivev(), MsgReply(), MsgReplyv(),
MsgWrite(), MsgWritev()

1688 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgReceive(), MsgReceive r()
Wait for a message or pulse on a channel

Synopsis:
#include <sys/neutrino.h>

int MsgReceive(int chid,
void * msg,
int bytes,
struct msg info * info);

int MsgReceive r(int chid,
void * msg,
int bytes,
struct msg info * info);

Arguments:
chid The ID of a channel that you established by calling

ChannelCreate().

msg A pointer to a buffer where the function can store the
received data.

bytes The size of the buffer.

info NULL, or a pointer to a msg info structure where the
function can store additional information about the message.

Library:
libc

Description:
The MsgReceive() and MsgReceive r() kernel calls wait for a message
or pulse to arrive on the channel identified by chid, and store the
received data in the buffer pointed to by msg.

These functions are identical, except in the way they indicate errors;
see the Returns section for details.

May 31, 2004 Manifests 1689

MsgReceive(), MsgReceive r() 2004, QNX Software Systems Ltd.

The number of bytes transferred is the minimum of that specified by
both the sender and the receiver. The received data isn’t allowed to
overflow the receive buffer area provided.

The msg buffer must be big enough to contain a pulse. If it isn’t, the
functions indicate an error of EFAULT.

�

If a message is waiting on the channel when you call MsgReceive(),
the calling thread doesn’t block, and the message is immediately
copied. If a message isn’t waiting, the calling thread enters the
RECEIVE-blocked state until a message arrives.

If multiple messages are sent to a channel without a thread waiting to
receive them, the messages are queued in priority order.

If you pass a non-NULL pointer for info, the functions store additional
information about the message and the thread that sent it in the
msg info structure that info points to. You can get this information

later by calling MsgInfo().

On sucess, MsgReceive() and MsgReceive r() return:

>0 A message was received; the returned value is a a rcvid
(receive identifier). You’ll use the rcvid with other Msg*()
kernel calls to interact with and reply to the sending thread.
MsgReceive() changes the state of the sending thread to
REPLY-blocked when the message is received. When you use
MsgReply*() to reply to the received message, the sending
thread is made ready again. The rcvid encodes the sending
thread’s ID and a local connection ID.

0 A pulse was received; msg contains a pulse message of type
pulse. When a pulse is received, the kernel space allocated

to hold it is immediately released. The msg info structure
isn’t updated.

1690 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgReceive(), MsgReceive r()

Don’t reply to a pulse.
�

Blocking states

State Meaning

STATE RECEIVE There’s no message waiting

Native networking

In networked message-passing transactions, the most noticeable
impact is on the server. The server receives the client’s message from
the server’s local npm-qnet. Note that the receive ID that comes
back from MsgReceive() will have some differences, but you don’t
need to worry about the format of the receive ID — just treat it as a
“magic cookie.”

When the server unblocks from its MsgReceive(), it may or may not
have received as much of the message as it would in the local case.
This is because of the way that message passing is defined — the
client and the server agree on the size of the message transfer area
(the transmit parameters passed to MsgSend() on the client end) and
the size of the message receive area on the server’s MsgReceive().

In a local message pass, the kernel would ordinarily limit the size of
the transfer to the minimum of both sizes. But in the networked case,
the message is received by the client’s npm-qnet into its own private
buffers and then sent via transport to the remote npm-qnet. Since the
size of the server’s receive data area can’t be known in advance by the
client’s npm-qnet when the message is sent, only a fixed maximum
size (currently 8K) message is transferred between the client and the
server.

This means, for example, that if the client sends 1 Mbyte of data and
the server issues a MsgReceive() with a 1-Mbyte data area, then only
the number of bytes determined by a network manager would in fact
be transferred. The number of bytes transferred to the server is
returned via the last parameter to MsgReceive() or a call to MsgInfo(),

May 31, 2004 Manifests 1691

MsgReceive(), MsgReceive r() 2004, QNX Software Systems Ltd.

specifically the msglen member of struct msg info. The client
doesn’t notice this, because it’s still blocked.

You can use the following code to ensure that the desired number of
bytes are received. Note that this is handled for you automatically
when you’re using the resource manager library:

chid = ChannelCreate(NTO CHF SENDER LEN);
...
rcvid = MsgReceive(chid, msg, nbytes, &info);

/*
Doing a network transaction and not all
the message was send, so get the rest...

*/
if (rcvid > 0 && info.srcmsglen > info.msglen && info.msglen < nbytes) {

int n;

if((n = MsgRead r(rcvid, (char *) msg + info.msglen,
nbytes - info.msglen, info.msglen)) < 0) {

MsgError(rcvid, -n);
continue;

}
info.msglen += n;

}

Returns:
The only difference between MsgReceive() and MsgReceive r() is the
way they indicate errors. On success, both functions return a positive
rcvid if they received a message, or 0 if they received a pulse.

If an error occurs:

� MsgReceive() returns -1 and sets errno.

� MsgReceive r() returns the negative of a value from the Errors
section is returned. This function doesn’t set errno.

1692 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgReceive(), MsgReceive r()

Errors:
EFAULT A fault occurred when the kernel tried to access the

buffers provided. Because the OS accesses the
sender’s buffers only when MsgReceive() is called,
a fault could occur in the sender if the sender’s
buffers are invalid. If a fault occurs when accessing
the sender buffers (only) they’ll receive an EFAULT
and MsgReceive() won’t unblock.

EINTR The call was interrupted by a signal.

ESRCH The channel indicated by chid doesn’t exist.

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ChannelCreate(), msg info, MsgInfo(), MsgRead(), MsgReadv(),
MsgReceivePulse(), MsgReceivePulsev(), MsgReceivev(),
MsgReply(), MsgReplyv(), MsgSend(), MsgWrite(), MsgWritev(),
pulse, TimerTimeout()

May 31, 2004 Manifests 1693

MsgReceivePulse(), MsgReceivePulse r() 2004, QNX

Software Systems Ltd.

Receive a pulse on a channel

Synopsis:
#include <sys/neutrino.h>

int MsgReceivePulse(int chid,
void * pulse,
int bytes,
struct msg info * info);

int MsgReceivePulse r(int chid,
void * pulse,
int bytes,
struct msg info * info);

Arguments:
chid The ID of a channel that you established by calling

ChannelCreate().

pulse A pointer to a buffer where the function can store the
received data.

bytes The size of the buffer.

info The function doesn’t update this structure, so you typically
pass NULL for this argument.

Library:
libc

Description:
The MsgReceivePulse() and MsgReceivePulse r() kernel calls wait
for a pulse to arrive on the channel identified by chid and place the
received data in the buffer pointed to by pulse.

These functions are identical, except in the way they indicate errors;
see the Returns section for details.

1694 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgReceivePulse(),
MsgReceivePulse r()

The number of bytes transferred is the minimum of that specified by
both the sender and the receiver. The received data isn’t allowed to
overflow the receive buffer area provided.

The pulse buffer must be big enough to contain a pulse. If it isn’t, the
functions indicate an error of EFAULT.

�

If a pulse is waiting on the channel when you call MsgReceivePulse(),
the calling thread doesn’t block, and the pulse is immediately copied.
If a pulse isn’t waiting, the calling thread enters the
RECEIVE-blocked state until a pulse arrives.

If multiple pulses are sent to a channel without a thread waiting to
receive them, the pulses are queued in priority order.

On success, MsgReceivePulse() and MsgReceivePulse r() return 0 to
indicate that they received a pulse. When a pulse is received:

� the kernel space allocated to hold it is immediately released

� pulse contains a pulse message of type pulse.

Don’t reply to a pulse.�

Blocking states

State Meaning

STATE RECEIVE There’s no pulse waiting.

Returns:
The only difference between MsgReceivePulse() and
MsgReceivePulse r() is the way they indicate errors. On success, they
both return 0.

If an error occurred:

� MsgReceivePulse() returns -1 and sets errno.

May 31, 2004 Manifests 1695

MsgReceivePulse(), MsgReceivePulse r() 2004, QNX

Software Systems Ltd.

� MsgReceivePulse r() returns the negative of a value from the
Errors section. This function doesn’t set errno.

Errors:
EFAULT A fault occurred when the kernel tried to access the

buffers provided. Because the OS accesses the
sender’s buffers only when MsgReceivePulse() is
called, a fault could occur in the sender if the
sender’s buffers are invalid. If a fault occurs when
accessing the sender buffers (only) they’ll receive
an EFAULT and MsgReceivePulse() won’t unblock.

EINTR The call was interrupted by a signal.

ESRCH The channel indicated by chid doesn’t exist.

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
MsgDeliverEvent(), MsgReceive(), MsgReceivePulsev(),
MsgReceivev(), MsgSendPulse(), pulse, TimerTimeout()

1696 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgReceivePulsev(),
MsgReceivePulsev r()

Receive a pulse on a channel

Synopsis:
#include <sys/neutrino.h>

int MsgReceivePulsev(int chid,
const iov t * piov,
int parts,
struct msg info * info);

int MsgReceivePulsev r(int chid,
const iov t * piov,
int parts,
struct msg info * info);

Arguments:
chid The ID of a channel that you established by calling

ChannelCreate().

piov An array of buffers where the function can store the
received data.

parts The number of elements in the array.

info The function doesn’t update this structure, so you typically
pass NULL for this argument.

Library:
libc

Description:
The MsgReceivePulsev() and MsgReceivePulsev r() kernel calls wait
for a pulse to arrive on the channel identified by chid and places the
received data in the array of buffers pointed to by piov.

These functions are identical, except in the way they indicate errors;
see the Returns section for details.

May 31, 2004 Manifests 1697

MsgReceivePulsev(), MsgReceivePulsev r() 2004, QNX

Software Systems Ltd.

The number of bytes transferred is the minimum of that specified by
both the sender and the receiver. The received data isn’t allowed to
overflow the receive buffer area provided.

The first buffer of the IOV (input/output vector) must be big enough to
contain a pulse. If it isn’t, the functions indicate an error of EFAULT.

�

If a pulse is waiting on the channel when you call
MsgReceivePulsev(), the calling thread doesn’t block, and the pulse is
immediately copied. If a pulse isn’t waiting, the calling thread enters
the RECEIVE-blocked state until a pulse arrives.

If multiple pulses are sent to a channel without a thread waiting to
receive them, the pulses are queued in priority order.

On success, MsgReceivePulsev() and MsgReceivePulsev r() return 0
to indicate that they received a pulse. When a pulse is received:

� the kernel space allocated to hold it is immediately released

� the IOV’s first buffer contains a pulse message of type pulse.

Blocking states

State Meaning

STATE RECEIVE There’s no pulse waiting.

Returns:
The only difference between MsgReceivePulsev() and
MsgReceivePulsev r() is the way they indicate errors. On success,
they both return 0.

If an error occurs:

� MsgReceivePulsev() returns -1 and sets errno.

� MsgReceivePulsev r() returns the negative of a value from the
Errors section. This function doesn’t set errno.

1698 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgReceivePulsev(),
MsgReceivePulsev r()

Errors:
EFAULT A fault occurred when the kernel tried to access the

buffers provided. Because the OS accesses the
sender’s buffers only when MsgReceivePulsev() is
called, a fault could occur in the sender if the
sender’s buffers are invalid. If a fault occurs when
accessing the sender buffers (only) they’ll receive
an EFAULT and MsgReceivePulsev() won’t
unblock.

EINTR The call was interrupted by a signal.

ESRCH The channel indicated by chid doesn’t exist.

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
MsgDeliverEvent(), MsgReceive(), MsgReceivePulse(),
MsgReceivev(), MsgSendPulse(), pulse, TimerTimeout()

May 31, 2004 Manifests 1699

MsgReceivev(), MsgReceivev r() 2004, QNX Software Systems Ltd.

Wait for a message or pulse on a channel

Synopsis:
#include <sys/neutrino.h>

int MsgReceivev(int chid,
const iov t * riov,
int rparts,
struct msg info * info);

int MsgReceivev r(int chid,
const iov t * riov,
int rparts,
struct msg info * info);

Arguments:
chid The ID of a channel that you established by calling

ChannelCreate().

riov An array of buffers where the function can store the
received data.

rparts The number of elements in the array.

info NULL, or a pointer to a msg info structure where the
function can store additional information about the
message.

Library:
libc

Description:
The MsgReceivev() and MsgReceivev r() kernel calls wait for a
message or pulse to arrive on the channel identified by chid and place
the received data in the array of buffers pointed to by riov.

These functions are identical, except in the way they indicate errors;
see the Returns section for details.

1700 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgReceivev(), MsgReceivev r()

The number of bytes transferred is the minimum of that specified by
both the sender and the receiver. The received data isn’t allowed to
overflow the receive buffer area provided.

The first buffer of the IOV (input/output vector) must be big enough to
contain a pulse. If it isn’t, the functions indicate an error of EFAULT.

�

If a message is waiting on the channel when you call MsgReceivev(),
the calling thread won’t block, and the message is immediately
copied. If a message isn’t waiting, the calling thread enters the
RECEIVE-blocked state until a message arrives.

If multiple messages are sent to a channel without a thread waiting to
receive them, the messages are queued in priority order.

If you pass a non-NULL pointer for info, the functions store additional
information about the message and the thread that sent it in the
msg info structure that info points to. You can get this information

later by calling MsgInfo().

On success, MsgReceivev() and MsgReceivev r() return:

>0 A message was received; the value returned is a rcvid (receive
identifier). You’ll use the rcvid with other Msg*() kernel calls
to interact with and reply to the sending thread. MsgReceivev()
changes the state of the sending thread to REPLY-blocked
when the message is received. When you use MsgReply*() to
reply to the received message, the sending thread is made
ready again. The rcvid encodes the sending thread’s ID and a
local connection ID.

0 A pulse was received; the IOV’s first buffer contains a pulse
message of type pulse. When a pulse is received, the kernel
space allocated to hold it is immediately released. The
msg info structure isn’t updated.

May 31, 2004 Manifests 1701

MsgReceivev(), MsgReceivev r() 2004, QNX Software Systems Ltd.

Don’t reply to a pulse.
�

Blocking states

State Meaning

STATE RECEIVE There’s no message waiting.

Returns:
The only difference between MsgReceivev() and MsgReceivev r() is
the way they indicate errors. On success, both functions return a
positive rcvid if they received a message, or 0 if they received a pulse.

If an error occurs:

� MsgReceivev() returns -1 and sets errno.

� MsgReceivev r() returns the negative of a value from the Errors
section. This function doesn’t set errno.

Errors:
EFAULT A fault occurred when the kernel tried to access the

buffers provided. Because the OS accesses the
sender’s buffers only when MsgReceivev() is
called, a fault could occur in the sender if the
sender’s buffers are invalid. If a fault occurs when
accessing the sender buffers (only) they’ll receive
an EFAULT and MsgReceivev() won’t unblock.

EINTR The call was interrupted by a signal.

ESRCH The channel indicated by chid doesn’t exist.

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

1702 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgReceivev(), MsgReceivev r()

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ChannelCreate(), msg info, MsgInfo(), MsgRead(), MsgReadv(),
MsgReceive(), MsgReceivePulse(), MsgReceivePulsev(), MsgReply(),
MsgReplyv(), MsgWrite(), MsgWritev(), pulse, TimerTimeout()

May 31, 2004 Manifests 1703

MsgReply(), MsgReply r() 2004, QNX Software Systems Ltd.

Reply with a message

Synopsis:
#include <sys/neutrino.h>

int MsgReply(int rcvid,
int status,
const void* msg,
int size);

int MsgReply r(int rcvid,
int status,
const void* msg,
int size);

Arguments:
rcvid The receive ID that MsgReceive*() returned when you

received the message.

status The status to use when unblocking the MsgSend*() call in
the rcvid thread.

msg A pointer to a buffer that contains the message that you
want to reply with.

size The size of the message, in bytes.

Library:
libc

Description:
The MsgReply() and MsgReply r() kernel calls reply with a message
to the thread identified by rcvid. The thread being replied to must be
in the REPLY-blocked state. Any thread in the receiving process is
free to reply to the message, however, it may be replied to only once
for each receive.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

1704 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgReply(), MsgReply r()

The MsgSend*() in the rcvid thread unblocks with a return value of
status.

The status argument for both MsgReply(), and MsgReply r() functions
should not be passed a negative value.

�

The number of bytes transferred is the minimum of that specified by
both the replier and the sender. The reply data isn’t allowed to
overflow the reply buffer area provided by the sender.

The data transfer occurs immediately, and the replying task doesn’t
block. There’s no need to reply to received messages in any particular
order, but you must eventually reply to each message to allow the
sending thread(s) to continue execution.

Blocking states

None. In the network case, lower priority threads may run.

Native networking

The MsgReply() function has increased latency when it’s used to
communicate across a network — the server is now writing data to its
local npm-qnet, which may need to communicate with the client’s
npm-qnet to actually transfer the data.

Returns:
The only difference between the MsgReply() and MsgReply r()
functions is the way they indicate errors:

MsgReply() If an error occurs, -1 is returned and errno is set.

MsgReply r() This function does NOT set errno. If an error
occurs, the negative of a value from the Errors
section is returned.

May 31, 2004 Manifests 1705

MsgReply(), MsgReply r() 2004, QNX Software Systems Ltd.

Errors:
EFAULT A fault occurred in the sender’s address space

when a server tried to access the sender’s return
message buffers.

ESRCH The thread indicated by rcvid doesn’t exist, or is
no longer REPLY-blocked on the channel, or the
connection is detached.

ESRVRFAULT A fault occurred when the kernel tried to access
the buffers provided.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
MsgReceive(), MsgReceivev(), MsgReplyv(), MsgSend(), MsgSendv(),
MsgWrite(), MsgWritev()

1706 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgReplyv(), MsgReplyv r()
Reply with a message

Synopsis:
#include <sys/neutrino.h>

int MsgReplyv(int rcvid,
int status,
const iov t* riov,
int rparts);

int MsgReplyv r(int rcvid,
int status,
const iov t* riov,
int rparts);

Arguments:
rcvid The receive ID that MsgReceive*() returned when you

received the message.

status The status to use when unblocking the MsgSend*() call in
the rcvid thread.

riov An array of buffers that contains the message that you want
to reply with.

size The number of elements in the array.

Library:
libc

Description:
The MsgReplyv() and MsgReplyv r() kernel calls reply with a
message to the thread identified by rcvid. The thread being replied to
must be in the REPLY-blocked state. Any thread in the receiving
process is free to reply to the message, however, it may be replied to
only once for each receive.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

May 31, 2004 Manifests 1707

MsgReplyv(), MsgReplyv r() 2004, QNX Software Systems Ltd.

The MsgSend*() in the rcvid thread unblocks with a return value of
status.

The data is taken from the array of message buffers pointed to by riov.
The number of elements in this array is given by rparts. The size of
the message is the sum of the sizes of each buffer.

The number of bytes transferred is the minimum of that specified by
both the replier and the sender. The reply data isn’t allowed to
overflow the reply buffer area provided by the sender.

The data transfer occurs immediately, and the replying task doesn’t
block. There’s no need to reply to received messages in any particular
order, but you must eventually reply to each message to allow the
sending thread(s) to continue execution.

It’s quite common to reply with two-part messages consisting of a
fixed header and a buffer of data. The MsgReplyv() function gathers
the data from the buffer list into a logical contiguous message and
transfers it to the sender’s reply buffer(s). The sender doesn’t need to
specify the same number or size of buffers. The data is laid down
filling each buffer as required. The filesystem, for example, builds a
reply list pointing into its cache in order to reply with what appears to
be one contiguous piece of data.

Blocking states

None. In the network case, lower priority threads may run.

Returns:
The only difference between the MsgReplyv() and MsgReplyv r()
functions is the way they indicate errors:

MsgReplyv() If an error occurs, -1 is returned and errno is set.

MsgReplyv r() This function does NOT set errno. If an error
occurs, the negative of a value from the Errors
section is returned.

1708 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgReplyv(), MsgReplyv r()

Errors:
EFAULT A fault occurred in the sender’s address space

when a server tried to access the sender’s return
message buffers.

ESRCH The thread indicated by rcvid doesn’t exist, or is
no longer REPLY-blocked on the channel, or the
connection is detached.

ESRVRFAULT A fault occurred when the kernel tried to access
the buffers provided.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
MsgReceive(), MsgReceivev(), MsgReply(), MsgSend(), MsgSendv(),
MsgWrite(), MsgWritev()

May 31, 2004 Manifests 1709

MsgSend(), MsgSend r() 2004, QNX Software Systems Ltd.

Send a message to a channel

Synopsis:
#include <sys/neutrino.h>

int MsgSend(int coid,
const void* smsg,
int sbytes,
void* rmsg,
int rbytes);

int MsgSend r(int coid,
const void* smsg,
int sbytes,
void* rmsg,
int rbytes);

Arguments:
coid The ID of the channel to send the message on, which

you’ve established by calling ConnectAttach().

smsg A pointer to a buffer that contains the message that you
want to send.

sbytes The number of bytes to send.

rmsg A pointer to a buffer where the reply can be stored.

rbytes The size of the reply buffer, in bytes.

Library:
libc

Description:
The MsgSend() and MsgSend r() kernel calls send a message to a
process’s channel identified by coid.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

1710 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgSend(), MsgSend r()

The number of bytes transferred is the minimum of that specified by
both the sender and the receiver. The send data isn’t allowed to
overflow the receive buffer area provided by the receiver. The reply
data isn’t allowed to overflow the reply buffer area provided.

The sending thread becomes blocked waiting for a reply. If the
receiving process has a thread that’s RECEIVE-blocked on the
channel, the transfer of data into its address space occurs immediately,
and the receiving thread is unblocked and made ready to run. The
sending thread becomes REPLY-blocked. If there are no waiting
threads on the channel, the sending thread becomes SEND-blocked
and is placed in a queue (perhaps with other threads). In this case, the
actual transfer of data doesn’t occur until a receiving thread receives
on the channel. At this point, the sending thread becomes
REPLY-blocked.

MsgSend() is a cancellation point for the ThreadCancel() kernel call;
MsgSendnc() isn’t.

Blocking states

STATE SEND The message has been sent but not yet received. If
a thread is waiting to receive the message, this state
is skipped and the calling thread goes directly to
STATE REPLY.

STATE REPLY The message has been received but not yet replied
to. This state may be entered directly, or from
STATE SEND.

Native networking

When a client sends a message to a remote server, the client is
effectively sending the message via its local microkernel; the network
manager does the actual “work.” The local network manager
negotiates with the remote network manager and causes the message
to be delivered there. However, the remote manager is the one that
actually delivers the message to the server.

This message transfer from the remote manager to the server is
accomplished via a special nonblocking message pass.

May 31, 2004 Manifests 1711

MsgSend(), MsgSend r() 2004, QNX Software Systems Ltd.

The only impact on the client is the latency of the message-passing
operations. This is purely a function of the network link speed and the
overhead associated with the protocol (i.e. npm-qnet for native
networking) that io-net uses.

The client still remains blocked in its MsgSend(), and unblocks only
on account of a signal, a kernel timeout, or the completion of its
function.

Returns:
The only difference between the MsgSend() and MsgSend r()
functions is the way they indicate errors:

MsgSend() Success The value of status from MsgReply*().

-1 An error occurred (errno is set), or the
server called MsgError*() (errno is set to
the error value passed to MsgError()).

MsgSend r() Success The value of status from
MsgReply*().

negative value An error occurred (errno is NOT
set, the value is the negative of a
value from the Errors section), or
the server called MsgError*()
(errno is NOT set, the value is the
negative of the error value passed
to MsgError()).

Errors:
EBADF The connection indicated by coid is no longer

connected to a channel, or the connection
indicated by coid doesn’t exist. The channel may
have been terminated by the server, or the network
manager if it failed to respond to multiple polls.

1712 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgSend(), MsgSend r()

EFAULT A fault occurred when the kernel tried to access
the buffers provided. This may have occurred on
the receive or the reply.

EINTR The call was interrupted by a signal.

ESRCH The server died while the calling thread was
SEND-blocked or REPLY-blocked.

ESRVRFAULT A fault occurred in a server’s address space when
accessing the server’s message buffers.

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ConnectAttach(), MsgReceive(), MsgReceivev(), MsgSendnc(),
MsgSendPulse(), MsgSendsv(), MsgSendsvnc(), MsgSendv(),
MsgSendvnc(), MsgSendvs(), MsgSendvsnc(), TimerTimeout()

May 31, 2004 Manifests 1713

MsgSendnc(), MsgSendnc r() 2004, QNX Software Systems Ltd.

Send a message to a channel (non-cancellation point)

Synopsis:
#include <sys/neutrino.h>

int MsgSendnc(int coid,
const void* smsg,
int sbytes,
void* rmsg,
int rbytes);

int MsgSendnc r(int coid,
const void* smsg,
int sbytes,
void* rmsg,
int rbytes);

Arguments:
coid The ID of the channel to send the message on, which

you’ve established by calling ConnectAttach().

smsg A pointer to a buffer that contains the message that you
want to send.

sbytes The number of bytes to send.

rmsg A pointer to a buffer where the reply can be stored.

rbytes The size of the reply buffer, in bytes.

Library:
libc

Description:
The MsgSendnc() and MsgSendnc r() kernel calls send a message to a
process’s channel identified by coid.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

1714 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgSendnc(), MsgSendnc r()

The number of bytes transferred is the minimum of that specified by
both the sender and the receiver. The send data isn’t allowed to
overflow the receive buffer area provided by the receiver. The reply
data isn’t allowed to overflow the reply buffer area provided.

The sending thread becomes blocked waiting for a reply. If the
receiving process has a thread that’s RECEIVE-blocked on the
channel, the transfer of data into its address space occurs immediately,
and the receiving thread is unblocked and made ready to run. The
sending thread becomes REPLY-blocked. If there are no waiting
threads on the channel, the sending thread becomes SEND-blocked
and is placed in a queue (perhaps with other threads). In this case the
actual transfer of data doesn’t occur until a receiving thread receives
on the channel. At this point, the sending thread becomes
REPLY-blocked.

MsgSend() is a cancellation point for the ThreadCancel() kernel call;
MsgSendnc() isn’t.

Blocking states

STATE SEND The message has been sent but not yet received. If
a thread is waiting to receive the message, this state
is skipped and the calling thread goes directly to
STATE REPLY.

STATE REPLY The message has been received but not yet replied
to. This state may be entered directly, or from
STATE SEND.

Returns:
The only difference between the MsgSendnc() and MsgSendnc r()
functions is the way they indicate errors:

MsgSendnc() Success The value of status from MsgReply*().

-1 An error occurred (errno is set), or the
server called MsgError*() (errno is set
to the error value passed to MsgError()).

May 31, 2004 Manifests 1715

MsgSendnc(), MsgSendnc r() 2004, QNX Software Systems Ltd.

MsgSendnc r() Success The value of status from
MsgReply*().

negative value An error occurred (errno is NOT
set, the value is the negative of a
value from the Errors section), or
the server called MsgError*()
(errno is NOT set, the value is the
negative of the error value passed
to MsgError()).

Errors:
EBADF The connection indicated by coid is no longer

connected to a channel, or the connection
indicated by coid doesn’t exist. The channel may
have been terminated by the server, or the network
manager if it failed to respond to multiple polls.

EFAULT A fault occurred when the kernel tried to access
the buffers provided. This may have occurred on
the receive or the reply.

EINTR The call was interrupted by a signal.

ESRCH The server died while the calling thread was
SEND-blocked or REPLY-blocked.

ESRVRFAULT A fault occurred in a server’s address space when
accessing the server’s message buffers.

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

Classification:
QNX Neutrino

1716 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgSendnc(), MsgSendnc r()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ConnectAttach(), MsgReceive(), MsgReceivev(), MsgSend(),
MsgSendPulse(), MsgSendsv(), MsgSendsvnc(), MsgSendv(),
MsgSendvnc(), MsgSendvs(), MsgSendvsnc(), TimerTimeout()

May 31, 2004 Manifests 1717

MsgSendPulse(), MsgSendPulse r() 2004, QNX Software Systems

Ltd.

Send a pulse to a process

Synopsis:
#include <sys/neutrino.h>

int MsgSendPulse (int coid,
int priority,
int code,
int value);

int MsgSendPulse r (int coid,
int priority,
int code,
int value);

Arguments:
coid The ID of the channel to send the message on, which

you’ve established by calling ConnectAttach().

priority The priority to use for the pulse. This must be within the
range of valid priorities, which you can determine by
calling sched get priority min() and
sched get priority max().

code The 8-bit pulse code.

Although code can be any 8-bit signed value, you should
avoid code values less than zero, in order to avoid conflict
with kernel- or QNX manager-generated pulse codes.
These codes all start with PULSE CODE and are defined
in <sys/neutrino.h>; for more information, see the
documentation for the pulse structure. A safe range of
pulse values is PULSE CODE MINAVAIL through
PULSE CODE MAXAVAIL.

value The 32-bit pulse value.

1718 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgSendPulse(),
MsgSendPulse r()

Library:
libc

Description:
The MsgSendPulse() and MsgSendPulse r() kernel calls send a short,
nonblocking message to a process’s channel identified by coid.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

You can send a pulse to a process if the sending process’s real or
effective user ID either:

� matches the real or effective user ID of the receiving process

Or:

� equals zero.

This permission checking is identical to that used by kill().

You can use MsgSendPulse() for many purposes; however, due to the
small payload of data, you shouldn’t use it for transmitting large
amounts of bulk data by sending a great number of pulses.

Pulses are queued for the receiving process in the system, using a
dynamic pool of memory objects. If pulses are generated faster than
they can be consumed by the receiver, then over a period of time the
system queue for the pulses could reach a low memory condition. If
there’s no memory available for the pulse to be queued in the system,
the kernel fails the pulse request with an error of EAGAIN. If the
priority, code and value don’t change, the kernel compresses the
pulses by storing an 8-bit count with an already queued pulse.

When you receive a pulse via the MsgReceive*() kernel call, the rcvid
returned is zero. This indicates to the receiver that it’s a pulse and,
unlike a message, shouldn’t be replied to using MsgReply*().

May 31, 2004 Manifests 1719

MsgSendPulse(), MsgSendPulse r() 2004, QNX Software Systems

Ltd.

In a client/server design, MsgDeliverEvent() is typically used in the
server, and MsgSendPulse() in the client.

�

Blocking states

None. In the network case, lower priority threads may run.

Native networking

You can use MsgSendPulse() to send pulses across the network.

Returns:
The only difference between the MsgSendPulse() and
MsgSendPulse r() functions is the way they indicate errors:

MsgSendPulse()

If an error occurs, -1 is returned and errno is set. Any other
value returned indicates success.

MsgSendPulse r()

EOK is returned on success. This function does NOT set errno.
If an error occurs, any value in the Errors section may be
returned.

Errors:
EAGAIN The kernel had insufficient resources to enqueue

the pulse.

EBADF The connection indicated by coid is no longer
connected to a channel or the connection indicated
by coid doesn’t exist. The channel may have been
terminated by the server or the network manager if
it failed to respond to multiple polls.

EFAULT A fault occurred when the kernel tried to access
the buffers provided.

1720 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgSendPulse(),
MsgSendPulse r()

EPERM This process doesn’t have sufficient permission to
send a pulse to the connection, coid.

ESRVRFAULT A fault occurred in the server’s address space
when it tried to write the pulse message to the
server’s receive message buffer.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
If the server faults on delivery, the pulse is either lost or an error is
returned.

See also:
MsgDeliverEvent(), MsgReceive(), MsgReceivev(), MsgSend(),
MsgSendnc(), MsgSendsv(), MsgSendsvnc(), MsgSendv(),
MsgSendvnc(), MsgSendvs(), MsgSendvsnc(), pulse,
sched get priority min(), sched get priority max()

May 31, 2004 Manifests 1721

MsgSendsv(), MsgSendsv r() 2004, QNX Software Systems Ltd.

Send a message to a channel

Synopsis:
#include <sys/neutrino.h>

int MsgSendsv(int coid,
const void* smsg,
int sbytes,
const iov t* riov,
int rparts);

int MsgSendsv r(int coid,
const void* smsg,
int sbytes,
const iov t* riov,
int rparts);

Arguments:
coid The ID of the channel to send the message on, which

you’ve established by calling ConnectAttach().

smsg A pointer to a buffer that contains the message that you
want to send.

sbytes The number of bytes to send.

riov An array of buffers where the reply can be stored.

rparts The number of elements in the riov array.

Library:
libc

Description:
The MsgSendsv() and MsgSendsv r() kernel calls send a message to a
process’s channel identified by coid.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

1722 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgSendsv(), MsgSendsv r()

The number of bytes transferred is the minimum of that specified by
both the sender and the receiver. The send data isn’t allowed to
overflow the receive buffer area provided by the receiver. The reply
data isn’t allowed to overflow the reply buffer area provided.

The sending thread becomes blocked waiting for a reply. If the
receiving process has a thread that’s RECEIVE-blocked on the
channel, the transfer of data into its address space occurs immediately,
and the receiving thread is unblocked and made ready to run. The
sending thread becomes REPLY-blocked. If there are no waiting
threads on the channel, the sending thread becomes SEND-blocked
and is placed in a queue (perhaps with other threads). In this case, the
actual transfer of data doesn’t occur until a receiving thread receives
on the channel. At this point, the sending thread becomes
REPLY-blocked.

MsgSendsv() is a cancellation point for the ThreadCancel() kernel
call; MsgSendsvnc() isn’t.

Blocking states

STATE SEND The message has been sent but not yet received. If
a thread is waiting to receive the message, this state
is skipped and the calling thread goes directly to
STATE REPLY.

STATE REPLY The message has been received but not yet replied
to. This state may be entered directly, or from
STATE SEND.

Returns:
The only difference between the MsgSendsv() and MsgSendsv r()
functions is the way they indicate errors:

MsgSendsv() Success The value of status from MsgReply*().

-1 An error occurred (errno is set), or the
server called MsgError*() (errno is set to
the error value passed to MsgError()).

May 31, 2004 Manifests 1723

MsgSendsv(), MsgSendsv r() 2004, QNX Software Systems Ltd.

MsgSendsv r() Success The value of status from
MsgReply*().

negative value An error occurred (errno is NOT
set, the value is the negative of a
value from the Errors section), or
the server called MsgError*()
(errno is NOT set, the value is the
negative of the error value passed
to MsgError()).

Errors:
EBADF The connection indicated by coid is no longer

connected to a channel, or the connection
indicated by coid doesn’t exist. The channel may
have been terminated by the server, or the network
manager if it failed to respond to multiple polls.

EFAULT A fault occurred when the kernel tried to access
the buffers provided. This may have occurred on
the receive or the reply.

EINTR The call was interrupted by a signal.

ESRCH The server died while the calling thread was
SEND-blocked or REPLY-blocked.

ESRVRFAULT A fault occurred in a server’s address space when
accessing the server’s message buffers.

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

Classification:
QNX Neutrino

1724 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgSendsv(), MsgSendsv r()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ConnectAttach(), MsgReceive(), MsgReceivev(), MsgSend(),
MsgSendnc(), MsgSendPulse(), MsgSendsvnc(), MsgSendv(),
MsgSendvnc(), MsgSendvs(), MsgSendvsnc(), TimerTimeout()

May 31, 2004 Manifests 1725

MsgSendsvnc(), MsgSendsvnc r() 2004, QNX Software Systems Ltd.

Send a message to a channel (non-cancellation point)

Synopsis:
#include <sys/neutrino.h>

int MsgSendsvnc(int coid,
const void* smsg,
int sbytes,
const iov t* riov,
int rparts);

int MsgSendsvnc r(int coid,
const void* smsg,
int sbytes,
const iov t* riov,
int rparts);

Arguments:
coid The ID of the channel to send the message on, which

you’ve established by calling ConnectAttach().

smsg A pointer to a buffer that contains the message that you
want to send.

sbytes The number of bytes to send.

riov An array of buffers where the reply can be stored.

rparts The number of elements in the riov array.

Library:
libc

Description:
The MsgSendsvnc() and MsgSendsvnc r() kernel calls send a message
to a process’s channel identified by coid.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

1726 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgSendsvnc(), MsgSendsvnc r()

The number of bytes transferred is the minimum of that specified by
both the sender and the receiver. The send data isn’t allowed to
overflow the receive buffer area provided by the receiver. The reply
data isn’t allowed to overflow the reply buffer area provided.

The sending thread becomes blocked waiting for a reply. If the
receiving process has a thread that’s RECEIVE-blocked on the
channel, the transfer of data into its address space occurs immediately,
and the receiving thread is unblocked and made ready to run. The
sending thread becomes REPLY-blocked. If there are no waiting
threads on the channel, the sending thread becomes SEND-blocked
and is placed in a queue (perhaps with other threads). In this case, the
actual transfer of data doesn’t occur until a receiving thread receives
on the channel. At this point, the sending thread becomes
REPLY-blocked.

MsgSendsv() is a cancellation point for the ThreadCancel() kernel
call; MsgSendsvnc() isn’t.

Blocking states

STATE SEND The message has been sent but not yet received. If
a thread is waiting to receive the message, this
state is skipped and the calling thread goes directly
to STATE REPLY.

STATE REPLY The message has been received but not yet replied
to. This state may be entered directly, or from
STATE SEND.

Returns:
The only difference between the MsgSendsvnc() and MsgSendsvnc r()
functions is the way they indicate errors:

MsgSendsvnc()

Success The value of status from MsgReply*().

-1 An error occurred (errno is set), or the server called
MsgError*() (errno is set to the error value passed to
MsgError()).

May 31, 2004 Manifests 1727

MsgSendsvnc(), MsgSendsvnc r() 2004, QNX Software Systems Ltd.

MsgSendsvnc r()

Success The value of status from MsgReply*().

negative value An error occurred (errno is NOT set, the value
is the negative of a value from the Errors
section), or the server called MsgError*()
(errno is NOT set, the value is the negative of
the error value passed to MsgError()).

Errors:
EBADF The connection indicated by coid is no longer

connected to a channel, or the connection
indicated by coid doesn’t exist. The channel may
have been terminated by the server, or the network
manager if it failed to respond to multiple polls.

EFAULT A fault occurred when the kernel tried to access
the buffers provided. This may have occurred on
the receive or the reply.

EINTR The call was interrupted by a signal.

ESRCH The server died while the calling thread was
SEND-blocked or REPLY-blocked.

ESRVRFAULT A fault occurred in a server’s address space when
accessing the server’s message buffers.

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

Classification:
QNX Neutrino

Safety

Cancellation point No

continued. . .

1728 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgSendsvnc(), MsgSendsvnc r()

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ConnectAttach(), MsgReceive(), MsgReceivev(), MsgSend(),
MsgSendnc(), MsgSendPulse(), MsgSendsv(), MsgSendv(),
MsgSendvnc(), MsgSendvs(), MsgSendvsnc(), TimerTimeout()

May 31, 2004 Manifests 1729

MsgSendv(), MsgSendv r() 2004, QNX Software Systems Ltd.

Send a message to a channel

Synopsis:
#include <sys/neutrino.h>

int MsgSendv(int coid,
const iov t* siov,
int sparts,
const iov t* riov,
int rparts);

int MsgSendv r(int coid,
const iov t* siov,
int sparts,
const iov t* riov,
int rparts);

Arguments:
coid The ID of the channel to send the message on, which

you’ve established by calling ConnectAttach().

siov An array of buffers that contains the message that you want
to send.

sparts The number of elements in the siov array.

riov An array of buffers where the reply can be stored.

rparts The number of elements in the riov array.

Library:
libc

Description:
The MsgSendv() and MsgSendv r() kernel calls send a message to a
process’s channel identified by coid.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

1730 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgSendv(), MsgSendv r()

The number of bytes transferred is the minimum of that specified by
both the sender and the receiver. The send data isn’t allowed to
overflow the receive buffer area provided by the receiver. The reply
data isn’t allowed to overflow the reply buffer area provided.

The sending thread becomes blocked waiting for a reply. If the
receiving process has a thread that’s RECEIVE-blocked on the
channel, the transfer of data into its address space occurs immediately,
and the receiving thread is unblocked and made ready to run. The
sending thread becomes REPLY-blocked. If there are no waiting
threads on the channel, the sending thread becomes SEND-blocked
and is placed in a queue (perhaps with other threads). In this case, the
actual transfer of data doesn’t occur until a receiving thread receives
on the channel. At this point, the sending thread becomes
REPLY-blocked.

It’s quite common to send two-part messages consisting of a fixed
header and a buffer of data. The MsgSendv() function gathers the data
from the send list into a logically contiguous message and transfers it
to the receiver. The receiver doesn’t need to specify the same number
or size of buffers. The data is laid down filling each entry as required.
The same applies to the replied data.

MsgSendv() is a cancellation point for the ThreadCancel() kernel call;
MsgSendvnc() isn’t.

Blocking states

STATE SEND The message has been sent but not yet received. If
a thread is waiting to receive the message, this state
is skipped and the calling thread goes directly to
STATE REPLY.

STATE REPLY The message has been received but not yet replied
to. This state may be entered directly, or from
STATE SEND.

May 31, 2004 Manifests 1731

MsgSendv(), MsgSendv r() 2004, QNX Software Systems Ltd.

Returns:
The only difference between the MsgSendv() and MsgSendv r()
functions is the way they indicate errors:

MsgSendv() Success The value of status from MsgReply*().

-1 An error occurred (errno is set), or the
server called MsgError*() (errno is set
to the error value passed to MsgError()).

MsgSendv r() Success The value of status from
MsgReply*().

negative value An error occurred (errno is NOT
set, the value is the negative of a
value from the Errors section), or
the server called MsgError*()
(errno is NOT set, the value is the
negative of the error value passed
to MsgError()).

Errors:
EBADF The connection indicated by coid is no longer

connected to a channel, or the connection
indicated by coid doesn’t exist. The channel may
have been terminated by the server, or the network
manager if it failed to respond to multiple polls.

EFAULT A fault occurred when the kernel tried to access
the buffers provided. This may have occurred on
the receive or the reply.

EINTR The call was interrupted by a signal.

ESRCH The server died while the calling thread was
SEND-blocked or REPLY-blocked.

ESRVRFAULT A fault occurred in a server’s address space when
accessing the server’s message buffers.

1732 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgSendv(), MsgSendv r()

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ConnectAttach(), MsgReceive(), MsgReceivev(), MsgSend(),
MsgSendnc(), MsgSendPulse(), MsgSendsv(), MsgSendsvnc(),
MsgSendvnc(), MsgSendvs(), MsgSendvsnc(), TimerTimeout()

May 31, 2004 Manifests 1733

MsgSendvnc(), MsgSendvnc r() 2004, QNX Software Systems Ltd.

Send a message to a channel (non-cancellation point)

Synopsis:
#include <sys/neutrino.h>

int MsgSendvnc(int coid,
const iov t* siov,
int sparts,
const iov t* riov,
int rparts);

int MsgSendvnc r(int coid,
const iov t* siov,
int sparts,
const iov t* riov,
int rparts);

Arguments:
coid The ID of the channel to send the message on, which

you’ve established by calling ConnectAttach().

siov An array of buffers that contains the message that you want
to send.

sparts The number of elements in the siov array.

riov An array of buffers where the reply can be stored.

rparts The number of elements in the riov array.

Library:
libc

Description:
The MsgSendvnc() and MsgSendvnc r() kernel calls send a message
to a process’s channel identified by coid.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

1734 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgSendvnc(), MsgSendvnc r()

The number of bytes transferred is the minimum of that specified by
both the sender and the receiver. The send data isn’t allowed to
overflow the receive buffer area provided by the receiver. The reply
data isn’t allowed to overflow the reply buffer area provided.

The sending thread becomes blocked waiting for a reply. If the
receiving process has a thread that’s RECEIVE-blocked on the
channel, the transfer of data into its address space occurs immediately,
and the receiving thread is unblocked and made ready to run. The
sending thread becomes REPLY-blocked. If there are no waiting
threads on the channel, the sending thread becomes SEND-blocked
and is placed in a queue (perhaps with other threads). In this case, the
actual transfer of data doesn’t occur until a receiving thread receives
on the channel. At this point, the sending thread becomes
REPLY-blocked.

MsgSendv() is a cancellation point for the ThreadCancel() kernel call;
MsgSendvnc() isn’t.

Blocking states

STATE SEND The message has been sent but not yet received. If
a thread is waiting to receive the message, this state
is skipped and the calling thread goes directly to
STATE REPLY.

STATE REPLY The message has been received but not yet replied
to. This state may be entered directly, or from
STATE SEND.

Returns:
The only difference between the MsgSendvnc() and MsgSendvnc r()
functions is the way they indicate errors:

MsgSendvnc()

Success The value of status from MsgReply*().

-1 An error occurred (errno is set), or the server called
MsgError*() (errno is set to the error value passed to
MsgError()).

May 31, 2004 Manifests 1735

MsgSendvnc(), MsgSendvnc r() 2004, QNX Software Systems Ltd.

MsgSendvnc r()

Success The value of status from MsgReply*().

negative value An error occurred (errno is NOT set, the value
is the negative of a value from the Errors
section), or the server called MsgError*()
(errno is NOT set, the value is the negative of
the error value passed to MsgError()).

Errors:
EBADF The connection indicated by coid is no longer

connected to a channel, or the connection
indicated by coid doesn’t exist. The channel may
have been terminated by the server, or the network
manager if it failed to respond to multiple polls.

EFAULT A fault occurred when the kernel tried to access
the buffers provided. This may have occurred on
the receive or the reply.

EINTR The call was interrupted by a signal.

ESRCH The server died while the calling thread was
SEND-blocked or REPLY-blocked.

ESRVRFAULT A fault occurred in a server’s address space when
accessing the server’s message buffers.

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

Classification:
QNX Neutrino

Safety

Cancellation point No

continued. . .

1736 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgSendvnc(), MsgSendvnc r()

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ConnectAttach(), MsgReceive(), MsgReceivev(), MsgSend(),
MsgSendnc(), MsgSendPulse(), MsgSendsv(), MsgSendsvnc(),
MsgSendv(), MsgSendvs(), MsgSendvsnc(), TimerTimeout()

May 31, 2004 Manifests 1737

MsgSendvs(), MsgSendvs r() 2004, QNX Software Systems Ltd.

Send a message to a channel

Synopsis:
#include <sys/neutrino.h>

int MsgSendvs(int coid,
const iov t* siov,
int sparts,
void* rmsg,
int rbytes);

int MsgSendvs r(int coid,
const iov t* siov,
int sparts,
void* rmsg,
int rbytes);

Arguments:
coid The ID of the channel to send the message on, which

you’ve established by calling ConnectAttach().

siov An array of buffers that contains the message that you want
to send.

sparts The number of elements in the siov array.

rmsg A pointer to a buffer where the reply can be stored.

rbytes The size of the reply buffer.

Library:
libc

Description:
The MsgSendvs() and MsgSendvs r() kernel calls send a message to a
process’s channel identified by coid.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

1738 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgSendvs(), MsgSendvs r()

The number of bytes transferred is the minimum of that specified by
both the sender and the receiver. The send data isn’t allowed to
overflow the receive buffer area provided by the receiver. The reply
data isn’t allowed to overflow the reply buffer area provided.

The sending thread becomes blocked waiting for a reply. If the
receiving process has a thread that’s RECEIVE-blocked on the
channel, the transfer of data into its address space occurs immediately,
and the receiving thread is unblocked and made ready to run. The
sending thread becomes REPLY-blocked. If there are no waiting
threads on the channel, the sending thread becomes SEND-blocked
and is placed in a queue (perhaps with other threads). In this case, the
actual transfer of data doesn’t occur until a receiving thread receives
on the channel. At this point, the sending thread becomes
REPLY-blocked.

MsgSendvs() is a cancellation point for the ThreadCancel() kernel
call; MsgSendvsnc() isn’t.

Blocking states

STATE SEND The message has been sent but not yet received. If
a thread is waiting to receive the message, this state
is skipped and the calling thread goes directly to
STATE REPLY.

STATE REPLY The message has been received but not yet replied
to. This state may be entered directly, or from
STATE SEND.

Returns:
The only difference between the MsgSendvs() and MsgSendvs r()
functions is the way they indicate errors:

MsgSendvs() Success The value of status from MsgReply*().

-1 An error occurred (errno is set), or the
server called MsgError*() (errno is set to
the error value passed to MsgError()).

May 31, 2004 Manifests 1739

MsgSendvs(), MsgSendvs r() 2004, QNX Software Systems Ltd.

MsgSendvs r() Success The value of status from
MsgReply*().

negative value An error occurred (errno is NOT
set, the value is the negative of a
value from the Errors section), or
the server called MsgError*()
(errno is NOT set, the value is the
negative of the error value passed
to MsgError()).

Errors:
EBADF The connection indicated by coid is no longer

connected to a channel, or the connection
indicated by coid doesn’t exist. The channel may
have been terminated by the server, or the network
manager if it failed to respond to multiple polls.

EFAULT A fault occurred when the kernel tried to access
the buffers provided. This may have occurred on
the receive or the reply.

EINTR The call was interrupted by a signal.

ESRCH The server died while the calling thread was
SEND-blocked or REPLY-blocked.

ESRVRFAULT A fault occurred in a server’s address space when
accessing the server’s message buffers.

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

Classification:
QNX Neutrino

1740 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgSendvs(), MsgSendvs r()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ConnectAttach(), MsgReceive(), MsgReceivev(), MsgSend(),
MsgSendnc(), MsgSendPulse(), MsgSendsv(), MsgSendsvnc(),
MsgSendv(), MsgSendvnc(), MsgSendvsnc(), TimerTimeout()

May 31, 2004 Manifests 1741

MsgSendvsnc(), MsgSendvsnc r() 2004, QNX Software Systems Ltd.

Send a message to a channel (non-cancellation point)

Synopsis:
#include <sys/neutrino.h>

int MsgSendvsnc(int coid,
const iov t* siov,
int sparts,
void* rmsg,
int rbytes);

int MsgSendvsnc r(int coid,
const iov t* siov,
int sparts,
void* rmsg,
int rbytes);

Arguments:
coid The ID of the channel to send the message on, which

you’ve established by calling ConnectAttach().

siov An array of buffers that contains the message that you want
to send.

sparts The number of elements in the siov array.

rmsg A pointer to a buffer where the reply can be stored.

rbytes The size of the reply buffer.

Library:
libc

Description:
The MsgSendvsnc() and MsgSendvsnc r() kernel calls send a message
to a process’s channel identified by coid.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

1742 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgSendvsnc(), MsgSendvsnc r()

The number of bytes transferred is the minimum of that specified by
both the sender and the receiver. The send data isn’t allowed to
overflow the receive buffer area provided by the receiver. The reply
data isn’t allowed to overflow the reply buffer area provided.

The sending thread becomes blocked waiting for a reply. If the
receiving process has a thread that’s RECEIVE-blocked on the
channel, the transfer of data into its address space occurs immediately,
and the receiving thread is unblocked and made ready to run. The
sending thread becomes REPLY-blocked. If there are no waiting
threads on the channel, the sending thread becomes SEND-blocked
and is placed in a queue (perhaps with other threads). In this case, the
actual transfer of data doesn’t occur until a receiving thread receives
on the channel. At this point, the sending thread becomes
REPLY-blocked.

MsgSendvs() is a cancellation point for the ThreadCancel() kernel
call; MsgSendvsnc() isn’t.

Blocking states

STATE SEND The message has been sent but not yet received. If
a thread is waiting to receive the message, this state
is skipped and the calling thread goes directly to
STATE REPLY.

STATE REPLY The message has been received but not yet replied
to. This state may be entered directly, or from
STATE SEND.

Returns:
The only difference between the MsgSendvsnc() and MsgSendvsnc r()
functions is the way they indicate errors:

MsgSendvsnc()

Success The value of status from MsgReply*().

-1 An error occurred (errno is set), or the server called
MsgError*() (errno is set to the error value passed to
MsgError()).

May 31, 2004 Manifests 1743

MsgSendvsnc(), MsgSendvsnc r() 2004, QNX Software Systems Ltd.

MsgSendvsnc r()

Success The value of status from MsgReply*().

negative value An error occurred (errno is NOT set, the value
is the negative of a value from the Errors
section), or the server called MsgError*()
(errno is NOT set, the value is the negative of
the error value passed to MsgError()).

Errors:
EBADF The connection indicated by coid is no longer

connected to a channel, or the connection
indicated by coid doesn’t exist. The channel may
have been terminated by the server, or the network
manager if it failed to respond to multiple polls.

EFAULT A fault occurred when the kernel tried to access
the buffers provided. This may have occurred on
the receive or the reply.

EINTR The call was interrupted by a signal.

ESRCH The server died while the calling thread was
SEND-blocked or REPLY-blocked.

ESRVRFAULT A fault occurred in a server’s address space when
accessing the server’s message buffers.

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

Classification:
QNX Neutrino

Safety

Cancellation point No

continued. . .

1744 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgSendvsnc(), MsgSendvsnc r()

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ConnectAttach(), MsgReceive(), MsgReceivev(), MsgSend(),
MsgSendnc(), MsgSendPulse(), MsgSendsv(), MsgSendsvnc(),
MsgSendv(), MsgSendvnc(), MsgSendvs(), TimerTimeout()

May 31, 2004 Manifests 1745

MsgVerifyEvent(), MsgVerifyEvent r() 2004, QNX Software

Systems Ltd.

Check the validity of a receive ID and an event configuration

Synopsis:
#include <sys/neutrino.h>

int MsgVerifyEvent(int rcvid,
const struct sigevent event);

int MsgVerifyEvent r(int rcvid,
const struct sigevent event);

Arguments:
rcvid The receive ID that you want to check.

event A pointer to a sigevent structure that contains the event
you want to check.

Library:
libc

Description:
The MsgVerifyEvent() and MsgVerifyEvent r() kernel calls check the
validity of the receive ID rcvid, and the event configuration. You can
use these functions to verify that an event is well-formed by a client
(pass a rcvid of 0), and by a server (pass a rcvid of the target thread).

These functions are identical except in the way they indicate errors.
See the Returns section for details.

Blocking states

These calls don’t block.

Returns:
The only difference between the MsgVerifyEvent() and
MsgVerifyEvent r() functions is the way they indicate errors:

1746 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgVerifyEvent(),
MsgVerifyEvent r()

MsgVerifyEvent()

If an error occurs, -1 is returned and errno is set.

MsgVerifyEvent r()

This function does NOT set errno. If an error occurs, the
negative of a value from the Errors section is returned.

Errors:
EBADF The channel for the pulse delivery doesn’t exist.

EINVAL Invalid event structure.

ESRCH The connection for the pulse doesn’t exist.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
MsgReceive(), MsgReceivev(), MsgReply(), MsgSend(), MsgSendv(),
MsgWrite(), MsgWritev(), sigevent

May 31, 2004 Manifests 1747

MsgWrite(), MsgWrite r() 2004, QNX Software Systems Ltd.

Write a reply

Synopsis:
#include <sys/neutrino.h>

int MsgWrite(int rcvid,
const void* msg,
int size,
int offset);

int MsgWrite r(int rcvid,
const void* msg,
int size,
int offset);

Arguments:
rcvid The value returned by MsgReceive*() when you received

the message.

msg A pointer to a buffer that contains the data you want to
write.

size The number of bytes that you want to write. These
functions don’t let you write past the end of the sender’s
buffer; they return the number of bytes actually written.

offset An offset into the sender’s buffer that indicates where you
want to start writing the data.

Library:
libc

Description:
The MsgWrite() and MsgWrite r() kernel calls write data to the reply
buffer of a thread identified by rcvid. The thread being written to must
be in the REPLY-blocked state. Any thread in the receiving process is
free to write to the reply message.

1748 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgWrite(), MsgWrite r()

These functions are identical except in the way they indicate errors.
See the Returns section for details.

You use this function in one of these situations:

� The data arrives over time and is quite large. Rather than buffer all
the data, you can use MsgWrite() to write it into the destination
thread’s reply message buffer, as it arrives.

� Messages are received that are larger than available buffer space.
Perhaps the process is an agent between two processes and simply
filters the data and passes it on. You can use MsgRead*() to read
messages in small pieces, and use MsgWrite() to write messages in
small pieces.

To complete a message exchange, you must call MsgReply*(). The
reply doesn’t need to contain any data. If it does contain data, then the
data is always written at offset zero in the destination thread’s reply
message buffer. This is a convenient way of writing the header once
all of the information has been gathered.

A single call to MsgReply*() is always more efficient than calls to
MsgWrite() followed by a call to MsgReply*().

Blocking states

None. In the network case, lower priority threads may run.

Native networking

The MsgWrite() function has increased latency when you use it to
communicate across a network — the server is now writing data to its
local npm-qnet, which may need to communicate with the client’s
npm-qnet to actually transfer the data. The server’s MsgWrite() call
effectively sends a message to the server’s npm-qnet to initiate this
data transfer.

But since the server’s npm-qnet has no way to determine the size of
the client’s receive data area, the number of bytes reported as having
been transferred by the server during its MsgWrite() call might not be
accurate — the reported number will instead reflect the number of
bytes transferred by the server to its npm-qnet.

May 31, 2004 Manifests 1749

MsgWrite(), MsgWrite r() 2004, QNX Software Systems Ltd.

The message is buffered in the server side’s npm-qnet until the client
replies, in order to reduce the number of network transactions.

If you want to determine the size of the sender’s reply buffer, set the
NTO CHF REPLY LEN when you call ChannelCreate().

Returns:
The only difference between the MsgWrite() and MsgWrite r()
functions is the way they indicate errors:

MsgWrite() The number of bytes written. If an error occurs, -1
is returned and errno is set.

MsgWrite r() The number of bytes written. This function does
NOT set errno. If an error occurs, the negative of a
value from the Errors section is returned.

Errors:
EFAULT A fault occurred in the sender’s address space

when a server tried to access the sender’s return
message buffer.

ESRCH The thread indicated by rcvid doesn’t exist or its
connection was detached.

ESRVRFAULT A fault occurred when the kernel tried to access
the buffers provided.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

continued. . .

1750 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgWrite(), MsgWrite r()

Safety

Signal handler Yes

Thread Yes

See also:
ChannelCreate(), MsgRead(), MsgReadv(), MsgReceive(),
MsgReceivev(), MsgReply(), MsgReplyv(), MsgWritev()

May 31, 2004 Manifests 1751

MsgWritev(), MsgWritev r() 2004, QNX Software Systems Ltd.

Write a reply

Synopsis:
#include <sys/neutrino.h>

int MsgWritev(int rcvid,
const iov t* iov,
int parts,
int offset);

int MsgWritev r(int rcvid,
const iov t* iov,
int parts,
int offset);

Arguments:
rcvid The value returned by MsgReceive*() when you received

the message.

iov An array of buffers that contains the data you want to write.

parts The number of elements in the array. These functions don’t
let you write past the end of the sender’s buffer; they return
the number of bytes actually written.

offset An offset into the sender’s buffer that indicates where you
want to start writing the data.

Library:
libc

Description:
The MsgWritev() and MsgWritev r() kernel calls write data to the
reply buffer of a thread identified by rcvid. The thread being written
to must be in the REPLY-blocked state. Any thread in the receiving
process is free to write to the reply message.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

1752 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. MsgWritev(), MsgWritev r()

The data transfer occurs immediately and your thread doesn’t block.
The state of the sending thread doesn’t change.

You’ll use this function in one of these situations:

� The data arrives over time and is quite large. Rather than buffer all
the data, you can use MsgWritev() to write it into the destination
thread’s reply message buffer, as it arrives.

� Messages are received that are larger than available buffer space.
Perhaps the process is an agent between two processes and simply
filters the data and passes it on. You can use MsgRead*() to read
messages in small pieces, and use MsgWritev() to write messages
in small pieces.

To complete a message exchange, you must call MsgReply*(). The
reply doesn’t need to contain any data. If it does contain data, then the
data is always written at offset zero in the destination thread’s reply
message buffer. This is a convenient way of writing the header once
all of the information has been gathered.

A single call to MsgReply*() is always more efficient than calls to
MsgWritev() followed by a call to MsgReply*().

Blocking states

None. In the network case, lower priority threads may run.

Returns:
The only difference between the MsgWritev() and MsgWritev r()
functions is the way they indicate errors:

MsgWritev() The number of bytes written. If an error occurs, -1
is returned and errno is set.

MsgWritev r() The number of bytes written. This function does
NOT set errno. If an error occurs, the negative of a
value from the Errors section is returned.

May 31, 2004 Manifests 1753

MsgWritev(), MsgWritev r() 2004, QNX Software Systems Ltd.

Errors:
EFAULT A fault occurred in the sender’s address space

when a server tried to access the sender’s return
message buffer.

ESRCH The thread indicated by rcvid doesn’t exist or its
connection was detached.

ESRVRFAULT A fault occurred when the kernel tried to access
the buffers provided.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
MsgRead(), MsgReadv(), MsgReceive(), MsgReceivev(), MsgReply(),
MsgReplyv(), MsgWrite()

1754 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. msync()
Synchronize memory with physical storage

Synopsis:
#include <sys/mman.h>

int msync(void * addr,
size t len,
int flags);

Arguments:
addr The beginning of the range of addresses that you want to

synchronize.

len The length of the range of addresses, in bytes.

flags A bitwise inclusive OR of one or more of the following
flags:

� MS ASYNC — perform asynchronous writes. The
function returns immediately once all the write
operations are initiated or queued for servicing.

� MS INVALIDATE — invalidate cached data. Invalidates
all cached copies of mapped data that are inconsistent
with the permanent storage locations such that
subsequent references obtain data that was consistent
with the permanent storage locations sometime between
the call to msync() and the first subsequent memory
reference to the data.

� MS INVALIDATE ICACHE — (QNX Neutrino extension)
if you’re dynamically modifying code, use this flag to
make sure that the new code is what will be executed.

� MS SYNC — perform synchronous writes. The function
doesn’t return until all write operations are completed as
defined for synchronized I/O data integrity completion.

May 31, 2004 Manifests 1755

msync() 2004, QNX Software Systems Ltd.

You can specify at most one of MS ASYNC and MS SYNC, not both.
�

Library:
libc

Description:
The msync() function writes all modified data to permanent storage
locations, if any, in those whole pages containing any part of the
address space of the process starting at address addr and continuing
for len bytes. The msync() function is used with memory mapped
files. If no such storage exists, msync() need not have any effect. If
requested, the msync() function then invalidates cached copies of data.

For mappings to files, this function ensures that all write operations
are completed as defined for synchronized I/O data integrity
completion.

Mappings to files aren’t implemented on all filesystems.�

When the msync() function is called on MAP PRIVATE mappings, any
modified data won’t be written to the underlying object and won’t
cause such data to be made visible to other processes.

The behavior of msync() is unspecified if the mapping wasn’t
established by a call to mmap().

If msync() causes any write to a file, the file’s st ctime and st mtime
fields are marked for update.

Returns:
0 Success

-1 An error occurred (errno is set).

1756 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. msync()

Errors:
EBUSY Some or all of the addresses in the range starting at

addr and continuing for len bytes are locked, and
MS INVALIDATE is specified.

EINVAL Invalid flags value.

ENOMEM The addresses in the range starting at addr and
continuing for len bytes are outside the range allowed
for the address space of a process or specify one or
more pages that aren’t mapped.

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
MS INVALIDATE ICACHE is a QNX Neutrino extension.

See also:
mmap(), sysconf()

May 31, 2004 Manifests 1757

munlock() 2004, QNX Software Systems Ltd.

Unlock a buffer

Synopsis:
#include <sys/mman.h>

int munlock(const void * addr,
size t len);

Library:
libc

Description:
The munlock() function isn’t currently supported.

Returns:
-1 to indicate an error (errno is set).

Errors:
ENOSYS The munlock() function isn’t currently supported.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

1758 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. munlock()

See also:
mlock(), mlockall(), munlockall()

May 31, 2004 Manifests 1759

munlockall() 2004, QNX Software Systems Ltd.

Unlock a process’s address space

Synopsis:
#include <sys/mman.h>

int munlockall(void);

Library:
libc

Description:
The current implementation of the munlockall() function doesn’t do
anything.

Returns:
-1 to indicate an error (errno is set).

Errors:
ENOSYS The munlockall() function isn’t currently supported.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

1760 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. munlockall()

See also:
mlock(), munlock(), mlockall()

May 31, 2004 Manifests 1761

munmap() 2004, QNX Software Systems Ltd.

Unmap previously mapped addresses

Synopsis:
#include <sys/mman.h>

int munmap(void * addr,
size t len);

Arguments:
addr The beginning of the range of addresses that you want to

unmap.

len The length of the range of addresses, in bytes.

Library:
libc

Description:
The munmap() function removes any mappings for pages in the
address range starting at addr and continuing for len bytes, rounded
up to the next multiple of the page size. Subsequent references to
these pages cause a SIGSEGV signal to be set on the process.

If there are no mappings in the specified address range, then
munmap() has no effect.

Returns:
0 Success.

-1 Failure; errno is set.

Errors:
EINVAL The addresses in the specified range are outside the

range allowed for the address space of a process.

ENOSYS The function munmap() isn’t supported by this
implementation.

1762 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. munmap()

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
Currently, you can’t munmap() just a part of an area mapped with
mmap().

See also:
mmap(), mprotect(), shm open(), shm unlink()

May 31, 2004 Manifests 1763

munmap device io() 2004, QNX Software Systems Ltd.

Free access to a device’s registers

Synopsis:
#include <sys/mman.h>

int munmap device io(uintptr t io,
size t len);

Arguments:
io The address of the area that you want to unmap.

len The number of bytes of device I/O memory that you want to
unmap.

Library:
libc

Description:
The function munmap device io() unmaps len bytes of device I/O
memory at io (that was previously mapped with mmap device io()).

Returns:
-1 An error occurred (errno is set).

Any other value

Successful unmapping.

Errors:
EINVAL The addresses in the specified range are outside the

range allowed for the address space of a process.

ENOSYS The function munmap() isn’t supported by this
implementation.

ENXIO The address from io for len bytes is invalid.

1764 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. munmap device io()

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
mmap device io(), munmap()

May 31, 2004 Manifests 1765

munmap device memory() 2004, QNX Software Systems Ltd.

Unmap previously mapped addresses

Synopsis:
#include <sys/mman.h>

int munmap device memory(void * addr,
size t len);

Arguments:
addr The beginning of the range of addresses that you want to

unmap.

len The length of the range of addresses, in bytes.

Library:
libc

Description:
The munmap device memory() function is essentially the same as
munmap(). It removes any mappings for pages in the address range
starting at addr and continuing for len bytes, rounded up to the next
multiple of the page size. Subsequent references to these pages cause
a SIGSEGV signal to be set on the process.

If there are no mappings in the specified address range, then
munmap() has no effect.

This function is the complement of mmap device memory().

Returns:
-1 An error occurred (errno is set).

Any other value

Success.

1766 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. munmap device memory()

Errors:
EINVAL The addresses in the specified range are outside the

range allowed for the address space of a process.

ENOSYS The munmap() function isn’t supported by this
implementation.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
mmap device memory(), munmap(), munmap device io()

May 31, 2004 Manifests 1767

name attach() 2004, QNX Software Systems Ltd.

Register a name in the namespace and create a channel

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

name attach t * name attach(dispatch t * dpp,
const char * path,
unsigned flags);

Arguments:
dpp NULL, or a dispatch handle returned by dispatch create().

path The path that you want to register under
/dev/name/[local|global]/. This name shouldn’t
contain any .. characters or start with a leading slash /.

flags Flags that affect the function’s behavior:

� NAME FLAG ATTACH GLOBAL — attach the name
globally instead of locally.

Library:
libc

Description:
The name attach(), name close(), name detach(), and name open()
functions provide the basic pathname-to-server-connection mapping,
without having to become a full resource manager.

A dispatch structure is created for you automatically if you pass
NULL as the dpp. If you’ve already created a dispatch structure, pass
it in as the dpp. If you provide your own dpp, set flags to
NAME FLAG DETACH SAVEDPP when calling name detach();
otherwise, your dpp is detached and destroyed automatically.

The name attach() function puts the name path into the path
namespace under /dev/name/[local|global]/path. The name is
attached locally by default, or globally when you set

1768 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. name attach()

NAME FLAG ATTACH GLOBAL in the flags. You can see attached
names in /dev/name/local and /dev/name/global directories.

ChannelCreate() is called with the NTO CHF UNBLOCK,
NTO CHF DISCONNECT, and NTO CHF COID DISCONNECT flags

set. The NTO CHF THREAD DEATH flag isn’t passed to
ChannelCreate(), but is implied by the setting of
NTO CHF COID DISCONNECT. Therefore, your server that’s using

name attach() may receive pulses as described in ChannelCreate. For
instance, since NTO CHF DISCONNECT is set, when a client calls
name close(), you’ll receive the PULSE CODE DISCONNECT pulse
message.

The name attach() also receives IO CONNECT message when
name open() is called.

For more information on the pulses (a rcvid of 0) related to the
NTO CHF COID DISCONNECT, NTO CHF DISCONNECT,
NTO CHF THREAD DEATH and the NTO CHF UNBLOCK flags, see

ChannelCreate().

If the receive buffer that the server provides isn’t large enough to hold
a pulse, then MsgReceive() returns -1 with errno set to EFAULT.

name attach t

The name attach() function returns a pointer to a name attach t

structure that looks like this:

typedef struct name attach {
dispatch t* dpp;
int chid;
int mntid;
int zero[2];

} name attach t;

The members include:

dpp The dispatch handle used in the creation of this connection.

chid The channel ID used for MsgReceive() directly.

mntid the mount ID for this name.

May 31, 2004 Manifests 1769

name attach() 2004, QNX Software Systems Ltd.

The information that’s generally required by a server using these
services is the chid.

Returns:
A pointer to a filled-in name attach t structure, or NULL if the call
fails (errno is set).

Errors:
EINVAL Invalid arguments (i.e. a NULL or empty path, a path

starts with a leading slash / or contains .. characters).

ENOMEM Not enough free memory to complete the operation.

ENOTDIR A component of the pathname wasn’t a directory entry.

Examples:
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/dispatch.h>

#define ATTACH POINT "myname"

/* We specify the header as being at least a pulse */
typedef struct pulse msg header t;

/* Our real data comes after the header */
typedef struct my data {

msg header t hdr;
int data;

} my data t;

/*** Server Side of the code ***/
int server() {

name attach t *attach;
my data t msg;
int rcvid;

/* Create a local name (/dev/name/local/...) */
if ((attach = name attach(NULL, ATTACH POINT, 0)) == NULL) {

return EXIT FAILURE;
}

/* Do your MsgReceive’s here now with the chid */

1770 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. name attach()

while (1) {
rcvid = MsgReceive(attach->chid, &msg, sizeof(msg), NULL);

if (rcvid == -1) {/* Error condition, exit */
break;

}

if (rcvid == 0) {/* Pulse received */
switch (msg.hdr.code) {
case PULSE CODE DISCONNECT:

/*
* A client disconnected all its connections (called
* name close() for each name open() of our name) or
* terminated
*/

ConnectDetach(msg.hdr.scoid);
break;

case PULSE CODE UNBLOCK:
/*
* REPLY blocked client wants to unblock (was hit by
* a signal or timed out). It’s up to you if you
* reply now or later.
*/

break;
default:

/*
* A pulse sent by one of your processes or a
* PULSE CODE COIDDEATH or PULSE CODE THREADDEATH
* from the kernel?
*/

}
continue;

}

/* A QNX IO message received, reject */
if (msg.hdr.type >= IO BASE && msg.hdr.type <= IO MAX) {

MsgError(rcvid, ENOSYS);
continue;

}

/* A message (presumable ours) received, handle */
printf("Server receive %d \n", msg.data);
MsgReply(rcvid, EOK, 0, 0);

}

/* Remove the name from the space */
name detach(attach, 0);

return EXIT SUCCESS;

May 31, 2004 Manifests 1771

name attach() 2004, QNX Software Systems Ltd.

}

/*** Client Side of the code ***/
int client() {

my data t msg;
int fd;

if ((fd = name open(ATTACH POINT, 0)) == -1) {
return EXIT FAILURE;

}

/* We would have pre-defined data to stuff here */
msg.hdr.type = 0x00;
msg.hdr.subtype = 0x00;

/* Do whatever work you wanted with server connection */
for (msg.data=0; msg.data < 5; msg.data++) {

printf("Client sending %d \n", msg.data);
if (MsgSend(fd, &msg, sizeof(msg), NULL, 0) == -1) {

break;
}

}

/* Close the connection */
name close(fd);
return EXIT SUCCESS;

}

int main(int argc, char **argv) {
int ret;

if (argc < 2) {
printf("Usage %s -s | -c \n", argv[0]);
ret = EXIT FAILURE;

}
else if (strcmp(argv[1], "-c") == 0) {

printf("Running Client ... \n");
ret = client(); /* see name open() for this code */

}
else if (strcmp(argv[1], "-s") == 0) {

printf("Running Server ... \n");
ret = server(); /* see name attach() for this code */

}
else {

printf("Usage %s -s | -c \n", argv[0]);
ret = EXIT FAILURE;

}
return ret;

}

1772 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. name attach()

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
As a server, you shouldn’t assume that you’re doing a MsgReceive()
on a clean channel. In QNX Neutrino (and QNX 4), anyone can
create a random message and send it to a process or a channel.

We recommend that you do the following to assure that you’re
playing safely with others in the system:

#include <sys/neutrino.h>

/* All of your messages should start with this header */
typedef struct pulse msg header t;

/* Now your real data comes after this */
typedef struct my data {

msg header t hdr;
int data;

} my data t;

where:

hdr Contains a type/subtype field as the first 4 bytes. This allows
you to identify data which isn’t destined for your server.

May 31, 2004 Manifests 1773

name attach() 2004, QNX Software Systems Ltd.

data Specifies the receive data structure. The structure must be
large enough to contain at least a pulse (which conveniently
starts with the type/subtype field of most normal messages),
because you’ll receive a disconnect pulse when clients are
detached.

See also:
ChannelCreate(), dispatch*() functions, MsgReceive(),
name detach(), name open(), name close(), pulse, resmgr attach()

1774 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. name close()
Close the file descriptor returned by name open()

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int name close(int filedes);

Arguments:
filedes The file descriptor returned by name open().

Library:
libc

Description:
The name close() function closes the filedes obtained with the
name open() call.

Returns:
Zero for success, or -1 if an error occurs (errno is set).

Errors:
EBADF Invalid file descriptor filedes.

EINTR The name close() call was interrupted by a signal.

ENOSYS The name close() function isn’t implemented for the
filesystem specified by filedes.

Examples:
See the “Client side of the code” section in name attach().

May 31, 2004 Manifests 1775

name close() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
close(), ConnectDetach(), name attach(), name detach(),
name open()

1776 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. name detach()
Remove a name from the namespace and destroy the channel

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int name detach(name attach t * attach,
unsigned flags);

Arguments:
attach A pointer to the name attach t structure returned by

name attach().

flags Flags that affect the function’s behavior:

� NAME FLAG DETACH SAVEDPP — don’t destroy the
dispatch handle.

Library:
libc

Description:
The name detach() function removes the name from the namespace
and destroys the channel created by name attach(). If you set
NAME FLAG DETACH SAVEDPP in flags, the dispatch pointer
contained in the name attach t structure isn’t destroyed; it’s up to
you to destroy it by calling dispatch destroy(). The default is to
destroy the dispatch pointer.

Returns:
Zero on success, or -1 if an error occurs (errno is set).

Errors:
EINVAL The mount ID (mntid) was never attached with

name attach().

May 31, 2004 Manifests 1777

name detach() 2004, QNX Software Systems Ltd.

Examples:
See name attach() and resmgr detach().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
ChannelDestroy(), dispatch*() functions, name attach(),
name close(), name open(), resmgr detach()

1778 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. name open()
Open a name for a server connection

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int name open(const char * name,
int flags);

Arguments:
name The name that you want to open for a server connection.

flags Flags that affect the function’s behavior:

� NAME FLAG ATTACH GLOBAL — attach the name
globally instead of locally.

Library:
libc

Description:
The name open() function opens name for a server connection. No
ordering is guaranteed when accessing resources on other nodes.

Before, when an application used to call name open() to connect to a
service, the server was not aware of that. This has been changed now
— a IO CONNECT/ IO OPEN message is actually sent to the
server.

The server application has to be modified to handle a possible
IO CONNECT message coming in.

For more information, see the technote Configuring the Global Name
Service Manager.

�

May 31, 2004 Manifests 1779

name open() 2004, QNX Software Systems Ltd.

Returns:
A nonnegative integer representing a side-channel connection ID (see
ConnectAttach()) or -1 if an error occurred (errno is set).

Errors:
EACCES Search permission is denied on a component of the

name.

EBADFSYS While attempting to open the named file, either the
file itself or a component of the path prefix was
found to be corrupted. A system failure — from
which no automatic recovery is possible — occurred
while the file was being written to, or while the
directory was being updated. You’ll need to invoke
appropriate systems-administration procedures to
correct this situation before proceeding.

EBUSY The connection specified by name has already been
opened and additional connections aren’t permitted.

EINTR The name open() operation was interrupted by a
signal.

EISDIR The named path is a directory.

ELOOP Too many levels of symbolic links or prefixes.

EMFILE Too many file descriptors are currently in use by this
process.

ENAMETOOLONG

The length of the name string exceeds PATH MAX, or
a pathname component is longer than NAME MAX.

ENFILE Too many files are currently open in the system.

ENOENT The connection specified by name doesn’t exist.

ENOTDIR A component of the name prefix isn’t a directory.

1780 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. name open()

Examples:
See name attach().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ConnectAttach(), name attach(), name detach(), name close(), open()

May 31, 2004 Manifests 1781

nanosleep() 2004, QNX Software Systems Ltd.

Suspend a thread until a timeout or signal occurs

Synopsis:
#include <time.h>

int nanosleep(const struct timespec* rqtp,
struct timespec* rmtp);

Arguments:
rqtp A pointer to a timespec structure that specifies the time

interval for which you want to suspend the thread.

rmtp NULL, or a pointer to a timespec structure where the
function can store the amount of time remaining in the
interval (the requested time minus the time actually slept).

Library:
libc

Description:
The nanosleep() function causes the calling thread to be suspended
from execution until either:

� The time interval specified by the rqtp argument has elapsed

Or

� A signal is delivered to the thread, and the signal’s action is to
invoke a signal-catching function or terminate the process.

The suspension time may be longer than requested because the
argument value is rounded up to be a multiple of the system timer
resolution or because of scheduling and other system activity.

Returns:
0 The requested time has elapsed.

-1 The nanosleep() function was interrupted by a signal (errno is
set).

1782 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. nanosleep()

Errors:
EAGAIN All timers are in use. You’ll have to wait for a process

to release one.

EFAULT A fault occurred trying to access the buffers provided.

EINTR The nanosleep() function was interrupted by a signal.

EINVAL The number of nanoseconds specified by the tv nsec
member of the timespec structure pointed to by rqtp is
less than zero or greater than or equal to 1000 million.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, clock getres(), clock gettime(), clock settime(), sleep(),
timer create(), timer delete(), timer gettime(), timer settime(),
timespec

May 31, 2004 Manifests 1783

nanospin() 2004, QNX Software Systems Ltd.

Busy-wait without thread blocking for a period of time

Synopsis:
#include <time.h>

int nanospin(const struct timespec *when);

Arguments:
when A pointer to a timespec structure that specifies the amount

of time to busy-wait for. This is a duration, not an absolute
time.

Library:
libc

Description:
The nanospin() function occupies the CPU for the amount of time
specified by the argument when without blocking the calling thread.
(The thread isn’t taken off the ready list.) The function is essentially a
do...while loop.

The nanospin*() functions are designed for use with hardware that
requires short time delays between accesses. You should use them
only to delay for times less than a few milliseconds.

The first time nanospin() is called, the C library invokes
nanospin calibrate(), if you haven’t already called it.

Returns:
EOK Success.

E2BIG The delay specified by when is greater than 500
milliseconds.

ENOSYS This system’s startup-* program didn’t initialize the
timing information necessary to use nanospin().

1784 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. nanospin()

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Read the Caveats

Signal handler Yes

Thread Yes

Caveats:
Busy-waiting should be used only when absolutely necessary for
accessing hardware.

It isn’t safe to call this function in an interrupt handler if
nanospin calibrate() hasn’t been called yet.

See also:
nanosleep(), nanospin calibrate(), nanospin count(), nanospin ns(),
nanospin ns to count(), sched yield(), sleep(), timespec

May 31, 2004 Manifests 1785

nanospin calibrate() 2004, QNX Software Systems Ltd.

Calibrate before calling nanospin*()

Synopsis:
#include <time.h>

int nanospin calibrate(int disable);

Arguments:
disable 1 to disable interrupts during the call to

nanospin calibrate(), or 0 to enable them; see below.

Library:
libc

Description:
The nanospin calibrate() function performs the calibration for the
nanospin()* family of delay functions. The first time that you call
nanospin(), nanospin ns(), or nanospin ns to count(), the C library
invokes nanospin calibrate(), unless you call it directly first.

If you don’t directly invoke nanospin calibrate(), the first nanospin*()
call in a process will have an overly long delay.

�

Interrupts occurring during nanospin calibrate() can throw off its
timings. If disable is 0 (zero), you can prevent this situation by:

1 Letting the thread acquire I/O privilege.

2 Disabling the interrupts around the nanospin calibrate() call.

If disable is 1 (one), the code disables interrupts around the
calibration loop(s). The calling thread is still responsible for obtaining
I/O privilege before calling nanospin calibrate().

1786 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. nanospin calibrate()

Returns:
EOK Success.

EINTR A too-high rate of interrupts occurred during the
calibration routine.

EPERM The process doesn’t have superuser capabilities.

Examples:
Busy-wait for 100 nanoseconds:

#include <time.h>
#include <sys/syspage.h>

int disable = 0;
unsigned long time = 100;

...
/* Wake up the hardware, then wait for it to be ready. */

if ((nanospin calibrate(disable)) == EOK)
nanospin count(nanospin ns to count(time));

else
printf ("Didn’t calibrate successfully.\n");

/* Use the hardware. */
...

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1787

nanospin calibrate() 2004, QNX Software Systems Ltd.

See also:
nanospin(), nanospin count(), nanospin ns(), nanospin ns to count()

1788 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. nanospin count()
Busy-wait without blocking for a number of iterations

Synopsis:
#include <time.h>

void nanospin count(unsigned long count);

Arguments:
count The number of iterations that you want to busy-wait for.

Library:
libc

Description:
The nanospin count() function busy-waits for the number of iterations
specified in count. Use nanospin ns to count() to turn a number of
nanoseconds into an iteration count suitable for nanospin count().

The nanospin*() functions are designed for use with hardware that
requires short time delays between accesses. You should use them
only to delay for times less than a few milliseconds.

Examples:
Busy-wait for at least 100 nanoseconds:

#include <time.h>
#include <sys/syspage.h>

unsigned long time = 100;

...
/* Wake up the hardware, then wait for it to be ready. */

nanospin count(nanospin ns to count(time));

/* Use the hardware. */
...

May 31, 2004 Manifests 1789

nanospin count() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
You should use busy-waiting only when absolutely necessary for
accessing hardware.

See also:
nanosleep(), nanospin(), nanospin calibrate(), nanospin ns(),
nanospin ns to count(), sched yield(), sleep()

1790 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. nanospin ns()
Busy-wait without blocking for a period of time

Synopsis:
#include <time.h>

int nanospin ns(unsigned long nsec);

Arguments:
nsec The number of nanoseconds that you want to busy-wait for.

Library:
libc

Description:
The nanospin ns() function busy-waits for the number of
nanoseconds specified in nsec, without blocking the calling thread.

The nanospin*() functions are designed for use with hardware that
requires short time delays between accesses. You should use them
only to delay for times less than a few milliseconds.

The first time you call nanospin ns(), the C library invokes
nanospin calibrate(), if you haven’t invoked it directly first.

Returns:
EOK Success.

E2BIG The delay specified by nsec is greater than 500
milliseconds.

ENOSYS This system’s startup-* program didn’t initialize the
timing information necessary to use nanospin ns().

Classification:
QNX Neutrino

May 31, 2004 Manifests 1791

nanospin ns() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler Read the Caveats

Signal handler Yes

Thread Yes

Caveats:
You should use busy-waiting only when absolutely necessary for
accessing hardware.

It isn’t safe to call this function in an interrupt handler if
nanospin calibrate() hasn’t been called yet.

See also:
nanosleep(), nanospin(), nanospin calibrate(), nanospin count(),
nanospin ns to count(), sched yield(), sleep()

1792 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. nanospin ns to count()
Convert a time in nanoseconds into a number of iterations

Synopsis:
#include <time.h>

unsigned long nanospin ns to count(
unsigned long nsec);

Arguments:
nsec The number of nanoseconds that you want to convert.

Library:
libc

Description:
The nanospin ns to count() function converts the number of
nanoseconds specified in nsec into an iteration count suitable for
nanospin count().

The nanospin*() functions are designed for use with hardware that
requires short time delays between accesses. You should them only to
delay for times less than a few milliseconds.

The first time that you call nanospin ns to count(), the C library
invokes nanospin calibrate() if you haven’t invoked it directly first.

Returns:
The amount of time to busy-wait, or -1 if an error occurred (errno is
set).

Errors:
ENOSYS This system’s startup-* program didn’t initialize the

timing information necessary to use
nanospin ns to count().

May 31, 2004 Manifests 1793

nanospin ns to count() 2004, QNX Software Systems Ltd.

Examples:
Busy-wait for at least one nanosecond:

#include <time.h>
#include <sys/syspage.h>

unsigned long time = 1;

...
/* Wake up the hardware, then wait for it to be ready. */

/*
The C library invokes nanospin calibrate
if it hasn’t already been called.

*/

nanospin count(nanospin ns to count(time));

/* Use the hardware. */
...

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Read the Caveats

Signal handler Yes

Thread Yes

Caveats:
You should use busy-waiting only when absolutely necessary for
accessing hardware.

It isn’t safe to call this function in an interrupt handler if
nanospin calibrate() hasn’t been called yet.

1794 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. nanospin ns to count()

See also:
nanospin(), nanospin calibrate(), nanospin count(), nanospin ns()

May 31, 2004 Manifests 1795

nap() 2004, QNX Software Systems Ltd.

Sleep for a given number of milliseconds

Synopsis:
#include <unix.h>

unsigned int nap(unsigned int ms);

Arguments:
ms The number of milliseconds that you want the process to sleep.

Library:
libc

Description:
The nap() routine delays the calling process for ms milliseconds. This
function is the same as delay() and is similar to napms().

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
delay(), napms()

1796 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. napms()
Sleep for a given number of milliseconds

Synopsis:
#include <curses.h>

int napms(int ms);

Arguments:
ms The number of milliseconds that you want the process to sleep.

Library:
libc

Description:
The napms() routine delays the calling process for ms milliseconds.
This function is similar to delay() and nap().

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
delay(), nap()

May 31, 2004 Manifests 1797

nbaconnect() 2004, QNX Software Systems Ltd.

Initiate a connection on a socket (nonblocking)

Synopsis:
#include <sys/socket.h>

int nbaconnect(int s,
const struct sockaddr * name,
size t namelen);

Arguments:
s The descriptor of the socket on which to initiate the

connection.

name The name of the socket to connect to for a
SOCK STREAM connection.

namelen The length of the name, in bytes.

Library:
libsocket

Description:
The nbaconnect() function is called in place of connect(), to prevent a
nonblocking connect() from blocking during an autoconnect (see
/etc/autoconnect).

When the autoconnect behavior is used, connect() may block your
application while waiting for the autoconnect to complete;
nbaconnect() allows your application to continue executing during the
autoconnect.

The nbaconnect() function takes the same arguments as connect(), but
it differs in the return value when an autoconnect is required. If an
autoconnect is required, a file descriptor (fd) is returned. The fd is
used in the call to nbaconnect result() to get the errno related to the
autoconnect and the connect attempt.

1798 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. nbaconnect()

Since nbaconnect result() is a blocking call, it’s recommended that
you call select() first to determine if there’s data available on the pipe.

�

When the data’s available, call nbaconnect result() to get the status of
the nbaconnect() attempt.

If an autoconnect isn’t required, nbaconnect() returns -1 and exhibits
the same behavior as connect() on nonblocking sockets (e.g. if -1 is
returned and errno is set to EINPROGRESS, it’s possible to do a
select() for completion by selecting the socket for writing).

Returns:
A file descriptor that you can pass to nbaconnect result() to get the
result of the nbaconnect() attempt, or -1 if an error occurred (errno is
set).

Errors:
Any value from the Errors section in connect(), as well as:

EINVAL The socket file descriptor being passed isn’t
nonblocking.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 1799

nbaconnect() 2004, QNX Software Systems Ltd.

Caveats:
The pipe manager must be available.

See also:
accept(), bind(), connect(), errno, fcntl(), getsockname(),
nbaconnect result(), open(), pipe(), read(), select(), socket(), write()

/etc/autoconnect, pipe in the Utilities Reference.

1800 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. nbaconnect result()
Get the status of the previous call to nbaconnect()

Synopsis:
#include <sys/socket.h>

int nbaconnect result(int fd,
int * error);

Arguments:
fd The file descriptor returned by nbaconnect().

error A pointer to a location where the function can store the
status.

Library:
libsocket

Description:
The nbaconnect result() function gets the status of the previous
nbaconnect() call when an fd was returned. Since nbaconnect result()
is a blocking call, it’s best to test the status of the fd with a call to
select() to verify that the file descriptor is ready to be read.

When there’s data available, the status is put in error, which may be
any of the errno values set by connect() during an attempt to make a
non-blocking connection.

The fd is always closed by this function whether or not there’s a status
to report.

Returns:
0 The call was successful; error contains the status.

-1 An error occurred while obtaining the status.

May 31, 2004 Manifests 1801

nbaconnect result() 2004, QNX Software Systems Ltd.

Errors:
Any value from the Errors section in connect(), as well as:

EBADF Invalid fd.

ENOMSG There’s no data, or not enough data, from the fd.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
connect(), nbaconnect(), select()

autoconnect in the Utilities Reference.

1802 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ND NODE CMP()
Compare two node descriptors

Synopsis:
#include <sys/netmgr.h>

#define ND NODE CMP(a,b) ...

Arguments:
a, b The node descriptors that you want to compare. You can use

either the value 0 or ND LOCAL NODE to refer to the local
node.

Library:
libc

Description:
The ND NODE CMP() macro compares two node descriptors.

Returns:
< 0 The node descriptor a is less than b.

0 The descriptors refer to the same machine.

> 0 The node descriptor a is greater than b.

Examples:
#include <sys/neutrino.h>

uint32 t nd1, nd2;

if (ND NODE CMP(nd1, nd2) == 0) {
/* Same node */
...

} else {
/* Different nodes */
...

}

May 31, 2004 Manifests 1803

ND NODE CMP() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
netmgr ndtostr(), netmgr remote nd(), netmgr strtond()

Qnet Networking chapter of the Programmer’s Guide

Qnet Networking chapter of the System Architecture guide

1804 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. netent
Structure for information from the network database

Synopsis:
#include <netdb.h>

struct netent {
char * n name;
char ** n aliases;
int n addrtype;
uint32 t n net;

};

Description:
This structure holds information from the network database,
/etc/networks.

The members of this structure are:

n name The name of the network.

n aliases A zero-terminated list of alternate names for the
network.

n addrtype The type of the network number returned; currently
only AF INET.

n net The network number. Network numbers are returned
in machine-byte order.

Classification:
Unix, POSIX 1003.1-2001

See also:
endnetent(), getnetbyaddr(), getnetbyname(), getnetent(), setnetent()

/etc/networks in the Utilities Reference

May 31, 2004 Manifests 1805

netmgr ndtostr() 2004, QNX Software Systems Ltd.

Convert a node descriptor into a string

Synopsis:
#include <sys/netmgr.h>

int netmgr ndtostr(unsigned flags,
int nd,
char * buf,
size t maxbuf);

Arguments:
flags Which part(s) of the Fully Qualified Path Name (FQPN)

to adjust; see below.

nd The node descriptor that you want to convert.

buf A pointer to a buffer where the function can store the
converted identifier.

maxbuf The size of the buffer.

Library:
libc

Description:
The netmgr ndtostr() function converts a node descriptor, nd, to a
string and stores the string in the buffer pointed to by buf . The size of
the buffer is given by maxbuf .

A node descriptor is a temporary numeric description of a remote
node. For more information, see the Qnet Networking chapter of the
System Architecture guide.

The flags argument indicates which part(s) of the Fully Qualified Path
Name (FQPN) to adjust. The following diagram shows the
components for the FQPN, /net/qnet.qnx.com˜preferred:

1806 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. netmgr ndtostr()

/net/qnet.qnx.com~preferred

Directory Name Domain Quality of service

Fully qualified nodename

Components of a fully qualified pathname.

The Fully Qualified Node Name (FQNN) is qnet.qnx.com.

The default string that netmgr ndtostr() builds is the FQNN, plus the
Quality of Service (QoS) if it isn’t the default (˜loadbalance). You
can pass this string to any other node that can call netmgr strtond()
and has a nd that refers to the same node with the same QoS.

A bitwise OR of flags modify the default string in the following way:

ND2S DIR HIDE

Never include the directory.

ND2S DIR SHOW

Always build a pathname to the root directory (i.e. /) of the
node indicated by nd. For example, calling:

netmgr ndtostr(ND2S DIR SHOW, nd, buf, sizeofbuf)

on a node with a default domain of qnx.com using a nd that
refers to a FQNN of peterv.qnx.com results in the string:

/net/peterv.qnx.com/

If Qnet isn’t active on the node, and
netmgr ndtostr(ND2S DIR SHOW, nd, buf, sizeofbuf) has a nd
of ND LOCAL NODE, then the string is /.

May 31, 2004 Manifests 1807

netmgr ndtostr() 2004, QNX Software Systems Ltd.

ND2S DOMAIN HIDE

Never include the domain.

ND2S DOMAIN SHOW

Always include the domain.

ND2S LOCAL STR

Display shorter node names on your local node. For example,
calling:

netmgr ndtostr(ND2S LOCAL STR, nd, buf, sizeofbuf)

on a node with a default domain of qnx.com using a nd that
refers to an FQPN of /net/peterv.qnx.com results in a
string of:

peterv

Whereas, a nd that refers to
/net/peterv.anotherhost.com results in:

peterv.anotherhost.com

ND2S NAME HIDE

Never include the name.

ND2S NAME SHOW

Always include the name.

ND2S QOS HIDE

Never include the quality of service (QoS).

ND2S QOS SHOW

Always include the QoS.

1808 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. netmgr ndtostr()

ND2S SEP FORCE

Always include a leading separator. For example, calling:
netmgr ndtostr(ND2S SEP FORCE|ND2S DIR HIDE|ND2S NAME HIDE|ND2S DOMAIN HIDE|ND2S QOS SHOW, nd, buf, sizeofbuf)

with a nd of ND LOCAL NODE results in a string of:

˜loadbalance

This is useful if you want to concatenate each component of the
FQPN individually.

Don’t use a ND2S * HIDE and a corresponding ND2S * SHOW
together.

�

Returns:
The length of the string, or -1 if an error occurs (errno is set).

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <sys/netmgr.h>

int main ()
{

int nd1, nd2, nd3, len;
char path1[50] = "/net/dave",

path2[50] = "/net/karen",
buff[100];

nd1 = netmgr strtond(path1, NULL);
if (nd1 == -1) {

perror ("netmgr strtond");
return EXIT FAILURE;

}
else {

printf ("Node id for %s is %d.\n", path1, nd1);
}

May 31, 2004 Manifests 1809

netmgr ndtostr() 2004, QNX Software Systems Ltd.

nd2 = netmgr strtond(path2, NULL);
if (nd2 == -1) {

perror ("netmgr strtond");
return EXIT FAILURE;

}
else {

printf ("Node id for %s is %d.\n", path2, nd2);
}

nd3 = netmgr remote nd (nd2, nd1);
if (nd3 == -1) {

perror ("netmgr strtond");
return EXIT FAILURE;

}
else {

printf ("Node id for %s, relative to %s, is %d.\n",
path1, path2, nd3);

}

len = netmgr ndtostr (ND2S DIR HIDE | ND2S DOMAIN SHOW |
ND2S NAME SHOW | ND2S QOS SHOW, nd1, buff, 100);

if (len == -1) {
perror ("netmgr ndtostr");

}
else {

printf ("Node name for %d is %s.\n", nd1, buff);
return EXIT FAILURE;

}

return EXIT SUCCESS;
}

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

1810 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. netmgr ndtostr()

See also:
ND NODE CMP(), netmgr remote nd(), netmgr strtond()

Qnet Networking chapter of the Programmer’s Guide

Qnet Networking chapter of the System Architecture guide

May 31, 2004 Manifests 1811

netmgr remote nd() 2004, QNX Software Systems Ltd.

Get a node descriptor that’s relative to a remote node

Synopsis:
#include <sys/netmgr.h>

int netmgr remote nd(int remote nd,
int local nd);

Arguments:
remote nd The node descriptor of a remote node.

local nd A node descriptor, relative to the local node, that you
want to convert to be relative to the remote node.

Library:
libc

Description:
The netmgr remote nd() function converts a node descriptor that’s
relative to the local node into a node descriptor that’s relative to the
specified remote node.

Returns:
The node descriptor, relative to the remote node, or -1 if an error
occurred (errno is set).

Examples:
See netmgr ndtostr().

Classification:
QNX Neutrino

1812 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. netmgr remote nd()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ND NODE CMP(), netmgr ndtostr(), netmgr strtond()

Qnet Networking chapter of the Programmer’s Guide

Qnet Networking chapter of the System Architecture guide

May 31, 2004 Manifests 1813

netmgr strtond() 2004, QNX Software Systems Ltd.

Convert a string into a node descriptor

Synopsis:
#include <sys/netmgr.h>

int netmgr strtond(const char * nodename,
char ** endstr);

Arguments:
nodename The string that you want to convert into a node

descriptor.

endstr NULL, or the address of a location where the function
can store a pointer to the character after the node name
in the string.

Library:
libc

Description:
The netmgr strtond() function converts a string to a node descriptor.
If endstr isn’t NULL, it’s set to point to the character after the node
name in the given string.

Returns:
The node descriptor, or -1 if an error occurred (errno is set).

Errors:
ENOTSUP Qnet isn’t running.

Examples:
See netmgr ndtostr().

1814 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. netmgr strtond()

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ND NODE CMP(), netmgr ndtostr(), netmgr remote nd()

Qnet Networking chapter of the Programmer’s Guide

Qnet Networking chapter of the System Architecture guide

May 31, 2004 Manifests 1815

nextafter(), nextafterf() 2004, QNX Software Systems Ltd.

Compute the next representable double-precision floating-point number

Synopsis:
#include <math.h>

double nextafter (double x,
double y);

float nextafterf (float x,
float y);

Arguments:
x The number that you want the next number after.

y A number that specifies the direction you want to go; see below.

Library:
libm

Description:
The nextafter() and nextafterf() functions compute the next
representable double-precision floating-point value following x in the
direction of y.

Returns:
The next machine floating-point number of x in the direction towards
y.

If: nextafter() returns:

y < x The next possible floating-point value less than y

y > x The next possible floating-point value greater than x

x is NAN NAN

continued. . .

1816 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. nextafter(), nextafterf()

If: nextafter() returns:

y is NAN NAN

x is finite �HUGE VAL, according to the sign of x (errno is set)

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <errno.h>
#include <inttypes.h>
#include <math.h>
#include <fpstatus.h>

void dump to hex(double d) {
printf("0x%08x %08x \n",

(uint32 t)(*((uint64 t*)&d) >> 32),
(uint32 t)(*((uint64 t*)&d)));

}

int main(int argc, char** argv)
{

double a, b, c;

a = 0 ;
b = nextafter(a, -1);
c = nextafter(a, 1);
printf("Next possible value before %f is %f \n", a, b);
printf("-->"); dump to hex(a);
printf("-->"); dump to hex(b);
printf("Next possible value after %f is %f \n", a, c);
printf("-->"); dump to hex(a);
printf("-->"); dump to hex(c);

return(0);
}

produces the output:

Next possible value before 0.000000 is 0.000000

May 31, 2004 Manifests 1817

nextafter(), nextafterf() 2004, QNX Software Systems Ltd.

-->0x00000000 00000000
-->0x80000000 00000001
Next possible value after 0.000000 is 0.000000
-->0x00000000 00000000

Classification:
nextafter() is standard Unix; nextafterf() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

1818 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. nftw(), nftw64()
Walk a file tree

Synopsis:
#include <ftw.h>

int nftw(const char *path,
int (*fn)(const char *fname,

const struct stat *sbuf,
int flags,
struct FTW *ftw),

int depth,
int flags);

Arguments:
path The path of the directory whose file tree you want to walk.

fn A pointer to a function that you want to call for each file;
see below.

depth The maximum number of file descriptors that nftw() can
use. The nftw() function uses one file descriptor for each
level in the tree.

If depth is zero or negative, the effect is the same as if it
were 1. The depth must not be greater than the number of
file descriptors currently available for use. The nftw()
function is faster if depth is at least as large as the number
of levels in the tree.

flags The value of flags is constructed by the bitwise ORing of
values from the following list, defined in the <ftw.h>
header file.

FTW CHDIR If set, nftw() changes the current working
directory to each directory as it reports files
in that directory.

FTW DEPTH If set, nftw() reports all files in a directory
before reporting the directory itself
(otherwise the directory is reported before
any file it contains).

May 31, 2004 Manifests 1819

nftw(), nftw64() 2004, QNX Software Systems Ltd.

FTW MOUNT If set, nftw() only reports files on the same
filesystem as path.

FTW PHYS If set, nftw() performs a physical walk and
doesn’t follow any symbolic link.

Library:
libc

Description:
The nftw() function recursively descends the directory hierarchy
identified by path. For each object in the hierarchy, nftw() calls the
user-defined function fn(), passing to it:

� a pointer to a NULL-terminated character string containing the
name of the object

� a pointer to a stat structure (see stat()) containing information
about the object

� an integer. Possible values of the integer, defined in the <nftw.h>
header, are:

FTW F The object is a file.

FTW D The object is a directory.

FTW DNR The object is a directory that can’t be read.
Descendents of the directory aren’t processed.

FTW DP The object is a directory, and its contents have been
reported. See the FTW DEPTH flag above.

FTW NS The stat() failed on the object because the
permissions weren’t appropriate. The stat buffer
passed to fn() is undefined.

FTW SL The object is a symbolic link. See the FTW PHYS
flag above.

FTW SLN The object is a symbolic link that does not name an
existing file.

1820 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. nftw(), nftw64()

� a pointer to a FTW structure, which contains the following fields:

base The offset of the objects filename in the pathname passed
as the first argument to fn().

level The depth relative to the root of the walk (where the root is
level 0).

quit A flag that can be set to control the behaviour of nftw()
within the current directory. If assigned, it may be given
the following values:

FTW SKR Skip the remainder of this directory

FTW SKD If the object is FTW D, then do not enter into
this directory.

The tree traversal continues until the tree is exhausted, an invocation
of fn() returns a nonzero value, or some error is detected within nftw()
(such as an I/O error). If the tree is exhausted, nftw() returns zero. If
fn() returns a nonzero value, nftw() stops its tree traversal and returns
whatever value was returned by fn().

When nftw() returns, it closes any file descriptors it opened; it doesn’t
close any file descriptors that may have been opened by fn().

Returns:
0 Success.

-1 An error (other than EACCESS) occurred (errno is set).

Classification:
Standard Unix, nftw64() is for large-file support

Safety

Cancellation point Yes

Interrupt handler No

continued. . .

May 31, 2004 Manifests 1821

nftw(), nftw64() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

Caveats:
Because nftw() is recursive, it might terminate with a memory fault
when applied to very deep file structures.

This function uses malloc() to allocate dynamic storage during its
operation. If nftw() is forcibly terminated, for example if longjmp() is
executed by fn() or an interrupt routine, nftw() doesn’t have a chance
to free that storage, so it remains permanently allocated. A safe way
to handle interrupts is to store the fact that an interrupt has occurred,
and arrange to have fn() return a nonzero value at its next invocation.

See also:
ftw(), longjmp(), malloc(), stat()

1822 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. nice()
Change the priority of a process

Synopsis:
#include <unistd.h>

int nice(int incr);

Arguments:
incr The amount that you want to add to the process’s priority.

Library:
libc

Description:
The nice() function allows a process to change its priority. The
invoking process must be in a scheduling class that supports the
operation.

The nice() function adds the value of incr to the nice value of the
calling process. A process’s nice value is a nonnegative number; a
greater positive value results in a lower CPU priority.

A maximum nice value of 2 * NZERO - 1 and a minimum nice value
of 0 are imposed by the system. NZERO is defined in <limits.h>

with a default value of 20. If you request a value above or below these
limits, the nice value is set to the corresponding limit. A nice value of
40 is treated as 39. Only a process with superuser privileges can lower
the nice value.

Returns:
The new nice value minus NZERO. If an error occurred, -1 is returned,
the process’s nice value isn’t changed, and errno is set.

May 31, 2004 Manifests 1823

nice() 2004, QNX Software Systems Ltd.

Errors:
EINVAL The nice() function was called by a process in a

scheduling class other than time-sharing.

EPERM The incr argument was negative or greater than 40, and
the effective user ID of the calling process isn’t the
superuser.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
As -1 is a permissible return value in a successful situation, an
application wishing to check for error situations should set errno to 0,
then call nice(), and if it returns -1, check to see if errno is nonzero.

See also:
execl(), execle(), execlp(), execlpe(), execv(), execve(), execvp(),
execvpe()

nice in the Utilities Reference

1824 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. nrand48()
Generate a pseudo-random nonnegative long integer in a thread-safe manner

Synopsis:
#include <stdlib.h>

long nrand48(unsigned short xsubi[3]);

Arguments:
xsubi An array that comprises the 48 bits of the initial value that

you want to use.

Library:
libc

Description:
The nrand48() function uses a linear congruential algorithm and
48-bit integer arithmetic to generate a nonnegative long integer
uniformly distributed over the interval [0, 231].

The xsubi array should contain the desired initial value; this makes
nrand48() thread-safe, and lets you start a sequence of random
numbers at any known value.

Returns:
A pseudo-random long integer.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

continued. . .

May 31, 2004 Manifests 1825

nrand48() 2004, QNX Software Systems Ltd.

Safety

Thread Yes

See also:
drand48(), erand48(), jrand48(), lcong48(), lrand48(), mrand48(),
seed48(), srand48()

1826 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. nsec2timespec()
Convert nanoseconds to a timespec structure

Synopsis:
#include <time.h>

void nsec2timespec(struct timespec *timespec p,
uint64 nsec);

Arguments:
timespec p A pointer to a timespec structure where the function

can store the converted time.

nsec The number of nanoseconds that you want to convert.

Library:
libc

Description:
This function converts the given number of nanoseconds, nsec, into
seconds and nanoseconds, and stores them in the timespec structure
pointed to by timespec p.

Classification:
Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1827

nsec2timespec() 2004, QNX Software Systems Ltd.

See also:
timespec, timespec2nsec()

1828 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ntohl()
Convert a 32-bit value from network-byte order to host-byte order

Synopsis:
#include <arpa/inet.h>

uint32 t ntohl(uint32 t netlong);

Arguments:
netlong The value that you want to convert.

Library:
libc

Description:
The ntohl() function converts a 32-bit value from network-byte order
to host-byte order. If a machine’s byte order is the same as the
network order, this routine is defined as a null macro.

You most often use this routine in conjunction with internet addresses
and ports returned by gethostbyname() and getservent().

Returns:
The value in host-byte order.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1829

ntohl() 2004, QNX Software Systems Ltd.

See also:
gethostbyname(), getservent(), htonl(), htons(), ntohs()

1830 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ntohs()
Convert a 16-bit value from network-byte order to host-byte order

Synopsis:
#include <arpa/inet.h>

uint16 t ntohs(uint16 t netshort);

Arguments:
netshort The value that you want to convert.

Library:
libc

Description:
The ntohs() function converts a 16-bit value from network-byte order
to host-byte order. If a machine’s byte order is the same as the
network order, this routine is defined as a null macro.

You most often use this routine in conjunction with internet addresses
and ports returned by gethostbyname() and getservent().

Returns:
The value in host-byte order.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1831

ntohs() 2004, QNX Software Systems Ltd.

See also:
gethostbyname(), getservent(), htonl(), htons(), ntohl()

1832 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. offsetof()
Return the offset of an element within a structure

Synopsis:
#include <stddef.h>

#define offsetof(composite, name) ...

Arguments:
composite A struct or union.

name The name of an element in composite.

Library:
libc

Description:
The offsetof() macro returns the offset of the element name within the
struct or union composite.

This provides a portable method to determine the offset.

Returns:
The offset of name.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>

struct new def
{

char *first;
char second[10];
int third;

};

int main(void)
{

printf("first:%d second:%d third:%d\n",
offsetof(struct new def, first),

May 31, 2004 Manifests 1833

offsetof() 2004, QNX Software Systems Ltd.

offsetof(struct new def, second),
offsetof(struct new def, third));

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
This is a macro.

1834 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. open(), open64()
Open a file

Synopsis:
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char * path,
int oflag,
...);

int open64(const char * path,
int oflag,
...);

Arguments:
path The path name of the file that you want to open.

oflag Flags that specify the status and access modes of the file;
see below.

If you set O CREAT in oflag, you must also specify the following
argument:

mode An object of type mode t that specifies the access mode
that you want to use for a newly created file. For more
information, see “Access permissions” in the documentation
for stat(), and the description of O CREAT, below.

Library:
libc

Description:
The open() and open64() functions open the file named by path,
creating an open file description that refers to the file, and a file
descriptor that refers to the file description. The file status flags and

May 31, 2004 Manifests 1835

open(), open64() 2004, QNX Software Systems Ltd.

the file access modes of the open file description are set according to
the value of oflag.

These functions ignore any advisory locks that you set with fcntl().�

The open file descriptor created is new, and therefore isn’t shared with
any other process in the system.

Construct the value of oflag by bitwise ORing values from the
following list, defined in the <fcntl.h> header file. You must
specify exactly one of the first three values (file access modes) below
in the value of oflag:

O RDONLY Open for reading only.

O RDWR Open for reading and writing. Opening a FIFO for
read-write is unsupported.

O WRONLY Open for writing only.

You can also specify any combination of the remaining flags in the
value of oflag:

O APPEND If set, the file offset is set to the end of the file prior
to each write.

O CLOEXEC Close the file descriptor on execution.

O CREAT This option requires a third argument, mode, which
is of type mode t. If the file exists, this flag has no
effect, except in combination with O EXCL as noted
below.

Otherwise, the file is created; the file’s user ID is
set to the effective user ID of the process; the group
ID is set to the effective group ID of the process or
the group ID of the file’s parent directory (see
chmod()).

1836 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. open(), open64()

The permission bits, as defined in <sys/stat.h>,
are set to the value of mode, except those bits set in
the process’s file mode creation mask (see umask()
for details). Bits set in mode other than the file
permission bits (i.e. the file type bits) are ignored.
The mode argument doesn’t affect whether the file
is opened for reading, for writing, or for both.

O DSYNC If set, this flag affects subsequent I/O calls; each
call to write() waits until all data is successfully
transferred to the storage device such that it’s
readable on any subsequent open of the file (even
one that follows a system failure) in the absence of
a failure of the physical storage medium. If the
physical storage medium implements a
non-write-through cache, then a system failure may
be interpreted as a failure of the physical storage
medium, and data may not be readable even if this
flag is set and the write() indicates that it
succeeded.

O EXCL If you set both O EXCL and O CREAT, open() fails
if the file exists. The check for the existence of the
file and the creation of the file if it doesn’t exist are
atomic; no other process that’s attempting the same
operation with the same filename at the same time
will succeed. Specifying O EXCL without
O CREAT has no effect.

O LARGEFILE Allow the file offset to be 64 bits long.

O NOCTTY If set, and path identifies a terminal device, the
open() function doesn’t cause the terminal device to
become the controlling terminal for the process.

O NONBLOCK � When opening a FIFO with O RDONLY or
O WRONLY set:

May 31, 2004 Manifests 1837

open(), open64() 2004, QNX Software Systems Ltd.

If O NONBLOCK is set:

Calling open() for reading-only returns
without delay. Calling open() for
writing-only returns an error if no process
currently has the FIFO open for reading.

If O NONBLOCK is clear:

Calling open() for reading-only blocks until
a process opens the file for writing. Calling
open() for writing-only blocks until a
process opens the file for reading.

� When opening a block special or character
special file that supports nonblocking opens:

If O NONBLOCK is set:

The open() function returns without waiting
for the device to be ready or available.
Subsequent behavior of the device is
device-specific.

If O NONBLOCK is clear:

The open() function waits until the device
is ready or available before returning. The
definition of when a device is ready is
device-specific.

� Otherwise, the behavior of O NONBLOCK is
unspecified.

O REALIDS Use the real uid/gid for permissions checking.

O RSYNC Read I/O operations on the file descriptor complete
at the same level of integrity as specified by the
O DSYNC and O SYNC flags.

O SYNC If set, this flag affects subsequent I/O calls; each
call to read() or write() is complete only when both
the data has been successfully transferred (either
read or written) and all file system information
relevant to that I/O operation (including that

1838 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. open(), open64()

required to retrieve said data) is successfully
transferred, including file update and/or access
times, and so on. See the discussion of a successful
data transfer in O DSYNC, above.

O TRUNC If the file exists and is a regular file, and the file is
successfully opened O WRONLY or O RDWR, the
file length is truncated to zero and the mode and
owner are left unchanged. O TRUNC has no effect
on FIFO or block or character special files or
directories. Using O TRUNC with O RDONLY has
no effect.

The largest value that can be represented correctly in an object of type
off t shall be established as the offset maximum in the open file
description.

Returns:
A nonnegative integer representing the lowest numbered unused file
descriptor. On a file capable of seeking, the file offset is set to the
beginning of the file. Otherwise, -1 is returned (errno is set).

In QNX Neutrino, the returned file descriptor is the same as the
connection ID (or coid) used by the Neutrino-specific functions.

�

Errors:
EACCES Search permission is denied on a component of the

path prefix, or the file exists and the permissions
specified by oflag are denied, or the file doesn’t
exist and write permission is denied for the parent
directory of the file to be created.

EBADFSYS While attempting to open the named file, either the
file itself or a component of the path prefix was
found to be corrupted. A system failure — from
which no automatic recovery is possible —

May 31, 2004 Manifests 1839

open(), open64() 2004, QNX Software Systems Ltd.

occurred while the file was being written to, or
while the directory was being updated. You’ll need
to invoke appropriate systems-administration
procedures to correct this situation before
proceeding.

EBUSY File access was denied due to a conflicting open
(see sopen()).

EEXIST The O CREAT and O EXCL flags are set, and the
named file exists.

EINTR The open() operation was interrupted by a signal.

EINVAL The requested synchronized modes (O SYNC,
O DSYNC, O RSYNC) aren’t supported.

EISDIR The named file is a directory, and the oflag
argument specifies write-only or read/write access.

ELOOP Too many levels of symbolic links or prefixes.

EMFILE Too many file descriptors are currently in use by
this process.

ENAMETOOLONG

The length of the path string exceeds PATH MAX,
or a pathname component is longer than
NAME MAX.

ENFILE Too many files are currently open in the system.

ENOENT The O CREAT flag isn’t set, and the named file
doesn’t exist; or O CREAT is set and either the path
prefix doesn’t exist, or the path argument points to
an empty string.

ENOSPC The directory or filesystem that would contain the
new file can’t be extended.

ENOSYS The open() function isn’t implemented for the
filesystem specified in path.

1840 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. open(), open64()

ENOTDIR A component of the path prefix isn’t a directory.

ENXIO The O NONBLOCK flag is set, the named file is a
FIFO, O WRONLY is set, no process has the file
open for reading, or the media associated with the
file has been removed (e.g. CD, floppy).

EOVERFLOW The named file is a regular file and the size of the
file can’t be represented correctly in an object of
type off t.

EROFS The named file resides on a read-only filesystem
and either O WRONLY, O RDWR, O CREAT (if the
file doesn’t exist), or O TRUNC is set in the oflag
argument.

Examples:
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>

int main(void)
{

int fd;

/* open a file for output */
/* replace existing file if it exists */
/* with read/write perms for owner */

fd = open("myfile.dat",
O WRONLY | O CREAT | O TRUNC,
S IRUSR | S IWUSR);

/* read a file that is assumed to exist */

fd = open("myfile.dat", O RDONLY);

/* append to the end of an existing file */
/* write a new file if file doesn’t exist */
/* with full read/write permissions */

fd = open("myfile.dat",
O WRONLY | O CREAT | O APPEND,
S IRUSR | S IWUSR | S IRGRP | S IWGRP

May 31, 2004 Manifests 1841

open(), open64() 2004, QNX Software Systems Ltd.

| S IROTH | S IWOTH);
return EXIT SUCCESS;

}

Classification:
open() is POSIX 1003.1; open64() is for large-file support

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The open() function includes POSIX 1003.1-1996 and QNX
extensions.

See also:
chmod(), close(), creat(), dup(), dup2(), errno, fcntl(), fstat(), lseek(),
read(), write()

1842 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. opendir()
Open a directory

Synopsis:
#include <dirent.h>

DIR * opendir(const char * dirname);

Arguments:
dirname The path of the directory to be opened. It can be relative

to the current working directory, or an absolute path.

Library:
libc

Description:
The opendir() function is used with readdir() and closedir() to get the
list of file names contained in the directory specified by dirname.

You can read more than one directory at the same time using the
opendir(), readdir(), rewinddir() and closedir() functions.

The result of using a directory stream after one of the exec*() or
spawn*() functions is undefined. After a call to the fork() function,
either the parent or the child (but not both) can continue processing
the directory stream using readdir() and rewinddir(). If both the
parent and child processes use these functions, the result is undefined.
Either process can use closedir().

�

Returns:
A pointer to a DIR structure required for subsequent calls to readdir()
to retrieve the file names in dirname, or NULL if dirname isn’t a valid
path (errno is set).

May 31, 2004 Manifests 1843

opendir() 2004, QNX Software Systems Ltd.

Errors:
EACCES Search permission is denied for a component of

dirname, or read permission is denied for dirname.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of dirname exceeds PATH MAX, or a
pathname component is longer than NAME MAX.

ENOENT The named directory doesn’t exist.

ENOSYS The opendir() function isn’t implemented for the
filesystem specified in dirname.

ENOTDIR A component of dirname isn’t a directory.

Examples:
Get a list of files contained in the directory /home/fred:

#include <stdio.h>
#include <stdlib.h>
#include <dirent.h>

int main(void)
{

DIR* dirp;
struct dirent* direntp;

dirp = opendir("/home/fred");
if(dirp == NULL) {

perror("can’t open /home/fred");
} else {

for(;;) {
direntp = readdir(dirp);
if(direntp == NULL) break;

printf("%s\n", direntp->d name);
}

closedir(dirp);
}

return EXIT SUCCESS;
}

1844 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. opendir()

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
closedir(), errno, readdir(), readdir r(), rewinddir(), seekdir(),
telldir()

May 31, 2004 Manifests 1845

openfd() 2004, QNX Software Systems Ltd.

Open for private access a file associated with a given descriptor

Synopsis:
#include <unistd.h>

int openfd(int fd,
int oflag);

Arguments:
fd A file descriptor associated with the file that you want to

open.

oflag How you want to open the file; a combination of the
following bits:

� O RDONLY — permit the file to be only read.

� O WRONLY — permit the file to be only written.

� O RDWR — permit the file to be both read and written.

� O APPEND — cause each record that’s written to be
written at the end of the file.

� O TRUNC — truncate the file to contain no data.

Library:
libc

Description:
The openfd() function opens the file associated with the file
descriptor, fd. This is similar to dup(), except the new fd has private
access modes and offset. The access mode, oflag, must be equal to or
more restrictive than the access mode of the source fd.

Returns:
A file descriptor, or -1 if an error occurred (errno is set).

1846 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. openfd()

Errors:
EBADF Invalid file descriptor fd.

EACCES The access mode specified by oflag isn’t equal to or
more restrictive than the access mode of the source fd.

EBUSY Sharing mode (sflag) was denied due to a conflicting
open (see sopenfd()).

Examples:
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>

int main (void)
{

int fd, fd2, oflag;

fd = open ("etc/passwd", O RDONLY);
fd2 = openfd (fd, O RDONLY);
return EXIT SUCCESS;

}

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 1847

openfd() 2004, QNX Software Systems Ltd.

See also:
dup(), sopenfd()

1848 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. openlog()
Open the system log

Synopsis:
#include <syslog.h>

void openlog(const char * ident,
int logopt,
int facility);

Arguments:
ident A string that you want to prepend to every message.

logopt A bit field specifying logging options; a combination of
one or more of the following values with an OR
operation:

LOG CONS If syslog() can’t pass the message to
syslogd, it attempts to write the
message to the /dev/console device.
The /dev/console device is usually a
symlink (see the ln command) to a real
device (e.g. /dev/text, /dev/con1 or
/dev/ser1).

LOG NDELAY Open the connection to syslogd
immediately. Normally the opening is
delayed until the first message is logged.

LOG PERROR Write the message to standard error
output as well to the system log.

LOG PID Log the process ID with each message.
This is useful for identifying
instantiations of daemons.

facility Encode a default facility to be assigned to all messages
that don’t have an explicit facility encoded. In the
following list, parameter values marked with an asterisk
(*) aren’t used by any of the QNX Neutrino standard
utilities.

May 31, 2004 Manifests 1849

openlog() 2004, QNX Software Systems Ltd.

LOG AUTH * Authorization system.

LOG AUTHPRIV *

Same as LOG AUTH, but logged to a
file readable only by selected
individuals.

LOG CRON * Clock daemon.

LOG DAEMON System daemons (such as routed) that
aren’t explicitly provided for by other
facilities.

LOG FTPD File transfer protocol daemon.

LOG KERN * Messages generated by the kernel.
These can’t be generated by any user
processes.

LOG LPR Line printer spooling system.

LOG MAIL Mail system.

LOG NEWS * Network news system.

LOG SYSLOG Messages generated internally by
syslogd.

LOG USER* Messages generated by random user
processes. This is the default facility
identifier if none is specified.

LOG UUCP * The uucp system.

LOG LOCAL0 through LOG LOCAL7 *

Reserved for local use.

Library:
libc

Description:
The openlog() function opens the system log and provides for more
specialized processing of the messages sent by syslog() and vsyslog().

1850 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. openlog()

Examples:
See syslog().

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
closelog(), setlogmask(), syslog(), vsyslog()

logger, syslogd in the Utilities Reference

May 31, 2004 Manifests 1851

openpty() 2004, QNX Software Systems Ltd.

Find an available pseudo-tty

Synopsis:
#include <unix.h>

int openpty(int* amaster,
int* aslave,
char* name,
struct termios* termp,
struct winsize* winp);

Arguments:
amaster A pointer to a location where forkpty() can store the file

descriptor of the master side of the pseudo-tty.

aslave A pointer to a location where forkpty() can store the file
descriptor of the slave side of the pseudo-tty.

name NULL, or a pointer to a buffer where forkpty() can store
the filename of the slave side of the pseudo-tty.

termp NULL, or a pointer to a termios structure that describes
the terminal’s control attributes to apply to the slave side
of the pseudo-tty.

winp A pointer to a winsize structure that defines the
window size to use for the slave side of the pseudo-tty.

Library:
libc

Description:
The openpty() function finds and opens an available pseudo-tty.

1852 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. openpty()

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
ENOENT There are no ttys available.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
fork(), forkpty(), login tty(), termios

May 31, 2004 Manifests 1853

out8() 2004, QNX Software Systems Ltd.

Write an 8-bit value to a port

Synopsis:
#include <hw/inout.h>

void out8(uintptr t port,
uint8 t val);

Arguments:
port The port you want to write the value to.

val The value that you want to write.

Library:
libc

Description:
The out8() function writes an 8-bit value, specified by val, to the
specified port.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

1854 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. out8()

Caveats:
The calling thread must have I/O privileges; see ThreadCtl()’s
NTO TCTL IO command for details.

The calling process must also use mmap device io() to access the
device’s I/O registers.

See also:
in8(), in8s(), in16(), in16s(), in32(), in32s(), mmap device io(),
out8s(), out16(), out16s(), out32(), out32s()

May 31, 2004 Manifests 1855

out8s() 2004, QNX Software Systems Ltd.

Write 8-bit values to a port

Synopsis:
#include <hw/inout.h>

void * out8s(const void * buff,
unsigned len,
uintptr t port);

Arguments:
val A pointer to a buffer that holds the values that you want to

write.

len The number of values that you want to write.

port The port you want to write the values to.

Library:
libc

Description:
The out8s() function writes len 8-bit values from the buffer pointed to
by buff to the specified port.

Returns:
A pointer to the end of the written data.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

continued. . .

1856 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. out8s()

Safety

Signal handler Yes

Thread Yes

Caveats:
The calling thread must have I/O privileges; see ThreadCtl()’s
NTO TCTL IO command for details.

The calling process must also use mmap device io() to access the
device’s I/O registers.

See also:
in8(), in8s(), in16(), in16s(), in32(), in32s(), mmap device io(),
out8(), out16(), out16s(), out32(), out32s()

May 31, 2004 Manifests 1857

out16(), outbe16(), outle16() 2004, QNX Software Systems Ltd.

Write a 16-bit value to a port

Synopsis:
#include <hw/inout.h>

void out16(uintptr t port,
uint16 t val);

#define outbe16(port,
val) ...

#define outle16(port,
val) ...

Arguments:
port The port you want to write the value to.

val The value that you want to write.

Library:
libc

Description:
The out16() function writes the native-endian 16-bit value, specified
by val, to the specified port.

The outbe16() and outle16() macros write the native-endian 16-bit
value, specified by val, to the specified port in big-endian or
little-endian format, respectively.

Classification:
QNX Neutrino

Safety

Cancellation point No

continued. . .

1858 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. out16(), outbe16(), outle16()

Safety

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
The calling thread must have I/O privileges; see ThreadCtl()’s
NTO TCTL IO command for details.

The calling process must also use mmap device io() to access the
device’s I/O registers.

outbe16() and outle16() are implemented as macros.

See also:
in8(), in8s(), in16(), in16s(), in32(), in32s(), mmap device io(),
out8(), out8s(), out16s(), out32(), out32s()

May 31, 2004 Manifests 1859

out16s() 2004, QNX Software Systems Ltd.

Write words to a port

Synopsis:
#include <hw/inout.h>

void * out16s(const void * buff,
unsigned len,
uintptr t port);

Arguments:
val A pointer to a buffer that holds the values that you want to

write.

len The number of values that you want to write.

port The port you want to write the values to.

Library:
libc

Description:
The out16s() function writes len words from the buffer pointed to by
buff to the specified port.

Returns:
A pointer to the end of the written data.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

continued. . .

1860 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. out16s()

Safety

Signal handler Yes

Thread Yes

Caveats:
The calling thread must have I/O privileges; see ThreadCtl()’s
NTO TCTL IO command for details.

The calling process must also use mmap device io() to access the
device’s I/O registers.

See also:
in8(), in8s(), in16(), in16s(), in32(), in32s(), mmap device io(),
out8(), out8s(), out16(), out32(), out32s()

May 31, 2004 Manifests 1861

out32(), outbe32(), outle32() 2004, QNX Software Systems Ltd.

Write a 32-bit value to a port

Synopsis:
#include <hw/inout.h>

void out32(uintptr t port,
uint32 t val);

#define outbe16(port,
val) ...

#define outle32(port,
val) ...

Arguments:
port The port you want to write the value to.

val The value that you want to write.

Library:
libc

Description:
The out32() function writes the 32-bit value, specified by val, to the
specified port.

The outbe32() and outle32() functions macros the native-endian
32-bit value, specified by val, to the specified port in big-endian or
little-endian format, respectively.

Classification:
QNX Neutrino

Safety

Cancellation point No

continued. . .

1862 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. out32(), outbe32(), outle32()

Safety

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
The calling thread must have I/O privileges; see ThreadCtl()’s
NTO TCTL IO command for details.

The calling process must also use mmap device io() to access the
device’s I/O registers.

outbe16() and outle16() are implemented as macros.

See also:
in8(), in8s(), in16(), in16s(), in32(), in32s(), mmap device io(),
out8(), out8s(), out16(), out16s(), out32s()

May 31, 2004 Manifests 1863

out32s() 2004, QNX Software Systems Ltd.

Write longs to a port

Synopsis:
#include <hw/inout.h>

void * out32s(const void * buff,
unsigned len,
uintptr t port);

Arguments:
val A pointer to a buffer that holds the values that you want to

write.

len The number of values that you want to write.

port The port you want to write the values to.

Library:
libc

Description:
The out32s() function writes len longs from the buffer pointed to by
buff to the specified port.

Returns:
A pointer to the end of the written data.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

continued. . .

1864 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. out32s()

Safety

Signal handler Yes

Thread Yes

Caveats:
The calling thread must have I/O privileges; see ThreadCtl()’s
NTO TCTL IO command for details.

The calling process must also use mmap device io() to access the
device’s I/O registers.

See also:
in8(), in8s(), in16(), in16s(), in32(), in32s(), mmap device io(),
out8(), out8s(), out16(), out16s(), out32()

May 31, 2004 Manifests 1865

pathconf() 2004, QNX Software Systems Ltd.

Return the value of a configurable limit

Synopsis:
#include <unistd.h>

long pathconf(const char* path,
int name);

Arguments:
path The name of the file whose limit you want to get.

name The name of the configurable limit; see below.

Library:
libc

Description:
The pathconf() function returns a value of a configurable limit
indicated by name, which is associated with the filename given in
path.

Configurable limits are defined in <confname.h>, and include at
least the following values:

PC LINK MAX

Maximum value of a file’s link count.

PC MAX CANON

Maximum number of bytes in a terminal’s canonical input
buffer (edit buffer).

PC MAX INPUT

Maximum number of bytes in a terminal’s raw input buffer.

PC NAME MAX

Maximum number of bytes in a file name (not including the
terminating null).

1866 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pathconf()

PC PATH MAX

Maximum number of bytes in a pathname (not including the
terminating null).

PC PIPE BUF

Maximum number of bytes that can be written atomically when
writing to a pipe.

PC CHOWN RESTRICTED

If defined (not -1), indicates that the use of the chown() function
is restricted to a process with root privileges, and to changing
the group ID of a file to the effective group ID of the process or
to one of its supplementary group IDs.

PC NO TRUNC

If defined (not -1), indicates that the use of pathname
components longer than the value given by PC NAME MAX
will generate an error.

PC VDISABLE

If defined (not -1), this is the character value which can be used
to individually disable special control characters in the
termios control structure.

Returns:
The requested configurable limit, or -1 if an error occurs (errno is set).

Errors:
EACCES Search permission is denied for a component of path.

EINVAL The name argument is invalid, or the indicated limit
isn’t supported.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The path argument, or a component of path, is too
long.

May 31, 2004 Manifests 1867

pathconf() 2004, QNX Software Systems Ltd.

ENOENT The file doesn’t exist.

ENOSYS The pathconf() function isn’t implemented for the
filesystem specified in path.

ENOTDIR A component of the path prefix isn’t a directory.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(void)
{

long value;

value = pathconf("/dev/con1", PC MAX INPUT);
printf("Input buffer size is %ld bytes\n",

value);
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
chown(), confstr(), errno, fpathconf(), sysconf(), termios

getconf in the Utilities Reference

1868 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pathconf()

Understanding System Limits chapter of the Neutrino User’s Guide

May 31, 2004 Manifests 1869

pathfind(), pathfind r() 2004, QNX Software Systems Ltd.

Search for a file in a list of directories

Synopsis:
#include <libgen.h>

char *pathfind(const char *path,
const char *name,
const char *mode);

char *pathfind r(const char *path,
const char *name,
const char *mode,
char *buff,
size t buff size);

Arguments:
path A string that specifies the list of the directories that you

want to search. The directories named in path are
separated by colons.

name The name of the file you’re looking for. If name begins
with a slash, the name is treated as an absolute
pathname, and path is ignored.

mode A string of option letters chosen from:

r Readable.

w Writable.

x Executable.

f Normal file.

b Block special.

c Character special.

d Directory.

p FIFO (pipe).

u Set user ID bit.

g Set group ID bit.

1870 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pathfind(), pathfind r()

k Sticky bit.

s Size nonzero.

buff (pathfind r() only) A pointer to a buffer where
pathfind r() can store the path of the file found.

buff size (pathfind r() only) The size of the buffer that buff points
to.

Library:
libc

Description:
The pathfind() function searches the directories named in path for the
file name. The pathfind r() function is a thread-safe version of
pathfind().

Options read, write, and execute are checked relative to the real (not
the effective) user ID and group ID of the current process.

If the file name, with all the characteristics specified by mode, is
found in any of the directories specified by path, then these functions
return a pointer to a string containing the member of path, followed
by a slash character (/), followed by name.

An empty path member is treated as the current directory. If name is
found in the current directory, a slash isn’t prepended to it; the
unadorned name is returned.

The pathfind r() also includes a buffer, buff , and its size, buff size.
This buffer is used to hold the path of the file found.

Returns:
The path found, or NULL if the file couldn’t be found.

May 31, 2004 Manifests 1871

pathfind(), pathfind r() 2004, QNX Software Systems Ltd.

Examples:
Find the ls command using the PATH environment variable:

pathfind (getenv ("PATH"), "ls", "rx");

Classification:
Unix

pathfind()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

pathfind r()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The string pointed to by the returned pointer is stored in an area that’s
reused on subsequent calls to pathfind(). Don’t free this string.

Use pathfind r() in multithreaded applications.

1872 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pathfind(), pathfind r()

See also:
access(), getenv(), mknod(), stat()

sh in the Utilities Reference

May 31, 2004 Manifests 1873

pathmgr symlink() 2004, QNX Software Systems Ltd.

Create a symlink

Synopsis:
#include <sys/pathmgr.h>

int pathmgr symlink(const char * symlink,
const char * path);

Arguments:
symlink The name of the link that you want to create.

path The path that you want to link to.

Library:
libc

Description:
The pathmgr symlink() function creates a symbolic link, path, in the
process manager that redirects to the path specified by symlink.

The pathmgr unlink() function removes the link.

The symbolic link isn’t permanent and is lost when the system
reboots.

�

Returns:
0 Success.

-1 An error occurred (errno is set).

Examples:
#include <stdio.h>
#include <sys/pathmgr.h>

int main(int argc, char **argv) {

/* Create a link /mytmp --> /dev/shmem */

1874 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pathmgr symlink()

if(pathmgr symlink("/dev/shmem", "/mytmp") == -1) {
perror("Can’t make link");

}

getchar();
if(pathmgr unlink("/mytmp") == -1) {

perror("Can’t unlink ");
}

return 0;
}

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pathmgr unlink(), symlink(), unlink()

May 31, 2004 Manifests 1875

pathmgr unlink() 2004, QNX Software Systems Ltd.

Remove a link

Synopsis:
#include <sys/pathmgr.h>

int pathmgr unlink(const char * path);

Arguments:
path The link that you want to remove.

Library:
libc

Description:
The pathmgr unlink() function removes the link created by
pathmgr symlink().

Returns:
0 Success.

-1 An error occurred.

Examples:
See pathmgr symlink().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

1876 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pathmgr unlink()

See also:
pathmgr symlink(), symlink(), unlink()

May 31, 2004 Manifests 1877

pause() 2004, QNX Software Systems Ltd.

Suspend the process until delivery of a signal

Synopsis:
#include <unistd.h>

int pause(void);

Library:
libc

Description:
The pause() function suspends the calling process until delivery of a
signal whose action is either to execute a signal handler or to
terminate the process.

If the action is to terminate the process, pause() doesn’t return. If the
action is to execute a signal handler, pause() returns after the signal
handler returns.

Returns:
On error, pause() returns -1 and sets errno to EINTR; otherwise, it
never returns.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(void)
{

/* set an alarm to go off in 5 seconds */
alarm(5);

/*
* Wait until we receive a SIGALRM signal. However,
* since we don’t have a signal handler, any signal
* will kill us.
*/

printf("Hang around, "
" waiting to die in 5 seconds\n");

1878 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pause()

pause();
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
alarm(), errno, sigaction()

May 31, 2004 Manifests 1879

pccard arm() 2004, QNX Software Systems Ltd.

Arm the devp-pccard server

Synopsis:
#include <sys/pccard.h>

int pccard arm(pccard t handle,
int devtype,
unsigned event,
int coid);

Arguments:
handle The handle returned by pccard attach().

devtype The type of device that your application wants to be
informed about. Valid devices are:

PCCARD DEV AIMS — Auto Incrementing Mass
Storage.
PCCARD DEV ALL — all devices.
PCCARD DEV FIXED DISK — any hard drive.
PCCARD DEV GPIB — General Purpose Interface

Bus card.
PCCARD DEV MEMORY — memory type device.
PCCARD DEV NETWORK — any network adapter.
PCCARD DEV PARALLEL — PC parallel device.
PCCARD DEV SCSI — any SCSI interface.
PCCARD DEV SERIAL — 16450 serial device.
PCCARD DEV SOUND — any sound adapter.
PCCARD DEV VIDEO — any video adapter.

event The type of event that you want to be notified of:

� PCCARD ARM INSERT REMOVE — card
insertion/removal.

coid A connection ID, obtained from ConnectAttach(), that’s
used to send the pulse.

1880 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pccard arm()

Library:
libpccard

Description:
The pccard arm() function call is used to request that the
devp-pccard server notify the user application, via a pulse, when
the specified event occurs.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Invalid handle parameter.

Examples:
/*
* Ask to be informed when a Network card is inserted
*/

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/neutrino.h>
#include <sys/pccard.h>

int main (void)

{
pccard t handle;
int chid, coid;
char buf [10];
struct pccard info io;

if ((handle = pccard attach (0)) == -1) {
printf ("Unable to attach to PCCARD\n");
exit (EXIT FAILURE);
}

if ((chid = ChannelCreate (NTO CHF FIXED PRIORITY)) == -1) {

May 31, 2004 Manifests 1881

pccard arm() 2004, QNX Software Systems Ltd.

printf ("Unable to create channel\n");
exit (EXIT FAILURE);
}

if ((coid = ConnectAttach (0, 0, chid, NTO SIDE CHANNEL,
0)) == -1) {

printf ("Unable to ConnectAttach\n");
exit (EXIT FAILURE);
}

if (pccard arm (handle, PCCARD DEV NETWORK,
PCCARD ARM INSERT REMOVE, coid) == -1) {

perror ("Arm failed");
exit (EXIT FAILURE);
}

/* To be informed about any card insertion/removal event,
* change PCCARD DEV NETWORK to PCCARD DEV ALL.
*/

/*
* MsgReceive (chid,);
* Other user logic...
*/

/* Get information from socket 0 - function 0 */
if (pccard info (handle, 0, &io, sizeof (io)) == -1) {

perror ("Info failed");
exit (EXIT FAILURE);
}

if (io.flags & PCCARD FLAG CARD) {
printf ("Card inserted in socket 1 - Type %x\n",

io.window [0].device & 0xff00);
/* Now lock the card in socket 1 with exclusive access */

if (pccard lock (handle, 0, 0, O RDWR | O EXCL) == -1) {
perror ("Lock failed");
exit (EXIT FAILURE);
}

/* Read 2 bytes of the CIS from offset 0 in attribute memory */
if (pccard raw read (handle, 0, PCCARD MEMTYPE ATTRIBUTE,

0, 2, buf) == -1) {
perror ("Raw read");
exit (EXIT FAILURE);
}

/* More user logic... */
}

pccard unlock (handle, 0, 0);
pccard detach (handle);

return (EXIT SUCCESS);

1882 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pccard arm()

}

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pccard attach(), pccard detach(), pccard info(), pccard lock(),
pccard raw read(), pccard unlock()

May 31, 2004 Manifests 1883

pccard attach() 2004, QNX Software Systems Ltd.

Attach to the devp-pccard server

Synopsis:
#include <sys/pccard.h>

pccard t pccard attach(int reserved);

Arguments:
reserved Pass 0 for this argument.

Library:
libpccard

Description:
The pccard attach() function attaches a user application to the
devp-pccard server. You must call this function before using any of
the other PC card functions, because it returns a handle that all the
other PC Card functions use.

Returns:
>0 A value to be used as handle in all other PC Card function

calls.

-1 Can’t locate the devp-pccard server.

-2 Send to devp-pccard server failed.

-3 The devp-pccard server returned an error (errno is set).

Errors:
EBUSY The devp-pccard server is unable to service this

request.

1884 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pccard attach()

Examples:
See pccard arm().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pccard arm(), pccard detach(), pccard info(), pccard lock(),
pccard raw read(), pccard unlock()

May 31, 2004 Manifests 1885

pccard detach() 2004, QNX Software Systems Ltd.

Detach from the devp-pccard server

Synopsis:
#include <sys/pccard.h>

int pccard detach(pccard t handle);

Arguments:
handle The handle returned by pccard attach().

Library:
libpccard

Description:
The pccard detach() function detaches the user application from the
devp-pccard server. Any locks that you previously applied with
pccard lock() are freed.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Invalid handle parameter.

Examples:
See pccard arm().

Classification:
QNX Neutrino

1886 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pccard detach()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pccard arm(), pccard attach(), pccard info(), pccard lock(),
pccard raw read(), pccard unlock()

May 31, 2004 Manifests 1887

pccard info() 2004, QNX Software Systems Ltd.

Obtain socket information from the devp-pccard server

Synopsis:
#include <sys/pccard.h>

int pccard info(pccard t handle,
int socket,
struct pccard info* info,
unsigned size);

Arguments:
handle The handle returned by pccard attach().

socket Contains both the socket number as well as the function
within the socket. This is achieved by shifting the function
number left 8 bits and ORing it with the socket number.
The socket number is zero-based.

info A pointer to a pccard info structure that the function
fills with the socket information. For more information,
see below.

size Size of the pccard info structure.

Library:
libpccard

Description:
The pccard info() function call retrieves socket setup information
from the devp-pccard server. The information is returned in the
pccard info structure.

pccard info structure

The pccard info structure is defined in <pccard.h> as:

1888 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pccard info()

struct pccard info {
int16 t socket; // Socket number (0 based)
uint16 t status; // Card status (from socket services spec)
uint32 t flags; // Flags (PCCARD FLAG *)
uint8 t vcc; // Current Vcc (in tenths of volts)
uint8 t vpp; // Current Vpp (in tenths of volts)
uint8 t num windows; // Number of windows described below
uint8 t index; // Index for CardBus devices
uint16 t manufacturer; // Manufacturer ID from PCCARD
uint16 t card type; // Card Type from PCCARD
uint16 t device id; // CardBus device id
uint16 t vendor id; // CardBus vendor id
uint16 t busnum; // PCI bus number
uint16 t devfuncnum; // PCI device and function number
struct pccard window {

uint16 t window; // Window type (PCCARD WINDOW *)
uint16 t flags; // Window flags (PCCARD WINFLAG *)
mpid t pid; // Locking pid
uint16 t device; // Device type (PCCARD DEV *)
uint16 t dummy;
uint32 t dev size; // Size of memory device
uint32 t reserved3;
union {

struct pccard irq {
uint16 t flags; // (PCCARD IRQFLAG *)
uint16 t irq;

} irq;
struct pccard memio {

uint32 t base; // Base address (in host address space)
uint32 t size; // Size of window
uint32 t offset; // offset of region from base of card
uint16 t flags; // (PCCARD MEMIOFLAG *)
uint16 t dummy2;

} memio;
} un;

} window[PCCARD MAX WINDOWS];
};

Returns:
A positive integer

Success. The socket parameter is returned.

-1 An error occurred (errno is set).

May 31, 2004 Manifests 1889

pccard info() 2004, QNX Software Systems Ltd.

Errors:
ENODEV Invalid socket parameter.

Examples:
See pccard arm().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pccard arm(), pccard attach(), pccard detach(), pccard lock(),
pccard raw read(), pccard unlock()

1890 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pccard lock()
Lock the window of the card in the selected socket

Synopsis:
#include <sys/pccard.h>

int pccard lock(pccard t handle,
int socket,
int index,
int oflag);

Arguments:
handle The handle returned by pccard attach().

socket Contains both the socket number as well as the function
within the socket. This is achieved by shifting the
function number left 8 bits and ORing it with the socket
number. The socket number is zero-based.

index The window/function number that you want to lock. You
can get the window number from the pccard info

structure (see pccard info()).

oflag Created by ORing the values required (e.g.
O RDWR | O EXCL) for read/write and exclusive access.

Library:
libpccard

Description:
The pccard lock() function call provides exclusive or shared access to
the PC Card in socket and also sets access permissions.

Returns:
A positive integer

Success.

-1 An error occurred (errno is set).

May 31, 2004 Manifests 1891

pccard lock() 2004, QNX Software Systems Ltd.

Errors:
EBADF Invalid handle parameter.

EBUSY The window is already locked by another process.

ENODEV Invalid socket parameter, no PC Card is present in the
socket, or invalid index parameter.

Examples:
See pccard arm().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pccard arm(), pccard attach(), pccard detach(), pccard info(),
pccard raw read(), pccard unlock()

1892 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pccard raw read()
Read the raw CIS data from the PC Card

Synopsis:
#include <sys/pccard.h>

ssize t pccard raw read(pccard t handle,
int socket,
int type,
unsigned addr,
ssize t len,
void* buf);

Arguments:
handle The handle returned by pccard attach().

socket Contains both the socket number as well as the function
within the socket. This is achieved by shifting the
function number left 8 bits and ORing it with the socket
number. The socket number is zero-based.

type The type of memory that you want to read. Valid values
are:

� PCCARD MEMTYPE COMMON

� PCCARD MEMTYPE ATTRIBUTE

addr The memory address that you want to read from the CIS.

len The size of the memory that you want to read.

buf A pointer to a buffer where the function can store the
information that it reads from the PC Card.

Library:
libpccard

May 31, 2004 Manifests 1893

pccard raw read() 2004, QNX Software Systems Ltd.

Description:
The pccard raw read() function returns the raw CIS (Card
Information Structure) data from the PC Card.

Returns:
A positive integer

Success. The length read is returned.

-1 An error occurred (errno is set).

Errors:
EBADF Invalid handle parameter.

ENODEV Invalid socket parameter.

Examples:
See pccard arm().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pccard arm(), pccard attach(), pccard detach(), pccard info(),
pccard lock(), pccard unlock()

1894 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pccard unlock()
Unlock the window of the card in the selected socket

Synopsis:
#include <sys/pccard.h>

int pccard unlock(pccard t handle,
int socket,
int index);

Arguments:
handle The handle returned by pccard attach().

socket Contains both the socket number as well as the function
within the socket. This is achieved by shifting the
function number left 8 bits and ORing it with the socket
number. The socket number is zero-based.

index The window/function number that you want to unlock.
You can get the window number from the
pccard info structure (see pccard info()).

Library:
libpccard

Description:
The pccard unlock() function unlocks a window previously locked by
a call to pccard lock(). It can only unlock a window locked by the
same process ID — you can’t unlock a window locked by another
process.

Returns:
0 Success.

-1 An error occurred (errno is set).

May 31, 2004 Manifests 1895

pccard unlock() 2004, QNX Software Systems Ltd.

Errors:
EBADF Invalid handle parameter.

ENODEV Invalid socket parameter, no PC Card is present in the
socket, or invalid index parameter.

Examples:
See pccard arm().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pccard arm(), pccard attach(), pccard detach(), pccard info(),
pccard lock(), pccard raw read()

1896 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci attach()
Connect to the PCI server

Synopsis:
#include <hw/pci.h>

int pci attach(unsigned flags);

Arguments:
flags There are currently no flags defined for this function.

Library:
libc

Description:
The pci attach() function connects to the Peripheral Component
Interconnect (PCI) server.

You must call pci attach() before calling any of the other PCI
functions.

�

Returns:
A handle used for calling pci detach(), or -1 if an error occurs.

Errors:
See open().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

continued. . .

May 31, 2004 Manifests 1897

pci attach() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pci attach device(), pci detach(), pci detach device(),
pci find class(), pci find device(), pci present(), pci read config(),
pci read config8(), pci read config16(), pci read config32(),
pci rescan bus(), pci write config(), pci write config8(),
pci write config16(), pci write config32()

“Peripheral Component Interconnect (pci-*)” in the Utilities
Summary chapter of the Utilities Reference

1898 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci attach device()
Attach a driver to a PCI device

Synopsis:
#include <hw/pci.h>

void* pci attach device(
void* handle,
uint32 t flags,
uint16 t idx,
struct pci dev info* info);

Arguments:
handle A handle that identifies the device. The first time you call

this function, set handle to NULL. This function returns a
handle that you can use in a subsequent call to allocate
resources for the device.

flags Flags that tell the PCI server how you want it to handle
resources, which resources to scan for, and which
resources to allocate; see “Flags,” below.

idx The index of the device: 0 for the first device, 1 for the
second, and so on.

info A pointer to a pci dev info structure that specifies the
class code, vendor/device ID, or bus number and
device/function number that you want to scan for. The
function fills in this structure with information about the
device.

Library:
libc

Description:
The pci attach device() function attaches a driver to a PCI device.

May 31, 2004 Manifests 1899

pci attach device() 2004, QNX Software Systems Ltd.

You must successfully call pci attach() before calling any of the other
PCI functions.

�

Typically drivers use this function to attach themselves to a PCI
device, so that other drivers can’t attach to the same device. If you
specify the PCI SHARE flag (see “Flags,” below), then multiple
drivers can attach to the same device.

The server can scan based on a class code, vendor/device ID, or bus
number and device/function number. To control the server scanning,
initialize the appropriate fields of the info structure and set the
appropriate flags.

When you first attach to an uninitialized device, the PCI server
assigns all the I/O ports, memory and IRQs required for the device. It
also does the IRQ routing for you. Once this has completed
successfully, it fills in all these values into your pci dev info

structure to return these values to your application.

When a driver attaches to a device, the PCI server allocates the
necessary resources for the device from procnto using the
rsrcdbmgr* calls. On X86 BIOS systems, these resources are
normally allocated by the BIOS, but on non-x86 systems, these
resources have to be allocated from procnto.

You can detach the device by passing its handle to
pci detach device(). If you call pci detach(), any resources that
pci attach device() allocates are freed.

pci dev info structure

This function fills in a pci dev info structure that describes an
occurrence of a device.

1900 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci attach device()

The pci attach device() function doesn’t map any of the I/O or
memory regions into the process’s address space. The addresses
returned in the pci dev info structure are all physical addresses.

�

This structure has the following members:

uint16 t DeviceId

The device ID (input/output).

uint16 t VendorId

The vendor ID (input/output).

uint16 t SubsystemId

The subsystem ID (output).

uint16 t SubsystemVendorId

The subsystem vendor ID (output).

uint8 t BusNumber

The bus number (output).

uint8 t DevFunc

The device/function number (output).

uint8 t Revision

The device revision (output).

uint32 t Class The class code (input/output).

uint32 t Irq The interrupt number (output).

uint64 t CpuIoTranslation

The CPU-to-PCI translation value (pci addr =
cpu addr - translation).

uint64 t CpuMemTranslation

The CPU-to-PCI memory translation (pci addr =
cpu addr - translation).

May 31, 2004 Manifests 1901

pci attach device() 2004, QNX Software Systems Ltd.

uint64 t CpuIsaTranslation

The CPU-to-ISA memory translation (pci addr =
cpu addr - translation).

uint64 t CpuBmstrTranslation

The translation from the CPU busmaster address to
the PCI busmaster address (pci addr = cpu addr +
translation).

uint64 t PciBaseAddress [6]

The PCI base address (array of six uint64 t

items).

This function decodes bits 1 and 2 to see whether the register is 32 or
64 bits wide, hence the 64-bit values for the base registers.

�

uint64 t CpuBaseAddress [6]

The CPU base address (an array of six uint64 t

items).

Some platforms translate addresses across PCI
bridges, so that there’s one address on the PCI side
of the bridge and another on the CPU side. Under
x86, the PciBaseAddress and CpuBaseAddress are
the same, but under other platforms, these will be
different. In your user application you should
always use the CpuBaseAddress.

uint32 t BaseAddressSize [6]

The size of the base address aperture into the
board (an array of six uint32 t items).

uint64 t PciRom

The PCI ROM address.

uint64 t CpuRom

The CPU ROM address.

1902 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci attach device()

uint32 t RomSize

The size of the aperture into the board.

Flags

The flags parameter tells the PCI server how resources are to be
handled, which resources to scan for, and which resources to allocate.

These bits control how resources are handled:

PCI SHARE Allow resources to be shared with other drivers. If
this isn’t set, no other driver can attach to the
device.

PCI PERSIST Resources persist after the device is detached.

The following bits ask the PCI server to scan for a device based on the
fields that you specified in the structure pointed to by info:

PCI SEARCH VEND

VendorID

PCI SEARCH VENDEV

DeviceId and VendorId

PCI SEARCH CLASS

Class

PCI SEARCH BUSDEV

BusNumber and DevFunc

These bits specify which members of the structure the server should
initialize:

PCI INIT IRQ Irq

PCI INIT ROM PciRom and CpuRom

May 31, 2004 Manifests 1903

pci attach device() 2004, QNX Software Systems Ltd.

PCI INIT BASE0 . . . PCI INIT BASE5

The specified entries of the PciBaseAddress and
CpuBaseAddress arrays

PCI INIT ALL All members except PciRom and CpuRom

If you pass 0 for the flags, the default is PCI SEARCH VENDEV.

Testing and converting addresses

To facilitate the testing of addresses returned by the PCI server, at
least the following macros are defined in the <pci.h> header file:

PCI IS IO(address)

Test whether the address is an I/O address.

PCI IS MEM(address)

Test whether the address is a memory address.

PCI IO ADDR(address)

Convert the address returned by the PCI server to an I/O
address.

PCI MEM ADDR(address)

Convert the address returned by the PCI server to a memory
address.

PCI ROM ADDR(address)

Convert the address returned by the PCI server to a ROM
address.

For example:

{
uint64 t port;

/* Test the address returned by the pci server */
if (PCI IS IO(addr))

port = (PCI IO ADDR(addr));
}

1904 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci attach device()

Returns:
A handle to be used for other pci * calls associated with a handle, or
NULL if an error occurs (errno is set).

Errors:
EBUSY An application has already attached to the device. If

it’s safe to share the device, specify PCI SHARE in the
flags field.

EINVAL The function couldn’t attach a resource to the device.

ENODEV This device wasn’t found.

Examples:
Attach to and allocate all resources for the first occurrence of an
Adaptec 2940 adapter:

#include <hw/pci.h>
#include <hw/pci devices.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int pidx;
void* hdl;
int phdl;
struct pci dev info inf;

/* Connect to the PCI server */
phdl = pci attach(0);
if(phdl == -1) {

fprintf(stderr, "Unable to initialize PCI\n");

return EXIT FAILURE;
}

/* Initialize the pci dev info structure */
memset(&inf, 0, sizeof(inf));
pidx = 0;
inf.VendorId = PCI VENDOR ID ADAPTEC;
inf.DeviceId = PCI DEVICE ID ADAPTEC 2940F;

May 31, 2004 Manifests 1905

pci attach device() 2004, QNX Software Systems Ltd.

hdl = pci attach device(NULL, PCI INIT ALL, pidx, &inf);
if(hdl == NULL) {

fprintf(stderr, "Unable to locate adapter\n");
} else {

/* Do something to the adapter */
pci detach device(hdl);

}

/* Disconnect from the PCI server */
pci detach(phdl);

return EXIT SUCCESS;
}

Attach to the first occurrence of an Adapter 2940 adapter and allocate
resources in a second call:

#include <hw/pci.h>
#include <hw/pci devices.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int pidx;
void* hdl;
void* retval;
int phdl;
struct pci dev info inf;

phdl = pci attach(0);
if(phdl == -1) {

fprintf(stderr, "Unable to initialize PCI\n");

return EXIT FAILURE;
}

memset(&inf, 0, sizeof(inf));
pidx = 0;
inf.VendorId = PCI VENDOR ID ADAPTEC;
inf.DeviceId = PCI DEVICE ID ADAPTEC 2940F;

hdl = pci attach device(NULL, 0, pidx, &inf);
if(hdl == NULL) {

fprintf(stderr, "Unable to locate adapter\n");
}

retval = pci attach device(hdl, PCI INIT ALL, pidx, &inf);
if(retval == NULL) {

1906 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci attach device()

fprintf(stderr, "Unable allocate resources\n");
}

pci detach(phdl);

return EXIT SUCCESS;
}

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pci attach(), pci detach(), pci detach device(), pci find class(),
pci find device(), pci present(), pci read config(), pci read config8(),
pci read config16(), pci read config32(), pci rescan bus(),
pci write config()

May 31, 2004 Manifests 1907

pci detach() 2004, QNX Software Systems Ltd.

Disconnect from the PCI server

Synopsis:
#include <hw/pci.h>

int pci detach(unsigned handle);

Arguments:
handle The value returned by a successful call to pci attach().

Library:
libc

Description:
The pci detach() function disconnects from the PCI server. Any
resources allocated with pci attach device() are released.

The pci attach() function opens a file descriptor against the PCI
server, and all of the low-level library calls to the PCI server use this
fd. When you call pci detach(), the low-level code does a close() on
the file descriptor, which tells the PCI server to clean up any
allocations associated with it.

Don’t call any of the other pci *() functions after calling pci detach()
(unless you’ve reattached with pci attach()).

�

Returns:
PCI SUCCESS.

Classification:
QNX Neutrino

1908 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci detach()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pci attach(), pci attach device(), pci detach device(), pci find class(),
pci find device(), pci present(), pci read config(), pci read config8(),
pci read config16(), pci read config32(), pci rescan bus(),
pci write config(), pci write config8(), pci write config16(),
pci write config32()

May 31, 2004 Manifests 1909

pci detach device() 2004, QNX Software Systems Ltd.

Detach a driver from a PCI device

Synopsis:
#include <hw/pci.h>

int pci detach device(void* handle);

Arguments:
handle The handle returned by pci attach device().

Library:
libc

Description:
The pci detach device() function detaches a driver from a PCI device.
Any resources allocated with pci attach device() are released, unless
you attached the device with the PCI PERSIST flag set.

You must successfully call pci attach() before calling any of the other
PCI functions.

�

Returns:
PCI DEVICE NOT FOUND

No device could be found for handle.

PCI SUCCESS

Success.

-1 You haven’t called pci attach(), or the call to it failed.

Classification:
QNX Neutrino

1910 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci detach device()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pci attach(), pci attach device(), pci detach(), pci find class(),
pci find device(), pci present(), pci read config(), pci read config8(),
pci read config16(), pci read config32(), pci rescan bus(),
pci write config(), pci write config8(), pci write config16(),
pci write config32()

May 31, 2004 Manifests 1911

pci find class() 2004, QNX Software Systems Ltd.

Find devices that have a specific class code

Synopsis:
#include <hw/pci.h>

int pci find class(unsigned long class code,
unsigned index,
unsigned* bus,
unsigned* dev func);

Arguments:
class code The class of device or function that you want to find.

index The index of the device or function that you want to
find: 0 for the first, 1 for the second, and so on.

bus The bus number, in the range [0...255].

dev func The device or function number of the nth device or
function of the given class. The device number is in
bits 7 through 3, and the function number in bits 2
through 0.

Library:
libc

Description:
The pci find class() function determines the location of the nth PCI
device or function that has the specified class code.

You must successfully call pci attach() before calling any of the other
PCI functions.

�

You can find all the devices having the same class code by making
successive calls to this function, starting with an index of 0, and
incrementing it until PCI DEVICE NOT FOUND is returned.

1912 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci find class()

Returns:
PCI DEVICE NOT FOUND

The device or function wasn’t found.

PCI SUCCESS

The device or function was found.

-1 You haven’t called pci attach(), or the call to it failed.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pci attach(), pci attach device(), pci detach(), pci detach device(),
pci find device(), pci present(), pci read config(), pci read config8(),
pci read config16(), pci read config32(), pci rescan bus(),
pci write config(), pci write config8(), pci write config16(),
pci write config32()

May 31, 2004 Manifests 1913

pci find device() 2004, QNX Software Systems Ltd.

Find the PCI device with a given device ID and vendor ID

Synopsis:
#include <hw/pci.h>

int pci find device(unsigned device,
unsigned vendor,
unsigned index,
unsigned* bus,
unsigned* dev func);

Arguments:
device The Device ID.

vendor The Vendor ID.

index The index (n) of the device or function sought.

bus A pointer to a location where the function can store the
bus number of the device or function found.

dev func A pointer to a location where the function can store the
device or function ID of the nth device or function found
with the specified device and vendor IDs. The device
number is in bits 7 through 3, and the function number
in bits 2 through 0.

Library:
libc

Description:
The pci find device() function returns the location of the nth PCI
device that has the specified Device ID and Vendor ID.

1914 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci find device()

You must successfully call pci attach() before calling any of the other
PCI functions.

�

You can find all the devices having the same Device and Vendor IDs
by making successive calls to this function, starting with an index of
0, and incrementing it until PCI DEVICE NOT FOUND is returned.

Returns:
PCI DEVICE NOT FOUND

The device or function wasn’t found.

PCI SUCCESS

The device or function was found.

-1 You haven’t called pci attach(), or the call to it failed.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pci attach(), pci attach device(), pci detach(), pci detach device(),
pci find class(), pci present(), pci read config(), pci read config8(),
pci read config16(), pci read config32(), pci rescan bus(),
pci write config(), pci write config8(), pci write config16(),
pci write config32()

May 31, 2004 Manifests 1915

pci irq routing options() 2004, QNX Software Systems Ltd.

Retrieve PCI IRQ routing information

Synopsis:
#include <hw/pci.h>

int pci irq routing options(
IRQRoutingOptionsBuffer * buf,
uint32 t * irq);

Arguments:
buf A pointer to a IRQRoutingOptionsBuffer structure where

the function can store the IRQ routing information. For
information about the layout of this buffer, see PCI BIOS
SPECIFICATION Revision 2.1. You can get it from the PCI
Special Interest Group at http://pcisig.com/.

irq A pointer to a location where the function can store the
current state of interrupts.

Library:
libc

Description:
The pci irq routing options() function returns the following:

� PCI interrupt routing options available on the system motherboard

� the current state of interrupts that are currently exclusively
assigned to PCI.

Routing information is returned in a data buffer that contains an IRQ
routing for each PCI device or slot.

You must successfully call pci attach() before calling any of the other
PCI functions.

�

1916 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci irq routing options()

Returns:
PCI SUCCESS Success.

-1 You haven’t called pci attach(), or the call to it
failed.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <inttypes.h>
#include <hw/pci.h>
#include <sys/neutrino.h>

struct {
IRQRoutingOptionsBuffer buf;
uint8 t databuf [2048];
} route buf;

int main (void)
{
int phdl;
uint32 t irq;

if ((phdl = pci attach (0)) == -1) {
printf ("Unable to attach - errno %s\n", strerror (errno));
exit (1);
}

memset (route buf.databuf, 0, sizeof (route buf.databuf));
route buf.buf.BufferSize = sizeof (route buf.databuf);
if (pci irq routing options (&route buf.buf, &irq) != PCI SUCCESS) {
printf ("Routing option failed - errno %s\n", strerror (errno));
exit (1);
}

printf ("PCI Irq Map = %x\n", irq);
pci detach (phdl);
return (0);
}

May 31, 2004 Manifests 1917

pci irq routing options() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pci attach(), pci attach device(), pci detach(), pci detach device(),
pci find class(), pci find device(), pci present(), pci read config(),
pci read config8(), pci read config16(), pci read config32(),
pci rescan bus(), pci write config(), pci write config8(),
pci write config16(), pci write config32()

1918 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci map irq()
Map an interrupt pin to an IRQ

Synopsis:
#include <hw/pci.h>

int pci map irq(unsigned bus,
unsigned dev func,
short intno,
short intpin);

Arguments:
bus The bus number of the device.

dev func The device or function number of the device. The
device number is in bits 7 through 3, and the function
number is in bits 2 through 0.

intno The interrupt to be mapped (0 - 15).

intpin The PCI interrupt pin (0x0a - 0x0d).

Library:
libc

Description:
The pci map irq() function maps a PCI interrupt pin to a specific
interrupt request (IRQ).

You must successfully call pci attach() before calling any of the other
PCI functions.

�

Returns:
PCI SUCCESS

Success.

PCI SET FAILED

The PCI server was unable to map the intno/intpin.

May 31, 2004 Manifests 1919

pci map irq() 2004, QNX Software Systems Ltd.

PCI UNSUPPORTED FUNCTION

This function isn’t supported by the BIOS.

-1 You haven’t called pci attach(), or the call to it failed.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pci attach(), pci attach device(), pci detach(), pci detach device(),
pci find class(), pci find device(), pci present(), pci read config(),
pci read config8(), pci read config16(), pci read config32(),
pci rescan bus(), pci write config(), pci write config8(),
pci write config16(), pci write config32()

1920 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci present()
Determine whether or not PCI BIOS is present

Synopsis:
#include <hw/pci.h>

int pci present(unsigned* lastbus,
unsigned* version,
unsigned* hardware);

Arguments:
lastbus The number of the last PCI bus in the system. PCI buses

are numbered from 0, up to and including this value.

version The version number of the PCI interface.

hardware The specific hardware characteristics the platform
supports with regard to accessing configuration space
and generating PCI Special Cycles.

The PCI specification defines two hardware
mechanisms for accessing configuration space. Bit 0 of
hardware is set (1) if mechanism 1 is supported, and
reset (0) otherwise. Bit 1 is set (1) if mechanism 2 is
supported, and reset (0) otherwise.

The specification also defines hardware mechanisms for
generating Special Cycles. Bit 4 of hardware is set (1)
if the platform supports Special Cycle generation based
on Config Mechanism 1, and reset (0) otherwise. Bit 5
is set (1) if the platform supports Special Cycle
generation based on Config Mechanism 2, and reset (0)
otherwise.

The arguments can be NULL if you just want to check for PCI
capabilities.

May 31, 2004 Manifests 1921

pci present() 2004, QNX Software Systems Ltd.

Library:
libc

Description:
The pci present() function determines whether or not the PCI BIOS
interface function set is present. It also determines the following:

� the current interface version

� what hardware mechanism for accessing configuration space is
supported

� whether or not the hardware supports the generation of PCI
Special Cycles.

You must successfully call pci attach() before calling any of the other
PCI functions.

�

Returns:
-1 PCI BIOS isn’t present.

PCI SUCCESS

PCI BIOS is present.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

1922 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci present()

See also:
pci attach(), pci attach device(), pci detach(), pci detach device(),
pci find class(), pci find device(), pci read config(),
pci read config8(), pci read config16(), pci read config32(),
pci rescan bus(), pci write config(), pci write config8(),
pci write config16(), pci write config32()

May 31, 2004 Manifests 1923

pci read config() 2004, QNX Software Systems Ltd.

Read from the configuration space of a PCI device

Synopsis:
#include <hw/pci.h>

int pci read config(void* handle,
unsigned offset,
unsigned count,
size t size,
void* buff);

Arguments:
handle The handle returned by pci attach device().

offset The offset into the configuration space where you want to
read from.

count The number of objects that you want to read.

size The size of each object.

buff A pointer to a buffer where the function can store the
objects that it reads.

Library:
libc

Description:
The pci read config() function reads count objects of the specified
size into buff at the given offset from the configuration space of the
PCI device specified by handle.

You must successfully call pci attach() before calling any of the other
PCI functions.

�

1924 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci read config()

Returns:
PCI BAD REGISTER NUMBER

The offset is invalid.

PCI BUFFER TOO SMALL

The PCI BIOS server reads only 100 bytes at a time; size is too
large.

PCI DEVICE NOT FOUND

The handle is invalid.

PCI SUCCESS

Success.

-1 You haven’t called pci attach(), or the call to it failed.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pci attach(), pci attach device(), pci detach(), pci detach device(),
pci find class(), pci find device(), pci present(), pci read config8(),
pci read config16(), pci read config32(), pci rescan bus(),
pci write config(), pci write config8(), pci write config16(),
pci write config32()

May 31, 2004 Manifests 1925

pci read config8() 2004, QNX Software Systems Ltd.

Read a byte from the configuration space of a device

Synopsis:
#include <hw/pci.h>

int pci read config8(unsigned bus,
unsigned dev func,
unsigned offset,
unsigned count,
char* buff);

Arguments:
bus The bus number.

dev func The name of the device or function.

offset The register offset into the configuration space, in the
range [0...255].

count The number of bytes to read.

buff A pointer to a buffer where the requested bytes are
placed.

Library:
libc

Description:
The pci read config8() function reads the specified number of bytes
from the configuration space of the given device or function.

You must successfully call pci attach() before calling any of the other
PCI functions.

�

1926 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci read config8()

Returns:
PCI BAD REGISTER NUMBER

An invalid register offset was given.

PCI BUFFER TOO SMALL

The PCI BIOS server reads only 100 bytes at a time; count is
too large.

PCI SUCCESS

The device or function was found.

-1 You haven’t called pci attach(), or the call to it failed.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pci attach(), pci attach device(), pci detach(), pci detach device(),
pci find class(), pci find device(), pci present(), pci read config(),
pci read config16(), pci read config32(), pci rescan bus(),
pci write config(), pci write config8(), pci write config16(),
pci write config32()

May 31, 2004 Manifests 1927

pci read config16() 2004, QNX Software Systems Ltd.

Read 16-bit values from the configuration space of a device

Synopsis:
#include <hw/pci.h>

int pci read config16(unsigned bus,
unsigned dev func,
unsigned offset,
unsigned count,
char* buff);

Arguments:
bus The bus number.

dev func The name of the device or function.

offset The register offset into the configuration space. This
offset must be aligned to a 16-bit boundary (that is 0, 2,
4, . . . , 254 bytes).

count The number of 16-bit values to read.

buff A pointer to a buffer where the requested 16-bit values
are placed.

Library:
libc

Description:
The pci read config16() function reads the specified number of 16-bit
values from the configuration space of the given device or function.

You must successfully call pci attach() before calling any of the other
PCI functions.

�

1928 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci read config16()

Returns:
PCI BAD REGISTER NUMBER

An invalid offset register number was given.

PCI BUFFER TOO SMALL

The PCI BIOS server reads only 50 words at a time; count is
too large.

PCI SUCCESS

The device or function was found.

-1 You haven’t called pci attach(), or the call to it failed.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pci attach(), pci attach device(), pci detach(), pci detach device(),
pci find class(), pci find device(), pci present(), pci read config(),
pci read config8(), pci read config32(), pci rescan bus(),
pci write config(), pci write config8(), pci write config16(),
pci write config32()

May 31, 2004 Manifests 1929

pci read config32() 2004, QNX Software Systems Ltd.

Read 32-bit values from the configuration space of a device

Synopsis:
#include <hw/pci.h>

int pci read config32(unsigned bus,
unsigned dev func,
unsigned offset,
unsigned count,
char* buff);

Arguments:
bus The bus number.

dev func The name of the device or function.

offset The register offset into the configuration space. This
offset must be aligned to a 32-bit boundary (that is 0, 4,
8, . . . , 252 bytes).

count The number of 32-bit values to read.

buff A pointer to a buffer where the requested 32-bit values
are placed.

Library:
libc

Description:
The pci read config32() function reads the specified number of 32-bit
values from the configuration space of the given device or function.

You must successfully call pci attach() before calling any of the other
PCI functions.

�

1930 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci read config32()

Returns:
PCI BAD REGISTER NUMBER

An invalid register offset was given.

PCI SUCCESS

The device or function was found.

-1 You haven’t called pci attach(), or the call to it failed.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pci attach(), pci attach device(), pci detach(), pci detach device(),
pci find class(), pci find device(), pci present(), pci read config(),
pci read config8(), pci read config16(), pci rescan bus(),
pci write config(), pci write config8(), pci write config16(),
pci write config32()

May 31, 2004 Manifests 1931

pci rescan bus() 2004, QNX Software Systems Ltd.

Rescan the PCI bus for added or removed devices

Synopsis:
#include <hw/pci.h>

int pci rescan bus(void);

Library:
libc

Description:
The pci rescan bus() function asks the PCI server to rescan the PCI
bus(es) for devices that have been inserted or removed. This is used in
hot swap situations such as for CardBus cards. The PCI server
updates its internal configuration to reflect any changes.

You must successfully call pci attach() before calling any of the other
PCI functions.

�

Returns:
PCI SUCCESS

Success.

-1 The function failed.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

1932 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci rescan bus()

See also:
pci attach(), pci attach device(), pci detach(), pci detach device(),
pci find class(), pci find device(), pci present(), pci read config(),
pci read config8(), pci read config16(), pci read config32(),
pci write config(), pci write config8(), pci write config16(),
pci write config32()

May 31, 2004 Manifests 1933

pci write config() 2004, QNX Software Systems Ltd.

Write to the configuration space of a PCI device

Synopsis:
#include <hw/pci.h>

int pci write config(void* handle,
unsigned offset,
unsigned count,
size t size,
const void* buff);

Arguments:
handle The handle returned by pci attach device().

offset The offset into the configuration space where you want to
write the data.

count The number of objects that you want to write.

size The size of each object.

buff A pointer to the data that you want to write.

Library:
libc

Description:
The pci write config() function writes count objects of the specified
size from buff at the given offset to the configuration space of the PCI
device specified by handle.

You must successfully call pci attach() before calling any of the other
PCI functions.

�

1934 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci write config()

Returns:
PCI BAD REGISTER NUMBER

The offset specified is invalid.

PCI BUFFER TOO SMALL

The size argument is too large.

PCI SET FAILED

An error occurred writing to the configuration space of the
device.

PCI SUCCESS

Success.

PCI UNSUPPORTED FUNCT

This device doesn’t support writing to its configuration space.

-1 You haven’t called pci attach(), or the call to it failed.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pci attach(), pci attach device(), pci detach(), pci detach device(),
pci find class(), pci find device(), pci present(), pci read config(),
pci read config8(), pci read config16(), pci read config32(),

May 31, 2004 Manifests 1935

pci write config() 2004, QNX Software Systems Ltd.

pci rescan bus(), pci write config8(), pci write config16(),
pci write config32()

1936 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci write config8()
Write bytes to the configuration space of a PCI device

Synopsis:
#include <hw/pci.h>

int pci write config8(unsigned bus,
unsigned dev func,
unsigned offset,
unsigned count,
char* buff);

Arguments:
bus The bus number.

dev func The device or function ID. The device number is in bits
7 through 3, and the function number in bits 2 through 0.

offset The register offset into the configuration space, in the
range [0...255].

count The number of bytes to write.

buff A pointer to a buffer containing the data to be written
into the configuration space.

Library:
libc

Description:
The pci write config8() function writes individual bytes to the
configuration space of the specified device.

You must successfully call pci attach() before calling any of the other
PCI functions.

�

May 31, 2004 Manifests 1937

pci write config8() 2004, QNX Software Systems Ltd.

Returns:
PCI BAD REGISTER NUMBER

An invalid offset register number was given.

PCI BUFFER TOO SMALL

The size argument is greater than 100 bytes.

PCI SUCCESS

The device or function was found.

-1 You haven’t called pci attach(), or the call to it failed.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pci attach(), pci attach device(), pci detach(), pci detach device(),
pci find class(), pci find device(), pci present(), pci read config(),
pci read config8(), pci read config16(), pci read config32(),
pci rescan bus(), pci write config(), pci write config16(),
pci write config32()

1938 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci write config16()
Write 16-bit values to the configuration space of a device

Synopsis:
#include <hw/pci.h>

int pci write config16(unsigned bus,
unsigned dev func,
unsigned offset,
unsigned count,
char* buff);

Arguments:
bus The bus number.

dev func The device or function ID. The device number is in bits
7 through 3, and the function number in bits 2 through 0.

offset The offset into the configuration space. This must be
aligned to a 16-bit boundary (that is 0, 2, 4, . . . , 254
bytes).

count The number of 16-bit values to write.

buff A pointer to a buffer containing the data to be written
into the configuration space.

Library:
libc

Description:
The pci write config16() function writes individual 16-bit values to
the configuration space of the specified device.

You must successfully call pci attach() before calling any of the other
PCI functions.

�

May 31, 2004 Manifests 1939

pci write config16() 2004, QNX Software Systems Ltd.

Returns:
PCI BAD REGISTER NUMBER

An invalid register offset was given.

PCI BUFFER TOO SMALL

The size argument is greater than 50 words.

PCI SUCCESS

The device or function was found.

-1 You haven’t called pci attach(), or the call to it failed.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pci attach(), pci attach device(), pci detach(), pci detach device(),
pci find class(), pci find device(), pci present(), pci read config(),
pci read config8(), pci read config16(), pci read config32(),
pci rescan bus(), pci write config(), pci write config8(),
pci write config32()

1940 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pci write config32()
Write 32-bit values to the configuration space of a device

Synopsis:
#include <hw/pci.h>

int pci write config32(unsigned bus,
unsigned dev func,
unsigned offset,
unsigned count,
char* buff);

Arguments:
bus The bus number.

dev func The device or function ID. The device number is in bits
7 through 3, and the function number in bits 2 through 0.

offset The register offset into the configuration space. This
must be aligned to a 32-bit boundary (that is 0, 4, 8, . . . ,
252 bytes).

count The number of 32-bit values to write.

buff A pointer to a buffer containing the data to be written
into the configuration space.

Library:
libc

Description:
The pci write config32() function writes individual 32-bit values to
the configuration space of the specified device.

You must successfully call pci attach() before calling any of the other
PCI functions.

�

May 31, 2004 Manifests 1941

pci write config32() 2004, QNX Software Systems Ltd.

Returns:
PCI BAD REGISTER NUMBER

An invalid register offset was given.

PCI SUCCESS

The device or function was found.

-1 You haven’t called pci attach(), or the call to it failed.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pci attach(), pci attach device(), pci detach(), pci detach device(),
pci find class(), pci find device(), pci present(), pci read config(),
pci read config8(), pci read config16(), pci read config32(),
pci rescan bus(), pci write config(), pci write config8(),
pci write config16()

1942 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pclose()
Close a pipe

Synopsis:
#include <stdio.h>

int pclose(FILE* stream);

Arguments:
stream The stream pointer for the pipe that you want to close, that

you obtained by calling popen().

Library:
libc

Description:
The pclose() function closes the pipe associated with stream, and
waits for the subprocess created by popen() to terminate.

Returns:
The termination status of the command language interpreter, or -1 if
an error occurred (errno is set).

Errors:
EINTR The pclose() function was interrupted by a signal while

waiting for the child process to terminate.

ECHILD The pclose() function was unable to obtain the
termination status of the child process.

Examples:
See popen().

May 31, 2004 Manifests 1943

pclose() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1a

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
errno, popen(), pipe()

1944 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. perror()
Print an error message associated with errno

Synopsis:
#include <stdio.h>

void perror(const char *prefix);

Arguments:
prefix NULL, or a string that you want to print before the error

message.

Library:
libc

Description:
The perror() function prints the following to stderr:

� the given prefix, followed by “: ”

� the error message returned by strerror() for the current value of
errno

� a newline character.

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;

fp = fopen("data.fil", "r");
if(fp == NULL) {
perror("Unable to open file");
return EXIT FAILURE;

}
return EXIT SUCCESS;

}

May 31, 2004 Manifests 1945

perror() 2004, QNX Software Systems Ltd.

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fprintf(), stderr, strerror()

1946 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pipe()
Create a pipe

Synopsis:
#include <unistd.h>

int pipe(int fildes[2]);

Arguments:
fildes An array where the function can store the file descriptors for

the ends of the pipe.

Library:
libc

Description:
The pipe() function creates a pipe (an unnamed FIFO) and places a
file descriptor for the read end of the pipe in fildes[0], and a file
descriptor for the write end of the pipe in fildes[1]. Their integer
values are the two lowest available at the time of the pipe() function
call. The O NONBLOCK flag is cleared for both file descriptors. (You
can use fcntl() to set the O NONBLOCK flag.)

You can write data to file descriptor fildes[1] and read it from file
descriptor fildes[0]. If you read from file descriptor fildes[0], it returns
the data written to fildes[1] on a first-in-first-out (FIFO) basis.

The pipe buffer is allocated by the pipe resource manager.

You typically use this function to connect standard utilities acting as
filters, passing the write end of the pipe to the data-producing process
as its STDOUT FILENO, and the read end of the pipe to the
data-consuming process as its STDIN FILENO (either via the
traditional fork(), dup2(), or exec*, or the more efficient spawn*
calls).

If successful, pipe() marks the st ftime, st ctime, st atime and
st mtime fields of the pipe for updating.

May 31, 2004 Manifests 1947

pipe() 2004, QNX Software Systems Ltd.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EMFILE The calling process doesn’t have at least 2 unused file

descriptors available.

ENFILE The number of simultaneously open files in the system
would exceed the configured limit.

ENOSPC There’s insufficient space available to allocate the pipe
buffer.

ENOSYS There’s no pipe manager running.

EROFS The pipe pathname space is a read-only filesystem.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, fcntl(), nbaconnect(), open(), popen(), read(), write()

pipe in the Utilities Reference

1948 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. poll()
Input/output multiplexing

Synopsis:
#include <sys/poll.h>
int poll(struct pollfd fds*, nfds t nfds, int timeout)

Arguments:
fds The array of interest.

nfds Number of elements in the fds array.

timeout Timeout in milliseconds.

Library:
libc

Description:
The poll() function provides applications with a mechanism for
multiplexing input/output over a set of file descriptors.

The pollfd structure has the following components:

struct pollfd {
int fd;
short events;
short revents;

};

For each member of the array pointed to by fds, poll() examines the
given file descriptor for the event(s) specified in events. The number
of pollfd structures in the fds array is specified by nfds. The array’s
members are pollfd structures within which fd specifies an open file
descriptor, events and revents are bitmasks constructed by OR’ing a
combination of the following event flags:

POLLERR An error has occurred on the device. This flag is valid
only in the revents bitmask; it’s ignored in the events
member.

May 31, 2004 Manifests 1949

poll() 2004, QNX Software Systems Ltd.

POLLHUP The device has been disconnected. This event and
POLLOUT are mutually exclusive; a device can
never be writable if a hangup has occurred. However,
this event and POLLIN, POLLRDNORM,
POLLRDBAND, or POLLPRI are not mutually
exclusive. If the remote end of a socket is closed,
poll() indicates a POLLIN event rather than
POLLHUP. This flag is valid only in the revents
bitmask; it’s ignored in the events member.

POLLIN Data other than high-priority data may be read
without blocking. This is equivalent to
POLLRDNORM | POLLRDBAND.

POLLNVAL The specified fd value is invalid. This flag is only
valid in the revents member; it shall ignored in the
events member.

POLLOUT Normal data may be written without blocking.

POLLPRI High-priority data may be read without blocking.

POLLRDBAND

Priority data may be read without blocking.

POLLRDNORM

Normal data may be read without blocking.

POLLWRBAND

Priority data may be written.

POLLWRNORM

Equivalent to POLLOUT.

The significance and semantics of normal, priority, and high-priority
data are file- and device-specific.

If the value of fd is less than 0, events are ignored; and revents are set
to 0 in that entry on return from poll().

1950 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. poll()

In each pollfd structure, poll() clears the revents member, except that
where the application requested a report on a condition by setting one
of the bits of events listed above, poll() sets the corresponding bit in
revents if the requested condition is true. In addition, poll() sets the
POLLHUP, POLLERR, and POLLNVAL flag in revents if the condition
is true, even if the application didn’t set the corresponding bit in
events.

If none of the defined events occurs on any selected file descriptor,
poll() waits at least timeout milliseconds for an event to occur on any
of the selected file descriptors. If the value of timeout is 0, poll()
returns immediately. If the value of timeout is -1, poll() blocks until a
requested event occurs or until the call is interrupted.

The poll() function isn’t affected by the O NONBLOCK flag.

The poll() function reports regular files, terminal and pseudo-terminal
devices, FIFOs, and pipes.

Regular files always poll TRUE for reading and writing.

A file descriptor for a socket that’s listening for connections indicates
that it’s ready for reading, once connections are available. A file
descriptor for a socket that connects asynchronously indicates that it’s
ready for writing, once a connection has been established.

Returns:
> 0 Total number of file descriptors that have been selected.

0 The call timed out, and no file descriptor has been selected.

-1 Failure, and errno is set.

Errors:
EAGAIN The allocation of internal data structures failed but a

subsequent request may succeed.

EINTR A signal was caught during poll()

EFAULT The fds argument pointed to a nonexistent portion of the
calling process’s address space.

May 31, 2004 Manifests 1951

poll() 2004, QNX Software Systems Ltd.

Examples:
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/poll.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdio.h>
#include <pthread.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>

struct sockaddr in sad;

void *
client(void *arg)
{

int s;
const char *p = "Some data\n";

if ((s = socket(AF INET, SOCK STREAM, 0)) == -1) {
perror("socket");
return NULL;

}

if (connect(s, (struct sockaddr *)&sad, sizeof(sad)) == -1) {
perror("connect");
return NULL;

}

write(s, p, strlen(p));
close(s);

return NULL;
}

int
main(void)
{

struct pollfd fds;
int s = -1, s2 = -1, done accept = 0, oflags, ret;
char buf[100];

if ((s = socket(AF INET, SOCK STREAM, 0)) == -1) {
perror("socket");
return 1;

}

sad.sin family = AF INET;
sad.sin len = sizeof(sad);

1952 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. poll()

sad.sin addr.s addr = inet addr("127.0.0.1");
sad.sin port = htons(1234);

fds.fd = s;
fds.events = POLLRDNORM;

oflags = fcntl(s, F GETFL);
oflags |= O NONBLOCK;
fcntl(s, F SETFL, oflags);

if (bind(s, (struct sockaddr *)&sad, sizeof(sad)) == -1) {
perror("bind");
return 1;

}

listen(s, 5);

if ((ret = pthread create(NULL, NULL, client, NULL)) != EOK) {
fprintf(stderr, "pthread create: %s\n", strerror(ret));
return 1;

}

for (;;) {
if ((ret = poll(&fds, 1, -1)) == -1) {

perror("poll");
break;

}

else if (ret != 1 || (fds.revents & POLLRDNORM) == 0) {
break;

}

if (done accept) {
if ((ret = read(s2, buf, sizeof(buf))) <= 0) {

break;
}

printf("%s", buf);

}
else {

if ((s2 = accept(s, NULL, 0)) == -1) {
perror("accept");
break;

}

fds.fd = s2;
done accept = 1;

}
}

May 31, 2004 Manifests 1953

poll() 2004, QNX Software Systems Ltd.

close(s);
close(s2);

return 0;
}

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
Not all managers support POLLPRI, POLLPRI, POLLERR, and
POLLHUP.

See also:
read(), select(), write()

<sys/poll.h>

1954 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. popen()
Execute a command, creating a pipe to it

Synopsis:
#include <stdio.h>

FILE* popen(const char* command,
const char* mode);

Arguments:
command The command that you want to execute.

mode The I/O mode for the pipe, which must be "r" or "w";
see below.

Library:
libc

Description:
The popen() function executes the command specified by command
and creates a pipe between the calling process and the executed
command.

Depending on the mode argument, you can use the returned stream
pointer to read from or write to the pipe.

The executed command has the same environment as its parents. The
command is started as follows:

spawnlp (P NOWAIT, shell command, shell command,
"-c", command, (char*)NULL);

where shell command is the command specified by the SHELL
environment variable (if it exists), or the sh utility.

The mode argument to popen() is a string that specifies an I/O mode
for the pipe:

� If mode is "r", then when the child process is started:

May 31, 2004 Manifests 1955

popen() 2004, QNX Software Systems Ltd.

- Its file descriptor, STDOUT FILENO, is the writable end of the
pipe.

- The fileno(stream) in the calling process is the readable end of
the pipe, where stream is the stream pointer returned by
popen().

� If mode is "w", then when the child process is started:

- Its file descriptor, STDIN FILENO, is the readable end of the
pipe.

- The fileno(stream) in the calling process is the writable end of
the pipe, where stream is the stream pointer return by popen().

� If mode is any other value, the result is undefined.

Use pclose() to close a stream that you used popen() to open.�

Returns:
A non-NULL stream pointer on successful completion. If popen() is
unable to create either the pipe or the subprocess, it returns a NULL
stream pointer and sets errno.

Errors:
EINVAL The mode argument is invalid.

ENOSYS There’s no pipe manager running.

The popen() function may also set errno values as described by the
pipe() and spawnl() functions.

Examples:
/*
* upper: executes a given program, converting all input
* to upper case.
*/

#include <stdio.h>
#include <stdlib.h>

1956 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. popen()

#include <string.h>
#include <ctype.h>
#include <unistd.h>
#include <limits.h>

char buffer[POSIX ARG MAX];

int main(int argc, char** argv)
{

int i;
int c;
FILE* f;

for(i = 1; i < argc; i++) {
strcat(buffer, argv[i]);
strcat(buffer, " ");

}
if((f = popen(buffer, "w")) == NULL) {
perror("popen");
return EXIT FAILURE;

}
while((c = getchar()) != EOF) {
if(islower(c))

c = toupper(c);
putc(c, f);

}
pclose(f);
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1a

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

May 31, 2004 Manifests 1957

popen() 2004, QNX Software Systems Ltd.

See also:
errno, pclose(), pipe(), spawnlp()

1958 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. posix mem offset(),
posix mem offset64()

Get the offset of a mapped typed memory block

Synopsis:
#include <sys/mman.h>

int posix mem offset(const void * addr,
size t length,
off t * offset,
size t * contig len,
int * fd);

int posix mem offset64(const void * addr,
size t length,
off64 t * offset,
size t * contig len,
int * fd);

Library:
libc

Description:

The posix mem offset() and posix mem offset64() functions aren’t
currently supported.

�

The posix mem offset() and posix mem offset64() functions set the
variable pointed to by offset to the offset (or location), within a typed
memory object, of the memory block currently mapped at addr.

Returns:
-1 (errno is set).

Errors:
ENOSYS The posix mem offset() function isn’t supported by this

implementation.

May 31, 2004 Manifests 1959

posix mem offset(), posix mem offset64() 2004, QNX

Software Systems Ltd.

Classification:
posix mem offset() is POSIX 1003.1j (draft); posix mem offset64() is
for large-file support

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
mem offset(), mem offset64(), mmap()

1960 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. posix memalign()
Allocate aligned memory

Synopsis:
#include <stdlib.h>

int posix memalign(void ** memptr,
size t alignment,
size t size);

Arguments:
memptr A pointer to a location where posix memalign() can

store a pointer the memory.

alignment The alignment to use for the memory. This must be a
multiple of size(void *).

size The size, in bytes, of the block to allocate.

Library:
libc

Description:
The posix memalign() function allocates size bytes aligned on a
boundary specified by alignment. It returns a pointer to the allocated
memory in memptr.

The buffer allocated by posix memalign() is contiguous in virtual
address space, but not physical memory. Since some platforms don’t
allocate memory in 4K page sizes, you shouldn’t assume that the
memory allocated will be physically contiguous if you specify a size
of 4K or less.

You can obtain the physical address of the start of the buffer using
mem offset() with fd=NOFD.

May 31, 2004 Manifests 1961

posix memalign() 2004, QNX Software Systems Ltd.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EINVAL The value of alignment isn’t a multiple of size(

void *).

ENOMEM There’s insufficient memory available with the
requested alignment.

Classification:
POSIX 1003.1-2001

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, free(), malloc(), memalign()

1962 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pow(), powf()
Raise a number to a given power

Synopsis:
#include <math.h>

double pow(double x,
double y);

float powf(float x,
float y);

Arguments:
x The number you want to raise.

y The power you want to raise the number to.

Library:
libm

Description:
The pow() and powf() functions compute x raised to the power of y.

A domain error occurs if x = 0, and y ≤ 0, or if x is negative, and y
isn’t an integer. A range error may also occur.

Returns:
The value of xy.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

May 31, 2004 Manifests 1963

pow(), powf() 2004, QNX Software Systems Ltd.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main(void)
{

printf("%f\n", pow(1.5, 2.5));

return EXIT SUCCESS;
}

produces the output:

2.755676

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, exp(), log(), sqrt()

1964 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pread(), pread64()
Read from a file without moving the file pointer

Synopsis:
#include <unistd.h>

ssize t pread(int filedes,
void *buff,
size t nbytes,
off t offset);

ssize t pread64(int filedes,
void *buff,
size t nbytes,
off64 t offset);

Arguments:
filedes The descriptor of the file that you want to read from.

buff A pointer to a buffer where the function can store the data
that it reads.

nbytes The number of bytes that you want to read.

offset The desired position inside the file.

Library:
libc

Description:
The pread() function performs the same action as read(), except that it
reads from a given position in the file without changing the file
pointer.

The pread() function reads up to the maximum offset value that can
be represented in an off t for regular files. An attempt to perform a
pread() on a file that’s incapable of seeking results in an error.

The pread64() function is a 64-bit version of pread().

May 31, 2004 Manifests 1965

pread(), pread64() 2004, QNX Software Systems Ltd.

Returns:
The number of bytes actually read, or -1 if an error occurred (errno is
set).

Errors:
EAGAIN The O NONBLOCK flag is set for the file descriptor, and

the process would be delayed in the read operation.

EBADF The file descriptor, fildes, isn’t a valid file descriptor
open for reading.

EINTR The read operation was interrupted by a signal, and
either no data was transferred, or the resource manager
responsible for that file does not report partial transfers.

EIO A physical I/O error occurred (for example, a bad block
on a disk). The precise meaning is device-dependent.

ENOSYS The pread() function isn’t implemented for the
filesystem specified by filedes.

Classification:
pread() is standard Unix; pread64() is for large-file support

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

1966 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pread(), pread64()

See also:
close(), creat(), dup(), dup2(), errno, fcntl(), lseek(), open(), pipe(),
pwrite(), read(), readblock(), readv(), select(), write(), writeblock(),
writev()

May 31, 2004 Manifests 1967

printf() 2004, QNX Software Systems Ltd.

Write formatted output to stdout

Synopsis:
#include <stdio.h>

int printf(const char * format,
...);

Arguments:
format A string that controls the format of the output, as

described below. The formatting string determines what
additional arguments you need to provide.

Library:
libc

Description:
The printf() function writes output to the stdout stream, under control
of the argument format.

If the format string contains invalid multibyte characters, processing
stops, and the rest of the format string, including the % characters, is
printed. This can happen, for example, if you specify international
characters, accents, and diacritical marks using ISO 8859-1 instead of
UTF-8. If you call:

setlocale(LC CTYPE, "C-TRADITIONAL");

before calling printf(), the locale switches multibyte processing from
UTF-8 to 1-to-1, and printf() safely transfers the misformed multibyte
characters.

�

1968 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. printf()

Format Arguments

If there are leftover arguments after processing format, they’re
ignored.

The printf() family of functions allows for language-dependent radix
characters. The default character is “.”, but is controlled by
LC NUMERIC and setlocale().

Format control string

The format control string consists of:

multibyte characters

These are copied to the output stream exactly as they occur in
the format string. An ordinary character in the format string is
any character, other than a percent character (%), that isn’t part
of a conversion specifier.

conversion specifiers

These cause argument values to be written as they’re
encountered during the processing of the format string. A
conversion specifier is a sequence of characters in the format
string that begins with “%” and is followed by:

� zero or more format control flags that can modify the final
effect of the format directive

� an optional decimal integer, or an asterisk (*), that specifies
a minimum field width to be reserved for the formatted item

� an optional precision specification in the form of a period
(.), followed by an optional decimal integer or an asterisk
(*)

� an optional type length specification, one of: h, hh, j, l, ll,
L, t or z.

� a character that specifies the type of conversion to be
performed. See below.

May 31, 2004 Manifests 1969

printf() 2004, QNX Software Systems Ltd.

The valid format control flags are:Format
control flags

- Left-justify the formatted item within the field;
normally, items are right-justified.

+ Always start a signed, positive object with a plus
character (+); normally, only negative items begin with a
sign.

space Always start a signed, positive object with a space
character; if both + and a space are specified, + overrides
the space.

Use an alternate conversion form:

� For o (unsigned octal) conversions, increment the
precision, if necessary, so that the first digit is 0.

� For x or X (unsigned hexadecimal) conversions,
prepend a nonzero value with 0x or 0X.

� For e, E, f, g, or G (any floating-point) conversions,
always include a decimal-point character in the
result, even if no digits follow it; normally, a
decimal-point character appears in the result only if
there is a digit to follow it.

� In addition, for g or G conversions, don’t remove
trailing zeros from the result.

0 (zero) Use leading zeros to pad the field width for d, i, o, u, x,
X, e, E, f, g and G conversions. The “-” flag overrides
the this flag.

If you don’t specify a field width, or if the given value is less than theField width

number of characters in the converted value (subject to any precision
value), a field of sufficient width to contain the converted value is
used.

If the converted value has fewer characters than specified by the field
width, the value is padded on the left (or right, subject to the

1970 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. printf()

left-justification flag) with spaces or zero characters (0). If the field
width begins with a zero, the value is padded with zeros; otherwise,
the value is padded with spaces.

If the field width is * (or 0*), a value of type int from the argument
list is used (before a precision argument or a conversion argument) as
the minimum field width. A negative field width value is interpreted
as a left-justification flag, followed by a positive field width.

As with the field width specifier, a precision specifier of * causes aPrecision
specifier value of type int from the argument list to be used as the precision

specifier. If you give a precision specifier of *, but there’s no
precision value in the argument list, a precision of 0 is used.

The precision value affects the following conversions:

� For d, i, o, u, x and X (integer) conversions, the precision specifies
the minimum number of digits to appear.

� For e, E and f (fixed-precision, floating-point) conversions, the
precision specifies the number of digits to appear after the
decimal-point character.

� For g and G (variable-precision, floating-point) conversions, the
precision specifies the maximum number of significant digits to
appear.

� For s (string) conversions, the precision specifies the maximum
number of characters to appear.

A type length specifier affects the conversion as follows:Type length
specifier

� h causes a d, i, o, u, x or X (integer) format conversion to treat the
argument as a short or unsigned short argument.

Note that, although the argument may have been promoted to an
int as part of the function call, the value is converted to the
smaller type before it’s formatted.

� h causes an n (converted length assignment) operation to assign
the converted length to an object of type short.

May 31, 2004 Manifests 1971

printf() 2004, QNX Software Systems Ltd.

� hh is similar to h, but treats the argument as a signed char or an
unsigned char.

� j causes a d, i, o, u, x, X format conversion to process a
intmax t or uintmax t.

� j causes an n format conversion to process an intmax t.

� L causes an a, A, e, E, f, g, G (double) format conversion to
process a long double argument.

� l (“el”) causes a c format conversion to process a wint t

argument.

� l (“el”) causes an s format conversion to process a wchar t

argument.

� l (“el”) causes a d, i, o, u, x, or X (integer) format conversion to
process a long or unsigned long argument.

� l (“el”) causes an n (converted length assignment) operation to
assign the converted length to an object of type long.

� ll (double “el”) causes a d, i, o, u, x, or X (integer) format
conversion to assign the converted value to an object of type long
long or unsigned long long.

� ll (double “el”) causes an n (converted length assignment)
operation to assign the number of characters that have been read to
an object of type long long.

� t causes a d, i, o, u, x, X format conversion to process a
ptrdiff t or the corresponding unsigned type argument.

� t causes an n format conversion to process a ptrdiff t

argument.

� z causes a d, i, o, u, x, X format conversion to process a size t

argument.

� z causes a n format conversion to process a size t argument.

1972 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. printf()

The valid conversion type specifiers are:Conversion
type

specifiers
a, A Convert an argument of type double in the style

[-]0xh.hhhh p1d, where there’s one nonzero
hexadecimal digit before the decimal point. The number of
hexadecimal digits after the decimal point is equal to the
precision. If the precision is missing and FLT RADIX is a
power of 2, then the precision is sufficient for an exact
representation. If the precision is zero and you don’t specify
the # flag, no decimal point is shown.

The a conversion uses the letters abcdef and produces x
and p; the A conversion ABCDEF, X and P. The exponent
always has one digit, even if it’s 0, and no more digits than
necessary. The values for infinity or NaN are converted in
the style of an f or F.

c Convert an argument of type int into a value of type
unsigned char and write the corresponding ASCII
character code to the output stream.

An l (“el”) qualifier causes a wint t argument to be
converted as if by an ls conversion into a wchar t, the first
element being the wint t and the second being a null wide
character.

d, i Convert an argument of type int into a signed decimal
notation and write it to the output stream. The default
precision is 1, but if more digits are required, leading zeros
are added.

e, E Convert an argument of type double into a decimal notation
in the form [-]d.ddde[+|-]dd. The leading sign appears
(subject to the format control flags) only if the argument is
negative.

If the argument is nonzero, the digit before the decimal-point
character is nonzero. The precision is used as the number of
digits following the decimal-point character. If you don’t
specify the precision, a default precision of six is used. If the

May 31, 2004 Manifests 1973

printf() 2004, QNX Software Systems Ltd.

precision is 0, the decimal-point character is suppressed.
The value is rounded to the appropriate number of digits.

The exponent sign and the exponent (that indicates the
power of ten by which the decimal fraction is multiplied) are
always produced. The exponent is at least two digits long.

For E conversions, the exponent begins with the character E,
rather than e.

The arguments infinity or NaN are converted in the style of
the f or F conversion specifiers.

f, F Convert an argument of type double into a decimal notation
in the form [-]ddd.ddd with the number of digits after the
decimal point being equal to the precision specification. The
leading sign appears (subject to the format control flags)
only if the argument is negative.

The precision is used as the number of digits following the
decimal-point character. If you don’t specify the precision, a
default precision of six is used. If the precision is 0, the
decimal-point character is suppressed; otherwise, at least
one digit is produced before the decimal-point character.
The value is rounded to the appropriate number of digits.

An argument of type double that represents infinity or NaN
is converted to [-]inf or [-]nan. The F specifier produces
[-]INF or [-]NAN.

g, G Convert an argument of type double using either the e or f
(or E, for a G conversion) style of conversion, depending on
the value of the argument. In either case, the precision
specifies the number of significant digits that are contained
in the result. The e style conversion is used only if the
exponent from such a conversion would be less than -4 or
greater than the precision. Trailing zeros are removed from
the result, and a decimal-point character only appears if it is
followed by a digit.

Arguments representing infinity or NaN are converted in the
style of the f or F conversion specifiers.

1974 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. printf()

n Assign the number of characters that have been written to
the output stream to the integer pointed to by the argument.
No output is produced.

o Convert an argument of type unsigned into an unsigned
octal notation, and write it to the output stream. The default
precision is 1, but if more digits are required, leading zeros
are added.

p Convert an argument of type void * into a value of type
int, and format the value as for a hexadecimal (x)
conversion.

s Write the characters from the string specified by an argument
of type char *, up to, but not including the terminating
NUL character (’\0’), to the output stream. If you specify a
precision, no more than that many characters are written.

If you use an l (“el”) qualifier, the argument is interpreted as
a pointer to a wchar t array, and each wide character,
including the terminating NUL, is converted as if by a call to
wcrtomb(). The terminating NUL is written only if you don’t
specify the precision, or if you specify the precision and the
length of the character sequence is less than the precision.

u Convert an argument of type unsigned into an unsigned
decimal notation, and write it to the output stream. The
default precision is 1, but if more digits are required, leading
zeros are added.

x, X Convert an argument of type unsigned into an unsigned
hexadecimal notation, and write it to the output stream. The
default precision is 1, but if more digits are required, leading
zeros are added.

Hexadecimal notation uses the digits 0 through 9 and the
characters a through f or A through F for x or X conversions,
respectively, as the hexadecimal digits. Subject to the
alternate-form control flag, 0x or 0X is prepended to the
output.

May 31, 2004 Manifests 1975

printf() 2004, QNX Software Systems Ltd.

% Print a % character (The entire specification is %%).

Any other conversion type specifier character, including another
percent character (%), is written to the output stream with no special
interpretation.

The arguments must correspond with the conversion type specifiers,
left to right in the string; otherwise, indeterminate results will occur.

If the value corresponding to a floating-point specifier is infinity, or
not a number (NAN), then the output will be inf or -inf for infinity,
and nan or -nan for NANs.

For example, a specifier of the form %8.*f defines a field to be at
least 8 characters wide, and gets the next argument for the precision to
be used in the conversion.

Returns:
The number of characters written, excluding the terminating NULL, or
a negative number if an error occurred (errno is set).

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

char *weekday, *month;

weekday = "Saturday";
month = "April";
printf("%s, %s %d, %d\n", weekday, month, 10, 1999);
printf("f1 = %8.4f f2 = %10.2E x = %#08x i = %d\n",

23.45, 3141.5926, 0x1db, -1);
return EXIT SUCCESS;

}

produces the output:

Saturday, April 10, 1999
f1 = 23.4500 f2 = 3.14E+003 x = 0x0001db i = -1

1976 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. printf()

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fprintf(), fwprintf(), snprintf(), sprintf(), swprintf(), vfprintf(),
vfwprintf(), vprintf(), vsnprintf(), vsprintf(), vswprintf(), vwprintf(),
wprintf()

May 31, 2004 Manifests 1977

procmgr daemon() 2004, QNX Software Systems Ltd.

Run a process in the background

Synopsis:
#include <sys/procmgr.h>

int procmgr daemon(int status,
unsigned flags);

Arguments:
status The status that you want to return to the parent process.

flags The flags currently defined (in <sys/procmgr.h>) are:

� PROCMGR DAEMON NOCHDIR — unless this flag is
set, procmgr daemon() changes the current working
directory to the root “/”.

� PROCMGR DAEMON NOCLOSE — unless this flag is
set, procmgr daemon() closes all file descriptors other
than standard input, standard output and standard error.

� PROCMGR DAEMON NODEVNULL — unless this flag
is set, procmgr daemon() redirects standard input,
standard output and standard error to /dev/null.

� PROCMGR DAEMON KEEPUMASK — unless this flag
is set, procmgr daemon() sets the umask to 0 (zero).

Library:
libc

Description:
The function procmgr daemon() function lets programs detach
themselves from the controlling terminal and run in the background as
system daemons. This also puts the caller into session 1. The
argument status is returned to the parent process as if exit() were
called; the returned value is normally EXIT SUCCESS.

1978 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. procmgr daemon()

Returns:
A nonnegative integer, or -1 if an error occurs.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
daemon(), exit(), procmgr event notify(), procmgr event trigger(),
procmgr guardian(), procmgr session()

May 31, 2004 Manifests 1979

procmgr event notify() 2004, QNX Software Systems Ltd.

Ask to be notified of system-wide events

Synopsis:
#include <sys/procmgr.h>

int procmgr event notify
(unsigned flags,
const struct sigevent * event);

Arguments:
flags Flags currently defined in <sys/procmgr.h> are:

� PROCMGR EVENT DAEMON DEATH — notify the
caller when any process in session 1 dies. This is most
useful for watching for the death of daemon processes
that use procmgr daemon() to put themselves in session
1 as well as close and redirect file descriptors. As a
result of this closing and redirecting, the death of
daemons are difficult to detect otherwise.

Notification is via the given event, so no information is provided as to
which process died. Once you’ve received the event, you’ll need to do
something else to find out if processes you care about had died. You
can do this by walking through the list of all processes, looking for
specific process IDs or process names. If you don’t find one, then it
has died. The sample code below demonstrates how this can be done.

�

� PROCMGR EVENT SYNC — notify the caller of any
calls to sync() the filesystems.

Setting flags to 0 (zero) unarms the event.

event A pointer to a sigevent structure that specifies how you
want to notified.

Library:
libc

1980 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. procmgr event notify()

Description:
The procmgr event notify() function requests that the process
manager notify the caller of the system-wide events identified by the
given flags. A process may have only one notification request active at
a time.

Returns:
-1 on error; any other value indicates success.

Examples:
/*
* This demonstrates procmgr event notify() with the
* PROCMGR DAEMON DEATH flag. This flag allows you to
* be notified if any process in session 1 dies.
* Daemons are processes that do things that make
* their death hard to detect (they become daemons by calling
* procmgr daemon()). One of the things that happens is that
* daemons end up in session 1. Hence, the usefulness of the
* PROCMGR DAEMON DEATH flag.
*
* When you are notified, you’re not told who died.
* It’s up to you to know who should be running. Once notified,
* you could then walk through the list of which processes are
* still running and see if all the expected processes are still
* running. If you know the process id of the processes you
* are watching out for then this is easiest. If you don’t know
* the process id then your next option may be by process name.
* The code below does a lookup by process name.
*/

#include <devctl.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <libgen.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/neutrino.h>
#include <sys/procfs.h>
#include <sys/procmgr.h>

static int check if running(char *process);

#define DAEMON DIED CODE (PULSE CODE MINAVAIL)

May 31, 2004 Manifests 1981

procmgr event notify() 2004, QNX Software Systems Ltd.

struct dinfo s {
procfs debuginfo info;
char pathbuffer[PATH MAX];

};

int
main(int argc, char **argv)
{

char *daemon to watch;
int chid, coid, rcvid;
struct sigevent event;
struct pulse msg;

if (argc != 2) {
printf("use: %s process to watch for\n", argv[0]);
exit(EXIT FAILURE);

}

daemon to watch = argv[1]; /* the process to watch for */

chid = ChannelCreate(0);
coid = ConnectAttach(0, 0, chid, NTO SIDE CHANNEL, 0);
SIGEV PULSE INIT(&event, coid, SIGEV PULSE PRIO INHERIT,

DAEMON DIED CODE, 0);

/*
* Ask to be notified via a pulse whenever a
* daemon process dies
*/

if (procmgr event notify(PROCMGR EVENT DAEMON DEATH,
&event) == -1) {

fprintf(stderr, "procmgr event notify() failed");
exit(EXIT FAILURE);

}

while (1) {
rcvid = MsgReceive(chid, &msg, sizeof(msg), NULL);
if (rcvid != 0) {

/* not a pulse, could be unexpected message or error */
exit(EXIT FAILURE);

}

if (check if running(daemon to watch) == 0)
printf("%s is no longer running\n", daemon to watch);

}
return 0;

}

/*

1982 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. procmgr event notify()

* check if running - This will walk through all processes
* to see if this particular one is still running.
*/

static int
check if running(char *process)
{

DIR *dirp;
struct dirent *dire;
char buffer[20];
int fd, status;
pid t pid;
struct dinfo s dinfo;

if ((dirp = opendir("/proc")) == NULL) {
perror("Could not open ’/proc’");
return -1;

}
while (1) {

if ((dire = readdir(dirp)) == NULL)
break;

if (isdigit(dire->d name[0])) {
pid = strtoul(dire->d name, NULL, 0);

sprintf(buffer, "/proc/%d/as", pid);
if ((fd = open(buffer, O RDONLY)) != NULL) {

status = devctl(fd, DCMD PROC MAPDEBUG BASE,
&dinfo, sizeof(dinfo), NULL);

if (status == EOK) {
if (!strcmp(process, basename(dinfo.info.path)))
{

closedir (dirp);
return 1;

}
} /* else some errors are expected, e.g. procnto has

no MAPDEBUG info and there is a timing issue
with getting info on the process that died,
ignore errors */

close(fd);
}

}
}
closedir(dirp);
return 0;

}

May 31, 2004 Manifests 1983

procmgr event notify() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
procmgr daemon(), procmgr event trigger(), pulse, sigevent

1984 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. procmgr event trigger()
Trigger a system-wide event

Synopsis:
#include <sys/procmgr.h>

int procmgr event trigger(unsigned flags);

Arguments:
flags The type of event that you want to trigger (defined in

<sys/procmgr.h>):

� PROCMGR EVENT SYNC — notify filesystems to sync().

Library:
libc

Description:
The function procmgr event trigger() triggers a system-wide event.
The event is sent to all processes that requested (via
procmgr event notify()) to be notified of the event identified by flags.

Returns:
-1 on error; any other value indicates success.

Examples:
#include <sys/procmgr.h>

int main (void)
{

procmgr event trigger(PROCMGR EVENT SYNC);
}

May 31, 2004 Manifests 1985

procmgr event trigger() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
procmgr event notify(), sync()

1986 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. procmgr guardian()
Let a daemon process take over as a parent

Synopsis:
#include <sys/procmgr.h>

pid t procmgr guardian(pid t pid);

Arguments:
pid The ID of the child process that you want to become the

guardian of the calling process’s other children.

Library:
libc

Description:
The function procmgr guardian() allows a daemon process to declare
a child process to take over as parent to its children in the event of its
death:

A (parent)

B C (guardian)

C (parent)

B

A dies

Specifying a guardian for child processes.

Returns:
-1 on error; any other value on success.

May 31, 2004 Manifests 1987

procmgr guardian() 2004, QNX Software Systems Ltd.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <spawn.h>
#include <sys/procmgr.h>
#include <sys/wait.h>

pid t child = -1;
pid t guardian = -1;

/*
* Build a list of the currently running children
*/

void check children(void) {
if(child > 0) {

if(kill(child, 0) == -1) {
child = -1;

}
}
if(guardian > 0) {

if(kill(guardian, 0) == -1) {
guardian = -1;

}
}

}

void start needed children(void) {
if(guardian == -1) {

/* Make a child that will just sit around
and wait for parent to die */

while((guardian = fork()) == 0) {
pid t parent = getppid();

/* Wait for parent to die.... */
fprintf(stderr, "guardian %d waiting on parent %d\n",

getpid(), parent);

while(waitpid(parent, 0, 0) != parent);
/* Then loop around and take over */

}
if(guardian == -1) {

fprintf(stderr, "Unable to start guardian\n");
} else {

/* Declare the child a guardian */
procmgr guardian(guardian);

}
}

1988 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. procmgr guardian()

if(child == -1) {
static char *args[] = { "sleep", "1000000", 0 };

if((child = spawnp("sleep", 0, 0, 0, args, 0)) == -1) {
fprintf(stderr, "Couldn’t start child\n");
child = 0; /* don’t try again */

}
}

}

int main(int argc, char *argv[]) {
fprintf(stderr, "parent %d checking children\n", getpid());
do {

fprintf(stderr, "checking children\n");

/* Learn about the newly adopted children */
check children();

/* If anyone is missing, start them */
start needed children();

} while(wait(0)); /* Then wait for someone to die... */
return EXIT SUCCESS;

}

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
procmgr daemon(), procmgr event notify(), procmgr event trigger()

May 31, 2004 Manifests 1989

procmgr session() 2004, QNX Software Systems Ltd.

Provide process manager session support

Synopsis:
#include <sys/procmgr.h>

int procmgr session(uint32 t nd,
pid t sid,
int id,
unsigned event);

Arguments:
The interpretation of the arguments depends on the event.

nd A node descriptor.

sid A session ID.

id A file descriptor, process group, or signal, depending on the
event.

event The event; one of:

� PROCMGR SESSION TCSETSID

� PROCMGR SESSION SETSID

� PROCMGR SESSION SETPGRP

� PROCMGR SESSION SIGNAL PID

� PROCMGR SESSION SIGNAL PGRP

� PROCMGR SESSION SIGNAL LEADER

For more information, see below.

Library:
libc

1990 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. procmgr session()

Description:
The procmgr session() function provides session support to character
device terminal drivers in their resource managers, C library
functions, and session management applications.

The arguments that you provide need to match the event:

PROCMGR SESSION TCSETSID

Used by the tcsetsid() function to set the file descriptor, id, to be
the controlling terminal for the session headed by the session
leader, sid.

PROCMGR SESSION SETSID

Used by the setsid() function to create a new session with the
calling process becoming the session leader. Pass zero for both
sid and id arguments.

PROCMGR SESSION SETPGRP

Used by a character device resource manager to change the
process group upon the request of a client calling the tcsetpgrp()
function. Set the sid argument to the client’s current session and
the id argument to the new target process group for the client.

PROCMGR SESSION SIGNAL PID,
PROCMGR SESSION SIGNAL PGRP,
PROCMGR SESSION SIGNAL LEADER

Used by a character device resource manager to drop a signal of
the type specified as the id argument (generally a terminal/job
control signal) on the appropriate member of the session
specified by the sid argument.

Returns:
0 Success.

-1 Failure.

May 31, 2004 Manifests 1991

procmgr session() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
setsid(), tcsetpgrp(), tcsetsid()

1992 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. progname
The basename of the program being executed

Synopsis:
char * progname

Description:
This global variable holds the basename of the program being
executed.

This variable isn’t defined in any header file. If you want to refer to it,
you need to add your own extern statement.

�

Classification:
QNX Neutrino

See also:
cmdfd(), cmdname()

May 31, 2004 Manifests 1993

protoent 2004, QNX Software Systems Ltd.

Structure for information from the protocol database

Synopsis:
#include <netdb.h>

struct protoent {
char * p name;
char ** p aliases;
int p proto;

};

Description:
The protoent structure holds information from the network
protocols database, /etc/protocols.

The members of this structure are:

p name The name of the protocol.

p aliases A zero-terminated list of alternate names for the
protocol.

p proto The protocol number.

Classification:
Unix, POSIX 1003.1-2001

See also:
endprotoent(), getprotobyname(), getprotobynumber(), getprotoent(),
setprotoent()

/etc/protocols in the Utilities Reference

1994 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread abort()
Unconditionally terminate the target thread

Synopsis:
#include <pthread.h>

int pthread abort(pthread t thread);

Arguments:
thread The ID of the thread that you want to terminate, which you

can get when you call pthread create() or pthread self().

Library:
libc

Description:
The pthread abort() function terminates the target thread.
Termination takes effect immediately and isn’t a function of the
cancelability state of the target thread. No cancellation handlers or
thread-specific-data destructor functions are executed. Thread
abortion doesn’t release any application-visible process resources,
including, but not limited to, mutexes and file descriptors. (The
behavior of POSIX calls following a call to pthread abort() is
unspecified.)

The status of PTHREAD ABORTED is available to any thread joining
with the target thread. The constant PTHREAD ABORTED expands to
a constant expression, of type void *. Its value doesn’t match any
pointer to an object in memory, or the values NULL and
PTHREAD CANCELED.

The side effects of aborting a thread that’s suspended during a call of
a POSIX 1003.1 function are the same as the side effects that may be
seen in a single-threaded process when a call to a POSIX 1003.1
function is interrupted by a signal and the given function returns
EINTR. Any such side effects occur before the thread terminates.

May 31, 2004 Manifests 1995

pthread abort() 2004, QNX Software Systems Ltd.

Returns:
EOK Success.

ESRCH No thread with the given ID was found.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cancel(), pthread detach(), pthread exit(), ThreadDestroy()

1996 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread atfork()
Register fork handlers

Synopsis:
#include <process.h>

int pthread atfork(void (*prepare)(void),
void (*parent)(void),
void (*child)(void));

Arguments:
prepare NULL, or a pointer to the handler to call before the fork.

parent NULL, or a pointer to the handler to call after the fork in
the parent process.

child NULL, or a pointer to the handler to call after the fork in
the child process.

Library:
libc

Description:
The pthread atfork() function registers fork handler functions to be
called before and after a fork(), in the context of the thread that called
fork(). You can set one or more of the arguments to NULL to indicate
no handler.

You can register multiple prepare, parent, and child fork handlers, by
making additional calls to pthread atfork(). In this case, the parent
and child handlers are called in the order they were registered, and the
prepare handlers are called in the reverse order.

You can’t use the pthread atfork() function for useful purposes as the
C library doesn’t have the necessary handlers. It also implies that
Neutrino currently doesn’t support fork() in multi-threaded programs.

�

May 31, 2004 Manifests 1997

pthread atfork() 2004, QNX Software Systems Ltd.

Returns:
EOK Success.

ENOMEM Insufficient memory to record fork handlers.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
atexit(), fork()

1998 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr destroy()
Destroy a thread-attribute object

Synopsis:
#include <pthread.h>

int pthread attr destroy(pthread attr t * attr);

Arguments:
attr A pointer to the pthread attr t structure that you want to

destroy.

Library:
libc

Description:
The pthread attr destroy() function destroys the given thread-attribute
object.

The QNX implementation of this function doesn’t actually free the
memory used by the pthread attr t structure. To conform to the
POSIX standard, don’t reuse the attribute object unless you
reinitialize it by calling pthread attr init().

�

You can use a thread-attribute object to define the attributes of new
threads when you call pthread create().

Returns:
0 for success, or an error number.

Errors:
EOK Success.

May 31, 2004 Manifests 1999

pthread attr destroy() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread attr init(), pthread create()

2000 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr getdetachstate()
Get thread detach state attribute

Synopsis:
#include <pthread.h>

int pthread attr getdetachstate(
const pthread attr t* attr,
int* detachstate);

Arguments:
attr A pointer to the pthread attr t structure that

defines the attributes to use when creating new
threads. For more information, see pthread attr init().

detachstate A pointer to a location where the function can store
the thread detach state. For more information, see
pthread attr setdetachstate().

Library:
libc

Description:
The pthread attr getdetachstate() function gets the thread detach state
attribute from the thread attribute object attr and returns it in
detachstate.

Returns:
EOK Success.

Classification:
POSIX 1003.1 (Threads)

May 31, 2004 Manifests 2001

pthread attr getdetachstate() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread attr setdetachstate(), pthread attr init(), pthread create().

2002 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr getguardsize()
Get the size of the thread’s guard area

Synopsis:
#include <pthread.h>

int pthread attr getguardsize(
const pthread attr t* attr,
size t* guardsize);

Arguments:
attr A pointer to the pthread attr t structure that

defines the attributes to use when creating new threads.
For more information, see pthread attr init().

guardsize A pointer to a location where the function can store the
size of the thread’s guard area. For more information,
see pthread attr setguardsize().

Library:
libc

Description:
The pthread attr getguardsize() function gets the value of the thread
guardsize attribute from the attribute structure attr.

Returns:
EOK Success.

EINVAL Invalid pointer, attr, to a pthread attr t structure.

Classification:
Standard Unix

May 31, 2004 Manifests 2003

pthread attr getguardsize() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread attr setguardsize()

2004 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr getinheritsched()
Get a thread’s inherit-scheduling attribute

Synopsis:
#include <pthread.h>

int pthread attr getinheritsched(
const pthread attr t* attr,
int* inheritsched);

Arguments:
attr A pointer to the pthread attr t structure that

defines the attributes to use when creating new
threads. For more information, see
pthread attr init().

inheritsched A pointer to a location where the function can store
the value of the inherit-scheduling attribute. For
more information, see pthread attr setinheritsched().

Library:
libc

Description:
The pthread attr getinheritsched() function gets the thread
inherit-scheduling attribute from the attribute object attr and returns it
in inheritsched.

The inherit-scheduling attribute determines whether a thread inherits
the scheduling policy of its parent.

Returns:
EOK Success.

May 31, 2004 Manifests 2005

pthread attr getinheritsched() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread attr setinheritsched(), pthread attr init(), pthread create()

2006 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr getschedparam()
Get thread scheduling parameters attribute

Synopsis:
#include <pthread.h>
#include <sched.h>

int pthread attr getschedparam(
const pthread attr t * attr,
struct sched param * param);

Arguments:
attr A pointer to the pthread attr t structure that defines

the attributes to use when creating new threads. For more
information, see pthread attr init().

param A pointer to a sched param structure where the function
can store the current scheduling parameters.

Library:
libc

Description:
The pthread attr getschedparam() function gets the thread scheduling
parameters attribute from the thread attribute object attr and returns it
in param.

Returns:
EOK Success.

Classification:
POSIX 1003.1 (Threads)

May 31, 2004 Manifests 2007

pthread attr getschedparam() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread attr setschedparam(), pthread attr init(), pthread create(),
sched param

2008 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr getschedpolicy()
Get thread scheduling policy attribute

Synopsis:
#include <pthread.h>
#include <sched.h>

int pthread attr getschedpolicy(
const pthread attr t* attr,
int* policy);

Arguments:
attr A pointer to the pthread attr t structure that defines

the attributes to use when creating new threads. For more
information, see pthread attr init().

policy The current thread scheduling policy. For more
information, see pthread attr setschedpolicy().

Library:
libc

Description:
The pthread attr getschedpolicy() function gets the thread scheduling
policy attribute from the thread attribute object attr and returns it in
policy.

Returns:
EOK Success.

Classification:
POSIX 1003.1 (Threads)

May 31, 2004 Manifests 2009

pthread attr getschedpolicy() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread attr setschedpolicy(), pthread attr init(), pthread create().

2010 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr getscope()
Get thread contention scope attribute

Synopsis:
#include <pthread.h>

int pthread attr getscope(
const pthread attr t *attr,
int *scope);

Arguments:
attr A pointer to the pthread attr t structure that defines

the attributes to use when creating new threads. For more
information, see pthread attr init().

scope A pointer to a location where the function can store the
current contention scope. For more information, see
pthread attr setscope().

Library:
libc

Description:
The pthread attr getscope() function gets the thread contention scope
attribute from the thread attribute object attr and returns it in scope.

Returns:
EOK Success.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 2011

pthread attr getscope() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread attr setscope(), pthread attr init(), pthread create().

2012 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr getstackaddr()
Get thread stack address attribute

Synopsis:
#include <pthread.h>

int pthread attr getstackaddr(
const pthread attr t* attr,
void** stackaddr);

Arguments:
attr A pointer to the pthread attr t structure that

defines the attributes to use when creating new threads.
For more information, see pthread attr init().

stackaddr A pointer to a location where the function can store the
address of the thread stack.

Library:
libc

Description:
The pthread attr getstackaddr() function gets the thread stack address
attribute from the thread attribute object attr and returns it in
stackaddr.

For more information about the thread stack, see
pthread attr setstackaddr()

Returns:
EOK Success.

Classification:
POSIX 1003.1 (Threads)

May 31, 2004 Manifests 2013

pthread attr getstackaddr() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread attr setstackaddr(), pthread attr init(), pthread create().

2014 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr getstacklazy()
Get the thread lazy-stack attribute

Synopsis:
#include <pthread.h>

int pthread attr getstacklazy(
const pthread attr t * attr,
int *lazystack);

Arguments:
attr A pointer to the pthread attr t structure that

defines the attributes to use when creating new threads.
For more information, see pthread attr init().

lazystack A pointer to a location where the function can store the
current lazy-stack attribute. For more information, see
pthread attr setstacklazy().

Library:
libc

Description:
The pthread attr getstacklazy() function gets the thread lazy-stack
attribute in the attribute object attr and stores it in the location pointed
to by lazystack.

Returns:
EOK Success.

Classification:
QNX Neutrino

May 31, 2004 Manifests 2015

pthread attr getstacklazy() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread attr setinheritsched(), pthread attr setstacklazy()

2016 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr getstacksize()
Get the thread stack-size attribute

Synopsis:
#include <pthread.h>

int pthread attr getstacksize(
const pthread attr t* attr,
size t* stacksize);

Arguments:
attr A pointer to the pthread attr t structure that

defines the attributes to use when creating new threads.
For more information, see pthread attr init().

stacksize A pointer to a location where the function can store the
stack size to be used for new threads.

Library:
libc

Description:
The pthread attr getstacksize() function gets the thread stack size
attribute from the thread attribute object attr and returns it in
stacksize.

You can set the stack size by calling pthread attr setstacksize().

Returns:
EOK Success.

Classification:
POSIX 1003.1 (Threads)

May 31, 2004 Manifests 2017

pthread attr getstacksize() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread attr setstacksize(), pthread attr init(), pthread create().

2018 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr init()
Initialize a thread-attribute object

Synopsis:
#include <pthread.h>

int pthread attr init(pthread attr t *attr);

Arguments:
attr A pointer to the pthread attr t structure that you want to

initialize. For more information, see below.

Library:
libc

Description:
The pthread attr init() function initializes the thread attributes in the
thread attribute object attr to their default values:

Attribute Default Value

detachstate PTHREAD CREATE JOINABLE

schedpolicy PTHREAD INHERIT SCHED

schedparam Inherited from parent thread

contentionscope PTHREAD SCOPE SYSTEM

stacksize 4K bytes

stackaddr NULL

After initialization, you can use the pthread attr * family of functions
to get and set the attributes:

May 31, 2004 Manifests 2019

pthread attr init() 2004, QNX Software Systems Ltd.

Get Set

pthread attr getdetachstate() pthread attr setdetachstate()

pthread attr getguardsize() pthread attr setguardsize()

pthread attr getinheritsched() pthread attr setinheritsched()

pthread attr getschedparam() pthread attr setschedparam()

pthread attr getschedpolicy() pthread attr setschedpolicy()

pthread attr getscope() pthread attr setscope()

pthread attr getstackaddr() pthread attr setstackaddr()

pthread attr getstacklazy() pthread attr setstacklazy()

pthread attr getstacksize() pthread attr setstacksize()

You can also set some non-POSIX attributes; for more information,
see “QNX extensions,” in the documentation for pthread create().

You can then pass the attribute object to pthread create() to create a
thread with the required attributes. You can use the same attribute
object in multiple calls to pthread create().

The effect of initializing an already-initialized thread-attribute object
is undefined.

Returns:
EOK Success.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

continued. . .

2020 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr init()

Safety

Signal handler Yes

Thread Yes

See also:
pthread attr destroy(), pthread create()

May 31, 2004 Manifests 2021

pthread attr setdetachstate() 2004, QNX Software Systems Ltd.

Set thread detach state attribute

Synopsis:
#include <pthread.h>

int pthread attr setdetachstate(
pthread attr t* attr,
int detachstate);

Arguments:
attr A pointer to the pthread attr t structure that

defines the attributes to use when creating new
threads. For more information, see pthread attr init().

detachstate The new value for the thread detach state:

� PTHREAD CREATE JOINABLE — create the
thread in a joinable state.

� PTHREAD CREATE DETACHED — create the
thread in a detached state.

Library:
libc

Description:
The pthread attr setdetachstate() function sets the thread detach state
attribute in the thread attribute object attr to detachstate.

The default value for the thread detach state is
PTHREAD CREATE JOINABLE.

Returns:
EOK Success.

EINVAL Invalid thread detach state value.

2022 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr setdetachstate()

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread attr getdetachstate(), pthread attr init(), pthread create(),
pthread detach(), pthread join().

May 31, 2004 Manifests 2023

pthread attr setguardsize() 2004, QNX Software Systems Ltd.

Set the size of the thread’s guard area

Synopsis:
#include <pthread.h>

int pthread attr setguardsize(
pthread attr t* attr,
size t guardsize);

Arguments:
attr A pointer to the pthread attr t structure that

defines the attributes to use when creating new threads.
For more information, see pthread attr init().

guardsize The new value for the size of the thread’s guard area.

Library:
libc

Description:
The pthread attr setguardsize() function sets the size of the thread’s
guard area in the attribute structure attr to guardsize.

If guardsize is 0, threads created with attr have no guard area;
otherwise, a guard area of at least guardsize bytes is provided. You
can get the default guardsize value by specifying SC PAGESIZE in a
call to sysconf().

The guardsize attribute controls the size of the guard area for the
thread’s stack. This guard area helps protect against stack overflows;
guardsize bytes of extra memory is allocated at the overflow end of
the stack. If a thread overflows into this buffer, it receives a SIGSEGV
signal.

The guardsize attribute is provided because:

� Stack overflow protection can waste system resources. An
application that creates many threads can save system resources by

2024 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr setguardsize()

turning off guard areas if it trusts its threads not to overflow the
stack.

� When threads allocate large objects on the stack, a large guardsize
is required to detect stack overflows.

Returns:
EOK Success.

EINVAL Invalid pointer, attr, to a pthread attr t structure, or
guardsize is invalid.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
If you provide a stack (using attr’s stackaddr attribute; see
pthread attr setstackaddr()), the guardsize is ignored, and there’s no
stack overflow protection for that thread.

The guardsize argument is completely ignored when using a physical
mode memory manager.

May 31, 2004 Manifests 2025

pthread attr setguardsize() 2004, QNX Software Systems Ltd.

See also:
pthread attr getguardsize(), pthread attr init(),
pthread attr setstackaddr(). sysconf()

2026 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr setinheritsched()
Set a thread’s inherit-scheduling attribute

Synopsis:
#include <pthread.h>

int pthread attr setinheritsched(
pthread attr t * attr,
int inheritsched);

Arguments:
attr A pointer to the pthread attr t structure that

defines the attributes to use when creating new
threads. For more information, see
pthread attr init().

inheritsched The new value for the thread’s inherit-scheduling
attribute:

� PTHREAD INHERIT SCHED — the thread
inherits the scheduling policy of the parent
thread.

� PTHREAD EXPLICIT SCHED — use the
scheduling policy specified in attr for the thread.

Library:
libc

Description:
The pthread attr setinheritsched() function sets the thread inherit
scheduling attribute in the attribute object attr to inheritsched.

The default value of the thread inherit scheduling attribute is
PTHREAD INHERIT SCHED.

May 31, 2004 Manifests 2027

pthread attr setinheritsched() 2004, QNX Software Systems Ltd.

Returns:
EOK Success.

EINVAL Invalid thread attribute object attr.

ENOTSUP Invalid thread inherit scheduling attribute inheritsched.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread attr getinheritsched(), pthread attr init(), pthread create().

2028 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr setschedparam()
Set a thread’s scheduling parameters attribute

Synopsis:
#include <pthread.h>
#include <sched.h>

int pthread attr setschedparam(
pthread attr t * attr,
const struct sched param * param);

Arguments:
attr A pointer to the pthread attr t structure that defines

the attributes to use when creating new threads. For more
information, see pthread attr init().

param A pointer to a sched param structure that defines the
thread’s scheduling parameters.

Library:
libc

Description:
The pthread attr setschedparam() function sets the thread scheduling
parameters attribute in the thread attribute object attr to param.

The thread scheduling parameters are used only if you’ve set the
thread inherit scheduling attribute to PTHREAD EXPLICIT SCHED by
calling pthread attr setinheritsched(). By default, a thread inherits its
parent’s priority.

Returns:
EOK Success.

EINVAL Invalid thread attribute object attr.

ENOTSUP Invalid thread scheduling parameters attribute param.

May 31, 2004 Manifests 2029

pthread attr setschedparam() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread attr getschedparam(), pthread attr setinheritsched(),
pthread attr init(), pthread create(), sched param

2030 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr setschedpolicy()
Set the thread scheduling policy attribute

Synopsis:
#include <pthread.h>
#include <sched.h>

int pthread attr setschedpolicy(
pthread attr t* attr,
int policy);

Arguments:
attr A pointer to the pthread attr t structure that defines

the attributes to use when creating new threads. For more
information, see pthread attr init().

policy The new value for the scheduling policy:

� SCHED FIFO — first-in first-out scheduling.

� SCHED RR — round-robin scheduling.

� SCHED OTHER — currently the same as SCHED RR.

� SCHED NOCHANGE — don’t change the policy.

� SCHED SPORADIC — sporadic scheduling.

Library:
libc

Description:
The pthread attr setschedpolicy() function sets the thread scheduling
policy attribute in the thread attribute object attr to policy.

The policy attribute is used only if you’ve set the thread
inherit-scheduling attribute to PTHREAD EXPLICIT SCHED by
calling pthread attr setinheritsched().

For descriptions of the scheduling policies, see “Scheduling
algorithms” in the chapter on the Neutrino microkernel in the System
Architecture guide.

May 31, 2004 Manifests 2031

pthread attr setschedpolicy() 2004, QNX Software Systems Ltd.

Returns:
EOK Success.

EINVAL Invalid thread attribute object attr.

ENOTSUP Invalid thread scheduling policy policy.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread attr getschedpolicy(), pthread attr init(), pthread create().

2032 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr setscope()
Set thread contention scope attribute

Synopsis:
#include <pthread.h>

int pthread attr setscope(pthread attr t* attr,
int scope);

Arguments:
attr A pointer to the pthread attr t structure that defines

the attributes to use when creating new threads. For more
information, see pthread attr init().

scope The new value for the contention scope attribute:

� PTHREAD SCOPE SYSTEM — schedule all threads
together.

Library:
libc

Description:
The pthread attr setscope() sets the thread contention scope attribute
in the thread attribute object attr to scope.

Returns:
EOK Success.

EINVAL Invalid thread attribute object attr.

ENOTSUP Invalid thread contention scope attribute scope.

Classification:
POSIX 1003.1 (Threads)

May 31, 2004 Manifests 2033

pthread attr setscope() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread attr getscope(), pthread attr init(), pthread create().

2034 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr setstackaddr()
Set the thread stack address attribute

Synopsis:
#include <pthread.h>

int pthread attr setstackaddr(pthread attr t * attr,
void * stackaddr);

Arguments:
attr A pointer to the pthread attr t structure that

defines the attributes to use when creating new threads.
For more information, see pthread attr init().

stackaddr A pointer to the block of memory that you want a new
thread to use as its stack.

Library:
libc

Description:
The pthread attr setstackaddr() function sets the thread stack address
attribute in the attribute object attr to stackaddr.

The default value for the thread stack address attribute is NULL. A
thread created with a NULL stack address attribute will have a stack
dynamically allocated by the system of minimum size
PTHREAD STACK MIN. If the system allocates a stack, it reclaims the
space when the thread terminates. If you allocate a stack, you must
free it.

Returns:
EOK Success.

May 31, 2004 Manifests 2035

pthread attr setstackaddr() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The QNX interpretation of PTHREAD STACK MIN is enough memory
to run a thread that does nothing:

void nothingthread(void)
{

return;
}

See also:
pthread attr getstackaddr(), pthread attr init(), pthread create().

2036 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr setstacklazy()
Set the thread lazy-stack attribute

Synopsis:
#include <pthread.h>

int pthread attr setstacklazy(
pthread attr t * attr,
int lazystack);

Arguments:
attr A pointer to the pthread attr t structure that

defines the attributes to use when creating new threads.
For more information, see pthread attr init().

lazystack One of:

� PTHREAD STACK LAZY — allocate physical
memory for the thread stack on demand (the default).

� PTHREAD STACK NOTLAZY — allocate physical
memory for the whole stack up front. Use this value
to ensure that your server processes don’t die later on
because they’re unable to allocate stack memory. We
recommend that you set the stack size as well,
because the default stack size is probably much
larger than you really need.

Library:
libc

Description:
The pthread attr setstacklazy() function sets the thread stack attribute
in the attribute object attr to lazystack.

May 31, 2004 Manifests 2037

pthread attr setstacklazy() 2004, QNX Software Systems Ltd.

Returns:
EOK Success.

EINVAL The thread-attribute object that attr points to is invalid.

ENOTSUP The value of lazystack is invalid.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread attr getstacklazy(), pthread attr setinheritsched()

2038 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread attr setstacksize()
Set the thread stack-size attribute

Synopsis:
#include <pthread.h>

int pthread attr setstacksize(pthread attr t * attr,
size t stacksize);

Arguments:
attr A pointer to the pthread attr t structure that

defines the attributes to use when creating new threads.
For more information, see pthread attr init().

stacksize The size of the stack you want to use in new threads.
The minimum value of the thread stack-size attribute is
PTHREAD STACK MIN.

Library:
libc

Description:
The pthread attr setstacksize() function sets the thread stack size
attribute in the thread attribute object attr to stacksize.

Returns:
EOK Success.

EINVAL The value of stacksize is less than
PTHREAD STACK MIN or greater than the system limit.

Classification:
POSIX 1003.1 (Threads)

May 31, 2004 Manifests 2039

pthread attr setstacksize() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The QNX interpretation of PTHREAD STACK MIN is enough memory
to run a thread that does nothing:

void nothingthread(void)
{

return;
}

See also:
pthread attr getstacksize(), pthread attr init(), pthread create().

2040 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread barrier destroy()
Destroy a barrier object

Synopsis:
#include <pthread.h>

int pthread barrier destroy(pthread barrier t * barrier);

Arguments:
barrier A pointer to the pthread barrier t object that you

want to destroy.

Library:
libc

Description:
The pthread barrier destroy() function destroys the barrier referenced
by barrier and releases any resources used by the barrier. Subsequent
use of the barrier is undefined until you reinitialize the barrier by
calling pthread barrier init().

Returns:
EBUSY The barrier is in use.

EINVAL Invalid barrier.

EOK Success.

Classification:
POSIX 1003.1j (draft)

Safety

Cancellation point No

Interrupt handler No

continued. . .

May 31, 2004 Manifests 2041

pthread barrier destroy() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

See also:
pthread barrier init(), pthread barrier wait()

2042 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread barrier init()
Initialize a barrier object

Synopsis:
#include <pthread.h>

int pthread barrier init(
pthread barrier t * barrier,
const pthread barrierattr t * attr
unsigned int count);

Arguments:
barrier A pointer to the pthread barrier t object that you

want to initialize.

attr NULL, or a pointer to a pthread barrierattr t

structure that specifies the attributes that you want to use
for the barrier.

count The number of threads that must call
pthread barrier wait() before any of them successfully
returns from the call. This value must be greater than
zero.

Library:
libc

Description:
The pthread barrier init() function allocates any resources required
to use the barrier referenced by barrier and initializes the barrier with
attributes referenced by attr. If attr is NULL, the default barrier
attributes are used. The effect is the same as passing the address of a
default barrier attributes object. Once it’s initialized, you can use the
barrier any number of times without reinitializing it.

If pthread barrier init() fails, the barrier isn’t initialized.

In cases where the default barrier attributes are appropriate, you can
use PTHREAD BARRIER INITIALIZER() macro to initialize barriers

May 31, 2004 Manifests 2043

pthread barrier init() 2004, QNX Software Systems Ltd.

that are statically allocated. The effect is equivalent to dynamic
initialization by a call to pthread barrier init() with parameter attr
specified as NULL, except that no error checks are performed.

Returns:
EAGAIN The system lacks the necessary resources to initialize

another barrier.

EBUSY Attempt to reinitialize a barrier while it’s in use.

EFAULT A fault occurred when the kernel tried to access barrier
or attr.

EINVAL Invalid value specified by attr.

EOK Success.

Classification:
POSIX 1003.1j (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread barrierattr init(), pthread barrier destroy(),
pthread barrier wait()

2044 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread barrier wait()
Synchronize participating threads at the barrier

Synopsis:
#include <sync.h>

int pthread barrier wait(pthread barrier t * barrier);

Arguments:
barrier A pointer to the pthread barrier t object that you

want to use to synchronize the threads. You must
initialize the barrier by calling pthread barrier init(),
before calling pthread barrier wait().

Library:
libc

Description:
The pthread barrier wait() function synchronizes participating
threads at the barrier referenced by barrier. The calling thread blocks
— that is, doesn’t return from pthread barrier wait() — until the
required number of threads have called pthread barrier wait(),
specifying the barrier.

When the required number of threads have called
pthread barrier wait() specifying the barrier, the constant
BARRIER SERIAL THREAD is returned to one unspecified thread,
and zero is returned to each of the remaining threads. At this point,
the barrier is reset to the state it occupied as a result of the most recent
pthread barrier init() function that referenced it.

The constant BARRIER SERIAL THREAD is defined in
<pthread.h>, and its value is distinct from any other value that
pthread barrier wait() returns.

If a signal is delivered to a thread blocked on a barrier, on return from
the signal handler, the thread resumes waiting at the barrier as if it
hadn’t been interrupted.

May 31, 2004 Manifests 2045

pthread barrier wait() 2004, QNX Software Systems Ltd.

Returns:
BARRIER SERIAL THREAD for a single (arbitrary) thread
synchronized at the barrier and zero for each of the other threads;
otherwise, an error number is returned:

EINVAL The barrier argument isn’t initialized.

Classification:
POSIX 1003.1j (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread barrier destroy(), pthread barrier init()

2046 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread barrierattr destroy()
Destroy a barrier-attributes object

Synopsis:
#include <pthread.h>

int pthread barrierattr destroy(
pthread barrierattr t * attr);

Arguments:
attr A pointer to the pthread barrierattr t object that you

want to destroy.

Library:
libc

Description:
The pthread barrierattr destroy() function destroys the
barrier-attributes object attr. Subsequent use of the object is undefined
until you reinitialize the object by calling pthread barrierattr init().

Once you’ve used a barrier-attributes object to initialize one or more
barriers, any changes to the attributes object (including destroying it)
don’t affect any previously initialized barriers.

Returns:
EOK Success.

EINVAL Invalid barrier attribute object attr.

Classification:
POSIX 1003.1j (draft)

May 31, 2004 Manifests 2047

pthread barrierattr destroy() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread barrier destroy(), pthread barrierattr getpshared(),
pthread barrierattr init(), pthread barrierattr setpshared()

2048 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread barrierattr getpshared()
Get the value of a barrier’s process-shared attribute

Synopsis:
#include <pthread.h>

int pthread barrierattr getpshared(
const pthread barrierattr t * attr
int * pshared);

Arguments:
attr A pointer to the pthread barrierattr t object

whose attribute you want to query. You must have
initialized this object by calling pthread barrierattr init()
before calling pthread barrierattr getpshared().

pshared A pointer to a location where the function can store the
value of the process-shared attribute. For information
about the possible values, see
pthread barrierattr setpshared().

Library:
libc

Description:
The pthread barrierattr getpshared() function gets the value of the
process-shared attribute from the attributes object referenced by attr
and stores the value in the object referenced by pshared.

Returns:
EOK Success.

EINVAL Invalid barrier attribute object attr.

May 31, 2004 Manifests 2049

pthread barrierattr getpshared() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1j (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread barrier init(), pthread barrierattr destroy(),
pthread barrierattr init(), pthread barrierattr setpshared()

2050 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread barrierattr init()
Initialize a barrier attributes object

Synopsis:
#include <pthread.h>

int pthread barrierattr init(
pthread barrierattr t * attr);

Arguments:
attr A pointer to the pthread barrierattr t object that you

want to initialize.

Library:
libc

Description:
The pthread barrierattr init() function initializes the barrier attributes
object attr with the default value for all of the attributes.

Returns:
EOK Success.

ENOMEM Insufficient memory to initialize barrier attribute
object attr.

Classification:
POSIX 1003.1j (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 2051

pthread barrierattr init() 2004, QNX Software Systems Ltd.

See also:
pthread barrier init(), pthread barrierattr destroy(),
pthread barrierattr getpshared(), pthread barrierattr setpshared()

2052 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread barrierattr setpshared()
Set the value of a barrier’s process-shared attribute

Synopsis:
#include <sync.h>

int pthread barrierattr setpshared(
pthread barrierattr t * attr
int pshared);

Arguments:
attr A pointer to the pthread barrierattr t object

whose attribute you want to set. You must have
initialized this object by calling pthread barrierattr init()
before calling pthread barrierattr setpshared().

pshared The new value of the process-shared attribute; one of:

� PTHREAD PROCESS SHARED — allow a barrier to
be operated upon by any thread that has access to the
memory where the barrier is allocated.

� PTHREAD PROCESS PRIVATE (default behavior) —
allow a barrier to be operated on only by threads
created within the same process as the thread that
initialized the barrier. If threads of different processes
attempt to operate on such a barrier, the behavior is as
if PTHREAD PROCESS SHARED were set.

Library:
libc

Description:
The pthread barrierattr setpshared() function sets the process-shared
attribute in an initialized attributes object referenced by attr.

May 31, 2004 Manifests 2053

pthread barrierattr setpshared() 2004, QNX Software Systems Ltd.

Returns:
EOK Success.

EINVAL The attribute object, attr, or the new value specified in
pshared isn’t valid.

Classification:
POSIX 1003.1j (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread barrier init() pthread barrierattr destroy(),
pthread barrierattr getpshared(), pthread barrierattr init()

2054 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread cancel()
Cancel a thread

Synopsis:
#include <pthread.h>

int pthread cancel(pthread t thread);

Arguments:
thread The ID of the thread that you want to cancel, which you

can get when you call pthread create() or pthread self().

Library:
libc

Description:
The pthread cancel() function requests that the target thread thread
be canceled (terminated). The cancellation type and state of the target
determine when the cancellation takes effect.

When the cancellation is acted on, the target’s cancellation cleanup
handlers are called. When the last cancellation cleanup handler
returns, the target’s thread-specific-data destructor functions are
called. When the last destructor function returns, the target is
terminated. Cancellation processing in the target thread runs
asynchronously with respect to the calling thread.

Returns:
EOK Success.

ESRCH No thread with thread ID thread exists.

Classification:
POSIX 1003.1 (Threads)

May 31, 2004 Manifests 2055

pthread cancel() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cleanup push(), pthread cleanup pop(), pthread cond wait(),
pthread cond timedwait(), pthread exit(), pthread join(),
pthread key create(), pthread setcancelstate(),
pthread setcanceltype(), pthread testcancel(), ThreadCancel().

2056 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread cleanup pop()
Pop a function off of a thread’s cancellation-cleanup stack

Synopsis:
#include <pthread.h>

void pthread cleanup pop(int execute);

Arguments:
execute Zero if you don’t want to execute the handler; nonzero if

you do.

Library:
libc

Description:
The pthread cleanup pop() macro pops the top cancellation-cleanup
handler from the calling thread’s cancellation-cleanup stack and
invokes the handler if execute is nonzero.

The pthread cleanup pop() macro expands to a few lines of code that
end with a closing brace (}), but don’t have a matching opening brace
({). You must pair pthread cleanup pop() with
pthread cleanup push() within the same lexical scope.

�

Examples:
See pthread cleanup push().

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 2057

pthread cleanup pop() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cleanup push(), pthread cancel(), pthread exit()

2058 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread cleanup push()
Push a function onto a thread’s cancellation-cleanup stack

Synopsis:
#include <pthread.h>

void pthread cleanup push(void (routine)(void*),
void* arg);

Arguments:
routine The handler that you want to push onto the thread’s stack.

arg A pointer to whatever data you want to pass to the
function when it’s called.

Library:
libc

Description:
The pthread cleanup push() function pushes the given
cancellation-cleanup handler routine onto the calling thread’s
cancellation-cleanup stack.

The cancellation-cleanup handler is popped from the stack and
invoked with argument arg when the thread:

� exits (i.e. calls pthread exit())

� acts on a cancellation request

� calls pthread cleanup pop() with a nonzero argument.

The pthread cleanup push() macro expands to a few lines of code that
start with an opening brace ({), but don’t have a matching closing
brace (}). You must pair pthread cleanup push() with
pthread cleanup pop() within the same lexical scope.

�

May 31, 2004 Manifests 2059

pthread cleanup push() 2004, QNX Software Systems Ltd.

Examples:
Use a cancellation cleanup handler to free resources, such as a mutex,
when a thread is terminated:

#include <pthread.h>

pthread mutex t lock = PTHREAD MUTEX INITIALIZER;

void unlock(void * arg)
{

pthread mutex unlock(&lock);
}

void * function(void * arg)
{

while(1)
{

pthread mutex lock(&lock);
pthread cleanup push(&unlock, NULL);

/*
Any of the possible cancellation points could
go here.

*/
pthread testcancel();

pthread cleanup pop(1);
}

}

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

2060 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread cleanup push()

See also:
pthread cleanup pop(), pthread cancel(), pthread exit()

May 31, 2004 Manifests 2061

pthread cond broadcast() 2004, QNX Software Systems Ltd.

Unblock threads waiting on condition

Synopsis:
#include <pthread.h>

int pthread cond broadcast(pthread cond t* cond);

Arguments:
cond A pointer to the pthread cond t object for which you

want to unblock the threads.

Library:
libc

Description:
The pthread cond broadcast() function unblocks all threads currently
blocked on the condition variable cond. The threads are unblocked in
priority order.

If more than one thread at a particular priority is blocked, those
threads are unblocked in FIFO order.

Returns:
EOK Success.

EFAULT A fault occurred trying to access the buffers provided.

EINVAL Invalid condition variable cond.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

continued. . .

2062 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread cond broadcast()

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cond signal(), pthread cond wait(), SyncCondvarSignal()

May 31, 2004 Manifests 2063

pthread cond destroy() 2004, QNX Software Systems Ltd.

Destroy condition variable

Synopsis:
#include <pthread.h>

int pthread cond destroy(pthread cond t* cond);

Arguments:
cond A pointer to the pthread cond t object that you want to

destroy.

Library:
libc

Description:
The pthread cond destroy() function destroys the condition variable
cond. After you’ve destroyed a condition variable, you shouldn’t
reuse it until you’ve reinitialized it by calling pthread cond init().

Returns:
EOK Success.

EBUSY Another thread is blocked on the condition variable cond.

EINVAL Invalid condition variable cond.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

continued. . .

2064 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread cond destroy()

Safety

Signal handler Yes

Thread Yes

See also:
pthread cond init(), SyncDestroy()

May 31, 2004 Manifests 2065

pthread cond init() 2004, QNX Software Systems Ltd.

Initialize a condition variable

Synopsis:
#include <pthread.h>

pthread cond t cond = PTHREAD COND INITIALIZER;

int pthread cond init(pthread cond t* cond,
pthread condattr t* attr);

Arguments:
cond A pointer to the pthread cond t object that you want to

initialize.

attr NULL, or a pointer to a pthread condattr t object that
specifies the attributes that you want to use for the condvar.
For more information, see pthread condattr init().

Library:
libc

Description:
The pthread cond init() function initializes the condition variable
cond with the attributes in the condition variable attribute object attr.
If attr is NULL, cond is initialized with the default values for the
attributes.

If the condition variable is statically allocated, you can initialize it
with the default attribute values by assigning to it the macro
PTHREAD COND INITIALIZER.

Condition variables have at least the following attributes defined:

PTHREAD PROCESS PRIVATE

The condition variable can only be accessed by threads created
within the same process as the thread that initialized the
condition variable.

2066 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread cond init()

PTHREAD PROCESS SHARED

Any thread that has access to the memory where the condition
variable is allocated can access the condition variable.

For more information about these attributes, see
pthread condattr getpshared() and pthread condattr setpshared().

Returns:
EOK Success.

EAGAIN All kernel synchronization objects are in use.

EBUSY Previously initialized condition variable, cond, hasn’t
been destroyed.

EFAULT A fault occurred when the kernel tried to access cond or
attr.

EINVAL The value specified by cond is invalid.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread condattr init(), pthread cond destroy()

May 31, 2004 Manifests 2067

pthread cond signal() 2004, QNX Software Systems Ltd.

Unblock a thread that’s waiting on a condition variable

Synopsis:
#include <pthread.h>

int pthread cond signal(pthread cond t* cond);

Arguments:
cond A pointer to the pthread cond t object for which you

want to unblock the highest-priority thread.

Library:
libc

Description:
The pthread cond signal() function unblocks the highest priority
thread that’s waiting on the condition variable, cond.

If more than one thread at the highest priority is waiting,
pthread cond signal() unblocks the one that has been waiting the
longest.

Returns:
EOK Success.

EFAULT A fault occurred trying to access the buffers provided.

EINVAL Invalid condition variable cond.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

continued. . .

2068 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread cond signal()

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cond broadcast(), pthread cond wait(),
SyncCondvarSignal().

May 31, 2004 Manifests 2069

pthread cond timedwait() 2004, QNX Software Systems Ltd.

Wait on a condition variable, with a time limit

Synopsis:
#include <pthread.h>
#include <time.h>

int pthread cond timedwait(
pthread cond t* cond,
pthread mutex t* mutex,
const struct timespec* abstime);

Arguments:
cond The condition variable on which to block the thread.

mutex The mutex associated with the condition variable.

abstime A pointer to a timespec structure that specifies the
maximum time to block the thread, expressed as an
absolute time.

Library:
libc

Description:
The pthread cond timedwait() function blocks the calling thread on
the condition variable cond, and unlocks the associated mutex mutex.
The calling thread must have locked mutex before waiting on the
condition variable. Upon return from the function, the mutex is again
locked and owned by the calling thread.

The calling thread is blocked until either another thread performs a
signal or broadcast on the condition variable, the absolute time
specified by abstime has passed, a signal is delivered to the thread, or
the thread is canceled (waiting on a condition variable is a
cancellation point). In all cases, the thread reacquires the mutex
before being unblocked.

2070 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread cond timedwait()

Don’t use a recursive mutex with condition variables.�

Returns:
EOK Success, or the call was interrupted by a signal.

EAGAIN Insufficient system resources are available to wait
on the condition.

EFAULT A fault occurred trying to access the buffers
provided.

EINVAL One or more of the following is true:

� One or more of cond, mutex and abstime is
invalid.

� Concurrent waits or timed waits on cond used
different mutexes.

� The current thread doesn’t own mutex.

ETIMEDOUT The time specified by abstime has passed.

Examples:
Wait five seconds while trying to acquire control over a condition
variable:

#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>

pthread mutex t m = PTHREAD MUTEX INITIALIZER;
pthread cond t c = PTHREAD COND INITIALIZER;

void* t(void* x)
{

int retval;

May 31, 2004 Manifests 2071

pthread cond timedwait() 2004, QNX Software Systems Ltd.

if (retval = pthread mutex lock(&m)) {
fprintf(stderr, "pthread mutex lock: %s\n",

strerror(errno));

exit(EXIT FAILURE);
}

/*
Let pthread cond timedwait() break out and try
to acquire mutex

*/
fprintf(stderr, "sleeping...\n");
sleep(30);

if (retval = pthread mutex unlock(&m)) {
fprintf(stderr, "pthread mutex unlock: %s\n",

strerror(errno));

exit(EXIT FAILURE);
}

return 0;
}

int main(int argc, char* argv[])
{

struct timespec to;
int retval;

fprintf(stderr, "starting...\n");

/*
Here’s the interesting bit; we’ll wait for
five seconds FROM NOW when we call
pthread cond timedwait().

*/
memset(&to, 0, sizeof to);
to.tv sec = time(0) + 5;
to.tv nsec = 0;

if (retval = pthread mutex lock(&m)) {
fprintf(stderr, "pthread mutex lock %s\n",

strerror(retval));

exit(EXIT FAILURE);
}

if (retval = pthread create(0, 0, t, 0)) {
fprintf(stderr, "pthread create %s\n",

2072 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread cond timedwait()

strerror(retval));

exit(EXIT FAILURE);
}

if (retval = pthread cond timedwait(&c, &m, &to))
{

fprintf(stderr, "pthread cond timedwait %s\n",
strerror(retval));

exit(EXIT FAILURE);
}

return EXIT SUCCESS;
}

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cond broadcast(), pthread cond init(),
pthread cond signal(), pthread cond wait(), SyncCondvarWait(),
TimerTimeout(), timespec

May 31, 2004 Manifests 2073

pthread cond wait() 2004, QNX Software Systems Ltd.

Wait on condition variable

Synopsis:
#include <pthread.h>

int pthread cond wait(pthread cond t* cond,
pthread mutex t* mutex);

Arguments:
cond A pointer to the pthread cond t object that you want

the threads to block on.

mutex The mutex that you want to unlock.

Library:
libc

Description:
The pthread cond wait() function blocks the calling thread on the
condition variable cond, and unlocks the associated mutex mutex. The
calling thread must have locked mutex before waiting on the condition
variable. On return from the function, the mutex is again locked and
owned by the calling thread.

The calling thread is blocked until either another thread performs a
signal or broadcast on the condition variable, a signal is delivered to
the thread, or the thread is canceled (waiting on a condition variable is
a cancellation point). In all cases, the thread reacquires the mutex
before being unblocked.

Don’t use a recursive mutex with condition variables.�

Returns:
EOK Success, or the call was interrupted by a signal.

EAGAIN Insufficient system resources are available to wait on the
condition.

2074 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread cond wait()

EFAULT A fault occurred trying to access the buffers provided.

EINVAL One or more of the following is true:

� One or more of cond or mutex is invalid.

� Concurrent waits on cond used different mutexes.

� The current thread doesn’t own mutex.

Examples:
Use condition variables to synchronize producer and consumer
threads:

#include <stdio.h>
#include <pthread.h>

pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;
pthread cond t cond = PTHREAD COND INITIALIZER;
int condition = 0;
int count = 0;

int consume(void)
{

while(1)
{

pthread mutex lock(&mutex);
while(condition == 0)

pthread cond wait(&cond, &mutex);
printf("Consumed %d\n", count);
condition = 0;
pthread cond signal(&cond);
pthread mutex unlock(&mutex);

}

return(0);
}

void* produce(void * arg)
{

while(1)
{

pthread mutex lock(&mutex);
while(condition == 1)

pthread cond wait(&cond, &mutex);
printf("Produced %d\n", count++);
condition = 1;
pthread cond signal(&cond);

May 31, 2004 Manifests 2075

pthread cond wait() 2004, QNX Software Systems Ltd.

pthread mutex unlock(&mutex);
}
return(0);

}

int main(void)
{

pthread create(NULL, NULL, &produce, NULL);
return consume();

}

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cond broadcast(), pthread cond init(),
pthread cond signal(), pthread cond timedwait(), SyncCondvarWait()

2076 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread condattr destroy()
Destroy a condition-variable attribute object

Synopsis:
#include <pthread.h>

int pthread condattr destroy(
pthread condattr t* attr);

Arguments:
attr A pointer to the pthread condattr t object that you want

to destroy.

Library:
libc

Description:
The pthread condattr destroy() function destroys the condition
variable attribute object attr. Once you’ve destroyed the
condition-variable attribute object, don’t reuse it until you’ve
reinitialized it by calling pthread condattr init().

Returns:
EOK Success.

EINVAL Invalid condition variable attribute object attr.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

continued. . .

May 31, 2004 Manifests 2077

pthread condattr destroy() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

See also:
pthread condattr init(), pthread cond init()

2078 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread condattr getclock()
Get the clock attribute from a condition-variable attribute object

Synopsis:
#include <pthread.h>

int pthread condattr getclock(
const pthread condattr t * attr,
clockid t * id);

Arguments:
attr A pointer to the pthread condattr t object from which

you want to get the clock.

id A pointer to a clockid t object where the function can
store the clock ID.

Library:
libc

Description:
The pthread condattr getclock() function obtains the value of the
clock attribute from the attributes object referenced by attr.

The clock attribute is the clock ID of the clock that’s used to measure
the timeout service of pthread cond timedwait(). The default value of
the clock attribute refers to the system clock.

Returns:
EOK Success.

EINVAL Invalid value attr.

Classification:
POSIX 1003.1j (draft)

May 31, 2004 Manifests 2079

pthread condattr getclock() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cond init(), pthread cond timedwait(),
pthread condattr destroy(), pthread condattr getpshared(),
pthread condattr init(), pthread condattr setclock(),
pthread condattr setpshared(), pthread create()

2080 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread condattr getpshared()
Get the process-shared attribute from a condition variable attribute object

Synopsis:
#include <pthread.h>

int pthread condattr getpshared(
const pthread condattr t* attr,
int* pshared);

Arguments:
attr A pointer to the pthread condattr t object from

which you want to get the attribute.

pshared A pointer to a location where the function can store the
process-shared attribute. For the possible values, see
pthread condattr setpshared().

Library:
libc

Description:
The pthread condattr getpshared() function stores, in the memory
pointed to by pshared, the process-shared attribute from a condition
variable attribute object, attr.

Returns:
EOK Success.

EINVAL Invalid condition variable attribute object specified by
attr.

Classification:
POSIX 1003.1 (Threads)

May 31, 2004 Manifests 2081

pthread condattr getpshared() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread condattr init(), pthread condattr setpshared(),
pthread create(), pthread mutex init(), pthread cond init().

2082 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread condattr init()
Initialize the attribute object for creating condition variables

Synopsis:
#include <pthread.h>

int pthread condattr init(pthread condattr t* attr);

Arguments:
attr A pointer to the pthread condattr t object that you want

to initialize.

Library:
libc

Description:
The pthread condattr init() function initializes the attributes in the
condition variable attribute object attr to default values. Pass attr to
pthread cond init() to define the attributes of the condition variable.

Condition variables have at least the following attributes defined:

PTHREAD PROCESS PRIVATE

The condition variable can be accessed only by threads created
within the same process as the thread that initialized the
condition variable.

PTHREAD PROCESS SHARED

Any thread that has access to the memory where the condition
variable is allocated can access the condition variable.

For more information about these attributes, see
pthread condattr getpshared() and pthread condattr setpshared().

May 31, 2004 Manifests 2083

pthread condattr init() 2004, QNX Software Systems Ltd.

Returns:
EOK Success.

ENOMEM Insufficient memory to initialize the condition variable
attribute object attr.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread condattr destroy(), pthread cond init()

2084 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread condattr setclock()
Set the clock attribute of a condition-variable attribute object

Synopsis:
#include <pthread.h>

int pthread condattr setclock(
pthread condattr t * attr,
clockid t id);

Arguments:
attr A pointer to the pthread condattr t object for which

you want to set the clock. You must have initialized this
object by calling pthread condattr init() before calling
pthread condattr setclock().

id A clockid t object that specifies the ID of the clock that
you want to use for the condition variable.

Library:
libc

Description:
The pthread condattr setclock() function sets the clock attribute in an
initialized attributes object referenced by attr. If
pthread condattr setclock() is called with an id argument that refers
to a CPU-time clock, the call fails.

The clock attribute is the clock ID of the clock that you want to use to
measure the timeout service of pthread cond timedwait(). The default
value of the clock attribute refers to the system clock.

Returns:
EOK Success.

EINVAL Invalid value attr.

May 31, 2004 Manifests 2085

pthread condattr setclock() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1j (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cond init(), pthread cond timedwait(),
pthread condattr destroy(), pthread condattr getclock(),
pthread condattr getpshared(), pthread condattr init(),
pthread condattr setpshared(), pthread create()

2086 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread condattr setpshared()
Set the process-shared attribute in a condition variable attribute object

Synopsis:
#include <pthread.h>

int pthread condattr setpshared(
pthread condattr t* attr,
int pshared);

Arguments:
attr A pointer to the pthread condattr t object for

which you want to set the attribute.

pshared The new value of the process-shared attribute; one of:

� PTHREAD PROCESS SHARED — any thread that has
access to the memory where the condition variable is
allocated can operate on it, even if the condition
variable is allocated in memory that’s shared by
multiple processes.

� PTHREAD PROCESS PRIVATE — the condition
variable can be accessed only by threads created
within the same process as the thread that initialized
the condition variable; if threads from other processes
try to access the PTHREAD PROCESS PRIVATE
condition variable, the behavior is undefined.

Library:
libc

Description:
The pthread condattr setpshared() function sets the process-shared
attribute in a condition variable attribute object, attr to the value given
by pshared.

The default value of the process-shared attribute is
PTHREAD PROCESS PRIVATE.

May 31, 2004 Manifests 2087

pthread condattr setpshared() 2004, QNX Software Systems Ltd.

Returns:
EOK Success.

EINVAL The condition variable attribute object specified by attr,
or the new value specified in pshared isn’t valid.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread condattr init(), pthread condattr getpshared(),
pthread create(), pthread mutex init(), pthread cond init()

2088 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread create()
Create a thread

Synopsis:
#include <pthread.h>

int pthread create(pthread t* thread,
const pthread attr t* attr,
void* (*start routine)(void*),
void* arg);

Arguments:
thread NULL, or a pointer to a pthread t object where the

function can store the thread ID of the new thread.

attr A pointer to a pthread attr t structure that
specifies the attributes of the new thread. Instead of
manipulating the members of this structure directly,
use pthread attr init() and the pthread attr set *
functions. For the exceptions, see “QNX
extensions,” below.

If attr is NULL, the default attributes are used (see
pthread attr init()).

If you modify the attributes in attr after creating the thread, the
thread’s attributes aren’t affected.

�

start routine The routine where the thread begins, with arg as its
only argument. If start routine() returns, there’s an
implicit call to pthread exit(), using the return value
of start routine() as the exit status.

The thread in which main() was invoked behaves
differently. When it returns from main(), there’s an
implicit call to exit(), using the return value of
main() as the exit status.

arg The argument to pass to start routine.

May 31, 2004 Manifests 2089

pthread create() 2004, QNX Software Systems Ltd.

Library:
libc

Description:
The pthread create() function creates a new thread, with the attributes
specified in the thread attribute object attr. The created thread inherits
the signal mask of the parent thread, and its set of pending signals is
empty.

� You must call pthread join() or pthread detach() for threads
created with a detachstate attribute of
PTHREAD CREATE JOINABLE (the default) before all of the
resources associated with the thread can be released at thread
termination.

� If you set the stacksize member of attr, the thread’s actual stack
size is rounded up to a multiple of the system page size (which you
can get by using the SC PAGESIZE constant in a call to sysconf())
if the system allocates the stack (the stackaddr member of attr is
set to NULL). If the stack was previously allocated by the
application, its size isn’t changed.

�

QNX extensions

If you adhere to the POSIX standard, there are some thread attributes
that you can’t specify before creating the thread:

� You can’t disable cancellation for a thread.

� You can’t set the thread’s cancellation type.

� You can’t specify what happens when a signal is delivered to the
thread.

There are no pthread attr set * functions for these attributes.

2090 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread create()

As an QNX extension, you can OR the following bits into the flags
member of the pthread attr t structure before calling
pthread create():

PTHREAD CANCEL ENABLE

Cancellation requests may be acted on according to the
cancellation type (the default).

PTHREAD CANCEL DISABLE

Cancellation requests are held pending.

PTHREAD CANCEL ASYNCHRONOUS

If cancellation is enabled, new or pending cancellation requests
may be acted on immediately.

PTHREAD CANCEL DEFERRED

If cancellation is enabled, cancellation requests are held
pending until a cancellation point (the default).

PTHREAD MULTISIG ALLOW

Terminate all the threads in the process (the POSIX default).

PTHREAD MULTISIG DISALLOW

Terminate only the thread that received the signal.

After creating the thread, you can change the cancellation properties
by calling pthread setcancelstate() and pthread setcanceltype().

Returns:
EAGAIN Insufficient system resources to create thread.

EFAULT An error occurred trying to access the buffers or the
start routine provided.

EINVAL Invalid thread attribute object attr.

EOK Success.

May 31, 2004 Manifests 2091

pthread create() 2004, QNX Software Systems Ltd.

Examples:
Create a thread in a detached state:

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void* function(void* arg)
{

printf("This is thread %d\n", pthread self());
return(0);

}

int main(void)
{

pthread attr t attr;

pthread attr init(&attr);
pthread attr setdetachstate(

&attr, PTHREAD CREATE DETACHED);
pthread create(NULL, &attr, &function, NULL);

/* Allow threads to run for 60 seconds. */
sleep(60);
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

2092 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread create()

See also:
pthread attr init(), pthread exit(), pthread setcancelstate(),
pthread setcanceltype(), sysconf(), ThreadCreate()

May 31, 2004 Manifests 2093

pthread detach() 2004, QNX Software Systems Ltd.

Detach a thread from a process

Synopsis:
#include <pthread.h>

int pthread detach(pthread t thread);

Arguments:
thread The ID of the thread that you want to detach, which you

can get when you call pthread create() or pthread self().

Library:
libc

Description:
The pthread detach() function detaches the thread with the given ID
from its process. When a detached thread terminates, all system
resources allocated to that thread are immediately reclaimed.

Returns:
EOK Success.

EINVAL The thread thread is already detached.

ESRCH The thread thread doesn’t exist.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

continued. . .

2094 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread detach()

Safety

Signal handler Yes

Thread Yes

See also:
pthread join(), ThreadDetach().

May 31, 2004 Manifests 2095

pthread equal() 2004, QNX Software Systems Ltd.

Compare two thread IDs

Synopsis:
#include <pthread.h>

int pthread equal(pthread t t1,
pthread t t2);

Arguments:
t1, t2 The thread IDs that you want to compare. You can get the

IDs when you call pthread create() or pthread self().

Library:
libc

Description:
The pthread equal() function compares the thread IDs of t1 and t2. It
doesn’t check to see if they’re valid thread IDs.

Returns:
A nonzero value

The t1 and t2 thread IDs are equal.

0 The thread IDs aren’t equal.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

2096 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread equal()

See also:
pthread create(), pthread self()

May 31, 2004 Manifests 2097

pthread exit() 2004, QNX Software Systems Ltd.

Terminate a thread

Synopsis:
#include <pthread.h>

void pthread exit(void* value ptr);

Arguments:
value ptr A pointer to a value that you want to be made available

to any thread joining the thread that you’re terminating.

Library:
libc

Description:
The pthread exit() function terminates the calling thread. If the thread
is joinable, the value value ptr is made available to any thread joining
the terminating thread (only one thread can get the return status). If
the thread is detached, all system resources allocated to the thread are
immediately reclaimed.

Before the thread is terminated, any cancellation cleanup handlers
that have been pushed are popped and executed, and any
thread-specific-data destructor functions are executed. Thread
termination doesn’t implicitly release any process resources such as
mutexes or file descriptors, or perform any process-cleanup actions
such as calling atexit() handlers.

An implicit call to pthread exit() is made when a thread other than the
thread in which main() was first invoked returns from the start routine
that was used to create it. The return value of the start routine is used
as the thread’s exit status.

2098 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread exit()

Don’t call pthread exit() from cancellation-cleanup handlers or
thread-specific-data destructor functions.

�

For the last process thread, pthread exit() behaves as if you called
exit(0).

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
atexit(), exit(), pthread create(), pthread cleanup push(),
pthread cleanup pop(), pthread join(), ThreadDestroy().

May 31, 2004 Manifests 2099

pthread getconcurrency() 2004, QNX Software Systems Ltd.

Get the level of thread concurrency

Synopsis:
#include <pthread.h>

int pthread getconcurrency(void);

Library:
libc

Description:
QNX doesn’t support the multiplexing of user threads on top of
several kernel scheduled entities. As such, the
pthread setconcurrency() and pthread getconcurrency() functions are
provided for source code compatibility but they have no effect when
called. To maintain the function semantics, the new level parameter is
saved when pthread setconcurrency() is called so that a subsequent
call to pthread getconcurrency() returns the same value.

Returns:
The concurrency level set by a previous call to
pthread setconcurrency(), or 0 if there was no previous call.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

2100 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread getconcurrency()

See also:
pthread setconcurrency()

May 31, 2004 Manifests 2101

pthread getcpuclockid() 2004, QNX Software Systems Ltd.

Return the clock ID of the CPU-time clock from a specified thread

Synopsis:
#include <sys/types.h>
#include <time.h>
#include <pthread.h>

extern int pthread getcpuclockid(
pthread t id,
clockid t* clock id);

Arguments:
thread The ID of the thread that you want to get the clock ID

for, which you can get when you call pthread create() or
pthread self().

clock id A pointer to a clockid t object where the function can
store the clock ID.

Library:
libc

Description:
The pthread getcpuclockid() function returns the clock ID of the
CPU-time clock of the thread specified by id, if the thread specified
by id exists.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
ESRCH The value specified by id doesn’t refer to an existing

thread.

2102 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread getcpuclockid()

Classification:
POSIX 1003.1d (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
clock getcpuclockid(), clock getres(), clock gettime(), ClockId(),
clock settime(), pthread getcpuclockid(), timer create()

May 31, 2004 Manifests 2103

pthread getschedparam() 2004, QNX Software Systems Ltd.

Get a thread’s scheduling parameters

Synopsis:
#include <pthread.h>

int pthread getschedparam(
const pthread t thread,
int *policy,
struct sched param *param);

Arguments:
thread The ID of the thread that you want to get the scheduling

parameters for. You can get a thread ID by calling
pthread create() or pthread self().

policy A pointer to a location where the function can store the
scheduling policy; one of SCHED FIFO, SCHED RR,
SCHED SPORADIC, or SCHED OTHER.

param A pointer to a sched param structure where the function
can store the scheduling parameters.

Library:
libc

Description:
The pthread getschedparam() function gets the scheduling policy and
associated scheduling parameters of thread thread and places them in
policy and param.

Returns:
EOK Success.

EFAULT A fault occurred trying to access the buffers provided.

ESRCH Invalid thread ID thread.

2104 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread getschedparam()

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread create(), pthread setschedparam(), sched param

May 31, 2004 Manifests 2105

pthread getspecific() 2004, QNX Software Systems Ltd.

Get a thread-specific data value

Synopsis:
#include <pthread.h>

void* pthread getspecific(pthread key t key);

Arguments:
key The key associated with the data that you want to get. See

pthread key create().

Library:
libc

Description:
The pthread getspecific() function returns the thread-specific data
value currently bound to the thread-specific-data key key in the calling
thread, or NULL if no value is bound or the key doesn’t exist. You can
call this function from a thread-specific-data destructor function.

You must call this function with a key that you got from
pthread key create(). You can’t use a key after destroying it with
pthread key delete().

�

Returns:
The data value, or NULL.

Examples:
See pthread key create().

Classification:
POSIX 1003.1 (Threads)

2106 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread getspecific()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread key create(), pthread key delete(), pthread setspecific().

May 31, 2004 Manifests 2107

pthread join() 2004, QNX Software Systems Ltd.

Join thread

Synopsis:
#include <pthread.h>

int pthread join(pthread t thread,
void** value ptr);

Arguments:
thread The target thread whose termination you’re waiting for.

value ptr NULL, or a pointer to a location where the function can
store the value passed to pthread exit() by the target
thread.

Library:
libc

Description:
The pthread join() function blocks the calling thread until the target
thread thread terminates, unless thread has already terminated. If
value ptr is non-NULL and pthread join() returns successfully, then
the value passed to pthread exit() by the target thread is placed in
value ptr. If the target thread has been canceled then value ptr is set
to PTHREAD CANCELED.

The non-POSIX pthread timedjoin() function is similar to
pthread join(), except that an error is returned if the join doesn’t
occur before a given time.

�

The target thread must be joinable. Multiple pthread join(),
pthread timedjoin(), ThreadJoin(), and ThreadJoin r() calls on the
same target thread aren’t allowed. When pthread join() returns
successfully, the target thread has been terminated.

2108 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread join()

Returns:
EOK Success.

EBUSY The thread thread is already being joined.

EDEADLK The thread thread is the calling thread.

EFAULT A fault occurred trying to access the buffers provided.

EINTR The function call was interrupted.

EINVAL The thread thread isn’t joinable.

ESRCH The thread thread doesn’t exist.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread create(), pthread detach(), pthread exit(),
pthread timedjoin(), ThreadJoin(), ThreadJoin r()

May 31, 2004 Manifests 2109

pthread key create() 2004, QNX Software Systems Ltd.

Create a thread-specific data key

Synopsis:
#include <pthread.h>

int pthread key create(pthread key t * key,
void (*destructor)(void *));

Arguments:
key A pointer to a pthread key t object where the

function can store the new key.

destructor NULL, or a function to be called when you destroy the
key.

Library:
libc

Description:
The pthread key create() function creates a thread-specific data key
that’s available to all threads in the process and binds an optional
destructor function destructor to the key. If the function completes
successfully the new key is returned in key.

Although the same key may be used by different threads, the values
bound to the key using pthread setspecific() are maintained on a
per-thread basis and persist only for the lifetime of the thread.

�

When you create a key, the value NULL is bound with the key in all
active threads. When you create a thread, the value NULL is bound to
all defined keys in the new thread.

You can optionally associate a destructor function with each key
value. At thread exit, if the key has a non-NULL destructor pointer,
and the thread has a non-NULL value bound to the key, the destructor
function is called with the bound value as its only argument. The

2110 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread key create()

order of destructor calls is unspecified if more than one destructor
exists for a thread when it exits.

If, after all destructor functions have been called for a thread, there
are still non-NULL bound values, the destructor function is called
repeatedly a maximum of PTHREAD DESTRUCTOR ITERATIONS
times for each non-NULL bound value.

Returns:
EOK Success.

EAGAIN Insufficient system resources to create key or
PTHREAD KEYS MAX has been exceeded.

ENOMEM Insufficient memory to create key.

Examples:
This example shows how you can use thread-specific data to provide
per-thread data in a thread-safe function:

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

pthread key t buffer key;

void buffer key destruct(void *value)
{

free(value);
pthread setspecific(buffer key, NULL);

}

char *lookup(void)
{

char *string;

string = (char *)pthread getspecific(buffer key);
if(string == NULL) {

string = (char *) malloc(32);
sprintf(string, "This is thread %d\n", pthread self());
pthread setspecific(buffer key, (void *)string);

}

May 31, 2004 Manifests 2111

pthread key create() 2004, QNX Software Systems Ltd.

return(string);
}

void *function(void *arg)
{

while(1) {
puts(lookup());

}

return(0);
}

int main(void)
{

pthread key create(&buffer key,
&buffer key destruct);

pthread create(NULL, NULL, &function, NULL);

/* Let the threads run for 60 seconds. */
sleep(60);

return EXIT SUCCESS;
}

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
The pthread key create() function is part of the POSIX 1003.1-1996
draft standard; its specific behavior may vary from system to system.

2112 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread key create()

Before each destructor is called, the thread’s value for the
corresponding key is set to NULL. Calling:

pthread setspecific(key, NULL);

in a key destructor isn’t required; this lets you use the same destructor
for several keys.

See also:
pthread getspecific(), pthread setspecific(), pthread key delete()

May 31, 2004 Manifests 2113

pthread key delete() 2004, QNX Software Systems Ltd.

Delete a thread-specific data key

Synopsis:
#include <pthread.h>

int pthread key delete(pthread key t key);

Arguments:
key The key, which you created by calling pthread key create(),

that you want to delete.

Library:
libc

Description:
The pthread key delete() function deletes the thread-specific data key
key that you previously created with pthread key create(). The
destructor function bound to key isn’t called by this function, and
won’t be called at thread termination. You can call this function from
a thread specific data destructor function.

If you need to release any data bound to the key in any threads, do so
before deleting the key.

Returns:
EOK Success.

EINVAL Invalid thread-specific data key key.

Classification:
POSIX 1003.1 (Threads)

2114 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread key delete()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread key create()

May 31, 2004 Manifests 2115

pthread kill() 2004, QNX Software Systems Ltd.

Send a signal to a thread

Synopsis:
#include <signal.h>

int pthread kill(pthread t thread,
int sig);

Arguments:
thread The ID of the thread that you want to send the signal to,

which you can get when you call pthread create() or
pthread self().

sig The signal that you want to send, or 0 if you just want to
check for errors.

Library:
libc

Description:
The pthread kill() function sends the signal sig to the thread thread.
The target thread and calling thread must be in the same process. If
sig is zero, error checking is performed but no signal is sent.

Returns:
EOK Success.

EAGAIN Insufficient system resources are available to deliver the
signal.

ESRCH Invalid thread ID thread.

EINVAL Invalid signal number sig.

2116 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread kill()

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
kill(), ThreadDestroy()

May 31, 2004 Manifests 2117

pthread mutex destroy() 2004, QNX Software Systems Ltd.

Destroy a mutex

Synopsis:
#include <pthread.h>

int pthread mutex destroy(pthread mutex t* mutex);

Arguments:
mutex A pointer to the pthread mutex t object that you want

to destroy.

Library:
libc

Description:
The pthread mutex destroy() function destroys the unlocked mutex
mutex.

You can only destroy a locked mutex provided you’re the owner of
that mutex.

Once you’ve destroyed a mutex, don’t reuse it without reinitializing it
by calling pthread mutex init().

�

Returns:
EOK Success.

EBUSY The mutex is locked by another thread.

EINVAL Invalid mutex mutex.

Classification:
POSIX 1003.1 (Threads)

2118 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutex destroy()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread mutex init(), SyncDestroy(), SyncMutexRevive()

May 31, 2004 Manifests 2119

pthread mutex getprioceiling() 2004, QNX Software Systems Ltd.

Get a mutex’s priority ceiling

Synopsis:
#include <pthread.h>

int pthread mutex getprioceiling(
const pthread mutex t* mutex,
int* prioceiling);

Arguments:
mutex A pointer to the pthread mutex t object that you

want to priority ceiling for.

prioceiling A pointer to a location where the function can store
the priority ceiling.

Library:
libc

Description:
The pthread mutex getprioceiling() function returns the priority
ceiling of mutex in prioceiling.

Returns:
EOK Success.

EINVAL The mutex specified by mutex doesn’t currently exist.

EPERM The calling thread doesn’t have permission to get the
priority ceiling.

Classification:
POSIX 1003.1 (Threads)

2120 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutex getprioceiling()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread mutex setprioceiling()

May 31, 2004 Manifests 2121

pthread mutex init() 2004, QNX Software Systems Ltd.

Initialize mutex

Synopsis:
#include <pthread.h>

pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;

int pthread mutex init(
pthread mutex t* mutex,
const pthread mutexattr t* attr);

Arguments:
mutex A pointer to the pthread mutex t object that you want

to initialize.

attr NULL, or a pointer to a pthread mutexattr t object
that specifies the attributes that you want to use for the
mutex. For more information, see pthread mutexattr init().

Library:
libc

Description:
The pthread mutex init() function initializes the given mutex object,
using the attributes specified by the mutex attributes object attr. If attr
is NULL then the mutex is initialized with the default attributes (see
pthread mutexattr init()). After initialization, the mutex is in an
unlocked state.

You can initialize a statically allocated mutex with the default
attributes by assigning to it the macro
PTHREAD MUTEX INITIALIZER or
PTHREAD RMUTEX INITIALIZER (for recursive mutexes).

2122 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutex init()

Returns:
EOK Success.

EAGAIN All kernel synchronization objects are in use.

EBUSY The given mutex was previously initialized and hasn’t
been destroyed.

EFAULT A fault occurred when the kernel tried to access mutex or
attr.

EINVAL The value specified by attr is invalid.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread mutexattr init(), pthread mutex destroy(), SyncTypeCreate()

May 31, 2004 Manifests 2123

pthread mutex lock() 2004, QNX Software Systems Ltd.

Lock a mutex

Synopsis:
#include <pthread.h>

int pthread mutex lock(pthread mutex t* mutex);

Arguments:
mutex A pointer to the pthread mutex t object that you want

to lock.

Library:
libc

Description:
The pthread mutex lock() function locks the mutex object referenced
by mutex. If the mutex is already locked, then the calling thread
blocks until it has acquired the mutex. When the function returns, the
mutex object is locked and owned by the calling thread.

If the mutex allows recursive behavior, a call to pthread mutex lock()
while you own the mutex succeeds. You can allow recursive behavior
by:

� statically initializing the mutex to
PTHREAD RMUTEX INITIALIZER

Or:

� using pthread mutexattr setrecursive() to set the attribute to
PTHREAD RECURSIVE ALLOW before calling
pthread mutex init().

If the mutex is recursive, you must call pthread mutex unlock() for
each corresponding call to lock the mutex. The default POSIX
behavior doesn’t allow recursive mutexes, and returns EDEADLK.

If a signal is delivered to a thread that’s waiting for a mutex, the thread
resumes waiting for the mutex on returning from the signal handler.

2124 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutex lock()

Returns:
EOK Success.

EAGAIN Insufficient system resources available to lock the
mutex.

EDEADLK The calling thread already owns mutex, and the mutex
doesn’t allow recursive behavior.

EINVAL Invalid mutex mutex.

Examples:
This example shows how you can use a mutex to synchronize access
to a shared variable. In this example, function1() and function2() both
attempt to access and modify the global variable count. Either thread
could be interrupted between modifying count and assigning its value
to the local tmp variable. Locking mutex prevents this from
happening; if one thread has mutex locked, the other thread waits until
it’s unlocked, before continuing.

#include <stdio.h>
#include <pthread.h>

pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;
int count = 0;

void* function1(void* arg)
{

int tmp = 0;

while(1) {
pthread mutex lock(&mutex);
tmp = count++;
pthread mutex unlock(&mutex);
printf("Count is %d\n", tmp);

/* snooze for 1 second */
sleep(1);

}

return 0;
}

May 31, 2004 Manifests 2125

pthread mutex lock() 2004, QNX Software Systems Ltd.

void* function2(void* arg)
{

int tmp = 0;

while(1) {
pthread mutex lock(&mutex);
tmp = count--;
pthread mutex unlock(&mutex);
printf("** Count is %d\n", tmp);

/* snooze for 2 seconds */
sleep(2);

}

return 0;
}

int main(void)
{

pthread create(NULL, NULL, &function1, NULL);
pthread create(NULL, NULL, &function2, NULL);

/* Let the threads run for 60 seconds. */
sleep(60);

return 0;
}

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

2126 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutex lock()

See also:
pthread mutex init(), pthread mutexattr setrecursive(),
pthread mutex trylock(), pthread mutex unlock(), SyncMutexLock()

May 31, 2004 Manifests 2127

pthread mutex setprioceiling() 2004, QNX Software Systems Ltd.

Set a mutex’s priority ceiling

Synopsis:
#include <pthread.h>

int pthread mutex setprioceiling(
pthread mutex t* mutex,
int prioceiling,
int* old ceiling);

Arguments:
mutex A pointer to the pthread mutex t object that you

want to priority ceiling for.

prioceiling The new value for the priority ceiling.

old ceiling A pointer to a location where the function can store
the old value.

Library:
libc

Description:
The pthread mutex setprioceiling() function locks mutex (or blocks
until it can lock it), changes its priority ceiling to prioceiling, and
releases it. When the change is successful, the previous priority
ceiling is returned in old ceiling.

Returns:
EOK Success.

EINVAL The mutex specified by mutex doesn’t currently exist, or
the priority requested by prioceiling is out of range.

EPERM The calling thread doesn’t have permission to set the
priority ceiling.

2128 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutex setprioceiling()

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread mutex getprioceiling()

May 31, 2004 Manifests 2129

pthread mutex timedlock() 2004, QNX Software Systems Ltd.

Attempt to lock mutex

Synopsis:
#include <pthread.h>
#include <time.h>

int pthread mutex timedlock(
pthread mutex t * mutex,
const struct timespec * abs timeout);

Arguments:
mutex The mutex that you want to lock.

abs timeout A pointer to a timespec structure that specifies the
maximum time to wait to lock the mutex, expressed
as an absolute time.

Library:
libc

Description:
The pthread mutex timedlock() function is called to lock the mutex
object referenced by mutex. If the mutex is already locked, the calling
thread blocks until the mutex becomes available as in the
pthread mutex lock function. If the mutex can’t be locked without
waiting for another thread to unlock the mutex, the wait is terminated
when the specified timeout expires.

The timeout expires when the absolute time specified by abs timeout
passes, as measured by the clock on which timeouts are based (i.e.,
when the value of that clock equals or exceeds abs timeout), or if the
absolute time specified by abs timeout has already been passed at the
time of the call.

The timeout is based on the CLOCK REALTIME clock. The
timespec datatype is defined in the <time.h> header.

2130 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutex timedlock()

If the mutex can be locked immediately, the validity of the
abs timeout parameter isn’t checked, and the function won’t fail with
a timeout.

As a consequence of the priority inheritance rules (for mutexes
initialized with the PRIO INHERIT protocol), if a timed mutex wait is
terminated because its timeout expires, the priority of the owner of the
mutex is adjusted as necessary to reflect the fact that this thread is no
longer among the threads waiting for the mutex.

Returns:
Zero on success, or an error number to indicate the error.

Errors:
EAGAIN The mutex couldn’t be acquired because the

maximum number of recursive locks for the mutex
has been exceeded.

EDEADLK The current thread already owns the mutex.

EINVAL The mutex was created with the protocol attribute
having the value PTHREAD PRIO PROTECT and
the calling thread’s priority is higher than the
mutex’ current priority ceiling; the process or
thread would have blocked, and the abs timeout
parameter specified a nanoseconds field value less
than zero or greater than or equal to 1000 million;
or the value specified by mutex doesn’t refer to an
initialized mutex object.

ETIMEDOUT The mutex couldn’t be locked before the specified
timeout expired.

Classification:
POSIX 1003.1d (draft)

May 31, 2004 Manifests 2131

pthread mutex timedlock() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread mutex destroy(), pthread mutex lock(),
pthread mutex trylock(), pthread mutex unlock(), timespec

2132 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutex trylock()
Attempt to lock a mutex

Synopsis:
#include <pthread.h>

int pthread mutex trylock(pthread mutex t* mutex);

Arguments:
mutex A pointer to the pthread mutex t object that you want

to try to lock.

Library:
libc

Description:
The pthread mutex trylock() function attempts to lock the mutex
mutex, but doesn’t block the calling thread if the mutex is already
locked.

Returns:
EOK Success.

EAGAIN Insufficient resources available to lock the mutex.

EBUSY The mutex was already locked.

EINVAL Invalid mutex mutex.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 2133

pthread mutex trylock() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread mutex lock(), pthread mutex unlock()

2134 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutex unlock()
Unlock mutex

Synopsis:
#include <pthread.h>

int pthread mutex unlock(pthread mutex t* mutex);

Arguments:
mutex A pointer to the pthread mutex t object that you want

to unlock.

Library:
libc

Description:
The pthread mutex unlock() function unlocks the mutex mutex. The
mutex should be owned by the calling thread. If there are threads
blocked on the mutex then the highest priority waiting thread is
unblocked and becomes the next owner of the mutex.

If mutex has been locked more than once, it must be unlocked the
same number of times before the next thread is given ownership of the
mutex. This only works for recursive mutexes.

Returns:
EOK Success.

EINVAL Invalid mutex mutex.

EPERM Current thread doesn’t own mutex.

Classification:
POSIX 1003.1 (Threads)

May 31, 2004 Manifests 2135

pthread mutex unlock() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread mutex lock(), pthread mutex trylock(), SyncMutexUnlock()

2136 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutexattr destroy()
Destroy mutex attribute object

Synopsis:
#include <pthread.h>

int pthread mutexattr destroy(
pthread mutexattr t* attr);

Arguments:
attr A pointer to the pthread mutexattr t object that you

want to destroy.

Library:
libc

Description:
The pthread mutexattr destroy() function destroys the mutex attribute
object attr.

Once you’ve destroyed a mutex attribute object, don’t reuse it without
reinitializing it by calling pthread mutexattr init().

�

Returns:
EOK Success.

EINVAL Invalid mutex attribute object attr.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 2137

pthread mutexattr destroy() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread mutexattr init(), pthread mutex init()

2138 Manifests May 31, 2004

 2004, QNX Software Systems Ltd.

pthread mutexattr getprioceiling()
Get the priority ceiling of a mutex attribute object

Synopsis:
#include <pthread.h>

int pthread mutexattr getprioceiling(
const pthread mutexattr t* attr,
int* prioceiling);

Arguments:
attr A pointer to the pthread mutexattr t object that

you want to get the attribute from.

prioceiling A pointer to a location where the function can store
the priority ceiling.

Library:
libc

Description:
The pthread mutexattr getprioceiling() function sets prioceiling to
the current mutex attribute attr’s scheduling priority ceiling. The
mutex attribute object attr must have been previously created with
pthread mutexattr init().

Returns:
EOK Success.

EINVAL Invalid value specified by attr or prioceiling.

EPERM The caller doesn’t have the privilege to perform the
operation.

May 31, 2004 Manifests 2139

pthread mutexattr getprioceiling() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cond init(), pthread create(), pthread mutex init(),
pthread mutexattr getprotocol(), pthread mutexattr getrecursive(),
pthread mutexattr setprioceiling(), pthread mutexattr setrecursive()

2140 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutexattr getprotocol()
Get a mutex’s scheduling protocol

Synopsis:
#include <pthread.h>

int pthread mutexattr getprotocol(
pthread mutexattr * attr,
int * protocol);

Arguments:
attr A pointer to the pthread mutexattr t object that

you want to get the attribute from.

protocol A pointer to a location where the function can store the
scheduling protocol.

Library:
libc

Description:
The pthread mutexattr getprotocol() function sets protocol to the
current mutex attribute attr’s scheduling protocol. The structure
pointed to by attr must have been previously created with
pthread mutexattr init().

The protocol attribute defines the protocol for using mutexes:
Currently, protocol may be set to:

PTHREAD PRIO INHERIT

When a thread is blocking higher-priority threads by locking
one or more mutexes with this attribute, the thread’s priority is
raised to that of the highest priority thread waiting on the
PTHREAD PRIO INHERIT mutex.

PTHREAD PRIO PROTECT

The thread executes at the highest priority or priority ceilings of
all the mutexes owned by the thread and initialized with

May 31, 2004 Manifests 2141

pthread mutexattr getprotocol() 2004, QNX Software Systems Ltd.

PTHREAD PRIO PROTECT, whether other threads are blocked
or not.

A thread holding a PTHREAD PRIO INHERIT mutex won’t be moved
to the tail of the scheduling queue if its original priority is changed
(by a call to pthread schedsetparam(), for example). This remains
true if the thread unlocks the PTHREAD PRIO INHERIT mutex.

The POSIX protocol of PTHREAD PRIO NONE isn’t currently
supported.

�

Returns:
EOK Success.

EINVAL Invalid mutex attribute attr.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread mutexattr setprotocol(), pthread mutexattr setrecursive()

2142 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutexattr getpshared()
Get the process-shared attribute from a mutex attribute object

Synopsis:
#include <pthread.h>

int pthread mutexattr getpshared(
const pthread mutexattr t* attr,
int* pshared);

Arguments:
attr A pointer to the pthread mutexattr t object that

you want to get the attribute from.

pshared A pointer to a location where the function can store the
process-shared attribute.

Library:
libc

Description:
The pthread mutexattr getpshared() function gets the process-shared
attribute from the mutex attribute object attr and stores it in the
memory pointed to by pshared.

If the process-shared attribute is set to PTHREAD PROCESS SHARED,
any thread that has access to the memory where the condition variable
is allocated can operate on it, even if the condition variable is
allocated in memory that’s shared by multiple processes.

If the process-shared attribute is PTHREAD PROCESS PRIVATE, the
condition variable can only be accessed by threads created within the
same process as the thread that initialized the condition variable; if
threads from other processes try to access the
PTHREAD PROCESS PRIVATE condition variable, the behavior is
undefined. The default value of the process-shared attribute is
PTHREAD PROCESS PRIVATE.

May 31, 2004 Manifests 2143

pthread mutexattr getpshared() 2004, QNX Software Systems Ltd.

Returns:
EOK Success.

EINVAL The mutex attribute object specified by attr is invalid.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cond init(), pthread create(), pthread mutex init(),
pthread mutexattr setpshared(), pthread mutexattr setrecursive()

2144 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutexattr getrecursive()
Get the recursive attribute from a mutex attribute object

Synopsis:
#include <pthread.h>

int pthread mutexattr getrecursive(
const pthread mutexattr t* attr,
int* recursive);

Arguments:
attr A pointer to the pthread mutexattr t object that

you want to get the attribute from.

pshared A pointer to a location where the function can store the
recursive attribute.

Library:
libc

Description:
The pthread mutexattr getrecursive() function gets the recursive
attribute from the mutex attribute object attr and stores it in recursive.

If the recursive attribute is set to PTHREAD RECURSIVE ENABLE, a
thread that has already locked the mutex can lock it again without
blocking. If the recursive attribute is set to
PTHREAD RECURSIVE DISABLE, any thread that tries to lock the
mutex will block, if that mutex is already locked.

The default value of the recursive attribute is
PTHREAD RECURSIVE DISABLE.

Returns:
EOK Success.

EINVAL Invalid mutex attribute object attr.

May 31, 2004 Manifests 2145

pthread mutexattr getrecursive() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread mutexattr init(), pthread mutexattr setrecursive()

2146 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutexattr gettype()
Get a mutex type

Synopsis:
#include <pthread.h>

int pthread mutexattr gettype(
const pthread mutexattr t * attr,
int * type);

Arguments:
attr A pointer to the pthread mutexattr t object that you

want to get the attribute from.

type A pointer to a location where the function can store the type.

Library:
libc

Description:
The pthread mutexattr gettype() function gets the mutex type
attribute in the type parameter. Valid mutex types include:

PTHREAD MUTEX NORMAL

No deadlock detection. A thread that attempts to relock this
mutex without first unlocking it deadlocks. Attempts to unlock
a mutex locked by a different thread or attempts to unlock an
unlocked mutex result in undefined behavior.

PTHREAD MUTEX ERRORCHECK

Provides error checking. A thread returns with an error when it
attempts to:

� Relock this mutex without first unlocking it.

� Unlock a mutex that another thread has locked.

� Unlock an unlocked mutex.

May 31, 2004 Manifests 2147

pthread mutexattr gettype() 2004, QNX Software Systems Ltd.

PTHREAD MUTEX RECURSIVE

A thread that attempts to relock this mutex without first
unlocking it succeeds in locking the mutex. The relocking
deadlock that can occur with mutexes of type
PTHREAD MUTEX NORMAL can’t occur with this mutex type.
Multiple locks of this mutex require the same number of
unlocks to release the mutex before another thread can acquire
the mutex. A thread that attempts to unlock a mutex that
another thread has locked, or unlock an unlocked mutex, returns
with an error.

PTHREAD MUTEX DEFAULT

The default value of the type attribute. Attempts to recursively
lock a mutex of this type, or unlock a mutex of this type that
isn’t locked by the calling thread, or unlock a mutex of this type
that isn’t locked, results in undefined behavior.

Returns:
Zero, and the value of the type attribute of attr is stored in the object
referenced by the type parameter; otherwise, an error.

Errors:
EINVAL Invalid value specified by attr.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

2148 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutexattr gettype()

Caveats:
An application shouldn’t use a PTHREAD MUTEX RECURSIVE
mutex with condition variables because the implicit unlock performed
for a pthread cond wait() or pthread cond timedwait() may not
actually release the mutex (if it’s been locked multiple times). If this
happens, no other thread can satisfy the condition of the predicate.

See also:
pthread cond timedwait(), pthread cond wait(),
pthread mutexattr settype()

May 31, 2004 Manifests 2149

pthread mutexattr init() 2004, QNX Software Systems Ltd.

Initialize a mutex attribute object

Synopsis:
#include <pthread.h>

int pthread mutexattr init(
const pthread mutexattr t* attr);

Arguments:
attr A pointer to the pthread mutexattr t object that you

want to initialize.

Library:
libc

Description:
The pthread mutexattr init() function initializes the attributes in the
mutex attribute object attr to their default values. After initializing a
mutex attribute object, you can use it to initialize one or more
mutexes by calling pthread mutex init().

The mutex attributes and their default values are:

protocol PTHREAD PRIO INHERIT

recursive PTHREAD RECURSIVE DISABLE

After calling this function, you can use the pthread mutexattr *
family of functions to make any changes to the attributes:

Get Set

pthread mutexattr getprioceiling(), pthread mutexattr setprioceiling(),

pthread mutexattr getprotocol(), pthread mutexattr setprotocol(),

continued. . .

2150 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutexattr init()

Get Set

pthread mutexattr getpshared(), pthread mutexattr setpshared(),

pthread mutexattr getrecursive(), pthread mutexattr setrecursive(),

pthread mutexattr gettype(), pthread mutexattr settype()

Returns:
EOK Success.

ENOMEM Insufficient memory to initialize mutex attribute object
attr.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread mutex init(), pthread mutexattr destroy(),
pthread mutexattr getprioceiling(), pthread mutexattr getprotocol(),
pthread mutexattr getpshared(), pthread mutexattr getrecursive(),
pthread mutexattr gettype(), pthread mutexattr setprioceiling(),
pthread mutexattr setprotocol(), pthread mutexattr setpshared(),
pthread mutexattr setrecursive(), pthread mutexattr settype()

May 31, 2004 Manifests 2151

pthread mutexattr setprioceiling() 2004, QNX Software Systems Ltd.

Set the priority ceiling of a mutex attribute object

Synopsis:
#include <pthread.h>

int pthread mutexattr setprioceiling(
pthread mutexattr t* attr,
int prioceiling);

Arguments:
attr A pointer to the pthread mutexattr t object that

you want to set the attribute in.

prioceiling The new value for the priority ceiling.

Library:
libc

Description:
The pthread mutexattr setprioceiling() function sets the mutex
attribute attr’s scheduling priority ceiling to prioceiling. Note that attr
must have been previously created with pthread mutexattr init().

Returns:
EOK Success.

EINVAL Invalid value specified by attr or prioceiling.

EPERM The caller doesn’t have the privilege to perform the
operation.

Classification:
POSIX 1003.1 (Threads)

2152 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutexattr setprioceiling()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread create(), pthread mutex init(), pthread cond init(),
pthread mutexattr getprioceiling(), pthread mutexattr getprotocol(),
pthread mutexattr getrecursive()

May 31, 2004 Manifests 2153

pthread mutexattr setprotocol() 2004, QNX Software Systems Ltd.

Set a mutex’s scheduling protocol

Synopsis:
#include <pthread.h>

int pthread mutexattr setprotocol(
pthread mutexattr * attr,
int protocol);

Arguments:
attr A pointer to the pthread mutexattr t object that

you want to set the attribute in.

protocol The new value of the scheduling protocol; one of:

� PTHREAD PRIO INHERIT — when a thread is
blocking higher-priority threads by locking one or
more mutexes with this attribute, raise the thread’s
priority to that of the highest priority thread waiting
on the PTHREAD PRIO INHERIT mutex.

� PTHREAD PRIO PROTECT — execute the thread at
the highest priority or priority ceilings of all the
mutexes owned by the thread and initialized with
PTHREAD PRIO PROTECT, whether other threads are
blocked or not.

The POSIX protocol of PTHREAD PRIO NONE isn’t currently
supported.

�

Library:
libc

Description:
The pthread mutexattr setprotocol() function sets the mutex attribute
attr’s scheduling protocol to protocol. The structure pointed to by attr
must have been previously created with pthread mutexattr init().

2154 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutexattr setprotocol()

The protocol attribute defines the protocol for using mutexes. A
thread holding a PTHREAD PRIO INHERIT mutex won’t be moved to
the tail of the scheduling queue if its original priority is changed (by a
call to pthread schedsetparam(), for example). This remains true if
the thread unlocks the PTHREAD PRIO INHERIT mutex.

Returns:
EOK Success.

ENOTSUP The protocol argument is an unsupported or an invalid
value.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread mutexattr getprotocol(), pthread mutexattr getrecursive()

May 31, 2004 Manifests 2155

pthread mutexattr setpshared() 2004, QNX Software Systems Ltd.

Set the process-shared attribute in mutex attribute object

Synopsis:
#include <pthread.h>

int pthread mutexattr setpshared(
pthread mutexattr t* attr,
int pshared);

Arguments:
attr A pointer to the pthread mutexattr t object that

you want to set the attribute in.

pshared The new value of the process-shared attribute; one of:

� PTHREAD PROCESS SHARED — any thread that has
access to the memory where the mutex is allocated
can operate on it, even if the mutex is allocated in
memory that’s shared by multiple processes.

� PTHREAD PROCESS PRIVATE — the mutex can be
accessed only by threads created within the same
process as the thread that initialized the mutex; if
threads from other processes try to access the
PTHREAD PROCESS PRIVATE mutex, the behavior is
undefined.

The default value of the process-shared attribute is
PTHREAD PROCESS PRIVATE.

Library:
libc

Description:
The pthread mutexattr setpshared() function sets the process-shared
attribute in a mutex attribute object, attr, to the value given by
pshared.

2156 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutexattr setpshared()

Returns:
EOK Success.

EINVAL Invalid mutex attribute object, attr.

EINVAL The new value specified in pshared isn’t
PTHREAD PROCESS SHARED or
PTHREAD PROCESS PRIVATE.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cond init(), pthread create(),
pthread mutexattr getpshared(), pthread mutexattr getrecursive(),
pthread mutex init(), pthread mutexattr setrecursive()

May 31, 2004 Manifests 2157

pthread mutexattr setrecursive() 2004, QNX Software Systems Ltd.

Set the recursive attribute in mutex attribute object

Synopsis:
#include <pthread.h>

int pthread mutexattr setrecursive(
pthread mutexattr t* attr,
int recursive);

Arguments:
attr A pointer to the pthread mutexattr t object that

you want to set the attribute in.

recursive The new value for the recursive attribute; one of:

� PTHREAD RECURSIVE ENABLE — a thread that
has already locked the mutex can lock it again
without blocking.

� PTHREAD RECURSIVE DISABLE — any thread that
tries to lock the mutex blocks, if that mutex is
already locked.

The default value of the recursive attribute is
PTHREAD RECURSIVE DISABLE.

Library:
libc

Description:
The pthread mutexattr setrecursive() function sets the recursive
attribute in a mutex attribute object, attr.

Returns:
EOK Success.

EINVAL Invalid mutex attribute object, attr, or the value specified
by recursive isn’t PTHREAD RECURSIVE ENABLE or
PTHREAD RECURSIVE DISABLE.

2158 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutexattr setrecursive()

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread mutexattr getrecursive(), pthread mutexattr init()

May 31, 2004 Manifests 2159

pthread mutexattr settype() 2004, QNX Software Systems Ltd.

Set a mutex type

Synopsis:
#include <pthread.h>

int pthread mutexattr settype(
pthread mutexattr t * attr,
int type);

Arguments:
attr A pointer to the pthread mutexattr t object that you

want to set the attribute in.

type The new type; one of:

� PTHREAD MUTEX NORMAL — no deadlock detection.
A thread that attempts to relock this mutex without first
unlocking it deadlocks. Attempts to unlock a mutex
locked by a different thread or attempts to unlock an
unlocked mutex result in undefined behavior.

� PTHREAD MUTEX ERRORCHECK — provides error
checking. A thread returns with an error when it attempts
to relock this mutex without first unlocking it, unlock a
mutex that another thread has locked, or unlock an
unlocked mutex.

� PTHREAD MUTEX RECURSIVE — a thread that attempts
to relock this mutex without first unlocking it succeeds in
locking the mutex. The relocking deadlock that can occur
with mutexes of type PTHREAD MUTEX NORMAL can’t
occur with this mutex type. Multiple locks of this mutex
require the same number of unlocks to release the mutex
before another thread can acquire the mutex. A thread that
attempts to unlock a mutex that another thread has locked,
or unlock an unlocked mutex, returns with an error.

� PTHREAD MUTEX DEFAULT — the default value of the
type attribute. Attempts to recursively lock a mutex of this
type, or unlock a mutex of this type that isn’t locked by

2160 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread mutexattr settype()

the calling thread, or unlock a mutex of this type that isn’t
locked, results in undefined behavior.

Library:
libc

Description:
The pthread mutexattr settype() function sets the mutex type attribute
in the type parameter.

Returns:
Zero for success, or an error number.

Errors:
EINVAL The value specified by attr or type is invalid.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
An application shouldn’t use a PTHREAD MUTEX RECURSIVE
mutex with condition variables because the implicit unlock performed
for a pthread cond wait() or pthread cond timedwait() may not

May 31, 2004 Manifests 2161

pthread mutexattr settype() 2004, QNX Software Systems Ltd.

actually release the mutex (if it’s been locked multiple times). If this
happens, no other thread can satisfy the condition of the predicate.

See also:
pthread cond timedwait(), pthread cond wait(),
pthread mutexattr gettype()

2162 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread once()
Dynamic package initialization

Synopsis:
#include <pthread.h>

pthread once t once control = PTHREAD ONCE INIT;

int pthread once(pthread once t* once control,
void (*init routine)(void));

Arguments:
once control A pointer to a pthread once t object that the

function uses to determine whether or not to run the
initialization code.

You must set the pthread once t object to the macro
PTHREAD ONCE INIT before using it for the first time.

�

init routine The function that you want to call to do any required
initialization.

Library:
libc

Description:
The pthread once() function uses the once-control object
once control to determine whether the initialization routine
init routine should be called. The first call to pthread once() by any
thread in a process, with a given once control, calls init routine with
no arguments. Subsequent calls of pthread once() with the same
once control won’t call init routine.

No thread will execute past this function until the init routine returns.�

May 31, 2004 Manifests 2163

pthread once() 2004, QNX Software Systems Ltd.

Returns:
EOK Success.

EINVAL Uninitialized once-control object once control.

Examples:
This example shows how you can use once-initialization to initialize a
library; both library entry point1() and library entry point2() need to
initialize the library, but that needs to happen only once:

#include <stdio.h>
#include <pthread.h>

pthread once t once control = PTHREAD ONCE INIT;

void library init(void)
{

/* initialize the library */
}

void library entry point1(void)
{

pthread once(&once control, library init);

/* do stuff for library entry point1... */
}

void library entry point2(void)
{

pthread once(&once control, library init);

/* do stuff for library entry point1... */
}

This initializes the library once; if multiple threads call
pthread once(), only one actually enters the library init() function.
The other threads block at the pthread once() call until library init()
has returned. The pthread once() function also ensures that
library init() is only ever called once; subsequent calls to the library
entry points skip the call to library init().

2164 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread once()

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 2165

pthread rwlock destroy() 2004, QNX Software Systems Ltd.

Destroy a read-write lock

Synopsis:
#include <pthread.h>

int pthread rwlock destroy(pthread rwlock t* rwl);

Arguments:
rwl A pointer to a pthread rwlock t object that you want to

destroy.

Library:
libc

Description:
The pthread rwlock destroy() function destroys the read-write lock
referenced by rwl, and releases the system resources used by the lock.
You can destroy the read-write lock if one of the following is true:

� no thread has a active shared or exclusive lock on rwl

� the calling thread has an active exclusive lock on rwl.

After successfully destroying a read-write lock, don’t use it again
without reinitializing it by calling pthread rwlock init().

�

Returns:
EOK Success.

EBUSY The read-write lock rwl is still in use. The calling thread
doesn’t have an exclusive lock.

2166 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread rwlock destroy()

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread rwlock init(), pthread rwlock rdlock(),
pthread rwlock tryrdlock(), pthread rwlock trywrlock(),
pthread rwlock unlock(), pthread rwlock wrlock()

May 31, 2004 Manifests 2167

pthread rwlock init() 2004, QNX Software Systems Ltd.

Initialize a read-write lock

Synopsis:
#include <pthread.h>

int pthread rwlock init(
pthread rwlock t * rwl,
const pthread rwlockattr t * attr);

Arguments:
rwl A pointer to a pthread rwlock t object that you want to

initialize.

attr NULL, or a pointer to a pthread rwlockattr t object
that specifies the attributes you want to use for the read-write
lock; see pthread rwlockattr init().

Library:
libc

Description:
The pthread rwlock init() function initializes the read-write lock
referenced by rwl with the attributes of attr. You must initialize
read-write locks before using them. If attr is NULL, rwl is initialized
with the default values for the attributes.

Following a successful call to pthread rwlock init(), the read-write
lock is unlocked, and you can use it in subsequent calls to
pthread rwlock destroy(), pthread rwlock rdlock(),
pthread rwlock tryrdlock(), pthread rwlock trywrlock(), and
pthread rwlock wrlock(). This lock remains usable until you destroy
it by calling pthread rwlock destroy().

If the read-write lock is statically allocated, you can initialize it with
the default values by setting it to PTHREAD RWLOCK INITIALIZER.

More than one thread may hold a shared lock at any time, but only
one thread may hold an exclusive lock. This avoids reader and writer
starvation during frequent contention by:

2168 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread rwlock init()

� favoring blocked readers over writers after a writer has just
released an exclusive lock, and

� favoring writers over readers when there are no blocked readers.

Under heavy contention, the lock alternates between a single
exclusive lock followed by a batch of shared locks.

Returns:
EOK Success.

EAGAIN Insufficient system resources to initialize the read-write
lock.

EBUSY The read-write lock rwl has been initialized or
unsuccessfully destroyed.

EFAULT A fault occurred when the kernel tried to access rwl or
attr.

EINVAL Invalid read-write lock attribute object attr.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 2169

pthread rwlock init() 2004, QNX Software Systems Ltd.

Caveats:
Beware of priority inversion when using read-write locks. A
high-priority thread may be blocked waiting on a read-write lock
locked by a low-priority thread.

The microkernel has no knowledge of read-write locks, and therefore
can’t boost the low-priority thread to prevent the priority inversion.

See also:
pthread rwlockattr init(), pthread rwlock destroy(),
pthread rwlock rdlock(), pthread rwlock tryrdlock(),
pthread rwlock trywrlock(), pthread rwlock wrlock(),
pthread rwlock unlock()

2170 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread rwlock rdlock()
Acquire a shared read lock on a read-write lock

Synopsis:
#include <pthread.h>

int pthread rwlock rdlock(pthread rwlock t* rwl);

Arguments:
rwl A pointer to a pthread rwlock t object that you want to

lock for reading.

Library:
libc

Description:
The pthread rwlock rdlock() function acquires a shared lock on the
read-write lock referenced by rwl. If the read-write lock is already
exclusively locked, the calling thread blocks until the exclusive lock is
released.

If a signal is delivered to a thread waiting to lock a read-write lock, it
will resume waiting for the lock after returning from the signal
handler.

A thread may hold several read locks on the same read-write lock; it
must call pthread rwlock unlock() multiple times to release its read
lock.

Returns:
EOK Success.

EAGAIN On the first use of statically initialized read-write
lock, insufficient system resources existed to initialize
the read-write lock.

EDEADLK The calling thread already has an exclusive lock for
rwl.

May 31, 2004 Manifests 2171

pthread rwlock rdlock() 2004, QNX Software Systems Ltd.

EFAULT A fault occurred when the kernel tried to access rwl.

EINVAL The read-write lock rwl is invalid.

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread rwlock destroy(), pthread rwlock init(),
pthread rwlock tryrdlock(), pthread rwlock trywrlock(),
pthread rwlock unlock(), pthread rwlock wrlock()

2172 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread rwlock timedrdlock()
Lock a read-write lock for reading

Synopsis:
#include <pthread.h>
#include <time.h>

int pthread rwlock timedrdlock(
pthread rwlock t * rwlock,
const struct timespec * abs timeout);

Arguments:
rwlock The read-write lock that you want to lock.

abs timeout A pointer to a timespec that specifies the maximum
time to wait to acquire the lock, expressed as an
absolute time.

Library:
libc

Description:
The pthread rwlock timedrdlock() function applies a read lock to the
read-write lock referenced by rwlock as in pthread rwlock rdlock().

However, if the lock can’t be acquired without waiting for other
threads to unlock it, this wait terminates when the specified timeout
expires. The timeout expires when the absolute time specified by
abs timeout passes, as measured by the clock on which timeouts are
based (i.e. when the value of that clock equals or exceed
abs timeout), or if the absolute time specified by abs timeout has
already been passed at the time of the call.

The timeout is based on the CLOCK REALTIME clock.

If the read-write lock can be locked immediately, the validity of the
abs timeout parameter isn’t checked, and the function won’t fail with
a timeout.

May 31, 2004 Manifests 2173

pthread rwlock timedrdlock() 2004, QNX Software Systems Ltd.

If a signal that causes a signal handler to be executed is delivered to a
thread blocked on a read-write lock via a call to
pthread rwlock timedrdlock(), upon return from the signal handler the
thread resumes waiting for the lock as if it hadn’t been interrupted.

The calling thread may deadlock if at the time the call is made it holds
a write lock on rwlock. The results are undefined if this function is
called with an uninitialized read-write lock.

Returns:
Zero if the lock for reading on the read-write lock object referenced
by rwlock is acquired, or an error number to indicate the error.

Errors:
EAGAIN Couldn’t acquire read lock because the maximum

number of read locks for lock would be exceeded.

EDEADLK The calling thread already holds a write lock on
rwlock.

EINVAL The value specified by rwlock doesn’t refer to an
initialized read-write lock object, or the
abs timeout nanosecond value is less than zero or
greater than or equal to 1,000 million.

ETIMEDOUT The lock couldn’t be acquired before the specified
timeout expired.

Classification:
POSIX 1003.1j

Safety

Cancellation point Yes

Interrupt handler No

continued. . .

2174 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread rwlock timedrdlock()

Safety

Signal handler Yes

Thread Yes

See also:
pthread rwlock destroy(), pthread rwlock init(),
pthread rwlock timedwrlock(), pthread rwlock trywrlock(),
pthread rwlock tryrdlock(), pthread rwlock unlock(),
pthread rwlock wrlock(), timespec

May 31, 2004 Manifests 2175

pthread rwlock timedwrlock() 2004, QNX Software Systems Ltd.

Lock a read-write lock for writing

Synopsis:
#include <pthread.h>
#include <time.h>

int pthread rwlock timedwrlock(
pthread rwlock t * rwlock,
const struct timespec * abs timeout);

Arguments:
rwlock The read-write lock that you want to lock.

abs timeout A pointer to a timespec that specifies the maximum
time to wait to acquire the lock, expressed as an
absolute time.

Library:
libc

Description:
The pthread rwlock timedwrlock() function applies a write lock to the
read-write lock referenced by rwlock as in pthread rwlock wrlock().

However, if the lock can’t be acquired without waiting for other
threads to unlock the lock, this wait terminates when the specified
timeout expires. The timeout expires when the absolute time specified
by abs timeout passes, as measured by the clock on which timeouts
are based (i.e. when the value of that clock equals or exceed
abs timeout), or if the absolute time specified by abs timeout has
already been passed at the time of the call.

The timeout is based on the CLOCK REALTIME clock.

If the read-write lock can be locked immediately, the validity of the
abs timeout parameter isn’t checked, and the function won’t fail with
a timeout.

2176 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread rwlock timedwrlock()

If a signal that causes a signal handler to be executed is delivered to a
thread blocked on a read-write lock via a call to
pthread rwlock timedwrlock(), upon return from the signal handler
the thread resumes waiting for the lock as if it hadn’t been interrupted.

The calling thread may deadlock if at the time the call is made it holds
a write lock on rwlock. The results are undefined if this function is
called with an uninitialized read-write lock.

Returns:
Zero if the lock for writing on the read-write lock object referenced
by rwlock is acquired, or an error number to indicate the error.

Errors:
EAGAIN Couldn’t acquire read lock because the maximum

number of read locks for lock would be exceeded.

EDEADLK The calling thread already holds the rwlock.

EINVAL The value specified by rwlock doesn’t refer to an
initialized read-write lock object, or the
abs timeout nanosecond value is less than zero or
greater than or equal to 1,000 million.

ETIMEDOUT The lock couldn’t be acquired before the specified
timeout expired.

Classification:
POSIX 1003.1j

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

continued. . .

May 31, 2004 Manifests 2177

pthread rwlock timedwrlock() 2004, QNX Software Systems Ltd.

Safety

Thread Yes

See also:
pthread rwlock destroy(), pthread rwlock init(),
pthread rwlock timedrdlock(), pthread rwlock trywrlock(),
pthread rwlock tryrdlock(), pthread rwlock unlock(),
pthread rwlock wrlock(), timespec

2178 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread rwlock tryrdlock()
Attempt to acquire a shared lock on a read-write lock

Synopsis:
#include <pthread.h>

int pthread rwlock tryrdlock(
pthread rwlock t* rwl);

Arguments:
rwl A pointer to a pthread rwlock t object that you want to

lock for reading.

Library:
libc

Description:
The pthread rwlock tryrdlock() function attempts to acquire a shared
lock on the read-write lock referenced by rwl. If the read-write lock is
already exclusively locked by any thread (including the calling
thread), the function returns immediately instead of blocking until a
read lock can be obtained.

Returns:
EOK Success.

EAGAIN On the first use of a statically initialized read-write
lock, insufficient system resources existed to initialize
the read-write lock.

EBUSY The read-write lock was already write locked.

EDEADLK The calling thread already has an exclusive lock for
rwl.

EFAULT A fault occurred when the kernel tried to access rwl.

EINVAL The read-write lock rwl is invalid.

May 31, 2004 Manifests 2179

pthread rwlock tryrdlock() 2004, QNX Software Systems Ltd.

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread rwlock destroy(), pthread rwlock init(),
pthread rwlock rdlock(), pthread rwlock trywrlock(),
pthread rwlock unlock(), pthread rwlock wrlock()

2180 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread rwlock trywrlock()
Attempt to acquire an exclusive lock on a read-write lock

Synopsis:
#include <pthread.h>

int pthread rwlock trywrlock(
pthread rwlock t* rwl);

Arguments:
rwl A pointer to a pthread rwlock t object that you want to

lock for writing.

Library:
libc

Description:
The pthread rwlock trywrlock() function attempts to acquire an
exclusive lock on the read-write lock referenced by rwl. If the
read-write lock is already exclusively locked or shared locked, the
function returns immediately instead of blocking until an exclusive
lock can be obtained.

The function may need to block to determine the state of the
read-write lock.

Returns:
EOK Success.

EAGAIN On the first use of a statically initialized read-write
lock, insufficient system resources existed to initialize
the read-write lock.

EBUSY The read-write lock was already write locked or read
locked.

EDEADLK The calling thread already has an exclusive lock for
rwl.

May 31, 2004 Manifests 2181

pthread rwlock trywrlock() 2004, QNX Software Systems Ltd.

EFAULT A fault occurred when the kernel tried to access rwl.

EINVAL The read-write lock rwl is invalid.

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread rwlock destroy(), pthread rwlock init(),
pthread rwlock rdlock(), pthread rwlock tryrdlock(),
pthread rwlock unlock(), pthread rwlock wrlock()

2182 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread rwlock unlock()
Unlock a read-write lock

Synopsis:
#include <pthread.h>

int pthread rwlock unlock(pthread rwlock t* rwl);

Arguments:
rwl A pointer to a pthread rwlock t object that you want to

unlock.

Library:
libc

Description:
The pthread rwlock unlock() function unlocks a read-write lock
referenced by rwl. The read-write lock may become available for any
threads that were blocked on the read-write lock, depending on
whether the read-write lock had been locked in exclusive or shared
mode.

The read-write lock should be owned by the calling thread. If the
calling thread doesn’t hold the lock, no error status is returned, and
the behavior of this read-write lock is now undefined.

�

Returns:
EOK Success.

EAGAIN On the first use of a statically initialized read-write lock,
insufficient system resources existed to initialize the
read-write lock.

EFAULT A fault occurred when the kernel tried to access rwl.

EINVAL The read-write lock rwl is invalid.

May 31, 2004 Manifests 2183

pthread rwlock unlock() 2004, QNX Software Systems Ltd.

EPERM No thread has a read or write lock on rwl or the calling
thread doesn’t have a write lock on rwl.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread rwlock destroy(), pthread rwlock init(),
pthread rwlock rdlock(), pthread rwlock tryrdlock(),
pthread rwlock trywrlock(), pthread rwlock wrlock()

2184 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread rwlock wrlock()
Acquire an exclusive write lock on a read-write lock

Synopsis:
#include <pthread.h>

int pthread rwlock wrlock(
pthread rwlock t* rwl);

Arguments:
rwl A pointer to a pthread rwlock t object that you want to

lock for writing.

Library:
libc

Description:
The pthread rwlock wrlock() function acquires an exclusive lock on
the read-write lock referenced by rwl. If the read-write lock is already
shared-locked by any thread (including the calling thread) or
exclusively-locked by any thread (other than the calling thread), the
calling thread blocks until all shared locks and exclusive locks are
released.

If a signal is delivered to a thread waiting to lock a read-write lock, it
resumes waiting for the lock after returning from the signal handler.

Returns:
EOK Success.

EAGAIN On the first use of a statically initialized read-write
lock, insufficient system resources existed to initialize
the read-write lock.

EDEADLK The calling thread already has an exclusive lock for
rwl.

EFAULT A fault occurred when the kernel tried to access rwl.

May 31, 2004 Manifests 2185

pthread rwlock wrlock() 2004, QNX Software Systems Ltd.

EINVAL The read-write lock rwl is invalid.

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread rwlock destroy(), pthread rwlock init(),
pthread rwlock rdlock(), pthread rwlock tryrdlock(),
pthread rwlock trywrlock(), pthread rwlock unlock()

2186 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread rwlockattr destroy()
Destroy a read-write lock attribute object

Synopsis:
#include <pthread.h>

int pthread rwlockattr destroy(
pthread rwlockattr t* attr);

Arguments:
attr A pointer to the pthread rwlockattr t object that you

want to destroy.

Library:
libc

Description:
The pthread rwlockattr destroy() function destroys a read-write lock
attribute object created by pthread rwlockattr init().

Don’t use a destroyed read-write lock attribute object reinitializing it
by calling pthread rwlockattr init().

�

Returns:
EOK Success.

EINVAL The object specified by attr is invalid.

Classification:
Standard Unix

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 2187

pthread rwlockattr destroy() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread rwlockattr getpshared(), pthread rwlockattr init(),
pthread rwlockattr setpshared()

2188 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread rwlockattr getpshared()
Get the process-shared attribute of a read-write lock attribute object

Synopsis:
#include <pthread.h>

int pthread rwlockattr getpshared(
const pthread rwlockattr t* attr,
int* pshared);

Arguments:
attr A pointer to the pthread rwlockattr t object that

you want to get the attribute from.

pshared A pointer to a location where the function can store the
process-shared attribute.

Library:
libc

Description:
The pthread rwlockattr getpshared() function gets the the
process-shared attribute for the read-write lock attribute object
specified by attr, storing it in pshared.

To let any thread with access to the read-write lock object’s memory
operate it, the process-shared attribute must be set to
PTHREAD PROCESS SHARED, even if those threads are in different
processes. Set the process-shared attribute to
PTHREAD PROCESS PRIVATE to limit access to threads in the current
process.

Returns:
EOK Success.

EINVAL The read-write lock attribute object specified by attr is
invalid.

May 31, 2004 Manifests 2189

pthread rwlockattr getpshared() 2004, QNX Software Systems Ltd.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread rwlockattr destroy(), pthread rwlockattr init(),
pthread rwlockattr setpshared()

2190 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread rwlockattr init()
Create a read-write lock attribute object

Synopsis:
#include <pthread.h>

int pthread rwlockattr init(
pthread rwlockattr t* attr);

Arguments:
attr A pointer to the pthread rwlockattr t object that you

want to initialize.

Library:
libc

Description:
The pthread rwlockattr init() function initializes the specified
read-write lock attribute object to its default values.

Changes made to a read-write lock attribute object changes after it’s
been used to initialize a read-write lock won’t affect the previously
initialized read-write locks.

Returns:
EOK Success.

ENOMEM There isn’t enough memory available to initialize attr.

Classification:
Standard Unix

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 2191

pthread rwlockattr init() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread rwlockattr destroy(), pthread rwlockattr getpshared(),
pthread rwlockattr setpshared()

2192 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread rwlockattr setpshared()
Set the process-shared attribute of a read-write lock attribute object

Synopsis:
#include <pthread.h>

int pthread rwlockattr setpshared(
pthread rwlockattr t* attr,
int pshared);

Arguments:
attr A pointer to the pthread rwlockattr t object that

you want to set the attribute for.

pshared The new value of the process-shared attribute; one of:

� PTHREAD PROCESS SHARED — let any thread with
access to the read-write lock object’s memory operate
it, even if those threads are in different processes.

� PTHREAD PROCESS PRIVATE — limit access to
threads in the current process.

Library:
libc

Description:
The pthread rwlockattr setpshared() function sets the process-shared
attribute for the read-write lock attribute object specified by attr to
pshared.

Returns:
EOK Success.

EINVAL The pshared argument is invalid.

May 31, 2004 Manifests 2193

pthread rwlockattr setpshared() 2004, QNX Software Systems Ltd.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread rwlockattr destroy(), pthread rwlockattr getpshared(),
pthread rwlockattr init()

2194 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread self()
Get the calling thread’s ID

Synopsis:
#include <pthread.h>

pthread t pthread self(void);

Library:
libc

Description:
The pthread self() function returns the thread ID of the calling thread.

Returns:
The ID of the calling thread.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread create(), pthread equal()

May 31, 2004 Manifests 2195

pthread setcancelstate() 2004, QNX Software Systems Ltd.

Set a thread’s cancellation state

Synopsis:
#include <pthread.h>

int pthread setcancelstate(int state,
int* oldstate);

Arguments:
state The new cancellation state.

oldstate A pointer to a location where the function can store the
old cancellation state.

Library:
libc

Description:
The pthread setcancelstate() function sets the calling thread’s
cancellation state to state and returns the previous cancellation state in
oldstate.

The cancellation state can have the following values:

PTHREAD CANCEL DISABLE

Cancellation requests are held pending.

PTHREAD CANCEL ENABLE

Cancellation requests may be acted on according to the
cancellation type; see pthread setcanceltype().

The default cancellation state for a thread is
PTHREAD CANCEL ENABLE.

2196 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread setcancelstate()

You can set this attribute (in a non-POSIX way) before creating the
thread; for more information, see “QNX extensions,” in the
documentation for pthread create().

�

Returns:
EOK Success.

EINVAL The cancellation state specified by state is invalid.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cancel(), pthread setcanceltype(), pthread testcancel()

May 31, 2004 Manifests 2197

pthread setcanceltype() 2004, QNX Software Systems Ltd.

Set a thread’s cancellation type

Synopsis:
#include <pthread.h>

int pthread setcanceltype(int type,
int* oldtype);

Arguments:
type The new cancellation type.

oldtype A pointer to a location where the function can store the
old cancellation type.

Library:
libc

Description:
The pthread setcanceltype() function sets the calling thread’s
cancellation type to type and returns the previous cancellation type in
oldtype.

The cancellation type can have the following values:

PTHREAD CANCEL ASYNCHRONOUS

If cancellation is enabled, new or pending cancellation requests
may be acted on immediately.

PTHREAD CANCEL DEFERRED

If cancellation is enabled, cancellation requests are held
pending until a cancellation point.

The default cancellation state for a thread is
PTHREAD CANCEL DEFERRED. Note that the standard POSIX and
C library calls aren’t asynchronous-cancellation safe.

2198 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread setcanceltype()

You can set this attribute (in a non-POSIX way) before creating the
thread; for more information, see “QNX extensions,” in the
documentation for pthread create().

�

Returns:
EOK Success.

EINVAL Invalid cancelability type type.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cancel(), pthread setcancelstate(), pthread testcancel()

May 31, 2004 Manifests 2199

pthread setconcurrency() 2004, QNX Software Systems Ltd.

Set the concurrency level for a thread

Synopsis:
#include <pthread.h>

int pthread setconcurrency(int new level);

Arguments:
new level The new value for the concurrency level.

Library:
libc

Description:
QNX Neutrino doesn’t support the multiplexing of user threads on top
of several kernel scheduled entities. As such, the
pthread setconcurrency() and pthread getconcurrency() functions are
provided for source code compatibility but they have no effect when
called. To maintain the function semantics, the new level parameter is
saved when pthread setconcurrency() is called so that a subsequent
call to pthread getconcurrency() returns the same value.

Returns:
EOK Success.

EINVAL Negative argument new level.

EAGAIN The value specified by new level would cause a system
resource to be exceeded.

Classification:
Standard Unix

2200 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread setconcurrency()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread getconcurrency()

May 31, 2004 Manifests 2201

pthread setschedparam() 2004, QNX Software Systems Ltd.

Set thread scheduling parameters

Synopsis:
#include <pthread.h>

int pthread setschedparam(
pthread t thread,
int policy,
const struct sched param *param);

Arguments:
thread The ID of the thread that you want to get the scheduling

parameters for. You can get a thread ID by calling
pthread create() or pthread self().

policy The new scheduling policy; one of:

� SCHED FIFO — a fixed-priority scheduler in which the
highest priority, ready thread runs until it blocks or is
preempted by a higher priority thread.

� SCHED RR — the same as SCHED FIFO, except threads
at the same priority level time slice (round robin) every
50 msec.

� SCHED OTHER — currently the same as SCHED RR.

Currently, you can set a thread’s scheduling policy to
SCHED SPORADIC only when you create the thread. If you use
sporadic scheduling, you can’t change the policy later. For more
information, see pthread attr setschedpolicy().

�

param A pointer to a sched param structure that specifies the
scheduling parameters that you want to use.

Library:
libc

2202 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread setschedparam()

Description:
The pthread setschedparam() function sets the scheduling policy and
associated scheduling parameters of thread thread to the values
specified in policy and param.

Returns:
EOK Success.

EINVAL Invalid scheduling policy policy or parameters param.

ENOTSUP Unsupported scheduling policy policy or parameters
param.

EPERM Insufficient privilege to modify scheduling policy
policy or parameters param.

ESRCH Invalid thread ID thread.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread getschedparam(), sched param

May 31, 2004 Manifests 2203

pthread setspecific() 2004, QNX Software Systems Ltd.

Set a thread-specific data value

Synopsis:
#include <pthread.h>

int pthread setspecific(pthread key t key,
const void* value);

Arguments:
key The key associated with the data that you want to set. See

pthread key create().

value The value that you want to store.

Library:
libc

Description:
The pthread setspecific() function binds the thread specific data value
value with the thread specific data key key.

You can call this function from within a thread-specific data
destructor function.

You must call this function with a key that you got from
pthread key create(). You can’t use a key after destroying it with
pthread key delete().

�

Returns:
EOK Success.

ENOMEM Insufficient memory to store thread specific data value
value.

EINVAL Invalid thread specific data key key.

2204 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread setspecific()

Examples:
See pthread key create().

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
Calling pthread setspecific() with a non-NULL value may result in
lost storage or infinite loops unless value was returned by
pthread key create().

See also:
pthread key create(), pthread getspecific()

May 31, 2004 Manifests 2205

pthread sigmask() 2004, QNX Software Systems Ltd.

Examine and change blocked signals

Synopsis:
#include <signal.h>

int pthread sigmask(int how,
const sigset t* set,
sigset t* oset);

Arguments:
how How you want to change the signal mask; one of:

� SIG BLOCK — make the resulting signal mask the union
of the current signal mask and the signal set set.

� SIG UNBLOCK — make the resulting signal mask the
intersection of the current signal mask and the
complement of the signal set set.

� SIG SETMASK — make the resulting signal mask the
signal set set.

This argument is valid only if set is non-NULL.

set A pointer to a sigset t object that specifies the signals that
you want to affect in the mask.

oset NULL, or a pointer to a sigset t object where the function
can store the thread’s old signal mask.

Library:
libc

Description:
The pthread sigmask() function is used to examine and/or change the
calling thread’s signal mask. If set is non-NULL, the thread’s signal
mask is set to set. If oset is non-NULL, the thread’s old signal mask is
returned in oset.

You can’t block the SIGKILL and SIGSTOP signals.

2206 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread sigmask()

Returns:
EOK Success.

EINVAL Invalid how parameter.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
sigprocmask()

May 31, 2004 Manifests 2207

pthread sleepon broadcast() 2004, QNX Software Systems Ltd.

Unblock waiting threads

Synopsis:
#include <pthread.h>

int pthread sleepon broadcast(const volatile void * addr);

Arguments:
addr The handle that the threads are waiting on. The value of

addr is typically a data structure that controls a resource.

Library:
libc

Description:
The pthread sleepon broadcast() function unblocks all threads
currently waiting on addr. The threads are unblocked in priority order.

Here’s a table to help you decide when to use
pthread sleepon broadcast() or pthread sleepon signal():

Task pthread sleepon broadcast()pthread sleepon signal()

Mapping a single
predicate to one address.

You must recheck the
predicate and reblock if
necessary. See
pthread sleepon signal()
for a better
implementation.
The first thread to wake
up owns the lock, all
others must go back to
sleep.

This is the correct and
efficient use of
pthread sleepon signal().
You don’t have to recheck
the predicate.
One thread owns the lock
at a time.

continued. . .

2208 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread sleepon broadcast()

Task pthread sleepon broadcast()pthread sleepon signal()

Mapping multiple
predicates to one address.

The
pthread sleepon broadcast()
function is necessary to
wake up all blocked
threads. You must
recheck the predicates
and reblock if necessary.
You should try to map
only one predicate to one
address.

Don’t use
pthread sleepon signal()
in this case; it could result
in a deadlock.

Returns:
EOK Success.

EINVAL Invalid sleepon address.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cond broadcast(), pthread sleepon signal(),
pthread sleepon lock(), pthread sleepon unlock(),
pthread sleepon wait()

May 31, 2004 Manifests 2209

pthread sleepon lock() 2004, QNX Software Systems Ltd.

Lock the pthread sleepon* functions

Synopsis:
#include <pthread.h>

int pthread sleepon lock(void);

Library:
libc

Description:
The pthread sleepon lock() function calls pthread mutex lock() on a
mutex associated with the pthread sleepon* class of functions. You
should call this function before testing conditions that determine
whether you need to call pthread sleepon wait(),
pthread sleepon signal(), or pthread sleepon broadcast(). This
mutex prevents other threads from changing the conditions between
the time you examine and act upon them.

This function may be implemented as a simple macro.

Returns:
EOK Success.

EDEADLK The calling thread already owns the controlling mutex.

EAGAIN On the first use of pthread sleepon lock(), all kernel
mutex objects were in use.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

continued. . .

2210 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread sleepon lock()

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread mutex lock(), pthread sleepon broadcast(),
pthread sleepon signal(), pthread sleepon unlock(),
pthread sleepon wait()

May 31, 2004 Manifests 2211

pthread sleepon signal() 2004, QNX Software Systems Ltd.

Signal a sleeping thread

Synopsis:
#include <pthread.h>

int pthread sleepon signal(const volatile void * addr);

Arguments:
addr The handle that the threads are waiting on. The value of

addr is typically a data structure that controls a resource.

Library:
libc

Description:
The pthread sleepon signal() function unblocks the highest priority
thread waiting on addr.

Here’s a table to help you decide when to use
pthread sleepon broadcast() or pthread sleepon signal():

Task pthread sleepon broadcast()pthread sleepon signal()

Mapping a single
predicate to one address.

You must recheck the
predicate and reblock if
necessary. See
pthread sleepon signal()
for a better
implementation.
The first thread to wake
up owns the lock, all
others must go back to
sleep.

This is the correct and
efficient use of
pthread sleepon signal().
You must recheck the
predicate.
One thread owns the lock
at a time.

continued. . .

2212 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread sleepon signal()

Task pthread sleepon broadcast()pthread sleepon signal()

Mapping multiple
predicates to one address.

The
pthread sleepon broadcast()
function is necessary to
wake up all blocked
threads. You must
recheck the predicates
and reblock if necessary.
You should try to map
only one predicate to one
address.

Don’t use
pthread sleepon signal()
in this case; it could result
in a deadlock.

Returns:
EOK Success.

EINVAL Invalid sleepon address.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cond signal(), pthread sleepon broadcast(),
pthread sleepon lock(), pthread sleepon unlock(),
pthread sleepon wait()

May 31, 2004 Manifests 2213

pthread sleepon timedwait() 2004, QNX Software Systems Ltd.

Make a thread sleep while waiting

Synopsis:
#include <pthread.h>

int pthread sleepon timedwait(const volatile void * addr,
uint64 t nsec);

Arguments:
addr The handle that you want the thread to wait for. The value of

addr is typically a data structure that controls a resource.

nsec A limit on the amount of time to wait, in nanoseconds.

Library:
libc

Description:
The pthread sleepon timedwait() function uses a mutex and a
condition variable to sleep on a handle, addr.

If nsec is nonzero, then pthread sleepon timedwait() calls
pthread cond timedwait(). If the pthread cond timedwait() times out,
then pthread sleepon timedwait() returns ETIMEDOUT. If nsec is
zero, then pthread sleepon timedwait() calls pthread cond wait()
instead.

The pthread sleepon*() functions provide a simple, uniform way to
wait on a variety of resources in a multithreaded application. For
example, a multithreaded filesystem may wish to wait on such diverse
things as a cache block, a file lock, an operation complete and many
others. For example, to wait on a resource:

pthread sleepon lock();

while((ptr = cachelist->free) == NULL) {
pthread sleepon timedwait(cachelist);

}
cachelist->free = ptr->free;

pthread sleepon unlock();

2214 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread sleepon timedwait()

To start an operation and wait upon its completion:

/* Line up for access to the driver */
pthread sleepon lock();
if(driver->busy) {

pthread sleepon timedwait(&driver->busy);
}

/* We now have exclusive use of the driver */
driver->busy = 1;
driver start(driver); /* This should be relatively fast */

/* Wait for something to signal driver complete */
pthread sleepon timedwait(&driver->complete);
pthread sleepon unlock();

/* Get the status/data */
driver complete(driver);

/* Release control of the driver and signal anyone waiting */
pthread sleepon lock();
driver->busy = 0;
pthread sleepon signal(&driver->busy);
pthread sleepon unlock();

The use of a while loop instead of an if handles the case where the
wait on addr is woken up using pthread sleepon broadcast().

You must call pthread sleepon lock(), which acquires the controlling
mutex for the condition variable and ensures that another thread won’t
enter the critical section between the test, block and use of the
resource. Since pthread sleepon timedwait() calls
pthread cond timedwait(), it releases the controlling mutex when it
blocks. It reacquires the mutex before waking up.

The wakeup is accomplished by another thread’s calling
pthread sleepon signal(), which wakes up a single thread, or
pthread sleepon broadcast(), which wakes up all threads blocked on
addr. Threads are woken up in priority order. If there’s more than one
thread with the same highest priority, the one that has been waiting
the longest is woken first.

A single mutex and one condition variable for each unique address
that’s currently being blocked on are used. The total number of

May 31, 2004 Manifests 2215

pthread sleepon timedwait() 2004, QNX Software Systems Ltd.

condition variables is therefore equal to the number of unique addrs
that have a thread waiting on them. This also means that the
maximum number of condition variables never exceeds the number of
threads. To accomplish this, condition variables are dynamically
created as needed and placed upon an internal freelist for reuse when
not.

You might find the pthread sleepon *() functions easier to use and
understand than condition variables. They also resemble the
traditional sleepon() and wakeup() functions found in Unix kernels.
They can be implemented as follows:

int sleepon(void *addr) {
int ret;

if((ret = pthread sleepon lock()) == EOK) {
ret = pthread sleepon timedwait(addr);
pthread sleepon unlock();

}
return ret;

}

void wakeup(void *addr) {
if(pthread sleepon lock() == EOK) {

pthread sleepon broadcast(addr);
pthread sleepon unlock();

}
}

Note that in most Unix kernels, a thread runs until it blocks and thus
need not worry about protecting the condition it checks with a mutex.
Likewise when a Unix wakeup() is called, there isn’t an immediate
thread switch. Therefore, you can use only the above simple routines
(wakeup() and sleepon()) if all your threads run with SCHED FIFO
scheduling and at the same priority, thus more closely mimicking
Unix kernel scheduling.

Returns:
EDEADLK The calling thread already owns the controlling

mutex.

ETIMEDOUT The time specified by nsec has passed.

2216 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread sleepon timedwait()

EOK Success.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cond wait(), pthread mutex lock(), pthread mutex unlock(),
pthread sleepon broadcast(), pthread sleepon lock(),
pthread sleepon signal(), pthread sleepon unlock(),
pthread sleepon wait(), sched setscheduler()

May 31, 2004 Manifests 2217

pthread sleepon unlock() 2004, QNX Software Systems Ltd.

Unlock the pthread sleepon*() functions

Synopsis:
#include <pthread.h>

int pthread sleepon unlock(void);

Library:
libc

Description:
The pthread sleepon unlock() function calls pthread mutex unlock()
on a mutex associated with the pthread sleepon*() class of functions.
You should call it at the end of a critical section entered by
pthread sleepon lock().

This function may be implemented as a simple macro.

Returns:
EOK Success.

EPERM The current thread doesn’t own the controlling mutex.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

2218 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread sleepon unlock()

See also:
pthread mutex unlock(), pthread sleepon broadcast(),
pthread sleepon lock(), pthread sleepon signal(),
pthread sleepon wait()

May 31, 2004 Manifests 2219

pthread sleepon wait() 2004, QNX Software Systems Ltd.

Make a thread sleep while waiting

Synopsis:
#include <pthread.h>

int pthread sleepon wait(const volatile void * addr);

Arguments:
addr The handle that you want the thread to wait for. The value of

addr is typically a data structure that controls a resource.

Library:
libc

Description:
The pthread sleepon wait() function uses a mutex and a condition
variable to sleep on a handle, addr.

The pthread sleepon* functions provide a simple, uniform way to
wait on a variety of resources in a multithreaded application. For
example, a multithreaded filesystem may wish to wait on such diverse
things as a cache block, a file lock, an operation complete and many
others. For example, to wait on a resource:

pthread sleepon lock();

while((ptr = cachelist->free) == NULL) {
pthread sleepon wait(cachelist);

}
cachelist->free = ptr->free;

pthread sleepon unlock();

To start an operation and wait for its completion:

/* Line up for access to the driver */
pthread sleepon lock();
if(driver->busy) {

pthread sleepon wait(&driver->busy);
}

2220 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread sleepon wait()

/* We now have exclusive use of the driver */
driver->busy = 1;
driver start(driver); /* This should be relatively fast */

/* Wait for something to signal driver complete */
pthread sleepon wait(&driver->complete);
pthread sleepon unlock();

/* Get the status/data */
driver complete(driver);

/* Release control of the driver and signal anyone waiting */
pthread sleepon lock();
driver->busy = 0;
pthread sleepon signal(&driver->busy);
pthread sleepon unlock();

pthread exit(NULL);

Choose carefully when you decide whether to use a while loop

� If the wait on addr is woken up using
pthread sleepon broadcast(), you must use a while loop.

� If threads are woken up using pthread sleepon signal(), you may
use the if conditional if the design of the program guarantees
proper synchronization and scheduling among contending threads.
This is guaranteed in the above example, assuming that none of the
threads attempt to reacquire the driver resource (i.e. pthread exit()
call).

If you’re in doubt, use a while loop, because it guarantees access to
the desired resource.

You must call pthread sleepon lock(), which acquires the controlling
mutex for the condition variable and ensures that another thread won’t
enter the critical section between the test, block and use of the
resource. Since pthread sleepon wait() calls pthread cond wait(), it
releases the controlling mutex when it blocks. It reacquires the mutex
before waking up.

The wakeup is accomplished by another thread’s calling
pthread sleepon signal(), which wakes up a single thread, or

May 31, 2004 Manifests 2221

pthread sleepon wait() 2004, QNX Software Systems Ltd.

pthread sleepon broadcast(), which wakes up all threads blocked on
addr. Threads are woken up in priority order. If there’s more than one
thread with the same highest priority, the one that has been waiting
the longest is woken first.

A single mutex and one condition variable for each unique address
that’s currently being blocked on are used. The total number of
condition variables is therefore equal to the number of unique addrs
that have a thread waiting on them. This also means that the
maximum number of condition variables never exceeds the number of
threads. To accomplish this, condition variables are dynamically
created as needed and placed upon an internal freelist for reuse when
not.

You might find the pthread sleepon *() functions easier to use and
understand than condition variables. They also resemble the
traditional sleepon() and wakeup() functions found in Unix kernels.
They can be implemented as follows:

int sleepon(void *addr) {
int ret;

if((ret = pthread sleepon lock()) == EOK) {
ret = pthread sleepon wait(addr);
pthread sleepon unlock();

}
return ret;

}

void wakeup(void *addr) {
if(pthread sleepon lock() == EOK) {

pthread sleepon broadcast(addr);
pthread sleepon unlock();

}
}

Note that in most Unix kernels, a thread runs until it blocks, and thus
need not worry about protecting the condition it checks with a mutex.
Likewise, when a Unix wakeup() is called, there isn’t an immediate
thread switch. Therefore, you can use only the above simple routines
(wakeup() and sleepon()) if all your threads run with SCHED FIFO
scheduling and at the same priority, thus more closely mimicking
Unix kernel scheduling.

2222 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread sleepon wait()

Returns:
EOK Success.

EDEADLK The calling thread already owns the controlling
mutex.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cond wait(), pthread mutex lock(), pthread mutex unlock(),
pthread sleepon broadcast(), pthread sleepon lock(),
pthread sleepon signal(), pthread sleepon unlock(),
sched setscheduler()

May 31, 2004 Manifests 2223

pthread spin destroy() 2004, QNX Software Systems Ltd.

Destroy a thread spinlock

Synopsis:
#include <pthread.h>

int pthread spin destroy(
pthread spinlock t * spinner);

Arguments:
spinner A pointer to the pthread spinlock t object that you

want to destroy.

Library:
libc

Description:
The pthread spin destroy() function destroys the thread spinlock
spinner, releasing its resources.

Once you’ve destroyed the spinlock, don’t use it again until you’ve
reinitialized it by calling pthread spin init().

Calling pthread spin destroy() gives undefined results when a thread
has spinner locked or when spinner isn’t initialized.

Returns:
EOK Success.

EBUSY The thread spinlock spinner is in use by another thread
and can’t be destroyed.

EINVAL Invalid pthread spinlock t object spinner.

Classification:
POSIX 1003.1j (draft)

2224 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread spin destroy()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread spin init(), pthread spin lock(), pthread spin trylock(),
pthread spin unlock()

May 31, 2004 Manifests 2225

pthread spin init() 2004, QNX Software Systems Ltd.

Initialize a thread spinlock

Synopsis:
#include <pthread.h>

int pthread spin init(pthread spinlock t * spinner,
int pshared);

Arguments:
spinner A pointer to the pthread spinlock t object that you

want to initialize.

pshared The value that you want to use for the process-shared
attribute of the spinlock. The possible values are:

� PTHREAD PROCESS SHARED — the spinlock may
be operated on by any thread that has access to the
memory where the spinlock is allocated, even if it’s
allocated in memory that’s shared by multiple
processes.

� PTHREAD PROCESS PRIVATE — the spinlock can be
operated on only by threads created within the same
process as the thread that initialized the spinlock. If
threads of differing processes attempt to operate on
such a spinlock, the behavior is undefined.

Library:
libc

Description:
The pthread spin init() function allocates the resources required for
the thread spinlock spinner, and initializes spinner to an unlocked
state.

Any thread that can access the memory where spinner is allocated can
operate on the spinlock.

2226 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread spin init()

Results are undefined if you call pthread spin init() on a spinner
that’s already initialized, or if you try to use a spinlock that hasn’t
been initialized.

Returns:
Zero on success, or an error number to indicate the error.

Errors:
EAGAIN The system doesn’t have the resources required to

initialize a new spinlock.

EBUSY The process spinlock, spinner, is in use by another
thread and can’t be initialized.

EINVAL Invalid pthread spinlock t object spinner.

ENOMEM The system doesn’t have enough free memory to
create the new spinlock.

Classification:
POSIX 1003.1j (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread spin destroy(), pthread spin lock(), pthread spin trylock(),
pthread spin unlock()

May 31, 2004 Manifests 2227

pthread spin lock() 2004, QNX Software Systems Ltd.

Lock a thread spinlock

Synopsis:
#include <pthread.h>

int pthread spin lock(pthread spinlock t * spinner);

Arguments:
spinner A pointer to the pthread spinlock t object that you

want to lock.

Library:
libc

Description:
The pthread spin lock() function locks the thread spinlock specified
by spinner. If spinner isn’t immediately available,
pthread spin lock() blocks until spinner can be locked.

If a thread attempts to lock a spinlock that’s already locked via
pthread spin lock() or pthread spin trylock(), the thread returns
EDEADLK.

Returns:
EOK Success.

EAGAIN Insufficient resources available to lock spinner.

EDEADLK The calling thread already holds spinners lock.

EINVAL Invalid pthread spinlock t object spinner.

Classification:
POSIX 1003.1j (draft)

2228 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread spin lock()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
You may not get the desired behavior from this function because the
spinlocks are implemented using mutexes. If you really want to use a
spinlock, you must use the pthread spin lock() function.

See also:
pthread spin destroy(), pthread spin init(), pthread spin trylock(),
pthread spin unlock()

May 31, 2004 Manifests 2229

pthread spin trylock() 2004, QNX Software Systems Ltd.

Try to lock a thread spinlock

Synopsis:
#include <pthread.h>

int pthread spin trylock(
pthread spinlock t * spinner);

Arguments:
spinner A pointer to the pthread spinlock t object that you

want to try to lock.

Library:
libc

Description:
The pthread spin trylock() function attempts to lock the thread
spinlock specified by spinner. It returns immediately if spinner can’t
be locked.

If a thread attempts to lock a spinlock that it’s already locked via
pthread spin lock() or pthread spin trylock(), the thread deadlocks.

Returns:
EOK Success.

EAGAIN Insufficient resources available to lock spinner.

EBUSY The thread spinlock spinner is already locked by
another thread.

EINVAL Invalid pthread spinlock t object spinner.

2230 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread spin trylock()

Classification:
POSIX 1003.1j (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread spin destroy(), pthread spin init(), pthread spin lock(),
pthread spin unlock()

May 31, 2004 Manifests 2231

pthread spin unlock() 2004, QNX Software Systems Ltd.

Unlock a thread spinlock

Synopsis:
#include <pthread.h>

int pthread spin unlock(spinlock t * spinner);

Arguments:
spinner A pointer to the pthread spinlock t object that you

want to unlock.

Library:
libc

Description:
The pthread spin unlock() function unlocks the thread spinlock
specified by spinner, which was locked with pthread spin lock() or
pthread spin trylock().

If there are threads spinning on spinner, the spinlock becomes
available, and an unspecified thread acquires the lock.

Returns:
EOK Success.

EINVAL Invalid process spinlock spinner.

EPERM The calling thread doesn’t hold the lock.

Classification:
POSIX 1003.1j (draft)

Safety

Cancellation point No

continued. . .

2232 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread spin unlock()

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread spin destroy(), pthread spin init(), pthread spin lock(),
pthread spin trylock()

May 31, 2004 Manifests 2233

pthread testcancel() 2004, QNX Software Systems Ltd.

Test thread cancellation

Synopsis:
#include <pthread.h>

void pthread testcancel(void);

Library:
libc

Description:
The pthread testcancel() function creates a cancellation point in the
calling thread. This function has no effect if cancellation is disabled.

Classification:
POSIX 1003.1 (Threads)

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cancel(), pthread setcancelstate(), pthread setcanceltype(),
ThreadCancel()

2234 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread timedjoin()
Join a thread, with a time limit

Synopsis:
#include <pthread.h>

int pthread timedjoin(
pthread t thread,
void** value ptr,
const struct timespec* abstime);

Arguments:
thread The target thread whose termination you’re waiting for.

value ptr NULL, or a pointer to a location where the function can
store the value passed to pthread exit() by the target
thread.

abstime A pointer to a timespec structure that specifies the
maximum time to wait for the join, expressed as an
absolute time.

Library:
libc

Description:
The pthread timedjoin() function is similar to pthread join(), except
that an error of ETIMEDOUT is returned if the join doesn’t occur
before the absolute time specified by abstime passes (i.e. the system
time is greater than or equal to abstime):

If you are not too long, I will wait here for you all my
life.
— Oscar Wilde, The Importance of Being Earnest

The pthread timedjoin() function blocks the calling thread until the
target thread thread terminates, unless thread has already terminated.

May 31, 2004 Manifests 2235

pthread timedjoin() 2004, QNX Software Systems Ltd.

If value ptr is non-NULL and pthread timedjoin() returns
successfully, then the value passed to pthread exit() by the target
thread is placed in value ptr. If the target thread has been canceled
then value ptr is set to PTHREAD CANCELED.

The target thread must be joinable. Multiple pthread join(),
pthread timedjoin(), ThreadJoin(), and ThreadJoin r() calls on the
same target thread aren’t allowed. When pthread timedjoin() returns
successfully, the target thread has been terminated.

Returns:
EOK Success.

EBUSY The thread thread is already being joined.

EDEADLK The thread thread is the calling thread.

EFAULT A fault occurred trying to access the buffers
provided.

EINTR The function call was interrupted.

EINVAL The thread thread isn’t joinable.

ESRCH The thread thread doesn’t exist.

ETIMEDOUT The absolute time specified in abstime passed
before the join occurred.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

2236 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pthread timedjoin()

See also:
pthread create(), pthread detach(), pthread exit(), pthread join(),
ThreadJoin(), ThreadJoin r(), timespec

May 31, 2004 Manifests 2237

pulse 2004, QNX Software Systems Ltd.

Structure that describes a pulse

Synopsis:
#include <sys/neutrino.h>

struct pulse {
uint16 t type;
uint16 t subtype;
int8 t code;
uint8 t zero[3];
union sigval value;
int32 t scoid;

};

Description:
The pulse structure describes a pulse, a fixed-size, nonblocking
message that carries a small payload (four bytes of data plus a single
byte code). The members include:

type PULSE TYPE (0)

subtype PULSE SUBTYPE (0)

code A code that identifies the type of pulse. The QNX
Neutrino OS reserves the negative codes, including the
following:

� PULSE CODE UNBLOCK

� PULSE CODE DISCONNECT

� PULSE CODE THREADDEATH

� PULSE CODE COIDDEATH

� PULSE CODE NET ACK,
PULSE CODE NET UNBLOCK, and
PULSE CODE NET DETACH — reserved for the
io net resource manager.

You can define your own pulses, with a code in the range
from PULSE CODE MINAVAIL through
PULSE CODE MAXAVAIL.

2238 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pulse

value Information that’s relevant to the code:

� PULSE CODE UNBLOCK — the receive ID (rcvid)
associated with the blocking message.

� PULSE CODE DISCONNECT — no value defined.

� PULSE CODE THREADDEATH — the thread ID of
the thread that died.

� PULSE CODE COIDDEATH — the connection ID of a
connection that was attached to a destroyed channel.

For more details, see ChannelCreate().

If you define your own pulses, you can decide what
information you want to store in this field.

scoid Server connection ID.

Classification:
QNX Neutrino

See also:
ChannelCreate(), MsgReceive(), MsgReceivePulse(),
MsgReceivePulsev(), MsgReceivev(), MsgSendPulse(), sigevent

May 31, 2004 Manifests 2239

pulse attach() 2004, QNX Software Systems Ltd.

Attach a handler function to a pulse code

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int pulse attach(dispatch t * dpp,
int flags,
int code,
int (* func)

(message context t * ctp,
int code,
unsigned flags,
void * handle),

void * handle);

Arguments:
dpp The dispatch handle, as returned by dispatch create().

flags Currently, the following flag is defined in
<sys/dispatch.h>:

� MSG FLAG ALLOC PULSE — allocate and attach a
pulse code that’s different than any other code that was
either given to pulse attach() through the code
argument, or allocated by pulse attach(). The allocated
code is in the range PULSE CODE MINAVAIL and
PULSE CODE MAXAVAIL.

code The pulse code that you want to attach the function to.

func The function that you want to call when a message in the
given range is received; see “Handler function,” in the
documentation for message attach().

handle An arbitrary handle that you want to associate with data
for the defined message range. This handle is passed to
func.

2240 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pulse attach()

Library:
libc

Description:
The pulse attach() function attaches a pulse code to a user-supplied
function func. You can use the same function func with
message attach().

When the resource manager receives a pulse that matches code, it
calls func. This user-supplied function is responsible for doing any
specific work needed to handle the pulse pointed to by
ctp->msg.pulse. The handle passed to the function is the handle
initially passed to pulse attach(). The handle may be a device entry
you want associated with the pulse code.

You typically use pulse attach() to associate pulses generated by
interrupt handlers or timers with a routine in the main program of
your resource manager. By examining ctp->rcvid, the func function
can determine whether a pulse or message was received.

Returns:
If MSG FLAG ALLOC PULSE is specified, the function returns the
allocated pulse code; otherwise, it returns the code that’s passed in.
On failure, -1 is returned (errno is set).

Errors:
EAGAIN Couldn’t allocate a pulse code.

EINVAL The pulse code is out of range, or it’s already
registered.

ENOMEM Insufficient memory to allocate internal data
structures.

May 31, 2004 Manifests 2241

pulse attach() 2004, QNX Software Systems Ltd.

Examples:
#include <sys/dispatch.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int my func(...) {

...

}

int main(int argc, char **argv) {
dispatch t *dpp;
int flag = 0, code, mycode;

if ((dpp = dispatch create()) == NULL) {
fprintf(stderr, "%s: Unable to allocate \

dispatch handle.\n",argv[0]);
return EXIT FAILURE;

}

...

mycode = ...;

if ((code = pulse attach(dpp, flag, mycode,
&my func, NULL)) == -1) {

fprintf (stderr, "Failed to attach code %d.\n", mycode);
return 1;

}
/* else successfully attached a pulse code */

...
}

For examples using the dispatch interface, see dispatch create(),
message attach(), resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

2242 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pulse attach()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
message attach(), pulse detach()

“Components of a Resource Manager” section of the Writing a
Resource Manager chapter in the Programmer’s Guide.

May 31, 2004 Manifests 2243

pulse detach() 2004, QNX Software Systems Ltd.

Detach a handler function from a pulse code

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int pulse detach(dispatch t * dpp,
int code,
int flags);

Arguments:
dpp The dispatch handle, as returned by dispatch create().

code The pulse code that you want to detach.

flags Reserved; pass 0 for this argument.

Library:
libc

Description:
The pulse detach() function detaches the pulse code, for dispatch
handle dpp, that was attached with pulse attach().

Returns:
0 Success.

-1 The pulse code doesn’t match any attached pulse code.

Examples:
#include <sys/dispatch.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int my func(...) {

...

2244 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pulse detach()

}

int main(int argc, char **argv) {
dispatch t *dpp;
int flag=0, code, mycode;

if ((dpp = dispatch create()) == NULL) {
fprintf(stderr, "%s: Unable to allocate \

dispatch handle.\n",argv[0]);
return EXIT FAILURE;

}

...
if ((code = pulse attach(dpp, flag, mycode,

&my func, NULL)) == -1) {
fprintf (stderr, "Failed to attach pulse code %d.\n", \

mycode);
return 1;

}

...

if (pulse detach (dpp, code, flag) == -1) {
fprintf (stderr, "Failed to detach code %d.\n", code);
return 1;

}
/* else message was detached */

...
}

For examples using the dispatch interface, see dispatch create(),
message attach(), resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

continued. . .

May 31, 2004 Manifests 2245

pulse detach() 2004, QNX Software Systems Ltd.

Safety

Signal handler No

Thread Yes

See also:
message detach(), pulse attach()

“Components of a Resource Manager” section of the Writing a
Resource Manager chapter in the Programmer’s Guide.

2246 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. putc()
Write a character to a stream

Synopsis:
#include <stdio.h>

int putc(int c,
FILE* fp);

Arguments:
c The character that you want to write.

fp The stream you want to write the character on.

Library:
libc

Description:
The putc() macro writes the character c, cast as (int)(unsigned
char), to the output stream designated by fp.

Returns:
The character written, cast as (int)(unsigned char), or EOF if
an error occurs (errno is set).

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE* fp;
int c;

fp = fopen("file", "r");
if(fp != NULL) {

while((c = fgetc(fp)) != EOF) {
putc(c, stdout);

}
fclose(fp);

}

May 31, 2004 Manifests 2247

putc() 2004, QNX Software Systems Ltd.

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
putc() is a macro.

See also:
errno, ferror(), fopen(), fputc(), fputchar(), fputs(), getc(),
getc unlocked(), getchar(), getchar unlocked(), putchar(),
putchar unlocked(), putc unlocked(), puts()

2248 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. putc unlocked()
Write a character to an output stream

Synopsis:
#include <stdio.h>

int putc unlocked(int c,
FILE *stream);

Arguments:
c The character that you want to write.

stream The stream you want to write the character on.

Library:
libc

Description:
The putc unlocked() function is a thread-unsafe version of putc(). You
can use it safely only when the invoking thread has locked stream
using flockfile() (or ftrylockfile()) and funlockfile().

Returns:
The character written, cast as (int)(unsigned char), or EOF if
an error occurred (errno is set).

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

May 31, 2004 Manifests 2249

putc unlocked() 2004, QNX Software Systems Ltd.

See also:
getc(), getchar(), getchar unlocked(), getc unlocked(), putc(),
putchar(), putchar unlocked()

2250 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. putchar()
Write a character to standard output

Synopsis:
#include <stdio.h>

int putchar(int c);

Arguments:
c The character that you want to write.

Library:
libc

Description:
The putchar() function writes the character c, cast as
(int)(unsigned char), to the stdout stream. It’s equivalent to:

fputc(c, stdout);

Returns:
The character written, cast as (int)(unsigned char), or EOF if
an error occurs (errno is set).

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;
int c;

fp = fopen("file", "r");
c = fgetc(fp);
while(c != EOF) {

putchar(c);
c = fgetc(fp);

}

May 31, 2004 Manifests 2251

putchar() 2004, QNX Software Systems Ltd.

fclose(fp);

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fputc(), fputchar(), fputs(), getc(), getc unlocked(), getchar(),
getchar unlocked(), putc(), putchar unlocked(), putc unlocked()

2252 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. putchar unlocked()
Write a character to stdout

Synopsis:
#include <stdio.h>

int putchar unlocked(int c);

Arguments:
c The character that you want to write.

Library:
libc

Description:
The putchar unlocked() function is a thread-unsafe version of
putchar(). You can use it safely only when the invoking thread has
locked stdout using flockfile() (or ftrylockfile()) and funlockfile().

Returns:
The character written, cast as (int)(unsigned char), or EOF if
an error occurred (errno is set).

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

May 31, 2004 Manifests 2253

putchar unlocked() 2004, QNX Software Systems Ltd.

See also:
getc(), getc unlocked(), getchar(), getchar unlocked(), putc(),
putc unlocked(), putchar()

2254 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. putenv()
Add, change or delete an environment variable

Synopsis:
#include <stdlib.h>

int putenv(const char *env name);

Arguments:
env name The name of the environment, and what you want to do

to it; see below.

Library:
libc

Description:
The putenv() function uses env name, in the form name=value, to set
the environment variable name to value. This function alters name if
it exists, or creates a new environment variable.

In either case, env name becomes part of the environment; subsequent
modifications to the string pointed to by env name affect the
environment.

The space for environment names and their values is limited.
Consequently, putenv() can fail when there’s insufficient space
remaining to store an additional value.

If env name isn’t a literal string, you should duplicate the string, since
putenv() doesn’t copy the value. For example:

putenv(strdup(buffer));

�

May 31, 2004 Manifests 2255

putenv() 2004, QNX Software Systems Ltd.

Returns:
0 Success.

-1 An error occurred; errno is set.

Errors:
ENOMEM There wasn’t enough memory to expand the

environment.

Examples:
The following gets the string currently assigned to INCLUDE and
displays it, assigns a new value to it, gets and displays it, and then
removes INCLUDE from the environment.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

char *path;
path = getenv("INCLUDE");
if(path != NULL) {

printf("INCLUDE=%s\n", path);
}

if(putenv("INCLUDE=/src/include") != 0) {
printf("putenv() failed setting INCLUDE\n");
return EXIT FAILURE;

}

path = getenv("INCLUDE");
if(path != NULL) {

printf("INCLUDE=%s\n", path);
}

unsetenv("INCLUDE");

return EXIT SUCCESS;
}

This program produces the following output:

2256 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. putenv()

INCLUDE=/usr/nto/include
INCLUDE=/src/include

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

Caveats:
Never use putenv() with an automatic variable.

The putenv() function manipulates the environment pointed to by the
global environ variable.

See also:
clearenv(), environ, errno, getenv(), setenv(), unsetenv()

May 31, 2004 Manifests 2257

puts() 2004, QNX Software Systems Ltd.

Write a string to stdout

Synopsis:
#include <stdio.h>

int puts(const char *buf);

Arguments:
buf A pointer to the zero-terminated string that you want to write.

Library:
libc

Description:
The puts() function writes the character string pointed to by buf to the
stdout stream, and appends a newline character to the output. The
terminating NUL character of buf isn’t written.

Returns:
A nonnegative value for success, or EOF if an error occurs (errno is
set).

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;
char buffer[80];

fp = freopen("file", "r", stdin);
while(gets(buffer) != NULL) {

puts(buffer);
}
fclose(fp);

return EXIT SUCCESS;
}

2258 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. puts()

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fputs(), gets(), putc()

May 31, 2004 Manifests 2259

putspent() 2004, QNX Software Systems Ltd.

Put an entry into the shadow password database

Synopsis:
#include <sys/types.h>
#include <shadow.h>

int putspent(const struct spwd* p,
FILE* fp);

Arguments:
p A pointer to a spwd structure that contains the entry that you

want to write.

fp The stream that you want to write the entry on.

Library:
libc

Description:
The putspent() function writes a shadow password entry into the
specified file. This function is the inverse of getspent().

Given a pointer to a spwd structure created by the getspent() or the
getspnam() routine, putspent() writes a line on the stream fp, which
matches the format of </etc/shadow>. The spwd structure contains
the following members:

char *sp namp; /* name */
char *sp pwdp; /* encrypted password */
long sp lstchg; /* last changed */
long sp max; /* #days (min) to change */
long sp min; /* #days (max) to change */
long sp warn; /* #days to warn */
long sp inact; /* #days of inactivity */
long sp expire; /* date to auto-expire */
long sp flag; /* reserved */

If the sp min, sp max, sp lstchg, sp warn, sp inact, or sp expire field
of the structure is -1, or if sp flag = 0, the corresponding
</etc/shadow> field is cleared.

2260 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. putspent()

Returns:
Zero.

Errors:
The putspent() function uses the following functions, and as a result
errno can be set to an error for any of these calls:

� fclose()

� fgets()

� fopen()

� fseek()

� rewind()

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <pwd.h>
#include <shadow.h>

/*
* This program adds a user and password to
* a temporary file which can then be used with
* fgetspent() (of course the password
* string should be encrypted already etc.)
*/

int main(int argc, char** argv)
{

FILE* fp;
struct spwd sp;

char pwbuf[80], nambuf[80];

memset(&sp, 0, sizeof(sp));
if (argc < 2) {

printf("%s filename \n", argv[0]);
return(EXIT FAILURE);

}

if (!(fp = fopen(argv[1], "w"))) {
fprintf(stderr, "Can’t open file %s \n", argv[1]);
perror("Problem ");

May 31, 2004 Manifests 2261

putspent() 2004, QNX Software Systems Ltd.

return(1);
}

printf("Enter a userid: ");
if (!gets(nambuf)) {

fprintf(stderr, "Can’t get username string\n");
}
sp.sp namp = nambuf;

printf("Enter a password: ");
if (!gets(pwbuf)) {

fprintf(stderr, "Can’t get username password\n");
}
sp.sp pwdp = pwbuf;

putspent(&sp, fp);
fclose(fp);

return(EXIT SUCCESS);
}

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
errno, getgrent(), getlogin(), getpwnam(), getpwuid(), getspent(),
getspnam(), setspent()

2262 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pututline()
Write an entry in the user-information file

Synopsis:
#include <utmp.h>

void pututline(struct utmp * utmp);

Arguments:
utmp A pointer to the utmp structure for the entry that you want

to add.

Library:
libc

Description:
The pututline() function writes out the supplied utmp structure into
the utmp file.

It uses getutid() to search forward for the proper place if it finds that it
isn’t already there. Normally, you should search for the proper entry
by calling getutent(), getutid(), or getutline(), If so, pututline() doesn’t
search. If pututline() doesn’t find a matching slot for the new entry, it
adds a new entry to the end of the file.

When called by a non-root user, pututline() invokes a setuid() root
program to verify and write the entry, since the file specified in
PATH UTMP is normally writable only by root. In this event, the

ut name field must correspond to the actual user name associated with
the process; the ut type field must be either USER PROCESS or
DEAD PROCESS; the ut line field must be a device-special file and be
writable by the user.

Returns:
A pointer to the utmp structure.

May 31, 2004 Manifests 2263

pututline() 2004, QNX Software Systems Ltd.

Files:
PATH UTMP

Specifies the user information file.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
The most current entry is saved in a static structure. Copy it before
making further accesses.

On each call to either getutid() or getutline(), the routine examines the
static structure before performing more I/O. If the contents of the
static structure match what it’s searching for, the function looks no
further. For this reason, to use getutline() to search for multiple
occurrences, zero out the static area after each success, or getutline()
will return the same structure over and over again.

There’s one exception to the rule about emptying the structure before
further reads are done: the implicit read done by pututline() (if it finds
that it isn’t already at the correct place in the file) doesn’t hurt the
contents of the static structure returned by the getutent(), getutid() or
getutline() routines, if the user has just modified those contents and
passed the pointer back to pututline().

2264 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pututline()

These routines use buffered standard I/O for input, but pututline()
uses an unbuffered nonstandard write to avoid race conditions
between processes trying to modify the utmp and wtmp files.

See also:
endutent(), getutent(), getutid(), getutline(), setutent(), utmp,
utmpname()

login in the Utilities Reference

May 31, 2004 Manifests 2265

putw() 2004, QNX Software Systems Ltd.

Put a word on a stream

Synopsis:
#include <wchar.h>

int putw(int w,
FILE *stream);

Arguments:
w The word that you want to write.

stream The stream that you want to write a word on.

Library:
libc

Description:
The putw() function writes the C int (word) w to the standard I/O
output stream (at the position of the file pointer, if defined). The size
of a word is the size of an integer, and varies from machine to
machine. The putw() function neither assumes nor causes special
alignment in the file.

Returns:
0 Success.

1 An error occurred; errno is set.

Errors:
EFBIG The file is a regular file and an attempt was made to write

at or beyond the offset maximum.

2266 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. putw()

Classification:
Legacy Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
Because of possible differences in word length and byte ordering,
files written using putw() are machine-dependent, and might not be
read correctly using getw() on a different processor.

See also:
errno, ferror(), fopen(), fputc(), fputchar(), fputs(), getw(), putchar(),
putchar unlocked(), putc unlocked(), puts()

May 31, 2004 Manifests 2267

putwc() 2004, QNX Software Systems Ltd.

Write a wide character to a stream

Synopsis:
#include <wchar.h>

wint t putwc(wchar t wc,
FILE * fp);

Arguments:
wc The wide character that you want to write.

fp The stream that you want to write the wide character on.

Library:
libc

Description:
The putwc() functions writes the wide character specified by wc, cast
as (wint t)(wchar t), to the output stream specified by fp.

Returns:
The wide character written, cast as (wint t)(wchar t), or WEOF
if an error occurs (errno is set).

If wc exceeds the valid wide-character range, the value returned is the
wide character written, not wc.

�

Errors:
EAGAIN The O NONBLOCK flag is set for fp and would have

been blocked by this operation.

EBADF The file descriptor for fp isn’t valid for writing.

EFBIG The file exceeds the maximum file size, the process’s
file size limit, or the function can’t write at or beyond
the offset maximum.

2268 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. putwc()

EINTR A signal terminated the write operation; no data was
transferred.

EIO A physical I/O error has occurred or all of the following
conditions were met:

� The process is in the background.

� TOSTOP is set.

� The process is blocking/ignoring SIGTTOU.

� The process group is orphaned.

EPIPE Can’t write to pipe or FIFO because it’s closed; a
SIGPIPE signal is also sent to the thread.

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, getwc(), getwchar()

“Stream I/O functions” and “Wide-character functions” in the
summary of functions chapter.

May 31, 2004 Manifests 2269

putwchar() 2004, QNX Software Systems Ltd.

Write a wide character to a stdout

Synopsis:
#include <wchar.h>

wint t putwchar(wchar t wc);

Arguments:
wc The wide character that you want to write.

Library:
libc

Description:
The putwchar() function writes the wide character wc, cast as
(wint t)(wchar t), to the stdout stream. It’s equivalent to:

fputwc(wc, stdout);

Returns:
The wide character written, cast as (wint t)(wchar t) or WEOF
if an error occurs (errno is set).

If wc exceeds the valid wide-character range, the value returned is the
wide character written, not wc.

�

Errors:
EAGAIN The O NONBLOCK flag is set for fp and would have

been blocked by this operation.

EBADF The file descriptor for fp isn’t valid for writing.

EFBIG The file exceeds the maximum file size, the process’s
file size limit, or the function can’t write at or beyond
the offset maximum.

2270 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. putwchar()

EINTR A signal terminated the write operation; no data was
transferred.

EIO A physical I/O error has occurred or all of the following
conditions were met:

� The process is in the background.

� TOSTOP is set.

� The process is blocking/ignoring SIGTTOU.

� The process group is orphaned.

EPIPE Can’t write to pipe or FIFO because it’s closed; a
SIGPIPE signal is also sent to the thread.

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, getwc(), getwchar()

“Stream I/O functions” and “Wide-character functions” in the
summary of functions chapter.

May 31, 2004 Manifests 2271

pwrite(), pwrite64() 2004, QNX Software Systems Ltd.

Write into a file without changing the file pointer

Synopsis:
#include <unistd.h>

ssize t pwrite(int filedes,
const void* buff,
size t nbytes,
off t offset);

ssize t pwrite64(int filedes,
const void* buff,
size t nbytes,
off64 t offset);

Arguments:
filedes The file descriptor for the file you want to write in.

buff A pointer to a buffer that contains the data you want to
write.

nbytes The number of bytes to write.

offset The desired position inside the file.

Library:
libc

Description:
The pwrite() function performs the same action as write(), except that
it writes into a given position without changing the file pointer.

The pwrite64() function is a 64-bit version of pwrite().

Returns:
The number of bytes actually written, or -1 if an error occurred (errno
is set).

2272 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. pwrite(), pwrite64()

Errors:
EAGAIN The O NONBLOCK flag is set for the file descriptor, and

the process would be delayed in the write operation.

EBADF The file descriptor, fildes, isn’t a valid file descriptor
open for writing.

EFBIG File is too big.

EINTR The write operation was interrupted by a signal, and
either no data was transferred, or the resource manager
responsible for that file doesn’t report partial transfers.

EIO A physical I/O error occurred (for example, a bad block
on a disk). The precise meaning is device-dependent.

ENOSPC There’s no free space remaining on the device
containing the file.

ENOSYS The pwrite() function isn’t implemented for the
filesystem specified by filedes.

EPIPE An attempt was made to write to a pipe (or FIFO) that
isn’t open for reading by any process. A SIGPIPE signal
is also sent to the process.

Classification:
pwrite() is standard Unix; pwrite64() is for large-file support

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 2273

pwrite(), pwrite64() 2004, QNX Software Systems Ltd.

See also:
close(), creat(), dup(), dup2(), errno, fcntl(), lseek(), open(), pipe(),
pread(), read(), readv(), select(), write(), writev()

2274 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. qnx crypt()
Encrypt a password (QNX 4)

Synopsis:
#include <unistd.h>

char* qnx crypt(const char* key,
const char* salt);

Arguments:
key A NUL-terminated string (normally a password typed by a

user).

salt A two-character string chosen from the set [a-zA-Z0-9./].
This function doesn’t validate the values for salt, and values
outside this range may cause undefined behavior. This string
is used to perturb the algorithm in one of 4096 different ways.

Library:
libc

Description:
The qnx crypt() function performs password encryption. It’s a variant
of the standard crypt() function that uses an encryption similar to, but
not compatible with, the Data Encryption Standard (DES) encryption.
This function is provided for compatibility with QNX 4.

The qnx crypt() function checks only the first eight characters of key.�

Returns:
A pointer to the encrypted value, or NULL on failure.

Examples:
#include <unistd.h>

int main(int argc, char **argv) {
char salt[3];

May 31, 2004 Manifests 2275

qnx crypt() 2004, QNX Software Systems Ltd.

char string[20];
char *result;

strcpy(string, "thomasf");
salt[0] = ’a’;
salt[1] = ’B’;
salt[2] = 0;

result = qnx crypt(string, salt);
printf("Result is [%s] --> [%s] \n", string, result);

return 0;
}

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The return value points to static data that’s overwritten by each call to
qnx crypt().

See also:
crypt(), encrypt(), getpass(), setkey()

login in the Utilities Reference

2276 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. qsort()
Sort an array

Synopsis:
#include <stdlib.h>

void qsort(void* base,
size t num,
size t width,
int (*compare) (

const void* ,
const void*));

Arguments:
base A pointer to the array that you want to sort.

num The number of elements in the array.

width The size of each element, in bytes.

compare A pointer to a function that compares two entries. It’s
called with two arguments that point to elements in the
array. The comparison function must return an integer
less than, equal to, or greater than zero if the first
argument is less than, equal to, or greater than the
second argument.

Library:
libc

Description:
The qsort() function sorts the base array using the comparison
function specified by compare. The array must have at least num
elements, each of width bytes.

May 31, 2004 Manifests 2277

qsort() 2004, QNX Software Systems Ltd.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char* some strs[] = { "last", "middle", "first" };

int compare(const void* op1, const void* op2)
{

const char **p1 = (const char **) op1;
const char **p2 = (const char **) op2;

return(strcmp(*p1, *p2));
}

int main(void)
{

qsort(some strs,
sizeof(some strs) / sizeof(char *),
sizeof(char *),
compare);

printf("%s %s %s\n",
some strs[0], some strs[1], some strs[2]);

return EXIT SUCCESS;
}

produces the output:

first last middle

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

2278 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. qsort()

See also:
bsearch()

May 31, 2004 Manifests 2279

 2004, QNX Software Systems Ltd. Raccept()
Accept a connection on a socket (via a SOCKS server)

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>

int Raccept(int s,
struct sockaddr * addr,
int * addrlen);

Arguments:
s A socket that’s been created with socket().

addr A result parameter that’s filled in with the address of the
connecting entity, as known to the communications layer.
The exact format of the addr parameter is determined by
the domain in which the connection was made.

addrlen A value-result parameter. It should initially contain the
amount of space pointed to by addr; on return it contains
the actual length (in bytes) of the address returned. This
call is used with connection-based socket types,
currently with SOCK STREAM.

Library:
libsocks

Description:
The Raccept() function is a cover function for accept() — the
difference is that Raccept() does its job via a SOCKS server.

For more information about SOCKS and its libraries, see the
appendix, SOCKS — A Basic Firewall.

May 31, 2004 Manifests 2281

Raccept() 2004, QNX Software Systems Ltd.

Returns:
A descriptor for the accepted socket, or -1 if an error occurs (errno is
set).

Classification:
SOCKS

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

See also:
accept(), Rbind(), Rconnect(), Rgetsockname(), Rlisten(), Rrcmd(),
Rselect(), SOCKSinit()

SOCKS — A Basic Firewall

2282 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. raise()
Generate a signal

Synopsis:
#include <signal.h>

int raise(int condition);

Arguments:
condition The signal that you want to raise. For more

information, see signal().

Library:
libc

Description:
The raise() function generates the signal specified by condition. Use
SignalAction() or signal() to specify the actions to take when a signal
is received.

Returns:
0 if the specified condition is sent, or nonzero if an error occurs (errno
is set).

The raise() function doesn’t return if the action for that signal is to
terminate the program or to transfer control using the longjmp()
function.

Errors:
EAGAIN Insufficient system resources are available to deliver the

signal.

EINVAL The value of condition isn’t a valid signal number.

May 31, 2004 Manifests 2283

raise() 2004, QNX Software Systems Ltd.

Examples:
Wait until a SIGINT signal is received. The signal is automatically
raised on iteration 10000, or when you press Ctrl – C:

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

sig atomic t signal count;
sig atomic t signal number;

void alarm handler(int signum)
{

++signal count;
signal number = signum;

}

int main(void)
{

unsigned long i;

signal count = 0;
signal number = 0;
signal(SIGINT, alarm handler);

printf("Iteration: ");
for(i = 0; i < 100000; ++i) {

printf("\b\b\b\b\b%*d", 5, i);

if(i == 10000) raise(SIGINT);

if(signal count > 0) break;
}

if(i == 100000) {
printf("\nNo signal was raised.\n");

} else if(i == 10000) {
printf("\nSignal %d was raised by the "

"raise() function.\n", signal number);
} else {

printf("\nUser raised signal #%d.\n",
signal number);

}

return EXIT SUCCESS;
}

2284 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. raise()

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
signal(), SignalAction()

May 31, 2004 Manifests 2285

rand() 2004, QNX Software Systems Ltd.

Generate a pseudo-random integer

Synopsis:
#include <stdlib.h>

int rand(void);

Library:
libc

Description:
The rand() function computes a pseudo-random integer in the range 0
to RAND MAX. You can start the sequence at different values by
calling srand().

The rand r() function is a thread-safe version of rand().

Returns:
A pseudo-random integer.

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int i;

for(i=1; i < 10; ++i) {
printf("%d\n", rand());

}

return EXIT SUCCESS;
}

2286 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rand()

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread No

See also:
lrand48(), nrand48(), rand r(), srand()

May 31, 2004 Manifests 2287

rand r() 2004, QNX Software Systems Ltd.

Generate a pseudo-random integer in a thread-safe manner

Synopsis:
#include <stdlib.h>

int rand r(unsigned int* seed);

Arguments:
seed A pointer to the seed for the sequence of pseudo-random

numbers. If you call rand r() with the same initial value for
the seed, the same sequence is generated.

Library:
libc

Description:
If POSIX THREAD SAFE FUNCTIONS is defined, rand r() computes
a sequence of pseudo-random integers in the range 0 to RAND MAX.

Returns:
A pseudo-random integer.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

2288 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rand r()

See also:
rand(), srand()

May 31, 2004 Manifests 2289

random() 2004, QNX Software Systems Ltd.

Generate a pseudo-random number from the default state

Synopsis:
#include <stdlib.h>

long random(void);

Library:
libc

Description:
The random() function uses a nonlinear additive feedback
random-number generator employing a default state array size of 31
long integers to return successive pseudo-random numbers in the
range from 0 to 231-1. The period of this random-number generator is
approximately 16 � (231-1). The size of the state array determines
the period of the random-number generator. Increasing the state array
size increases the period.

Use this function in conjunction with the following:

initstate() Initialize the state of the pseudo-random number
generator.

setstate() Specify the state of the pseudo-random number
generator.

srandom() Set the seed used by the pseudo-random number
generator.

The random() and srandom() functions have (almost) the same calling
sequence and initialization properties as rand() and srand() The
difference is that rand() produces a much less random sequence. In
fact, the low dozen bits generated by rand() go through a cyclic
pattern. All the bits generated by random() are usable. For example,

random()&01

2290 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. random()

produces a random binary value.

Unlike srand(), srandom() doesn’t return the old seed because the
amount of state information used is much more than a single word.
The initstate() and setstate() routines are provided to deal with
restarting/changing random number generators. With 256 bytes of
state information, the period of the random-number generator is
greater than 269.

Like rand(), random() produces by default a sequence of numbers that
can be duplicated by calling srandom() with 1 as the seed.

If initstate() hasn’t been called, random() behaves as though
initstate() had been called with seed=1 and size=128.

If initstate() is called with size less than 8, random() uses a simple
linear congruential random number generator.

Returns:
The generated pseudo-random number.

Examples:
See initstate().

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread No

May 31, 2004 Manifests 2291

random() 2004, QNX Software Systems Ltd.

See also:
drand48(), initstate(), rand(), setstate(), srand(), srandom()

2292 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. Rbind()
Bind a name to a socket (via a SOCKS server)

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>

int Rbind(int s,
const struct sockaddr * name,
int namelen);

Arguments:
s The file descriptor to be bound.

name A pointer to the sockaddr structure that holds the
address to be bound to the socket. The socket length and
format depend upon its address family.

namelen The length of the sockaddr structure pointed to by
name.

Library:
libsocks

Description:
The Rbind() function is a cover function for bind() — the difference is
that Rbind() does its job via a SOCKS server.

For more information about SOCKS and its libraries, see the
appendix, SOCKS — A Basic Firewall.

Returns:
0 Success.

-1 An error occurred (errno is set).

May 31, 2004 Manifests 2293

Rbind() 2004, QNX Software Systems Ltd.

Classification:
SOCKS

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

See also:
bind() Raccept(), Rconnect(), Rgetsockname(), Rlisten(), Rrcmd(),
Rselect(), SOCKSinit()

SOCKS — A Basic Firewall

2294 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rcmd()
Execute a command on a remote host

Synopsis:
#include <unistd.h>

int rcmd(char ** ahost,
unsigned short inport,
const char * locuser,
const char * remuser,
const char * cmd,
int * fd2p);

Arguments:
ahost The name of the host that you want to execute the

command on. If the function can find the host, it sets
*ahost to the standard name of the host.

inport The well-known Internet port on the host, where the
server resides.

locuser The user ID on the local machine.

remuser The user ID on the remote machine.

cmd The command that you want to execute.

fd2p See below.

Library:
libsocket

Description:
The rcmd() function is used by the superuser to execute a command,
cmd, on a remote machine using an authentication scheme based on
reserved port numbers. The rshd server (among others) uses the
rcmd(), rresvport(), and ruserok() functions.

The rcmd() function looks up the host *ahost by means of
gethostbyname(), and returns -1 if the host doesn’t exist. Otherwise,

May 31, 2004 Manifests 2295

rcmd() 2004, QNX Software Systems Ltd.

*ahost is set to the standard name of the host and a connection is
established to a server residing at the well-known Internet port inport.

If the connection succeeds, a SOCK STREAM socket in the Internet
domain is returned to the caller and given to the remote command as
standard input and standard output.

If fd2p is: Then:

Nonzero An auxiliary channel to a control process is set up,
and a descriptor for it is placed in *fd2p. The control
process will return diagnostic output from the
command (unit 2) on this channel and will accept
bytes as signal numbers to be forwarded to the
command’s process group.

Zero The standard error (unit 2 of the remote command) is
made the same as the standard output and no
provision is made for sending arbitrary signals to the
remote process (although you may be able to get its
attention by using out-of-band data).

The protocol is described in detail in rshd in the Utilities Reference.

Returns:
A valid socket descriptor; or -1 if an error occurs and a message is
printed to standard error.

Errors:
The error code EAGAIN is overloaded to mean “All network ports in
use.”

Classification:
Unix

2296 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rcmd()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
gethostbyname(), rresvport(), ruserok()

rlogin, rlogind, rsh, rshd in the Utilities Reference

May 31, 2004 Manifests 2297

Rconnect() 2004, QNX Software Systems Ltd.

Initiate a connection on a socket (via a SOCKS server)

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>

int Rconnect(int s,
const struct sockaddr * name,
int namelen);

Arguments:
s The descriptor of the socket on which to initiate the

connection.

name The name of the socket to connect to for a
SOCK STREAM connection.

namelen The length of the name, in bytes.

Library:
libsocks

Description:
The Rconnect() function is a cover function for connect() — the
difference is that Rconnect() does its job via a SOCKS server.

For more information about SOCKS and its libraries, see the
appendix, SOCKS — A Basic Firewall.

Returns:
0 Success.

-1 An error occurred (errno is set).

2298 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. Rconnect()

Classification:
SOCKS

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

See also:
connect() Raccept(), Rbind(), Rgetsockname(), Rlisten(), Rrcmd(),
Rselect(), SOCKSinit()

SOCKS — A Basic Firewall

May 31, 2004 Manifests 2299

rdchk() 2004, QNX Software Systems Ltd.

Check to see if a read is likely to succeed

Synopsis:
#include <unix.h>

int rdchk(int fd);

Arguments:
fd The file descriptor that you want to check.

Library:
libc

Description:
The rdchk() function checks to see if a read from the file descriptor,
fd, is likely to succeed.

Returns:
The number of characters waiting to be read, or -1 if an error occurred
(errno is set).

Errors:
ENOTTY The fd argument isn’t the file descriptor for a character

device.

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

continued. . .

2300 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rdchk()

Safety

Signal handler Yes

Thread Yes

See also:
tcischars()

May 31, 2004 Manifests 2301

re comp() 2004, QNX Software Systems Ltd.

Compile a regular expression

Synopsis:
#include <unix.h>

char *re comp(char *s);

Arguments:
s A string that contains the regular expression that you want to

compile. This string must end with a null byte and may include
newline characters. If this argument is NULL, the current
regular expression remains unchanged.

Library:
libc

Description:
The re comp() function converts a regular expression string (RE) into
an internal form suitable for pattern matching. Use this function with
re exec().

The re comp() and re exec() functions support simple regular
expressions. The regular expressions of the form \{m\}, \{m,\}, or
\{m,n\} aren’t supported.

For better portability, use regcomp(), regerror(), and regexec() instead
of these functions.

�

Returns:
NULL if the string pointed to by s was successfully converted.
Otherwise, a pointer to one of the following error message strings is
returned:

� No previous regular expression

� Regular expression too long

2302 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. re comp()

� unmatched \(

� missing]

� too many \(\) pairs

� unmatched \)

Classification:
Legacy Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
re exec(), regcomp(), regerror(), regexec()

grep in the Utilities Reference

May 31, 2004 Manifests 2303

re exec() 2004, QNX Software Systems Ltd.

Execute a regular expression

Synopsis:
#include <unix.h>

int re exec(char *s);

Arguments:
s A pointer to the string that you want to compare to the current

regular expression. This string must end with a null byte and
may include newline characters.

Library:
libc

Description:
The re exec() function compares the string pointed to by the string
argument with the last regular expression passed to re comp().

The re comp() and re exec() functions support simple regular
expressions. The regular expressions of the form \{m\}, \{m,\}, or
\{m,n\} aren’t supported.

For better portability, use regcomp(), regerror(), and regexec() instead
of these functions.

�

Returns:
1 The string matches the last compiled regular expression.

0 The string doesn’t match the last compiled regular expression.

-1 The compiled regular expression is invalid (indicating an
internal error).

2304 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. re exec()

Classification:
Legacy Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
re comp(), regcomp(), regerror(), regexec()

grep in the Utilities Reference

May 31, 2004 Manifests 2305

read() 2004, QNX Software Systems Ltd.

Read bytes from a file

Synopsis:
#include <unistd.h>

ssize t read(int fildes,
void* buf,
size t nbyte);

Arguments:
fildes The descriptor of the file that you want to read from.

buf A pointer to a buffer where the function can store the data
that it reads.

nbyte The number of bytes that you want to read.

Library:
libc

Description:
The read() function attempts to read nbyte bytes from the file
associated with the open file descriptor, fildes, into the buffer pointed
to by buf .

If nbyte is zero, read() returns zero, and has no other effect.

On a regular file or other file capable of seeking, read() starts at a
position in the file given by the file offset associated with fildes.
Before successfully returning from read(), the file offset is
incremented by the number of bytes actually read.

The read() call ignores advisory locks that you may have set with
fcntl().

�

On a file not capable of seeking, read() starts at the current position.

When read() returns successfully, its return value is the number of
bytes actually read and placed in the buffer. This number will never

2306 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. read()

be greater than nbyte, although it may be less than nbyte for one of the
following reasons:

� The number of bytes left in the file is less than nbyte.

� The read() request was interrupted by a signal.

� The file is a pipe (or FIFO) or a special file, and has fewer than
nbyte bytes immediately available for reading. For example,
reading from a file associated with a terminal may return one typed
line of data.

If read() is interrupted by a signal before it reads any data, it returns a
value of -1 and sets errno to EINTR. However, if read() is interrupted
by a signal after it has successfully read some data, it returns the
number of bytes read.

No data is transferred past the current end-of-file. If the starting
position is at or after the end-of-file, read() returns zero. If the file is a
device special file, the result of subsequent calls to read() will work,
based on the then current state of the device (that is, the end of file is
transitory).

If the value of nbyte is greater than INT MAX, read() returns -1 and
sets errno to EINVAL. See <limits.h>.

When attempting to read from an empty pipe or FIFO:

1 If no process has the pipe open for writing, read() returns 0 to
indicate end-of-file.

2 If a process has the pipe open for writing, and O NONBLOCK is
set, read() returns -1, and errno is set to EAGAIN.

3 If a process has the pipe open for writing, and O NONBLOCK is
clear, read() blocks until some data is written, or the pipe is
closed by all processes that had opened it for writing.

When attempting to read from a file (other than a pipe or FIFO) that
support nonblocking reads and has no data currently available:

1 If O NONBLOCK is set, read() returns -1, and errno is set to
EAGAIN.

May 31, 2004 Manifests 2307

read() 2004, QNX Software Systems Ltd.

2 If O NONBLOCK is clear, read() blocks until some data is
available.

3 The O NONBLOCK flag has no effect if some data is available.

If you call read() on a portion of a file, prior to the end-of-file, that
hasn’t been written, it returns bytes with the value zero.

If read() succeeds, the st atime field of the file is marked for update.

Returns:
The number of bytes actually read, or -1 (errno is set).

Errors:
EAGAIN The O NONBLOCK flag is set for the file

descriptor, and the process would be delayed in the
read operation.

EBADF The file descriptor, fildes, isn’t a valid file
descriptor open for reading.

EINTR The read operation was interrupted by a signal,
and either no data was transferred, or the resource
manager responsible for that file doesn’t report
partial transfers.

EIO A physical I/O error occurred (for example, a bad
block on a disk). The precise meaning is
device-dependent.

ENOSYS The read() function isn’t implemented for the
filesystem specified by filedes.

EOVERFLOW The file is a regular file and an attempt is made to
read at or beyond the offset maximum associated
with the file.

2308 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. read()

Examples:
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

int main(void)
{

int fd;
int size read;
char buffer[80];

/* Open a file for input */
fd = open("myfile.dat", O RDONLY);

/* Read the text */
size read = read(fd, buffer,

sizeof(buffer));

/* Test for error */
if(size read == -1) {

perror("Error reading myfile.dat");
return EXIT FAILURE;

}

/* Close the file */
close(fd);

return EXIT SUCCESS;
}

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 2309

read() 2004, QNX Software Systems Ltd.

See also:
close(), creat(), dup(), dup2(), errno, fcntl(), lseek(), open(), pipe(),
readblock(), readv(), select(), write(), writev()

2310 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. read main config file()
Read the snmpd.conf file

Synopsis:
#include <snmp/snmp api.h>

int read main config file(
struct snmpd conf data * info);

Arguments:
info A pointer to a snmpd conf data structure that the function

can fill with the configuration information. For more
information about this structure, see below.

Library:
libsnmp

Description:
The read main config file() function fills the info structure with data
from the snmpd.conf file (see the Utilities Reference). This
information is useful if you wish to know what configuration
information the SNMP agent was started with.

The string pointers in this structure, if not NULL, point to strings
obtained by using malloc(); you can free them by calling free().

If the data for a member of the structure isn’t available, the structure
member isn’t modified. You should use memset() to set the structure
to 0 before calling read main config file().

�

To locate the snmpd.conf file, this function first checks the
SNMPCONFIGFILE environment variable. If this isn’t found, the
default, snmpd.conf, is used. If the specified file couldn’t be
accessed, the structure members aren’t updated.

The snmpd conf data structure is defined in <snmp api.h>, and
contains the following members:

May 31, 2004 Manifests 2311

read main config file() 2004, QNX Software Systems Ltd.

struct snmpd conf data{
char* main config fname;
char* party conf fname;
char* view conf fname;
char* context conf fname;
char* acl conf fname;
char* sysContact;
char* sysLocation;
char* sysName;
char* private community;
char* public community;
char* trap sink;
char* trap community;
int conf authentraps;

};

The members of this structure are:

main config fname

snmpd.conf file location.

party conf fname

party.conf file location.

view conf fname

view.conf file location.

context conf fname

context.conf file location.

acl conf fname

acl.conf file location.

sysContact system.sysContact string.

sysLocation system.sysLocation string.

sysName system.sysName string.

private community

Private level community string name to use.

2312 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. read main config file()

public community

Public level community string name to use.

trap sink Destination host to send trap messages.

trap community

Community name to use for trap messages.

conf authentraps

Enable authentication traps (1 means enable, 2
means disable).

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
ENOENT The snmpd.conf file wasn’t found.

Files:
snmpd.conf Default SNMP configuration file. For more

information, see the Utilities Reference.

Environment variables:
SNMPCONFIGFILE

Location of the SNMP configuration file.

Classification:
SNMP

May 31, 2004 Manifests 2313

read main config file() 2004, QNX Software Systems Ltd.

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
snmp close(), snmp free pdu(), snmp open(), snmp pdu,
snmp pdu create(), snmp read(), snmp select info(), snmp send(),
snmp session, snmp timeout()

snmpd, snmpd.conf in the Utilities Reference

2314 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. readblock()
Read blocks of data from a file

Synopsis:
#include <unistd.h>

int readblock(int fd,
size t blksize,
unsigned block,
int numblks,
void *buff);

Arguments:
fd The file descriptor for the file you want to read from.

blksize The number of bytes in each block of data.

block The block number from which to start reading.

numblks The number of blocks to read.

buff A pointer to a buffer where the function can store the
data that it reads.

Library:
libc

Description:
The readblock() function reads numblks blocks of data from the file
associated with the open file descriptor fd, into the buffer pointed to
by buff , starting at block number block (blocks are numbered starting
at 0). The blksize argument specifies the size of a block, in bytes.

This function is useful for direct access to raw blocks on a block
special device (for example, raw disk blocks) but may also be used for
high-speed access to database files, for example. (The speed gain is
through the combined seek/read implicit in this call, and the ability to
transfer more than the read() function’s limit of INT MAX bytes at a
time.)

May 31, 2004 Manifests 2315

readblock() 2004, QNX Software Systems Ltd.

If numblks is zero, readblock() returns zero and has no other results.

On successful completion, readblock() returns the number of blocks
actually read and placed in the buffer. This number is never greater
than numblks. The value returned may be less than numblks if one of
the following occurs:

� The number of blocks left before the end-of-file is less than
numblks.

� The process requests more blocks than implementation limits
allow to be read in a single atomic operation.

� A read error occurred after reading at least one block.

If a read error occurs on the first block, readblock() returns -1 and sets
errno to EIO.

Returns:
The number of blocks actually read. If an error occurs, it returns -1,
sets errno to indicate the error, and the contents of the buffer pointer
to by buff are left unchanged.

Errors:
EBADF The fd argument isn’t a valid file descriptor open for

reading a block-oriented device.

EIO A physical read error occurred on the first block.

EINVAL The starting position is invalid (0 or negative) or beyond
the end of the disk.

Classification:
QNX Neutrino

2316 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. readblock()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
writeblock()

May 31, 2004 Manifests 2317

readcond() 2004, QNX Software Systems Ltd.

Read data from a terminal device

Synopsis:
#include <unistd.h>

int readcond(int fd,
void * buf,
int n,
int min,
int time,
int timeout);

Arguments:
fd The file descriptor associated with the terminal device that

you want to read from.

buf A pointer to a buffer into which readcond() can put the data.

n The maximum number of bytes to read.

min, time, timeout

When used in RAW mode, these arguments override the
behavior of the MIN and TIME members of the terminal’s
termios structure. For more information, see below.

Library:
libc

Description:
The readcond() function reads up to n bytes of data from the terminal
device indicated by fd into the buffer pointed to by buf .

This function is an alternative to the read() function for terminal
devices, providing additional arguments for timed read operations.
These additional arguments can be used to minimize overhead when
dealing with terminal devices.

The three arguments (min, time, and timeout), when used on terminal
devices in RAW mode, override the behavior of the MIN and TIME

2318 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. readcond()

elements of the currently defined termios structure (for the duration
of this call only). The termios structure also defines a forwarding
character (in c cc[VFWD]) that can be used to bypass min, time and
timeout.

The normal case of a simple read by an application would block until
at least one character was available.

MIN
TIME

TIMEOUT
FORWARD

Respond when at least this number of characters arrives.
Respond if a pause in the character stream occurs.
Respond if an overall amount of time passes.
Respond if a framing character arrives.

MIN
TIME

TIMEOUT

FORWARD

OR reads n bytes

Char I/O
DLL

Conditions that satisfy an input request.

In the case where multiple conditions are specified, the read will be
satisfied when any one of them is satisfied.

MIN

The qualifier MIN is useful when an application has knowledge of the
number of characters it expects to receive.

Any protocol that knows the character count for a frame of data can
use MIN to wait for the entire frame to arrive. This significantly
reduces IPC and process scheduling. MIN is often used in conjunction
with TIME or TIMEOUT . MIN is part of the POSIX standard.

TIME

The qualifier TIME is useful when an application is receiving
streaming data and wishes to be notified when the data stops or
pauses. The pause time is specified in 1/10 of a second. TIME is part
of the POSIX standard.

May 31, 2004 Manifests 2319

readcond() 2004, QNX Software Systems Ltd.

TIMEOUT

The qualifier TIMEOUT is useful when an application has knowledge
of how long it should wait for data before timing out. The timeout is
specified in 1/10 of a second.

Any protocol that knows the character count for a frame of data it
expects to receive can use TIMEOUT . This in combination with the
baud rate allows a reasonable guess to be made when data should be
available. It acts as a deadman timer to detect dropped characters. It
can also be used in interactive programs with user input to timeout a
read if no response is available within a given time.

TIMEOUT is a QNX extension and isn’t part of the POSIX standard.

FORWARD

The qualifier FORWARD is useful when a protocol is delimited by a
special framing character. For example, the PPP protocol used for
TCP/IP over a serial link start and end its packets with a framing
character. When used in conjunction with TIMEOUT , the FORWARD
character can greatly improve the efficiency of a protocol
implementation. The protocol process will receive complete frames,
rather than character by character. In the case of a dropped framing
character, TIMEOUT or TIME can be used to quickly recover.

This greatly minimizes the amount of IPC work for the OS and results
in a much lower processor utilization for a given TCP/IP data rate. It
is interesting to note that PPP doesn’t contain a character count for its
frames. Without the data-forwarding character, an implementation
would be forced to read the data one character at a time.

FORWARD is a QNX extension and isn’t part of the POSIX standard.

To enable the FORWARD character, you must set the VFWD character
in the c cc member of the termios structure:

/* PPP forwarding character */
const char fwd char = 0x7e;

#include <termios.h>

...

2320 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. readcond()

int fd;
struct termios termio;

...

tcgetattr(fd, &termio);
termio.c cc[VFWD] = fwd char;
tcsetattr(fd, TCSANOW, &termio);

The following table summarizes the interaction of min, time, and
timeout:

min time timeout Description

0 0 0 Returns immediately with as many bytes
as are currently available (up to n bytes).

M 0 0 Return with up to n bytes only when at
least M bytes are available.

0 T 0 Return with up to n bytes when at least
one byte is available, or T * .1 sec has
expired.

M T 0 Return with up to n bytes when either M
bytes are available, or at least one byte
has been received and the inter-byte time
between any subsequently received
characters exceeds T * .1 sec.

0 0 t RESERVED.

M 0 t Return with up to n bytes when t * .1 sec
has expired, or M bytes are available.

0 T t RESERVED.

continued. . .

May 31, 2004 Manifests 2321

readcond() 2004, QNX Software Systems Ltd.

min time timeout Description

M T t Return with up to n bytes when M bytes
are available, or t * .1 sec has expired
and no characters are received, or at least
one byte has been received and the
inter-byte time between any
subsequently received characters
exceeds T * .1 sec.

Note that when timeout is zero, the behavior of min and time is
exactly the same as the behavior of the MIN and TIME parameters of
the termios controlling structure. Thus, readcond() can be used as a
higher speed alternative to consecutive calls of tcgetattr(), tcsetattr(),
and read() when dealing with RAW terminal I/O.

The (M, 0, t) case is useful for communications protocols that cannot
afford to block forever waiting for data that may never arrive.

The (M, T , t) case is provided to permit readcond() to return when a
burst of data ends (as in the (M, T , 0) case), but also to return if no
burst at all is detected within a reasonable amount of time.

Returns:
The number of bytes read, or -1 if an error occurs (errno is set).

Errors:
EAGAIN The O NONBLOCK flag is set on this fd, and the

process would have been blocked in trying to perform
this operation.

EBADF The argument fd is invalid or file isn’t opened for
reading.

EINTR The readcond() call was interrupted by the process
being signalled.

EIO This process isn’t currently able to read data from this
fd.

2322 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. readcond()

ENOSYS This function isn’t supported for this fd.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, read(), tcgetattr(), tcsetattr(), termios

May 31, 2004 Manifests 2323

readdir() 2004, QNX Software Systems Ltd.

Read a directory entry

Synopsis:
#include <dirent.h>

struct dirent * readdir(DIR * dirp);

Arguments:
dirp A pointer to the directory stream to be read.

Library:
libc

Description:
The readdir() function reads the next directory entry from the
directory specified by dirp, which is the value returned by a call to
opendir().

You can call readdir() repeatedly to list all of the entries contained in
the directory specified by the pathname given to opendir(). The
closedir() function must be called to close the directory stream and
free the memory allocated by opendir().

The <dirent.h> file defines the struct dirent and the DIR type
used by the readdir() family of functions.

The result of using a directory stream after one of the exec*() or
spawn*() family of functions is undefined. After a call to fork(), either
the parent or the child (but not both) can continue processing the
directory stream, using the readdir() and rewinddir() functions. If
both the parent and child processes use these functions, the result is
undefined. Either (or both) processes may use closedir().

�

The <dirent.h> file also defines the following macros for accessing
extra data associated with the dirent structure:

2324 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. readdir()

DEXTRA FIRST(pdirent)

Get a pointer to the first block of data associated with the
structure pointed to by pdirent.

DEXTRA NEXT(last)

Get the block of data that follows the block pointed to by last.

DEXTRA VALID(extra, pdirent)

Evaluates to 1 if extra is a pointer to a valid block of data
associated with the structure pointed to by pdirent.

You can use these macros to traverse the data associated with the
dirent structure like this:

for(extra = DEXTRA FIRST(dirent);
DEXTRA VALID(extra, dirent);

extra = DEXTRA NEXT(extra)) {
switch(extra->d type) {

/* No data */
case DTYPE NONE :

break;
/* Data includes information as returned by stat() */
case DTYPE STAT :

break;
/* Data includes information as returned by lstat() */
case DTYPE LSTAT :

break;
...

}
}

Returns:
A pointer to a struct dirent object for success, or NULL if the end
of the directory stream is encountered or an error occurs (errno is set).

Errors:
EBADF The dirp argument doesn’t refer to an open

directory stream.

May 31, 2004 Manifests 2325

readdir() 2004, QNX Software Systems Ltd.

EOVERFLOW One of the values in the structure to be returned
can’t be represented correctly.

Examples:
Get a list of files contained in the directory /home/fred:

#include <stdio.h>
#include <dirent.h>
#include <stdlib.h>

int main(void)
{

DIR* dirp;
struct dirent* direntp;

dirp = opendir("/home/fred");
if(dirp != NULL) {

for(;;) {
direntp = readdir(dirp);
if(direntp == NULL) break;

printf("%s\n", direntp->d name);
}

closedir(dirp);

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

continued. . .

2326 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. readdir()

Safety

Signal handler No

Thread No

See also:
closedir(), errno, lstat(), opendir(), readdir r(), rewinddir(), seekdir(),
telldir(), stat()

May 31, 2004 Manifests 2327

readdir r() 2004, QNX Software Systems Ltd.

Get information about the next matching filename

Synopsis:
#include <sys/types.h>
#include <dirent.h>

int readdir r(DIR * dirp,
struct dirent * entry,
struct direct ** result);

Arguments:
dirp A pointer to the directory stream to be read.

entry A pointer to a dirent structure where the function can
store the directory entry.

result The address of a location where the function can store a
pointer to the information found.

Library:
libc

Description:
If POSIX THREAD SAFE FUNCTIONS is defined, readdir r()
initializes the dirent structure referenced by entry with the directory
entry at the current position in the directory stream referred to by
dirp, and stores a pointer to this structure in result.

The storage pointed by entry must be large enough for a dirent
structure with the s name member an array of char containing at least
NAME MAX plus one element.

2328 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. readdir r()

The struct dirent structure doesn’t include space for the
pathname. You must provide it:

struct dirent *entry;
entry = malloc(sizeof(*entry) + NAME MAX + 1);

�

Returns:
EOK Success.

On failure, errno is set.

Errors:
EBADF The dirp argument doesn’t refer to an open

directory stream.

EOVERFLOW One of the values in the structure to be returned
can’t be represented correctly.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 2329

readdir r() 2004, QNX Software Systems Ltd.

See also:
closedir(), errno, opendir(), readdir(), seekdir(), telldir(), rewinddir()

2330 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. readlink()
Place the contents of a symbolic link into a buffer

Synopsis:
#include <unistd.h>

int readlink(const char* path,
char* buf,
size t bufsiz);

Arguments:
path The name of the symbolic link.

buf A pointer to a buffer where the function can store the
contents of the symbolic link (i.e. the path linked to).

bufsiz The size of the buffer.

Library:
libc

Description:
The readlink() function places the contents of the symbolic link
named by path into the buffer pointed to by buf , which has a size of
bufsiz. The contents of the returned symbolic link doesn’t include a
NULL terminator. Its length must be determined from the stat
structure returned by lstat(), or by the return value of the readlink()
call.

If readlink() is successful, up to bufsiz bytes from the contents of the
symbolic link are placed in buf .

Returns:
The number of bytes placed in the buffer, or -1 if an error occurs
(errno is set).

May 31, 2004 Manifests 2331

readlink() 2004, QNX Software Systems Ltd.

Errors:
EACCES Search permission is denied for a component of the

path prefix.

EINVAL The named file isn’t a symbolic link.

ELOOP A loop exists in the symbolic links encountered during
resolution of the path argument, and more than
SYMLOOP MAX symbolic links were encountered.

ENAMETOOLONG

A component of the path exceeded NAME MAX
characters, or the entire pathname exceeded
PATH MAX characters.

ENOENT The named file doesn’t exist.

ENOSYS Links aren’t supported by the resource manager
associated with path.

ENOTDIR A component of the path prefix named by path isn’t a
directory.

Examples:
/*
* Read the contents of the named symbolic links
*/

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

char buf[PATH MAX + 1];

int main(int argc, char** argv)
{
int n;
int len;
int ecode = 0;

for(n = 1; n < argc; ++n) {
if((len = readlink(argv[n], buf, PATH MAX)) == -1) {
perror(argv[n]);

2332 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. readlink()

ecode++;
}
else {
buf[len] = ’\0’;
printf("%s -> %s\n", argv[n], buf);

}
}

return(ecode);
}

Classification:
POSIX 1003.1a

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, lstat(), symlink()

May 31, 2004 Manifests 2333

readv() 2004, QNX Software Systems Ltd.

Read bytes from a file

Synopsis:
#include <sys/uio.h>

ssize t readv(int fildes,
const iov t* iov,
int iovcnt);

Arguments:
fildes The descriptor of the file that you want to read from.

iov An array of iov t objects where the function can store the
data that it reads.

iovcnt The number of entries in the iov array. The maximum
number of entries is UIO MAXIOV.

Library:
libc

Description:
The readv() function attempts to read from the file associated with the
open file descriptor, fildes, placing the data into iovcnt buffers
specified by the members of the iov array: iov[0], iov[1], . . . ,
iov[iovcnt-1].

On a regular file or other file capable of seeking, readv() starts at a
position in the file given by the file offset associated with fildes.
Before successfully returning from readv(), the file offset is
incremented by the number of bytes actually read.

The iov t structure contains the following members:

iov base The base address of a memory area where data should
be placed.

iov len The length of the memory area.

2334 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. readv()

The readv() function always fills one buffer completely before
proceeding to the next.

The readv() call ignores advisory locks that may have been set by the
fcntl() function.

�

On a file not capable of seeking, readv() starts at the current position.

When readv() returns successfully, its return value is the number of
bytes actually read and placed in the buffer. This number will never
be greater than the combined sizes of the iov buffers, although it may
be less for one of the following reasons:

� The number of bytes left in the file is less than the combined size
of the iov buffers.

� The readv() request was interrupted by a signal.

� The file is a pipe (or FIFO) or a special file, and has fewer bytes
immediately available for reading. For example, reading from a
file associated with a terminal may return one typed line of data.

If readv() is interrupted by a signal before it reads any data, it returns
a value of -1 and sets errno to EINTR. However, if readv() is
interrupted by a signal after it has successfully read some data, it
returns the number of bytes read.

No data is transferred past the current end-of-file. If the starting
position is at or after the end-of-file, readv() returns zero. If the file is
a device special file, the result of subsequent calls to readv() will
work, based on the then current state of the device (that is, the end of
file is transitory).

When attempting to read from an empty pipe or FIFO:

1 If no process has the pipe open for writing, readv() returns 0 to
indicate end-of-file.

2 If a process has the pipe open for writing, and O NONBLOCK is
set, readv() returns -1 and sets errno to EAGAIN.

May 31, 2004 Manifests 2335

readv() 2004, QNX Software Systems Ltd.

3 If a process has the pipe open for writing, and O NONBLOCK is
clear, read() blocks until some data is written, or the pipe is
closed by all processes that had opened it for writing.

When attempting to read from a file (other than a pipe or FIFO) that
supports nonblocking reads and has no data currently available:

1 If O NONBLOCK is set, readv() returns -1 and sets errno to
EAGAIN.

2 If O NONBLOCK is clear, readv() blocks until some data is
available.

3 The O NONBLOCK flag has no effect if some data is available.

If you call readv() on a portion of a file, prior to the end-of-file, that
hasn’t been written, it returns bytes with the value zero.

If readv() succeeds, the st atime field of the file is marked for update.

Returns:
The number of bytes read, or -1 if an error occurred (errno is set).

Errors:
EAGAIN The O NONBLOCK flag is set for the file

descriptor, and the process would be delayed in the
read operation.

EBADF The file descriptor, fildes, isn’t a valid file
descriptor open for reading.

EINTR The read operation was interrupted by a signal,
and either no data was transferred, or the resource
manager responsible for that file doesn’t report
partial transfers.

EINVAL The iovcnt argument is less than or equal to 0, or
greater than UIO MAXIOV.

2336 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. readv()

EIO A physical I/O error occurred (for example, a bad
block on a disk). The precise meaning is
device-dependent.

ENOSYS The readv() function isn’t implemented for the
filesystem specified by filedes.

EOVERFLOW The file is a regular file and an attempt is made to
read at or beyond the offset maximum associated
with the file.

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
close(), creat(), dup(), dup2(), errno, fcntl(), lseek(), open(), pipe(),
read(), readblock(), select(), write(), writev()

May 31, 2004 Manifests 2337

realloc() 2004, QNX Software Systems Ltd.

Allocate, reallocate or free a block of memory

Synopsis:
#include <stdlib.h>

void* realloc(void* old blk,
size t size);

Arguments:
old blk A pointer to the block of memory to be allocated,

reallocated, or freed.

size The new size, in bytes, for the block of memory.

Library:
libc

Description:
The realloc() function allocates, reallocates, or frees the block of
memory specified by old blk based on the following rules:

� If old blk is NULL, a new block of memory of size bytes is
allocated.

� If the size is zero, the free() function is called to release the
memory pointed to by old blk.

� Otherwise, realloc() reallocates space for an object of size bytes
by:

- shrinking the size of the allocated memory block old blk when
size is smaller than the current size of old blk

- extending the allocated size of the allocated memory block
old blk if there is a large enough block of unallocated memory
immediately following old blk

- allocating a new block with the appropriate size, and copying
the contents of old blk to this new block

2338 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. realloc()

The realloc() function allocates memory from the heap.

Because it’s possible that a new block will be allocated, any pointers
into the old memory could be invalidated. These pointers will point to
freed memory, with possible disastrous results, when a new block is
allocated.

�

The realloc() function returns NULL when the memory pointed to by
old blk can’t be reallocated. In this case, the memory pointed to by
old blk isn’t freed, so be careful to maintain a pointer to the old
memory block so it can be freed later.

In the following example, buffer is set to NULL if the function fails,
and won’t point to the old memory block. If buffer is your only
pointer to the memory block, then you have lost access to this
memory.

buffer = (char*)realloc(buffer, 100);

Returns:
A pointer to the start of the allocated memory, or NULL if an error
occurred (errno is set).

Errors:
ENOMEM Not enough memory.

EOK No error.

Examples:
#include <stdlib.h>
#include <malloc.h>

int main(void)
{

char* buffer;
char* new buffer;

buffer = (char*)malloc(80);

May 31, 2004 Manifests 2339

realloc() 2004, QNX Software Systems Ltd.

new buffer = (char*)realloc(buffer, 100);
if(new buffer == NULL) {

/* not able to allocate larger buffer */

return EXIT FAILURE;
} else {
buffer = new buffer;

}

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
calloc(), free(), malloc(), sbrk()

2340 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. realpath()
Resolve a pathname

Synopsis:
#include <stdlib.h>

char * realpath(const char * pathname,
char * resolved name);

Arguments:
pathname The path name that you want to resolve.

resolved name A pointer to a buffer where the function can store
the resolved name.

Library:
libc

Description:
The realpath() function resolves all symbolic links, extra slash (/)
characters and references to /./ and /../ in pathname, and copies
the resulting absolute pathname into the memory referenced by
resolved name.

To determine the size of the buffer pointed to by resolved name, call
fpathconf() or pathconf() with an argument of PC PATH MAX.

This function resolves both absolute and relative paths and returns the
absolute pathname corresponding to pathname. All but the last
component of pathname must exist when realpath() is called.

Returns:
A pointer to resolved name, or NULL if an error occurs, in which case
resolved name contains the pathname that caused the problem.

May 31, 2004 Manifests 2341

realpath() 2004, QNX Software Systems Ltd.

Errors:
The realpath() function may fail and set the external variable errno
for any of the errors specified for the library functions chdir(), close(),
lstat(), open(), readlink() and getcwd().

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
This implementation of realpath() differs slightly from the Solaris
implementation. QNX always returns absolute pathnames, whereas
the Solaris implementation, under certain circumstances, returns a
relative resolved name when given a relative pathname.

See also:
getcwd()

2342 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. recv()
Receive a message from a socket

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>

ssize t recv(int s,
void * buf,
size t len,
int flags);

Arguments:
s The descriptor for the socket; see socket().

buf A pointer to a buffer where the function can store the
message.

len The size of the buffer.

flags A combination formed by ORing one or more of the values:

� MSG OOB — process out-of-band data. This flag
requests receipt of out-of-band data that wouldn’t be
received in the normal data stream. You can’t use this
flag with protocols that place expedited data at the head
of the normal data queue.

� MSG PEEK — peek at the incoming message. This flag
causes the receive operation to return data from the
beginning of the receive queue without removing that
data from the queue. Thus, a subsequent receive call will
return the same data.

� MSG WAITALL — wait for full request or error. This flag
requests that the operation block until the full request is
satisfied. But the call may still return less data than
requested if a signal is caught, if an error or disconnect
occurs, or if the next data to be received is of a different
type than that returned.

May 31, 2004 Manifests 2343

recv() 2004, QNX Software Systems Ltd.

The MSG WAITALL flag isn’t supported by the tiny TCP/IP stack. For
more information, see npm-ttcpip.so in the Utilities Reference.

�

Library:
libsocket

Description:
The recv() function receives a message from a socket. It’s normally
used only on a connected socket — see connect() — and is identical
to recvfrom() with a zero from parameter.

This routine returns the length of the message on successful
completion. If a message is too long for the supplied buffer, buf , then
excess bytes might be discarded, depending on the type of socket that
the message is received from; see socket().

If no messages are available at the socket, the receive call waits for a
message to arrive, unless the socket is nonblocking — see ioctl() — in
which case -1 is returned and the external variable errno is set to
EWOULDBLOCK. Normally, the receive calls return any data
available, up to the requested amount, rather than wait for the full
amount requested; this behavior is affected by the socket-level options
SO RCVLOWAT and SO RCVTIMEO described in getsockopt().

You can use select() to determine when more data is to arrive.

Returns:
The number of bytes received, or -1 if an error occurs (errno is set).

Errors:
EBADF Invalid descriptor s.

EFAULT The receive buffer is outside the process’s address
space.

EINTR The receive was interrupted by delivery of a signal
before any data was available.

2344 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. recv()

ENOTCONN The socket is associated with a connection-oriented
protocol and hasn’t been connected; see connect()
and accept().

EWOULDBLOCK

Either the socket is marked nonblocking and the
receive operation would block, or a receive timeout
had been set and the timeout expired before data
was received.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
connect(), ioctl(), getsockopt(), read(), recvfrom(), recvmsg(), select(),
socket()

May 31, 2004 Manifests 2345

recvfrom() 2004, QNX Software Systems Ltd.

Receive a message from the socket at a specified address

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>

ssize t recvfrom(int s,
void * buff,
size t len,
int flags,
struct sockaddr * from,
socklen t * fromlen);

Arguments:
s The descriptor for the socket; see socket().

buf A pointer to a buffer where the function can store the
message.

len The size of the buffer.

flags A combination formed by ORing one or more of the
values:

� MSG OOB — process out-of-band data. This flag
requests receipt of out-of-band data that wouldn’t be
received in the normal data stream. You can’t use this
flag with protocols that place expedited data at the
head of the normal data queue.

� MSG PEEK — peek at the incoming message. This
flag causes the receive operation to return data from
the beginning of the receive queue without removing
that data from the queue. Thus, a subsequent receive
call will return the same data.

� MSG WAITALL — wait for full request or error. This
flag requests that the operation block until the full
request is satisfied. But the call may still return less
data than requested if a signal is caught, if an error or

2346 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. recvfrom()

disconnect occurs, or if the next data to be received is
of a different type than that returned.

The MSG WAITALL flag isn’t supported by the tiny TCP/IP stack. For
more information, see npm-ttcpip.so in the Utilities Reference.

�

from NULL, or a pointer to a sockaddr object where the
function can store the source address of the message.

fromlen A pointer to a socklen t object that specifies the size of
the from buffer. The function stores the actual size of the
address in this object.

Library:
libsocket

Description:
The recvfrom() routine receives a message from the socket, s, whether
or not it’s connection-oriented.

If from is nonzero, and the socket is connectionless, the source
address of the message is filled in. The parameter fromlen is a
value-result parameter, initialized to the size of the buffer associated
with from, and modified on return to indicate the actual size of the
stored address.

This routine returns the length of the message on successful
completion. If a message is too long for the supplied buffer, buf ,
excess bytes may be discarded depending on the type of socket that
the message is received from — see socket().

If no messages are available at the socket, the receive call waits for a
message to arrive, unless the socket is nonblocking — see ioctl() — in
which case recvfrom() returns -1 is returned and sets the external
variable errno to EWOULDBLOCK. Normally, the receive calls return
any data available, up to the requested amount, rather than wait for the
full amount requested; this behavior is affected by the socket-level
options SO RCVLOWAT and SO RCVTIMEO described in
getsockopt().

May 31, 2004 Manifests 2347

recvfrom() 2004, QNX Software Systems Ltd.

You can use select() to determine when more data is to arrive.

Returns:
The number of bytes received, or -1 if an error occurs (errno is set).

Errors:
EBADF Invalid descriptor s.

EFAULT The receive buffer pointer(s) point outside the
process’s address space.

EINTR The receive was interrupted by delivery of a signal
before any data was available.

ENOTCONN The socket is associated with a connection-oriented
protocol and hasn’t been connected; see connect()
and accept().

EWOULDBLOCK

Either the socket is marked nonblocking and the
receive operation would block, or a receive timeout
had been set and the timeout expired before data
was received.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

2348 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. recvfrom()

See also:
recv(), recvmsg(), select()

May 31, 2004 Manifests 2349

recvmsg() 2004, QNX Software Systems Ltd.

Receive a message and its header from a socket

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>

ssize t recvmsg(int s,
struct msghdr * msg,
int flags);

Arguments:
s The descriptor for the socket; see socket().

msg A pointer to a msghdr structure where the function can store
the message header; see below.

len The size of the buffer.

flags A combination formed by ORing one or more of the values:

� MSG OOB — process out-of-band data. This flag
requests receipt of out-of-band data that wouldn’t be
received in the normal data stream. You can’t use this
flag with protocols that place expedited data at the head
of the normal data queue.

� MSG PEEK — peek at the incoming message. This flag
causes the receive operation to return data from the
beginning of the receive queue without removing that
data from the queue. Thus, a subsequent receive call will
return the same data.

� MSG WAITALL — wait for full request or error. This flag
requests that the operation block until the full request is
satisfied. But the call may still return less data than
requested if a signal is caught, if an error or disconnect
occurs, or if the next data to be received is of a different
type than that returned.

2350 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. recvmsg()

The MSG WAITALL flag isn’t supported by the tiny TCP/IP stack. For
more information, see npm-ttcpip.so in the Utilities Reference.

�

Library:
libsocket

Description:
The recvmsg() routine receives a message from a socket, s, whether or
not it’s connection-oriented.

The recvmsg() call uses a msghdr structure to minimize the number
of directly supplied parameters. This structure, defined in
<sys/socket.h>, has the following form:

struct msghdr {
caddr t msg name; /* optional address */
u int msg namelen; /* size of address */
struct iovec *msg iov; /* scatter/gather array */
u int msg iovlen; /* # elements in msg iov */
caddr t msg control; /* ancillary data, see below */
u int msg controllen; /* ancillary data buffer len */
int msg flags; /* flags on received message */

};

The msg name and msg namelen parameters specify the address
(source address for recvmsg(); destination address for sendmsg()) if
the socket is unconnected; the msg name parameter may be given as a
null pointer if no names are desired or required.

The msg iov and msg iovlen parameters describe scatter-gather
locations, as discussed in read().

The msg control parameter, whose length is determined by
msg controllen, points to a buffer for other protocol-control related
messages or for other miscellaneous ancillary data. The messages are
of the form:

struct cmsghdr {
u int cmsg len; /* data byte count, including hdr */
int cmsg level; /* originating protocol */

May 31, 2004 Manifests 2351

recvmsg() 2004, QNX Software Systems Ltd.

int cmsg type; /* protocol-specific type */
/* followed by u char cmsg data[]; */

};

Currently, the tiny TCP/IP stack doesn’t support ancillary data. The
msg controllen member of struct msghdr must be 0.

�

The msg flags field is set on return according to the message received:

MSG CTRUNC Indicates that some control data was discarded due
to lack of space in the buffer for ancillary data.

MSG EOR Indicates end-of-record; the data returned
completed a record.

MSG OOB Indicates that expedited or out-of-band data was
received.

MSG TRUNC Indicates that the trailing portion of a datagram was
discarded because the datagram was larger than the
buffer supplied.

Returns:
The number of bytes received, or -1 if an error occurs (errno is set).

Errors:
ENOMEM Not enough memory.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

continued. . .

2352 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. recvmsg()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
recv(), recvfrom(), sendmsg()

May 31, 2004 Manifests 2353

regcomp() 2004, QNX Software Systems Ltd.

Compile a regular expression

Synopsis:
#include <regex.h>

int regcomp(regex t * preg,
const char * pattern,
int cflags);

Arguments:
preg A pointer to a regex t object where the function can

store the compiled regular expression.

pattern The regular expression that you want to compile; see
below.

cflags A bitwise inclusive OR of zero or more of the following
flags:

� REG EXTENDED — use Extended Regular
Expressions.

� REG ICASE — ignore differences in case.

� REG NEWLINE — treat <newline> as a regular
character.

� REG NOSUB — report only success/failure in
regexec().

Library:
libc

Description:
The regcomp() function prepares the regular expression, preg, for use
by the function regexec(), from the specification pattern and cflags.
The member re nsub of preg is set to the number of subexpressions in
pattern.

The functions that deal with regular expressions (regcomp(),
regerror(), regexec(), and regfree()) support two classes of regular

2354 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. regcomp()

expressions, the Basic and Extended Regular Expressions. These
classes are rigorously defined in IEEE P1003.2, Regular Expression
Notation.

Basic Regular Expressions

The Basic Regular Expressions are composed of these terms:

x$ x at end of line ($ must be the last term).

ˆx x at beginning of line (ˆ must be first the term).

x* Zero or more occurrences of x.

. Any single character (except newline).

c The character c.

xc x followed by the character c.

cx Character c followed by x.

[cd] The characters c or d.

[c-d] All characters between c and d, inclusive.

[ˆc] Any character but c.

[[:classname:]]

Any of the following classes:

� alnum

� alpha

� cntrl

� digit

� graph

� lower

� print

� punct

May 31, 2004 Manifests 2355

regcomp() 2004, QNX Software Systems Ltd.

� space

� upper

� xdigit

[[=c=]] All character in the equivalence class with c.

[[=.=]] All collating elements.

x{m,n} m through n occurrences of x.

nc Character c, even if c is an operator.

n(xn) A labeled subexpression, x.

nm The mth subexpression encountered.

xy Expression x followed by y.

Extended Regular Expressions

The Extended Regular Expressions also include:

x+ One or more occurrences of x.

x? Zero or one occurrences of x.

(x) Subexpression x (for precedence handling).

x|y Expression x OR y.

Returns:
0 Success.

<>0 An error occurred (use regerror() to get an explanation).

2356 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. regcomp()

Examples:
/*

The following example prints out all lines
from FILE "f" that match "pattern".

*/
#include <stdio.h>
#include <regex.h>
#include <limits.h>

#define BUFFER SIZE 512

void grep(char* pattern, FILE* f)
{

int t;
regex t re;
char buffer[BUFFER SIZE];

if ((t=regcomp(&re, pattern, REG NOSUB)) != 0) {
regerror(t, &re, buffer, sizeof buffer);
fprintf(stderr,"grep: %s (%s)\n",buffer,pattern);
return;

}
while(fgets(buffer, BUFFER SIZE, f) != NULL) {
if(regexec(&re, buffer, 0, NULL, 0) == 0) {

fputs(buffer, stdout);
}

}
regfree(&re);

}

Classification:
POSIX 1003.1a

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 2357

regcomp() 2004, QNX Software Systems Ltd.

Contributing author:
Henry Spencer. For copyright information, see Third-Party Copyright
Notices in this reference.

See also:
regerror(), regexec(), regfree()

2358 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. regerror()
Explain a regular expression error code

Synopsis:
#include <regex.h>

size t regerror(int err,
const regex t * reg,
char * buf,
size t len);

Arguments:
err The value returned by a previous call to regcomp() or

regexec().

reg A pointer to the regex t object for the regular expression
that you provided to the failed call to regcomp() or regexec().

buf A pointer to a buffer where the function can store the
explanation.

len The length of the buffer, in characters.

Library:
libc

Description:
The regerror() function provides a string explaining an error code
returned by regcomp() or regexec(). The string is copied into buf for
up to len characters.

Returns:
The number of characters copied into the buffer.

May 31, 2004 Manifests 2359

regerror() 2004, QNX Software Systems Ltd.

Examples:
See regcomp().

Classification:
POSIX 1003.1a

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Contributing author:
Henry Spencer. For copyright information, see Third-Party Copyright
Notices in this reference.

See also:
regcomp(), regexec(), regfree()

2360 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. regexec()
Compare a string with a compiled regular expression

Synopsis:
#include <regex.h>

int regexec(const regex t * preg,
const char * string,
size t nmatch,
regmatch t * pmatch,
int eflags);

Arguments:
preg A pointer to the regex t object for the regular

expression that you want to execute. You must have
compiled the expression by calling regcomp().

string The string that you want to match against the regular
expression.

nmatch The maximum number of matches to record in pmatch.

pmatch An array of regmatch t objects where the function can
record the matches; see below.

eflags Execution parameters to regexec(). For example, you may
need to call regexec() multiple times if the line you’re
processing is too large to fit into string. The eflags
argument is the bitwise inclusive OR of zero or more of
the following flags:

� REG NOTBOL — the string argument doesn’t point to
the beginning of a line.

� REG NOTEOL — the end of string isn’t the end of a
line.

Library:
libc

May 31, 2004 Manifests 2361

regexec() 2004, QNX Software Systems Ltd.

Description:
The regexec() function compares string against the compiled regular
expression preg. If regexec() finds a match it returns zero; otherwise,
it returns nonzero.

The preg argument represents a compiled form of either a Basic
Regular Expression or Extended Regular Expression. These classes
are rigorously defined in IEEE P1003.2, Regular Expression Notation,
and are summarized in the documentation for regcomp().

The regexec() function records the matches in the pmatch array, with
nmatch specifying the maximum number of matches to record. The
regmatch t structure contains the pointer members rm sp and
rm ep, which are updated to identify the start and end of each
matched substring. The pointers in pmatch[0] identify the substring
corresponding to the entire expression, while those in
pmatch[1...nmatch] identify up to the first nmatch subexpressions.
Unused elements of the pmatch array are set to NULL.

You can disable the recording of substrings by either specifying
REG NOSUB in regcomp(), or by setting nmatch to zero.

�

Returns:
0 The string argument matches preg.

<>0 A match wasn’t found, or an error occurred (use regerror()
to get an explanation).

Examples:
See regcomp().

Classification:
POSIX 1003.1a

2362 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. regexec()

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

Contributing author:
Henry Spencer. For copyright information, see Third-Party Copyright
Notices in this reference.

See also:
regcomp(), regerror(), regfree()

May 31, 2004 Manifests 2363

regfree() 2004, QNX Software Systems Ltd.

Release memory allocated for a regular expression

Synopsis:
#include <regex.h>

void regfree(regex t * preg);

Arguments:
preg A pointer to the regex t object for the regular expression

that you want to free; see regcomp().

Library:
libc

Description:
The regfree() function releases all memory allocated by regcomp()
associated with preg.

Examples:
See regcomp().

Classification:
POSIX 1003.1a

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

2364 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. regfree()

Contributing author:
Henry Spencer. For copyright information, see Third-Party Copyright
Notices in this reference.

See also:
regcomp(), regerror(), regexec()

May 31, 2004 Manifests 2365

remainder(), remainderf() 2004, QNX Software Systems Ltd.

Compute the floating point remainder

Synopsis:
#include <math.h>

double remainder(double x,
double y);

float remainderf(float x,
float y);

Arguments:
x The numerator of the division.

y The denominator.

Library:
libm

Description:
The remainder() and remainderf() functions return the floating point
remainder r = x - ny, where y is nonzero. The value n is the integral
value nearest the exact value x/y. When |n - x/y| = 1

2
, the value n is

chosen to be even.

The behavior of remainder() is independent of the rounding mode.

Returns:
The floating point remainder r = x - ny, where y is nonzero.

2366 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. remainder(), remainderf()

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
drem(), modf()

May 31, 2004 Manifests 2367

remove() 2004, QNX Software Systems Ltd.

Remove a link to a file

Synopsis:
#include <stdio.h>

int remove(const char * filename);

Arguments:
filename The path to the file that you want to delete.

Library:
libc

Description:
The remove() function removes a link to a file:

� If the filename names a symbolic link, remove() removes the link,
but doesn’t affect the file or directory that the link goes to.

� If the filename isn’t a symbolic link, remove() removes the link and
decrements the link count of the file that the link refers to.

If the link count of the file becomes zero, and no process has the
file open, then the space that the file occupies is freed, and no one
can access the file anymore.

If one or more processes have the file open when the last link is
removed, the link is removed, but the removal of the file is delayed
until all references to it have been closed.

This function is equivalent to unlink().

To remove a directory, call rmdir().�

2368 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. remove()

Returns:
0 The operation was successful.

Nonzero The operation failed (errno is set).

Errors:
EACCES Search permission is denied for a component of

filename, or write permission is denied on the
directory containing the link to be removed.

EBUSY The directory named by filename can’t be unlinked
because it’s being used by the system or another
process, and the target filesystem or resource manager
considers this to be an error.

ENAMETOOLONG

The filename argument exceeds PATH MAX in length,
or a pathname component is longer than NAME MAX.

ENOENT The named file doesn’t exist, or filename is an empty
string.

ENOSYS The remove() function isn’t implemented for the
filesystem specified by filename.

ENOTDIR A component of filename isn’t a directory.

EPERM The file named by filename is a directory, and either
the calling process doesn’t have the appropriate
privileges, or the target filesystem or resource manager
prohibits using remove() on directories.

EROFS The directory entry to be unlinked resides on a
read-only filesystem.

May 31, 2004 Manifests 2369

remove() 2004, QNX Software Systems Ltd.

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

if(remove("vm.tmp")) {
puts("Error removing vm.tmp!");
return EXIT FAILURE;

}

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, rmdir(), unlink()

2370 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rename()
Rename a file

Synopsis:
#include <stdio.h>

int rename(const char* old,
const char* new);

Arguments:
old The path to the file that you want to rename.

new The new name for the file.

Library:
libc

Description:
The rename() function renames the file indicated old to the name
specified in new.

If a file (or empty directory) named new exists, it’s overwritten.

Returns:
0 Success.

Nonzero An error occurred (errno is set).

Errors:
EACCESS The calling program doesn’t have permission to

search one of the components of either path prefix,
or one of the directories containing old or new
denies write permission.

EBUSY The directory named by old or new can’t be
renamed because it is in use by another process.

May 31, 2004 Manifests 2371

rename() 2004, QNX Software Systems Ltd.

EEXIST The file specified by new is directory that contains
files.

EINVAL The new directory pathname contains the old
directory.

EISDIR The file specified by new is a directory and old is a
file.

ELOOP Too many levels of symbolic links.

EMLINK The file named by old is a directory, and the link
count of the parent directory of new would exceed
LINK MAX.

ENAMETOOLONG

The length of old or new exceeds PATH MAX.

ENOENT The old file doesn’t exist, or old or new is an
empty string.

ENOSPC The directory that would contain new can’t be
extended.

ENOSYS The rename() function isn’t implemented for the
filesystem specified in old or new.

ENOTDIR A component of either path prefix isn’t a directory,
or old is a directory and new isn’t.

ENOTEMPTY The file specified by new is a directory that
contains files.

EROFS The rename() would affect files on a read-only
filesystem.

EXDEV The files or directories named by old and new are
on different filesystems.

2372 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rename()

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

if(rename("old.dat", "new.dat")) {
puts("Error renaming old.dat to new.dat.");

return EXIT FAILURE;
}

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno

May 31, 2004 Manifests 2373

res init() 2004, QNX Software Systems Ltd.

Initialize the Internet domain name resolver routines

Synopsis:
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

int res init(void);

Library:
libsocket

Description:
The resolver routines are used for making, sending, and interpreting
query and reply messages with Internet domain name servers.

The res init() routine reads the resolver configuration file (if one is
present; see /etc/resolv.conf in the Utilities Reference) to get
the default domain name, search list, and Internet address of the local
name servers. If no server is configured, the host running the resolver
is tried. If not specified in the configuration file, the current domain
name is defined by the hostname; the domain name can be overridden
by the environment variable LOCALDOMAIN. Initialization
normally occurs on the first call to one of the resolver routines.

Resolver configuration

Global configuration and state information used by these routines is
kept in the res state structure res, which is defined in
<resolv.h>. Since most of the values have reasonable defaults, you
can generally ignore them.

The res.options member is a simple bit mask that contains the
bitwise OR of the enabled options. The following options are defined
in <resolv.h>:

RES DEBUG Print debugging messages.

2374 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. res init()

RES DEFNAMES

If this option is set, res search() appends the default
domain name to single-component names (those
that don’t contain a dot). This option is enabled by
default.

RES DNSRCH If this option is set, res search() searches for
hostnames in the current domain and in parent
domains. This is used by the standard host lookup
routine, gethostbyname(). This option is enabled by
default.

RES INIT True if the initial name server address and default
domain name are initialized (i.e. res init() has been
called).

RES RECURSE Set the recursion-desired bit in queries. This is the
default. Note that res send() doesn’t do iterative
queries — it expects the name server to handle
recursion.

RES STAYOPEN

Used with RES USEVC to keep the TCP connection
open between queries. This is useful only in
programs that regularly do many queries. UDP
should be the mode you normally use.

RES USEVC Instead of UDP datagrams, use TCP connections
for queries.

Returns:
0 Success.

Nonzero An error occurred.

May 31, 2004 Manifests 2375

res init() 2004, QNX Software Systems Ltd.

Errors:
See herror().

Files:
/etc/resolv.conf

Resolver configuration file.

Environment variables:
LOCALDOMAIN

When set, LOCALDOMAIN contains a domain name that
overrides the current domain name.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
dn comp(), dn expand(), gethostbyname(), res mkquery(),
res query(), res querydomain(), res search(), res send()

hostname, /etc/resolv.conf in the Utilities Reference

RFC 974, RFC 1032, RFC 1033, RFC 1034, RFC 1035

2376 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. res mkquery()
Construct an Internet domain name query

Synopsis:
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

int res mkquery(int op,
const char * dname,
int class,
int type,
const u char * data,
int datalen,
const u char * newrr,
u char * buf,
int buflen);

Arguments:
op Usually QUERY, but it can be also IQUERY or

NS NOTIFY OP. Note that not all of the query types
defined in <arpa/nameser.h> are supported.

dname The domain name for the query.

class The class of information that you want; one of:

� C IN — ARPA Internet.

� C CHAOS — Chaos net (MIT).

� C HS — Hesiod name server (MIT).

� C ANY — any class.

You typically use C IN.

type The type of information that you want. You typically use
T PTR, but you can use any of the T * constants defined in
<arpa/nameser.h>.

data NULL, or a pointer to resource record data.

datalen The length of the data.

May 31, 2004 Manifests 2377

res mkquery() 2004, QNX Software Systems Ltd.

newrr Currently unused. This argument is intended for making
update messages.

buf A pointer to a buffer where the function can build the
query.

buflen The length of the buffer.

Library:
libsocket

Description:
The res mkquery() function is a low-level routine that’s used by
res query() to construct an Internet domain name query. This routine
constructs a standard query message and places it in buf . It returns the
size of the query, or -1 if the query is larger than buflen.

The resolver routines are used for making, sending, and interpreting
query and reply messages with Internet domain name servers. Global
configuration and state information used by the resolver routines is
kept in the structure res. For more information on the options, see
res init().

Returns:
The size of the prepared query, in bytes, or -1 if an error occurs.

Files:
/etc/resolv.conf

Resolver configuration file.

Environment variables:
LOCALDOMAIN

When set, LOCALDOMAIN contains a domain name that
overrides the current domain name.

2378 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. res mkquery()

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
dn comp(), dn expand(), gethostbyname(), res init(), res query(),
res querydomain(), res search(), res send()

hostname, /etc/resolv.conf in the Utilities Reference

RFC 974, RFC 1032, RFC 1033, RFC 1034, RFC 1035

May 31, 2004 Manifests 2379

res query() 2004, QNX Software Systems Ltd.

Query the local Internet domain name server

Synopsis:
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

int res query(const char * dname,
int class,
int type,
u char * answer,
int anslen);

Arguments:
dname The fully qualified domain name that you want to query.

class The class of information that you want; one of:

� C IN — ARPA Internet.

� C CHAOS — Chaos net (MIT).

� C HS — Hesiod name server (MIT).

� C ANY — any class.

You typically use C IN.

type The type of information that you want. You typically use
T PTR, but you can use any of the T * constants defined in
<arpa/nameser.h>.

answer A pointer to a buffer where the function can store the
answer to the query.

anslen The length of the buffer.

Library:
libsocket

2380 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. res query()

Description:
The res query() function provides an interface to the server query
mechanism. It constructs a query, sends it to the local server, waits for
a response, and makes preliminary checks on the reply. The query
requests information of the specified type and class for the specified
fully qualified domain name dname. The reply message is left in the
answer buffer with length anslen supplied by the caller.

The resolver routines are used for making, sending, and interpreting
query and reply messages with Internet domain name servers. Global
configuration and state information used by the resolver routines is
kept in the structure res. For more information on the options, see
res init().

The res query() function uses the following lower-level routines:

� res mkquery() constructs a standard query message.

� res send() sends the preformatted query and returns an answer.

� dn comp() compresses a domain name.

� dn expand() expands the compressed domain name to a full
domain name.

Returns:
The length of a reply message, in bytes, or -1 if an error occurs
(h errno is set).

Errors:
See herror().

Files:
/etc/resolv.conf

Resolver configuration file.

May 31, 2004 Manifests 2381

res query() 2004, QNX Software Systems Ltd.

Environment variables:
LOCALDOMAIN

When set, LOCALDOMAIN contains a domain name that
overrides the current domain name.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
dn comp(), dn expand(), gethostbyname(), herror(), res init(),
res mkquery(), res querydomain(), res search(), res send()

hostname, /etc/resolv.conf in the Utilities Reference

RFC 974, RFC 1032, RFC 1033, RFC 1034, RFC 1035

2382 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. res querydomain()
Query the local Internet domain name server

Synopsis:
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

int res querydomain(const char * name,
const char * domain,
int class,
int type,
u char * answer,
int anslen);

Arguments:
name The host name that you want to query.

domain The domain name that you want to query.

class The class of information that you want; one of:

� C IN — ARPA Internet.

� C CHAOS — Chaos net (MIT).

� C HS — Hesiod name server (MIT).

� C ANY — any class.

You typically use C IN.

type The type of information that you want. You typically use
T PTR, but you can use any of the T * constants defined in
<arpa/nameser.h>.

answer A pointer to a buffer where the function can store the
answer to the query.

anslen The length of the buffer.

May 31, 2004 Manifests 2383

res querydomain() 2004, QNX Software Systems Ltd.

Library:
libsocket

Description:
The res querydomain() function provides an interface to the server
query mechanism. It constructs a query, sends it to the local server,
waits for a response, and makes preliminary checks on the reply. The
query requests information of the specified type and class for the host
specified by concatenating name and domain. The trailing dot is
removed from name if domain is 0.

The reply message is left in the answer buffer with length anslen
supplied by the caller.

Returns:
0 Success.

-1 An error occurred.

Files:
/etc/resolv.conf

Resolver configuration file.

Environment variables:
LOCALDOMAIN

When set, LOCALDOMAIN contains a domain name that
overrides the current domain name.

Classification:
Unix

2384 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. res querydomain()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
res init(), res query()

May 31, 2004 Manifests 2385

res search() 2004, QNX Software Systems Ltd.

Query a local server, using search options

Synopsis:
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

int res search(const char * dname,
int class,
int type,
u char * answer,
int anslen);

Arguments:
dname The fully qualified domain name that you want to query.

class The class of information that you want; one of:

� C IN — ARPA Internet.

� C CHAOS — Chaos net (MIT).

� C HS — Hesiod name server (MIT).

� C ANY — any class.

You typically use C IN.

type The type of information that you want. You typically use
T PTR, but you can use any of the T * constants defined in
<arpa/nameser.h>.

answer A pointer to a buffer where the function can store the
answer to the query.

anslen The length of the buffer.

Library:
libsocket

2386 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. res search()

Description:
The res search() routine makes an Internet domain name search. Like
res query(), res search() makes a query and waits for a response. But
it also implements the default and search rules controlled by the
RES DEFNAMES and RES DNSRCH options. It returns the first
successful reply.

The resolver routines are used for making, sending, and interpreting
query and reply messages with Internet domain name servers.

Global configuration and state information used by the resolver
routines is kept in the structure res. For more information on the
options, see res init().

Returns:
The length of a reply message, in bytes, or -1 if an error occurs
(h errno is set).

Errors:
See herror.

Files:
/etc/resolv.conf

Resolver configuration file.

Environment variables:
LOCALDOMAIN

When set, LOCALDOMAIN contains a domain name that
overrides the current domain name.

Classification:
Unix

May 31, 2004 Manifests 2387

res search() 2004, QNX Software Systems Ltd.

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
dn comp(), dn expand(), gethostbyname(), herror(), res init(),
res mkquery(), res query(), res querydomain(), res send()

hostname, /etc/resolv.conf in the Utilities Reference

RFC 974, RFC 1032, RFC 1033, RFC 1034, RFC 1035

2388 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. res send()
Send a preformatted Internet domain name query

Synopsis:
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

int res send(const u char * msg,
int msglen,
u char * answer,
int anslen);

Arguments:
msg The preformatted Internet domain name query that you

want to send.

msglen The length of the message.

answer A pointer to a buffer where the function can store the
answer to the query.

anslen The length of the buffer.

Library:
libsocket

Description:
The res send() function is a low-level routine that’s used by
res query() to send a preformatted Internet domain name query and
return an answer. It calls res init() if RES INIT isn’t set, sends the
query to the local name server, and handles timeouts and retries.

The resolver routines are used for making, sending, and interpreting
query and reply messages with Internet domain name servers.

Global configuration and state information used by the resolver
routines is kept in the structure res. For more information on the
options, see res init().

May 31, 2004 Manifests 2389

res send() 2004, QNX Software Systems Ltd.

Returns:
The length of a reply message, in bytes; or -1 if an error occurs.

Errors:
ECONNREFUSED

No name servers found.

ETIMEDOUT No answer obtained.

Files:
/etc/resolv.conf

Resolver configuration file.

Environment variables:
LOCALDOMAIN

When set, LOCALDOMAIN contains a domain name that
overrides the current domain name.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

2390 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. res send()

See also:
dn comp(), dn expand(), gethostbyname(), res init(), res mkquery(),
res query(), res querydomain(), res search()

hostname, /etc/resolv.conf in the Utilities Reference

RFC 974, RFC 1032, RFC 1033, RFC 1034, RFC 1035

May 31, 2004 Manifests 2391

resmgr attach() 2004, QNX Software Systems Ltd.

Attach a path to the pathname space

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int resmgr attach (
dispatch t *dpp,
resmgr attr t *attr,
const char *path,
enum file type file type,
unsigned flags,
const resmgr connect funcs t *connect funcs,
const resmgr io funcs t *io funcs,
RESMGR HANDLE T *handle);

Arguments:
dpp A dispatch handle created by dispatch create().

attr A pointer to a resmgr attr t structure that
defines attributes for the resource manager; see
below.

path NULL, or the path that you want to attach the
resource manager to; see below.

file type The file type; one of the following (defined in
<sys/ftype.h>):

� FTYPE ANY — the path name can be anything.

� FTYPE LINK — reserved for the Process
Manager.

� FTYPE MOUNT — receive mount requests on
the path (path must be NULL).

� FTYPE MQUEUE — reserved for a mqueue
manager.

� FTYPE PIPE — reserved for a pipe manager.

2392 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr attach()

� FTYPE SEM — reserved for a semaphore
manager.

� FTYPE SHMEM — reserved for a shared
memory object.

� FTYPE SOCKET — reserved for a socket
manager.

� FTYPE SYMLINK — reserved for the Process
Manager.

flags Flags that control the pathname resolution:

� RESMGR FLAG AFTER

� RESMGR FLAG BEFORE

� RESMGR FLAG OPAQUE

� RESMGR FLAG DIR

� RESMGR FLAG FTYPEONLY

� RESMGR FLAG MASK

� RESMGR FLAG SELF

For more information, see “Flags,” below.

connect funcs A pointer to the resmgr connect funcs t

structure that defines the POSIX-level connect
functions.

io funcs A pointer to the resmgr io funcs t structure
that defines the POSIX-level I/O functions.

handle A pointer to an arbitrary structure that you want to
associate with the pathname you’re attaching. For
most resource managers, this is an
iofunc attr t structure.

May 31, 2004 Manifests 2393

resmgr attach() 2004, QNX Software Systems Ltd.

Library:
libc

Description:
The resmgr attach() function puts the path into the general pathname
space and binds requests on this path to the dispatch handle dpp.

Most of the above file types are used for special services that have
their own open function associated with them. For example, the
mqueue manager specifies file type as FTYPE MQUEUE and
mq open() requests a pathname match of the same type.

Specify FTYPE ANY for normal filesystems and simple devices, such
as serial ports, that don’t have their own special open type. Also if
you can handle the type of service or a redirection node to a manager
that does. Most resource managers are of this type.

Your resource manager won’t receive messages from an open of an
inappropriate type. The following table shows the different open
function types and the types of pathnames they’ll match.

Function: file type: Matches pathname of type:

mq open() FTYPE MQUEUE FTYPE ANY
FTYPE MQUEUE

open() FTYPE ANY all types

pipe() FTYPE PIPE FTYPE ANY or
FTYPE PIPE

sem open() FTYPE SEM FTYPE ANY or
FTYPE SEM

shm open() FTYPE SHMEM FTYPE ANY or
FTYPE SHMEM

socket() FTYPE SOCKET FTYPE ANY or
FTYPE SOCKET

2394 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr attach()

The generic open() can be used to open a pathname of any type.

If you want to use the POSIX functions, we’ve provided you with the
POSIX layer; to fill your connect and I/O functions tables with the
default handler functions supplied by the POSIX layer library, call
iofunc func init(). You can then override the defaults placed in the
structures with your own handlers.

In the most general case, the last argument, handle is an arbitrary
structure that you wish to have associated with the pathname you’re
attaching. Practically, however, we recommend that it contain the
POSIX layer’s well defined attributes structure, iofunc attr t,
because this lets you use the POSIX layer default library. You can
extend the data that’s contained in the attributes structure to contain
any device-specific data that you may require. This is commonly
done, and is described in the “Extending Data Control Structures
(DCS)” section in the Writing a Resource Manager chapter of the
Programmer’s Guide.

In order to use the POSIX layer default library, the attributes structure
must be bound into the Open Control Block, and you must use the
POSIX layer’s iofunc ocb t OCB. This is described in the
documentation for resmgr open bind(), as well as in the above
reference.

resmgr attr t structure

You can specify attributes such as the maximum message size,
number of parts (number of IOVs in context), and flags in the attr
structure. The resmgr attr t structure looks like this:

typedef struct resmgr attr {
unsigned flags;
unsigned nparts max;
unsigned msg max size;
int (*other func)

(resmgr context t *, void *msg);
} resmgr attr t;

The members include:

May 31, 2004 Manifests 2395

resmgr attach() 2004, QNX Software Systems Ltd.

nparts max The number of components to allocate for the IOV
array. If you specify 0, the resource manager
library bumps the value to the minimum usable by
the library itself.

msg max size The minimum amount of room to reserve for
receiving a message that’s allocated in
resmgr context alloc(). If the value is too low, or
you specify it as 0, resmgr attach() picks a value
that’s usable.

other func A pointer to a function that’s called if the resource
manager receives an I/O message that it didn’t
successfully handle. This function is attached only
if the RESMGR FLAG ATTACH OTHERFUNC flag
(defined in <sys/dispatch.h>) is set.

Flags

The flags argument specifies additional information to control the
pathname resolution. The flags (defined in <sys/resmgr.h>)
include at least the following bits:

RESMGR FLAG AFTER

Force the path to be resolved after others with the same
pathname at the same mountpoint.

RESMGR FLAG BEFORE

Force the path to be resolved before others with the same
pathname at the same mountpoint.

RESMGR FLAG DIR

Treat the pathname as a directory and allow the resolving of
longer pathnames. The IO CONNECT message contains the
pathname passed to the client open() with the matching prefix
stripped off. Without this flag, the pathname is treated as a
simple file requiring an exact match.

2396 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr attach()

Attached path Opened path RESMGR FLAG DIR set RESMGR FLAG DIR clear

/a/b /a/b match "" match ""

/a/b /a/b/c match c no match

/a/b /a/b/c/d match c/d no match

/a/b /a/bc no match no match

You can’t attach a directory pathname that contains, as a subset,
an existing file pathname. Likewise, you can’t attach a file
pathname that’s a subset of an existing directory pathname.

Existing path New path New path allowed?

dir /a/b dir /a yes

dir /a/b dir /a/b/c yes

file /a/b dir /a yes

file /a/b dir /a/b/c no, dir beneath a file

dir /a/b file /a no, dir beneath a file

dir /a/b file /a/b/c yes

file /a/b file /a yes

file /a/b file /a/b/c yes

RESMGR FLAG FTYPEONLY

Handle only requests for the specific filetype indicated. The
pathname must be NULL.

RESMGR FLAG OPAQUE

Don’t resolve paths to mountpoints on a path shorter than this
(i.e. find the longest match against all pathnames attached).

RESMGR FLAG SELF

Allow requests to resolve back to this server (a deadlock is
possible).

May 31, 2004 Manifests 2397

resmgr attach() 2004, QNX Software Systems Ltd.

Returns:
A unique link ID associated with this attach, or -1 on failure (errno is
set).

The returned ID is needed to detach the pathname at a later time using
resmgr detach(). The ID is also passed back in the resmgr handler()
function in ctp->id.

Errors:
ENOMEM There isn’t enough free memory to complete the

operation.

ENOTDIR A component of the pathname wasn’t a directory entry.

Examples:
Here’s an example of a simple single-threaded resource manager:

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>

static resmgr connect funcs t connect funcs;
static resmgr io funcs t io funcs;
static iofunc attr t attr;

int main(int argc, char **argv)
{

dispatch t *dpp;
resmgr attr t resmgr attr;
resmgr context t *ctp;
int id;

/* initialize dispatch interface */
if ((dpp = dispatch create()) == NULL) {

fprintf(stderr, "%s: Unable to allocate \
dispatch handle.\n", argv[0]);

return EXIT FAILURE;
}

/* initialize resource manager attributes */
memset(&resmgr attr, 0, sizeof resmgr attr);
resmgr attr.nparts max = 1;

2398 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr attach()

resmgr attr.msg max size = 2048;

/* initialize functions for handling messages */
iofunc func init(RESMGR CONNECT NFUNCS, &connect funcs,

RESMGR IO NFUNCS, &io funcs);

/* initialize attribute structure */
iofunc attr init(&attr, S IFNAM | 0666, 0, 0);

/* attach our device name (passing in the POSIX defaults
from the iofunc func init and iofunc attr init functions)

*/
if ((id = resmgr attach

(dpp, &resmgr attr, "/dev/mynull", FTYPE ANY, 0,
&connect funcs, &io funcs, &attr)) == -1) {

fprintf(stderr, "%s: Unable to attach name.\n", \
argv[0]);

return EXIT FAILURE;
}

/* allocate a context structure */
ctp = resmgr context alloc(dpp);

/* start the resource manager message loop */
while (1) {

if ((ctp = resmgr block(ctp)) == NULL) {
fprintf(stderr, "block error\n");
return EXIT FAILURE;

}
resmgr handler(ctp);

}
}

For more examples using the dispatch interface, see dispatch create(),
message attach(), and thread pool create(). For more information on
writing a resource manager, see the “Writing a Resource Manager”
chapter in the Programmer’s Guide.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

continued. . .

May 31, 2004 Manifests 2399

resmgr attach() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
If your application calls this function, it must run as root.

See also:
dispatch create(), iofunc attr init(), iofunc attr t,
iofunc func init(), iofunc ocb t, resmgr block(),
resmgr connect funcs t, resmgr context alloc(),
resmgr context free(), resmgr detach(), resmgr handler(),
resmgr io funcs t

“Writing a Resource Manager” chapter of the Programmer’s Guide.

2400 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr block()
Block while waiting for a message

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

resmgr context t * resmgr block
(resmgr context t * ctp);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

Library:
libc

Description:
The resmgr block() function waits for a message (created by a call to
resmgr context alloc()) for context ctp.

This function is a special case of dispatch block() that you should use
only with a simple resource manager. If you need to attach pulses or
other messages, then you should use dispatch block().

�

Returns:
The same pointer as ctp, or NULL if an error occurs (errno is set).

Errors:
EFAULT A fault occurred when the kernel tried to access the

buffers provided. Because the OS accesses the
sender’s buffers only when MsgReceive() is called,
a fault could occur in the sender if the sender’s
buffers are invalid. If a fault occurs when accessing

May 31, 2004 Manifests 2401

resmgr block() 2004, QNX Software Systems Ltd.

the sender buffers (only) they’ll receive an EFAULT
and the MsgReceive() won’t unblock.

EINTR The call was interrupted by a signal.

ETIMEDOUT A kernel timeout (that was set with
dispatch timeout()) unblocked the call.

Examples:
#include <sys/dispatch.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv) {
dispatch t *dpp;
resmgr context t *ctp;

if ((dpp = dispatch create()) == NULL) {
fprintf(stderr, "%s: Unable to allocate \

dispatch handle.\n",argv[0]);
return EXIT FAILURE;

}

...

ctp = resmgr context alloc(dpp);

while (1) {
if ((ctp = resmgr block(ctp)) == NULL) {

fprintf(stderr, "block error\n");
return EXIT FAILURE;

}
resmgr handler(ctp);

}
}

For examples using the dispatch interface, see dispatch create(),
message attach(), resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

2402 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr block()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
Use resmgr block() only in a simple resource manager and when you
don’t use message attach(), pulse attach(), or select attach().

See also:
dispatch block(), resmgr attach(), resmgr context alloc(),
resmgr handler()

“Components of a Resource Manager” section of the Writing a
Resource Manager chapter in the Programmer’s Guide.

May 31, 2004 Manifests 2403

resmgr connect funcs t 2004, QNX Software Systems Ltd.

Table of POSIX-level connect functions

Synopsis:
#include <sys/resmgr.h>

typedef struct resmgr connect funcs {

unsigned nfuncs;

int (*open) (resmgr context t *ctp, io open t *msg,
RESMGR HANDLE T *handle, void *extra);

int (*unlink) (resmgr context t *ctp, io unlink t *msg,
RESMGR HANDLE T *handle, void *reserved);

int (*rename) (resmgr context t *ctp, io rename t *msg,
RESMGR HANDLE T *handle,
io rename extra t *extra);

int (*mknod) (resmgr context t *ctp, io mknod t *msg,
RESMGR HANDLE T *handle, void *reserved);

int (*readlink) (resmgr context t *ctp, io readlink t *msg,
RESMGR HANDLE T *handle, void *reserved);

int (*link) (resmgr context t *ctp, io link t *msg,
RESMGR HANDLE T *handle,
io link extra t *extra);

int (*unblock) (resmgr context t *ctp, io pulse t *msg,
RESMGR HANDLE T *handle, void *reserved);

int (*mount) (resmgr context t *ctp, io mount t *msg,
RESMGR HANDLE T *handle,
io mount extra t *extra);

} resmgr connect funcs t;

Description:
The resmgr connect funcs t structure is a table of the
POSIX-level connect functions that are used by a resource manager.

2404 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr connect funcs t

You can initialize this table by calling iofunc func init() and then
overriding the defaults with your own functions.

This structure includes nfuncs, which indicates how many functions
are in the table (in case the structure grows in the future), along with
these functions:

Member: Used to: Default:

open Handle IO CONNECT
messages

iofunc open default()

unlink Unlink the resource None

rename Rename the resource None

mknod Create a filesystem entry
point

None

readlink Read a symbolic link None

link Create a symbolic link None

unblock Unblock the resource if an
operation is aborted

None

mount Mount a filesystem None

Classification:
QNX Neutrino

See also:
iofunc func init(), iofunc open default(), resmgr io funcs t

Writing a Resource Manager chapter of the QNX Neutrino
Programmer’s Guide

May 31, 2004 Manifests 2405

resmgr context alloc() 2004, QNX Software Systems Ltd.

Allocate a resource-manager context

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

resmgr context t * resmgr context alloc
(dispatch t * dpp);

Arguments:
dpp A dispatch handle created by dispatch create().

Library:
libc

Description:
The resmgr context alloc() function returns a context that’s used for
blocking and receiving messages.

This function is a special case of dispatch context alloc(). You should
use it only when writing a simple resource manager.

�

Returns:
A pointer to a resmgr context t structure, or NULL if an error
occurs (errno is set).

Errors:
EINVAL No resource manager events were attached to dpp.

ENOMEM Insufficient memory to allocate the context ctp.

2406 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr context alloc()

Examples:
#include <sys/dispatch.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv) {
dispatch t *dpp;
resmgr context t *ctp;

if ((dpp = dispatch create()) == NULL) {
fprintf(stderr, "%s: Unable to allocate \

dispatch handle.\n",argv[0]);
return EXIT FAILURE;

}

...

if ((ctp = resmgr context alloc (dpp)) == NULL) {
fprintf(stderr, "Context wasn’t allocated.\n");
return EXIT FAILURE;

}
}

For examples using the dispatch interface, see dispatch create(),
message attach(), resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 2407

resmgr context alloc() 2004, QNX Software Systems Ltd.

See also:
dispatch context alloc(), dispatch create(), resmgr attach(),
resmgr context free(), resmgr context t

“Components of a Resource Manager” in the Writing a Resource
Manager chapter of the Programmer’s Guide

2408 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr context free()
Free a resource-manager context

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

void resmgr context free(resmgr context t * ctp);

Arguments:
ctp A pointer to the resmgr context t structure that you want

to free.

Library:
libc

Description:
The resmgr context free() function frees a context allocated by
resmgr context alloc().

This function is a special case of dispatch context free(). You should
use it only when writing a simple resource manager.

�

Examples:
#include <sys/dispatch.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv) {
dispatch t *dpp;
resmgr context t *ctp;

if ((dpp = dispatch create()) == NULL) {
fprintf(stderr, "%s: Unable to allocate \

dispatch handle.\n",argv[0]);
return EXIT FAILURE;

}

...

May 31, 2004 Manifests 2409

resmgr context free() 2004, QNX Software Systems Ltd.

if ((ctp = resmgr context alloc (dpp)) == NULL) {
fprintf(stderr, "Context wasn’t allocated.\n");
return EXIT FAILURE;

}

...

resmgr context free (ctp);
}

For examples using the dispatch interface, see dispatch create(),
message attach(), resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
resmgr context alloc(), resmgr context t

“Components of a Resource Manager” in the Writing a Resource
Manager chapter of the Programmer’s Guide

2410 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr context t
Context information that’s passed between resource-manager functions

Synopsis:
#include <sys/resmgr.h>

typedef struct resmgr context {
int rcvid;
struct msg info info;
resmgr iomsgs t *msg;
dispatch t *dpp;
int id;
unsigned tid;
unsigned msg max size;
int status;
int offset;
int size;
iov t iov[1];

} resmgr context t;

Description:
The resmgr context t structure defines context information that’s
passed to resource-manager functions.

The members include:

rcvid The receive ID to use for messages to and from the
client.

info A pointer to a msg info structure that contains
information about the message received by the
resource manager.

msg A pointer to the message received by the resource
manager, expressed as a union of all the possible
message types.

dpp The dispatch handle, created by dispatch create().

id The link Id, returned by resmgr attach().

tid Not used; always zero.

May 31, 2004 Manifests 2411

resmgr context t 2004, QNX Software Systems Ltd.

msg max size The minimum amount of space reserved for
receiving a message.

status A place to store the status of the current operation.
Always use RESMGR STATUS() to set this
member.

offset The offset, in bytes, into the client’s message.
You’ll use this when working with combine
messages.

size The number of valid bytes in the message area.

iov An I/O vector where you can place the data that
you’re returning to the client.

Classification:
QNX Neutrino

See also:
dispatch create(), msg info, MsgInfo(), resmgr attach(),
resmgr context alloc(), resmgr context free(), RESMGR STATUS()

2412 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr detach()
Remove a pathname from the pathname space

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int resmgr detach(dispatch t * dpp,
int id,
unsigned flags);

Arguments:
dpp A dispatch handle created by dispatch create().

id The link ID that resmgr attach() returned.

flags Flags that affect the operation. The possible flags (defined in
<sys/dispatch.h> and <sys/resmgr.h>) are:

� RESMGR DETACH ALL — detach the name from the
namespace and invalidate all open bindings.

� RESMGR DETACH PATHNAME — detach only the
name from the namespace, leaving existing bindings
intact. This option is useful when you’re unlinking a file
or device, and you want to remove the name, but you
want processes with open files to continue to use it until
they close.

Library:
libc

Description:
The resmgr detach() function removes pathname id from the
pathname space of context dpp.

May 31, 2004 Manifests 2413

resmgr detach() 2004, QNX Software Systems Ltd.

Blocking states

The resmgr detach() function blocks until the RESMGR HANDLE T,
that’s passed to the corresponding resmgr attach(), isn’t being used in
any connection function.

The effect that this has on servers is generally minimal. You should
follow the following precautions to prevent potential deadlock
situations:

� If you’re using the RESMGR HANDLE T as an attribute, and that
attribute is locked in any of the connection callouts (i.e. open,
unlink, mount, etc.), then should unlock it before calling
resmgr detach(). This allows any pending connection requests to
complete before they’re consequently invalidated.

If you call resmgr detach() from within a connection function, then
the internal reference counting takes this into account and the server
doesn’t deadlock.

�

� If two or more resmgr detach() requests come in simultaneously,
only one of the requests is served. The superfluous request will
return with an error of -1 and errno set to ENOENT to indicate that
the detachment process has already begun, and the entry is now
invalid. If dynamically allocated, you should release
RESMGR HANDLE T only after a successful return from
resmgr detach().

� If resmgr detach() is called and an existing client connection is
established, then the I/O callout table is redirected for that client
connection. The client will receive an error of EBADF when it uses
the fd associated with that connection.

Returns:
0 Success.

-1 An error occurred (errno is set).

2414 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr detach()

Errors:
EINVAL The id was never attached with resmgr attach().

ENOENT A previous detachment request is in progress, or the id
has already been detached.

Examples:
#include <sys/dispatch.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv) {
dispatch t *dpp;
int id;

if ((dpp = dispatch create()) == NULL) {
fprintf(stderr, "%s: Unable to allocate \

dispatch handle.\n",argv[0]);
return EXIT FAILURE;

}

id = resmgr attach (...);

...

if (resmgr detach(dpp, id, 0) == -1) {
fprintf(stderr, "Failed to remove pathname \

from the pathname space.\n");
return EXIT FAILURE;

}

For examples using the dispatch interface, see dispatch create(),
message attach(), resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

continued. . .

May 31, 2004 Manifests 2415

resmgr detach() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
dispatch create(), resmgr attach()

“Writing a Resource Manager” chapter of the Programmer’s Guide.

2416 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr devino()
Get the device and inode number

Synopsis:
#include <sys/resmgr.h>

int resmgr devino(int id,
dev t *pdevno,
ino64 t *pino);

Arguments:
id The link ID that resmgr attach() returned.

pdevno A pointer to a dev t object where the function can store
the device number.

pino A pointer to a ino64 t object where the function can
store the inode number.

Library:
libc

Description:
The function resmgr devino() fills in the structures pointed to by
pdevno and pino with the device number and inode number extracted
from id.

This function is typically used to fill in:

� iofunc mount t->dev

� iofunc attr t->inode

You can use the major(), minor(), and makedev() macros to work with
device IDs. They’re defined in <sys/types.h> and are described in
the documentation for stat().

May 31, 2004 Manifests 2417

resmgr devino() 2004, QNX Software Systems Ltd.

Returns:
-1 on error (errno is set); any other value on success.

Errors:
EINVAL The id argument is invalid.

Examples:
#include <sys/resmgr.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
iofunc mount t mount;
iofunc attr t attr;

...
attr.mount = &mount;
...
id = resmgr attach(...)
...
resmgr devino(id, &mount.dev, &attr.inode);
...
return EXIT SUCCESS;

}

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

2418 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr devino()

See also:
resmgr attach(), SETIOV(), stat()

May 31, 2004 Manifests 2419

resmgr handle tune() 2004, QNX Software Systems Ltd.

Tune aspects of client fd-to-OCB mapping

Synopsis:
int resmgr handle tune(int min handles,

int min clients,
int max client handles,
int *min handles old,
int *min clients old,
int *max client handles old);

Arguments:
min handles To perform the described mapping, the resource

manager framework makes use of
resmgr handle entry structures. This value

describes the minimum number of these structures to
keep around. If more than this number are in use,
they may be returned to the heap via free() as they’re
released.

min clients, max client handles

To perform the described mapping, the resource
manager framework makes use of hash buckets, one
per client. The min clients describes the minimum
number of these buckets to keep around. If more
than this number of clients are in communication
with your resource manager, these buckets may be
released back to the heap via free() as particular
clients close all their fds to your manager.

The max client handles describes the size of each of
these hash buckets. The maximum number of
lookups to find a particular fd-to-OCB mapping is
the client’s max fd divided by max client handles
rounded to the nearest integer, i.e. in pseudocode:

ceil(max fd/max client handles).

If this value changes, the new value takes effect for
newly connected clients. Existing clients are
unaffected.

2420 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr handle tune()

If negative values are specified to any of the above
three parameters, their current values are left
unchanged.

* old If any of these are non-NULL, the corresponding
value in use by the resource manager layer at the
time of the call is returned.

Library:
libc

Description:
One of the functions of the resource manager framework is to perform
the mapping of client file descriptors to structures local to the
resource manager that describe these descriptors. These structures are
often Open Control Blocks (OCBs). For details on OCBs, see
resmgr open bind(). The resmgr handle tune() function can be used
to tune certain aspects of this mapping and subsequent lookups of a
client’s OCBs.

Returns:
0.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 2421

resmgr handle tune() 2004, QNX Software Systems Ltd.

See also:
resmgr open bind()

Writing a Resource Manager chapter of the Programmer’s Guide

2422 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr handle grow()
Expand the capacity of the device manager database

Synopsis:
#include <resmgr.h>

int resmgr handle grow (unsigned min);

Arguments:
min The number of requests that you want to accommodate.

Library:
libc

Description:
The resmgr handle grow() function pre-grows or allocates the
resource manager database table entries to support a given number of
connections to improve runtime performance by reducing the number
of dynamic memory allocations.

The function pre-allocates database space for min requests.

Returns:
The number of free entries in the table, or -1 if the resource manager
table can’t be locked.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 2423

resmgr handle grow() 2004, QNX Software Systems Ltd.

2424 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr handler()
Handle resource manager messages

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int resmgr handler(resmgr context t * ctp);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

Library:
libc

Description:
The resmgr handler() function handles the message received in ctp.
This function handles different I/O messages through the resource
manager framework.

The resmgr handler() function is a special case of dispatch handler().
You should use it only when writing a simple resource manager i.e.
where there’s no need to attach pulses or messages.

�

Returns:
0 Success.

-1 An error occurred.

Examples:
#include <sys/dispatch.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv) {

May 31, 2004 Manifests 2425

resmgr handler() 2004, QNX Software Systems Ltd.

dispatch t *dpp;
resmgr context t *ctp;

if ((dpp = dispatch create()) == NULL) {
fprintf(stderr, "%s: Unable to allocate \

dispatch handle.\n",argv[0]);
return EXIT FAILURE;

}

...

ctp = resmgr context alloc(dpp);

while (1) {
if ((ctp = resmgr block(ctp)) == NULL) {

fprintf(stderr, "block error\n");
return EXIT FAILURE;

}
resmgr handler(ctp);

}
}

For examples using the dispatch interface, see dispatch create(),
message attach(), resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

2426 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr handler()

Caveats:
If you attach messages or pulses to dpp by calling message attach(),
pulse attach(), or select attach(), those events aren’t dispatched by
resmgr handler(). Instead, you should call dispatch handler().

See also:
dispatch handler(), resmgr attach(), resmgr block()

“Components of a Resource Manager” in the Writing a Resource
Manager chapter of the Programmer’s Guide

May 31, 2004 Manifests 2427

resmgr io func() 2004, QNX Software Systems Ltd.

Retrieve an I/O function from an I/O function table

Synopsis:
#include <sys/resmgr.h>

resmgr func t * resmgr io func(
const resmgr io funcs t * funcs,
unsigned type);

Arguments:
funcs A pointer to the resmgr io funcs t structure for the

table of I/O functions.

type The type of I/O function that you want to get from the table.
This argument should be one of the values defined in
<sys/iomsg.h>, such as IO READ or IO WRITE.

Library:
libc

Description:
The resmgr io func() function retrieves the I/O function associated
with type from the function table defined by funcs.

Returns:
A pointer to the function responsible for servicing type, or NULL if
the function can’t be found.

Classification:
QNX Neutrino

Safety

Cancellation point No

continued. . .

2428 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr io func()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
resmgr io funcs t, resmgr iofuncs()

May 31, 2004 Manifests 2429

resmgr io funcs t 2004, QNX Software Systems Ltd.

Table of POSIX-level I/O functions

Synopsis:
#include <sys/resmgr.h>

typedef struct resmgr io funcs {
unsigned nfuncs;
int (*read) (resmgr context t *ctp, io read t *msg,

RESMGR OCB T *ocb);
int (*write) (resmgr context t *ctp, io write t *msg,

RESMGR OCB T *ocb);
int (*close ocb) (resmgr context t *ctp, void *reserved,

RESMGR OCB T *ocb);
int (*stat) (resmgr context t *ctp, io stat t *msg,

RESMGR OCB T *ocb);
int (*notify) (resmgr context t *ctp, io notify t *msg,

RESMGR OCB T *ocb);
int (*devctl) (resmgr context t *ctp, io devctl t *msg,

RESMGR OCB T *ocb);
int (*unblock) (resmgr context t *ctp, io pulse t *msg,

RESMGR OCB T *ocb);
int (*pathconf) (resmgr context t *ctp, io pathconf t *msg,

RESMGR OCB T *ocb);
int (*lseek) (resmgr context t *ctp, io lseek t *msg,

RESMGR OCB T *ocb);
int (*chmod) (resmgr context t *ctp, io chmod t *msg,

RESMGR OCB T *ocb);
int (*chown) (resmgr context t *ctp, io chown t *msg,

RESMGR OCB T *ocb);
int (*utime) (resmgr context t *ctp, io utime t *msg,

RESMGR OCB T *ocb);
int (*fdopen) (resmgr context t *ctp, io fdopen t *msg,

RESMGR OCB T *ocb);
int (*fdinfo) (resmgr context t *ctp, io fdinfo t *msg,

RESMGR OCB T *ocb);
int (*lock) (resmgr context t *ctp, io lock t *msg,

RESMGR OCB T *ocb);
int (*space) (resmgr context t *ctp, io space t *msg,

RESMGR OCB T *ocb);
int (*shutdown) (resmgr context t *ctp, io shutdown t *msg,

RESMGR OCB T *ocb);
int (*mmap) (resmgr context t *ctp, io mmap t *msg,

RESMGR OCB T *ocb);
int (*msg) (resmgr context t *ctp, io msg t *msg,

2430 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr io funcs t

RESMGR OCB T *ocb);
int (*reserved) (resmgr context t *ctp, void *msg,

RESMGR OCB T *ocb);
int (*dup) (resmgr context t *ctp, io dup t *msg,

RESMGR OCB T *ocb);
int (*close dup) (resmgr context t *ctp, io close t *msg,

RESMGR OCB T *ocb);
int (*lock ocb) (resmgr context t *ctp, void *reserved,

RESMGR OCB T *ocb);
int (*unlock ocb)(resmgr context t *ctp, void *reserved,

RESMGR OCB T *ocb);
int (*sync) (resmgr context t *ctp, io sync t *msg,

RESMGR OCB T *ocb);
} resmgr io funcs t;

Description:
The resmgr connect funcs t structure is a table of the
POSIX-level I/O functions that are used by a resource manager. You
can initialize this table by calling iofunc func init() and then
overriding the defaults with your own functions.

This structure includes nfuncs, which indicates how many functions
are in the table (in case the structure grows in the future), along with
these functions:

Member: Used to: Default:

read Handle
IO READ

messages

iofunc read default()

write Handle
IO WRITE

messages

iofunc write default()

continued. . .

May 31, 2004 Manifests 2431

resmgr io funcs t 2004, QNX Software Systems Ltd.

Member: Used to: Default:

close ocb Return the
memory
allocated for an
OCB

iofunc close ocb default()

stat Handle
IO STAT

messages

iofunc stat default()

notify Handle
IO NOTIFY

messages

None

devctl Handle
IO DEVCTL

messages

iofunc devctl default()

unblock Unblock the
resource if an
operation is
aborted

iofunc unblock default()

pathconf Handle
IO PATHCONF

messages

iofunc pathconf default()

lseek Handle
IO LSEEK

messages

iofunc lseek default()

chmod Handle
IO CHMOD

messages

iofunc chmod default()

chown Handle
IO CHOWN

messages

iofunc chown default()

continued. . .

2432 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr io funcs t

Member: Used to: Default:

utime Handle
IO UTIME

messages

iofunc utime default()

fdopen Handle
IO OPENFD

messages

iofunc openfd default()

fdinfo Handle
IO FDINFO

messages

iofunc fdinfo default()

lock Handle
IO LOCK

messages

iofunc lock default()

space Allocate or free
memory for the
resource.

None

shutdown Reserved None

mmap Handle
IO MMAP

messages

iofunc mmap default()

msg Handle a more
general
messaging
scheme to
control the
device

None

reserved Not applicable None

dup Handle
IO DUP

messages

None — handled by the base layer

continued. . .

May 31, 2004 Manifests 2433

resmgr io funcs t 2004, QNX Software Systems Ltd.

Member: Used to: Default:

close dup Handle
IO CLOSE

messages

iofunc close dup default()

lock ocb Lock the
attributes for a
group of
messages

iofunc lock ocb default()

unlock ocb Unlock the
attributes for a
group of
messages

iofunc unlock ocb default()

sync Handle
IO SYNC

messages

iofunc sync default()

If you use iofunc lock default(), you must also use
iofunc close dup default() and iofunc unblock default().

�

Classification:
QNX Neutrino

See also:
iofunc chmod default(), iofunc chown default(),
iofunc close dup default(), iofunc close ocb default(),
iofunc devctl default(), iofunc fdinfo default(), iofunc func init(),
iofunc lock default(), iofunc lock ocb default(),
iofunc lseek default(), iofunc mmap default(),
iofunc openfd default(), iofunc pathconf default(),
iofunc read default(), iofunc stat default(), iofunc sync default(),
iofunc unblock default(), iofunc unlock ocb default(),
iofunc utime default(), iofunc write default(),
resmgr connect funcs t

2434 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr io funcs t

Writing a Resource Manager chapter of the QNX Neutrino
Programmer’s Guide

May 31, 2004 Manifests 2435

resmgr iofuncs() 2004, QNX Software Systems Ltd.

Extract the I/O function pointers associated with client connections

Synopsis:
#include <resmgr.h>

const resmgr io funcs t * resmgr iofuncs(
resmgr context t * ctp;
struct msg info * info);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

info A pointer to the msg info structure that describes the
binding to the client. You should fill this structure by calling
MsgInfo().

Library:
libc

Description:
The resmgr iofuncs() function retrieves the I/O function callout table
associated with the client connections described by binding specified
by info.

Note that context information pointed to by ctp actually contains info.

Returns:
A pointer to the resmgr io funcs t I/O function callout table, or
NULL if the binding can’t be found or an error occurs.

Errors:
ESRCH The connection can’t be located in the resource

manager’s table.

ENOMEM There is no memory available for the operation.

2436 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr iofuncs()

EINVAL Invalid arguments were used.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
msg info, MsgInfo(), resmgr io funcs t, resmgr ocb(),

resmgr open bind(), resmgr unbind()

May 31, 2004 Manifests 2437

resmgr msgread() 2004, QNX Software Systems Ltd.

Read a message from a client

Synopsis:
#include <sys/resmgr.h>

int resmgr msgread(resmgr context t * ctp,
void * msg,
int size,
int offset);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions. This function extracts the rcvid from
this structure.

msg A pointer to a buffer where the function can store the data.

bytes The number of bytes that you want to read. These functions
don’t let you read past the end of the thread’s message; they
return the number of bytes actually read.

offset An offset into the thread’s send message that indicates
where you want to start reading the data.

Library:
libc

Description:
The resmgr msgread() function is a convenience function that you
should in a resource manager instead of MsgRead().

You’ll use resmgr msgread() when you handle combine messages,
where the offset of the rest of the message that’s to be read is
additionally offset by previous combine message elements. For more
information, see “Combine messages” in the Writing a Resource
Manager chapter of the Programmer’s Guide.

2438 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr msgread()

Returns:
The same values as MsgRead(): the number of bytes read, or -1 if an
error occurs (errno is set).

Errors:
EFAULT A fault occurred in a server’s address space when

it tried to access the caller’s message buffers.

ESRCH The thread indicated by ctp -> rcvid doesn’t exist
or its connection is detached.

ESRVRFAULT A fault occurred when the kernel tried to access
the buffers provided.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
MsgRead(), resmgr context t, resmgr msgreadv(),
resmgr msgwrite(), resmgr msgwritev()

“Combine messages” in the Writing a Resource Manager chapter of
the Programmer’s Guide

May 31, 2004 Manifests 2439

resmgr msgreadv() 2004, QNX Software Systems Ltd.

Read a message from a client

Synopsis:
#include <sys/resmgr.h>

int resmgr msgreadv(resmgr context t * ctp,
iov t * rmsg,
int rparts,
int offset);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions. This function extracts the rcvid from
this structure.

riov An array of buffers where the functions can store the data.

rparts The number of elements in the riov array.

offset An offset into the thread’s send message that indicates
where you want to start reading the data.

Library:
libc

Description:
This resmgr msgreadv() function is a convenience function that you
should use in a resource manager instead of MsgReadv().

You’ll use resmgr msgreadv() when handling combine messages,
where the offset of the rest of the message that is to be read is
additionally offset by previous combine message elements. For more
information, see “Combine messages” in the Writing a Resource
Manager chapter of the Programmer’s Guide.

2440 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr msgreadv()

Returns:
The same values as MsgReadv(): the number of bytes read, or -1 if an
error occurs (errno is set).

Errors:
EFAULT A fault occurred in a server’s address space when

it tried to access the caller’s message buffers.

ESRCH The thread indicated by ctp -> rcvid doesn’t exist
or has had its connection detached.

ESRVRFAULT A fault occurred when the kernel tried to access
the buffers provided.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
MsgReadv(), resmgr context t, resmgr msgread(),
resmgr msgwrite(), resmgr msgwritev()

“Combine messages” in the Writing a Resource Manager chapter of
the Programmer’s Guide

May 31, 2004 Manifests 2441

resmgr msgwrite() 2004, QNX Software Systems Ltd.

Write a message to a client

Synopsis:
#include <sys/resmgr.h>

int resmgr msgwrite(resmgr context t *ctp,
const void *msg,
int size,
int offset);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions. This function extracts the rcvid from
this structure.

msg A pointer to a buffer that contains the data you want to
write.

size The number of bytes that you want to write. These
functions don’t let you write past the end of the sender’s
buffer; they return the number of bytes actually written.

offset An offset into the sender’s buffer that indicates where you
want to start writing the data.

Library:
libc

Description:
The function resmgr msgwrite() is a cover for MsgWrite() and
performs the exact same functionality.

Returns:
The same values as MsgWrite(); the number of bytes written, or -1 if
an error occurs (errno is set).

2442 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr msgwrite()

Errors:
EFAULT A fault occurred in the sender’s address space

when a server tried to access the sender’s return
message buffer.

ESRCH The thread indicated by ctp -> rcvid does not exist
or has had its connection detached.

ESRVRFAULT A fault occurred when the kernel tried to access the
buffers provided.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
MsgWrite(), resmgr context t, resmgr msgread(),
resmgr msgreadv(), resmgr msgwritev()

“Combine messages” in the Writing a Resource Manager chapter of
the Programmer’s Guide

May 31, 2004 Manifests 2443

resmgr msgwritev() 2004, QNX Software Systems Ltd.

Write a message to a client

Synopsis:
#include <sys/resmgr.h>

int resmgr msgwritev(resmgr context t *ctp,
const iov t *smsg,
int sparts,
int offset);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions. This function extracts the rcvid from
this structure.

iov An array of buffers that contains the data you want to write.

parts The number of elements in the array. These functions don’t
let you write past the end of the sender’s buffer; they return
the number of bytes actually written.

offset An offset into the sender’s buffer that indicates where you
want to start writing the data.

Library:
libc

Description:
The resmgr msgwritev() function is a cover function for MsgWritev(),
and performs the exact same functionality. It’s provided for
consistency with resmgr msgwrite().

Returns:
The number of bytes written, or -1 if an error occurred (errno is set).

2444 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr msgwritev()

Errors:
EFAULT A fault occurred in the sender’s address space

when a server tried to access the sender’s return
message buffer.

ESRCH The thread indicated by ctp -> rcvid does not exist
or has had its connection detached.

ESRVRFAULT A fault occurred when the kernel tried to access
the buffers provided.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
MsgWritev(), resmgr context t, resmgr msgread(),
resmgr msgreadv(), resmgr msgwrite()

“Combine messages” in the Writing a Resource Manager chapter of
the Programmer’s Guide

May 31, 2004 Manifests 2445

RESMGR NPARTS() 2004, QNX Software Systems Ltd.

Get a given number of parts from the ctp->iov structure

Synopsis:
#include <sys/resmgr.h>

RESMGR NPARTS(int num)

Arguments:
num The number of parts that you want to get.

Library:
libc

Description:
The macro RESMGR NPARTS() indicates to the caller to get num
parts from the ctp->iov structure (see resmgr context t). The
macro is similar to:

MsgReply(ctp->rcvid, ctp->status, ctp->iov, num).

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

2446 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. RESMGR NPARTS()

Caveats:
The resmgr attach() function should set attr->nparts max to be the
maximum value for num.

See also:
MsgReply(), resmgr attach(), resmgr context t,
RESMGR PTR(), RESMGR STATUS()

May 31, 2004 Manifests 2447

resmgr ocb() 2004, QNX Software Systems Ltd.

Retrieve an Open Control Block

Synopsis:
#include <sys/resmgr.h>

void * resmgr ocb(resmgr context t * ctp,
struct msg info * info);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

Note that ctp actually contains info.

info A pointer to a msg info structure that indicates which
client mapping you want to retrieve information about. To fill
in the structure, call MsgInfo().

Library:
libc

Description:
The resmgr ocb() function queries the internal resource manager
database, which maps client connections to the server Open Control
Block (OCB), to retrieve the OCB pointer that was previously bound
using resmgr open bind().

Returns:
A pointer to the OCB for the matching binding, or NULL if the
binding can’t be found or an error occurred.

The OCB can be a structure that you define. By default, it’s of type
iofunc ocb t.

2448 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr ocb()

Errors:
ESRCH The connection can’t be located in the resource

manager table.

ENOMEM There isn’t enough memory available for the
operation.

EINVAL Invalid arguments were used.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
iofunc ocb t, msg info, MsgInfo(), resmgr iofuncs(),
resmgr open bind(), resmgr unbind()

May 31, 2004 Manifests 2449

resmgr open bind() 2004, QNX Software Systems Ltd.

Associate an OCB with an open request

Synopsis:
#include <sys/resmgr.h>

int resmgr open bind(
resmgr context t* ctp,
void* ocb,
const resmgr io funcs t* iofuncs);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

ocb A pointer to the Open Control Block that you want to
bind to the open request. An OCB is usually a structure of
type iofunc ocb t, but you can define your own.

iofuncs A pointer to the resmgr io funcs t structure that
defines the I/O functions for the resource manager.

Library:
libc

Description:
The resmgr open bind() function is the lowest-level call in the
resource manager library used for handling open messages. It
associates the Open Control Block (OCB) with a process identified by
the id and info members of ctp.

2450 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr open bind()

You must use this function as part of the handling of an IO OPEN
message. In practice, you don’t call this function directly; you
typically use either iofunc open default() or iofunc ocb attach(). (The
iofunc open default() function calls iofunc ocb attach(), which in
turn calls resmgr open bind()).

�

An internal data structure is allocated that maintains the number of
links to the OCB. On a file descriptor dup(), the link count is
incremented and on a close() it’s decremented. When the count
reaches zero, the close ocb() callout specified in io funcs is called.

In the most general case, the OCB is an arbitrary structure that you
define that can hold information describing an open file, or just a
simple int to hold the open mode for checking in the read() and
write() callouts.

In the typical case, however, the OCB is a structure that contains at
least the members as defined by the typedef iofunc ocb t. This
typedef defines a common OCB structure that can then be used by the
POSIX layer helper functions (all functions beginning with the name
iofunc *). The advantage of this approach is that your resource
manager gets POSIX behavior for free, without any additional work
on your part.

The attr argument to the open() callout is also typically saved in the
OCB. The well defined iofunc ocb t has a member called attr to
which you must assign the value of the attr argument. This lets the
POSIX helper functions access information about the current open
session (as stored in the OCB) as well as information about the device
itself (as stored in the attributes structure, ocb -> attr).

For a detailed discussion, including several examples, see the Writing
a Resource Manager chapter of the Programmer’s Guide.

Returns:
0 Success.

-1 An error occurred (errno is set).

May 31, 2004 Manifests 2451

resmgr open bind() 2004, QNX Software Systems Ltd.

Errors:
EINVAL The id and/or info members of ctp aren’t valid.

ENOMEM Insufficient memory to allocate an internal data
structure.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
iofunc ocb attach(), iofunc ocb t, iofunc open default(),
resmgr context t, resmgr io funcs t, resmgr unbind()

Writing a Resource Manager chapter of the Programmer’s Guide

2452 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr pathname()
Return the pathname associated with an ID

Synopsis:
#include <sys/resmgr.h>

int resmgr pathname(int id,
unsigned flags,
char* path,
int maxbuf);

Arguments:
id The link ID that resmgr attach() returned.

flags Flags that affect the operation:

� RESMGR PATHNAME LOCALPATH — get a
shortened pathname that’s usable only on the local
machine. By default, this function gets a globally
unique pathname.

path A pointer to a buffer where the function can store the path
name.

maxbuf The size of the buffer.

Library:
libc

Description:
The resmgr pathname() function returns the pathname associated
with an id that’s returned from resmgr attach(), it’s also the ctp->id
value of all the resmgr callout functions.

If the id was obtained from calling resmgr attach() with
RESMGR FLAG DIR specified, then the path name includes a trailing

slash.

By default, this function calls:

netmgr ndtostr(ND2S DIR SHOW, nd, buf, sizeofbuf)

May 31, 2004 Manifests 2453

resmgr pathname() 2004, QNX Software Systems Ltd.

If you specify RESMGR PATHNAME LOCALPATH, it calls

netmgr ndtostr(ND2S DIR SHOW|ND2S LOCAL STR, nd, buf, sizeofbuf)

to return a shortened path that’s usable on your local node only. This
is useful for display.

Returns:
The length of the path, including the terminating NULL character, or
-1 if an error occurs (errno is set).

Errors:
EFAULT A fault occurred in a server’s address space when

it tried to access the caller’s message buffers.

ESRCH The thread indicated by ctp -> rcvid doesn’t exist
or its connection is detached.

ESRVRFAULT A fault occurred when the kernel tried to access
the buffers provided.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

2454 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr pathname()

See also:
netmgr ndtostr(), resmgr attach()

May 31, 2004 Manifests 2455

RESMGR PTR() 2004, QNX Software Systems Ltd.

Get one part from the ctp->iov structure and fill in its fields

Synopsis:
#include <sys/resmgr.h>

RESMGR PTR(resmgr context t ctp,
void msg,
size t nbytes)

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

msg The value you want to use for the structure’s iov base
member.

nbytes The value you want to use for the structure’s iov len
member.

Library:
libc

Description:
The RESMGR PTR() macro gets one part from the ctp->iov structure
(see resmgr context t) and fills in its fields. The macro is
equivalent to:

SETIOV (ctp->iov, msg, nbytes)

returning RESMGR NPARTS (1).

Classification:
QNX Neutrino

2456 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. RESMGR PTR()

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
resmgr context t, RESMGR NPARTS(), RESMGR STATUS(),
SETIOV()

May 31, 2004 Manifests 2457

RESMGR STATUS() 2004, QNX Software Systems Ltd.

Set the status member of a resource-manager context

Synopsis:
#include <sys/resmgr.h>

RESMGR STATUS(resmgr context t *ctp,
int status)

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

status The status that you want to set.

Library:
libc

Description:
The RESMGR STATUS() macro sets the status member in the
resmgr context t structure.

The resource manager library uses this status when it returns the value
from RESMGR NPARTS() for an I/O or connect function, such as:

MsgReply (ctp->rcvid, ctp->status, ctp->iov, num).

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

2458 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. RESMGR STATUS()

See also:
resmgr connect funcs t, resmgr io funcs t,
RESMGR NPARTS(), RESMGR PTR()

May 31, 2004 Manifests 2459

resmgr unbind() 2004, QNX Software Systems Ltd.

Disassociate an OCB from an open request

Synopsis:
#include <sys/resmgr.h>

int resmgr unbind(resmgr context t * ctp);

Arguments:
ctp A pointer to a resmgr context t structure that the

resource-manager library uses to pass context information
between functions.

Library:
libc

Description:
The resmgr unbind() function removes a binding in the internal
resources manager database (which maps client connections to server
OCB pointers). The binding must previously have been bound by
resmgr open bind()

The binding is reference counted; if multiple connections are
established with the same binding, the binding is freed only when the
last connection is removed.

You should use MsgInfo() to fill the info structure in ctp with
information about which client mapping to retrieve.

Returns:
-1 Failure.

0 Success.

2460 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. resmgr unbind()

Errors:
EINVAL The binding can’t be located in the resource manager

table.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
MsgInfo(), resmgr context t, resmgr open bind()

Writing a Resource Manager chapter of the Programmer’s Guide

May 31, 2004 Manifests 2461

rewind() 2004, QNX Software Systems Ltd.

Rewind a file stream to the beginning of the file

Synopsis:
#include <stdio.h>

void rewind(FILE *fp);

Arguments:
fp The file stream that you want to rewind.

Library:
libc

Description:
The rewind() function rewinds the file stream specified by fp to the
beginning of the file. It’s equivalent to calling fseek() like this:

fseek(fp, 0L, SEEK SET);

except that the error indicator for the stream is cleared.

Examples:
This example shows how you might implement a two-pass assembler:

#include <stdio.h>
#include <stdlib.h>

void assemble pass(FILE *fp, int passno)
{

printf("Pass %d\n", passno);

/* Do more work on the fp */
switch(passno) {
case 1:

/* do the first-pass work */
break;

case 2:
/* do the second-pass work */
break;

2462 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rewind()

default:
break;

}
}

int main(void)
{

FILE *fp;

fp = fopen("program.s", "r");
if(fp != NULL) {

assemble pass(fp, 1);
rewind(fp);

assemble pass(fp, 2);
fclose(fp);

return EXIT SUCCESS;
}

puts("Error opening program.s");

return EXIT FAILURE;
}

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 2463

rewind() 2004, QNX Software Systems Ltd.

See also:
clearerr(), fopen(), fseek()

2464 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rewinddir()
Rewind a directory stream to the start of the directory

Synopsis:
#include <sys/types.h>
#include <dirent.h>

void rewinddir(DIR * dirp);

Arguments:
dirp A pointer to the directory stream of the directory to rewind.

Library:
libc

Description:
The rewinddir() function rewinds the directory stream specified by
dirp to the start of the directory. The directory stream will now refer
to the current state of the directory, as if the calling thread had called
opendir() again.

The result of using a directory stream after one of the exec*() or
spawn*() family of functions is undefined. After a call to fork(), either
the parent or the child (but not both) can continue processing the
directory stream, using the readdir() and rewinddir() functions. If
both the parent and child processes use these functions, the result is
undefined. Either (or both) processes may use closedir().

�

Examples:
List all the files in a directory, create a new file, and then list the
directory contents again:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <dirent.h>
#include <stdlib.h>

May 31, 2004 Manifests 2465

rewinddir() 2004, QNX Software Systems Ltd.

int main(void)
{

DIR *dirp;
struct dirent *direntp;
int filedes;

dirp = opendir("/home/fred");
if(dirp != NULL) {

printf("Old directory listing\n");
for(;;) {

direntp = readdir(dirp);
if(direntp == NULL) break;
printf("%s\n", direntp->d name);

}

filedes = creat("/home/fred/file.new",
S IRUSR | S IWUSR | S IRGRP | S IWGRP);

close(filedes);

rewinddir(dirp);
printf("New directory listing\n");
for(;;) {

direntp = readdir(dirp);
if(direntp == NULL) break;
printf("%s\n", direntp->d name);

}
closedir(dirp);

}

return EXIT SUCCESS;
}

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

continued. . .

2466 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rewinddir()

Safety

Thread Yes

See also:
closedir(), opendir(), readdir(), readdir r(), seekdir()

May 31, 2004 Manifests 2467

Rgetsockname() 2004, QNX Software Systems Ltd.

Get the name of a socket (via a SOCKS server)

Synopsis:
#include <sys/socket.h>

int Rgetsockname(int s,
struct sockaddr * name,
int * namelen);

Arguments:
s The file descriptor of the socket whose name you want to

get.

name A pointer to a sockaddr object where the function can
store the socket’s name.

namelen A pointer to a socklen t object that initially indicates
the amount of space pointed to by name. The function
updates namelen to contain the actual size of the name
(in bytes).

Library:
libsocks

Description:
The Rgetsockname() function is a cover function for getsockname() —
the difference is that Rgetsockname() does its job via a SOCKS server.

For more information about SOCKS and its libraries, see the
appendix, SOCKS — A Basic Firewall.

Returns:
0 Success.

-1 An error occurred (errno is set).

2468 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. Rgetsockname()

Classification:
SOCKS

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

See also:
getsockname() Raccept(), Rbind(), Rconnect(), Rlisten(), Rrcmd(),
Rselect(), SOCKSinit()

SOCKS — A Basic Firewall

May 31, 2004 Manifests 2469

rindex() 2004, QNX Software Systems Ltd.

Find the last occurrence of a character in a string

Synopsis:
#include <strings.h>

char *rindex(const char *s,
int c);

Arguments:
s The string you want to search. This string must end with a null

(\0) character. The null character is considered to be part of the
string.

c The character you’re looking for.

Library:
libc

Description:
The rindex() function returns a pointer to the last occurrence of the
character c in the string s.

Returns:
A pointer to the character, or NULL if the character doesn’t occur in
the string.

Classification:
Legacy Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

continued. . .

2470 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rindex()

Safety

Thread Yes

See also:
index(), strchr(), strrchr()

May 31, 2004 Manifests 2471

rint(), rintf() 2004, QNX Software Systems Ltd.

Round to the nearest integral value

Synopsis:
#include <math.h>

double rint (double x);

float rintf (float x);

Arguments:
x The number that you want to round.

Library:
libm

Description:
The rint() and rintf() functions return the integral value nearest x in
the direction of the current rounding mode.

If the current rounding mode rounds toward negative infinity, then
rint() is identical to floor(). If the current rounding mode rounds
toward positive infinity, then rint() is identical to ceil().

Returns:
An integer (represented as a double precision number) nearest x in the
direction of the current rounding mode (IEEE754).

If x is: rint() returns:

�Infinity x

NAN NAN

2472 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rint(), rintf()

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <errno.h>
#include <inttypes.h>
#include <math.h>
#include <fpstatus.h>

int main(int argc, char** argv)
{

double a, b;

a = 0.7 ;
b = rint(a);
printf("Round Native mode %f -> %f \n", a, b);

return(0);
}

Classification:
rint() is standard Unix; rintf() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 2473

rint(), rintf() 2004, QNX Software Systems Ltd.

See also:
ceil(), floor()

2474 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. Rlisten()
Listen for connections on a socket (via a SOCKS server)

Synopsis:
#include <sys/socket.h>

int Rlisten(int s,
int backlog);

Arguments:
s The descriptor for the socket that you want to listen on.

You can create a socket by calling socket().

backlog The maximum length that the queue of pending
connections may grow to.

Library:
libsocks

Description:
The Rlisten() function is a cover function for listen() — the difference
is that Rlisten() does its job via a SOCKS server.

For more information about SOCKS and its libraries, see the
appendix, SOCKS — A Basic Firewall.

Returns:
0 Success.

-1 An error occurred (errno is set).

Classification:
SOCKS

May 31, 2004 Manifests 2475

Rlisten() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

See also:
listen() Raccept(), Rbind(), Rconnect(), Rgetsockname(), Rrcmd(),
Rselect(), SOCKSinit()

SOCKS — A Basic Firewall

2476 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rmdir()
Delete an empty directory

Synopsis:
#include <sys/types.h>
#include <unistd.h>

int rmdir(const char* path);

Arguments:
path The path of the directory that you want to delete. This path

can be relative to the current working directory, or an
absolute path.

Library:
libc

Description:
The rmdir() function removes (deletes) the specified directory. The
directory must not contain any files or directories.

If the directory is the current working directory of any process,
rmdir() returns -1 and sets errno to EINVAL. If the directory is the
root directory, the effect of this function depends on the filesystem.

�

The space occupied by the directory is freed, making it inaccessible,
if its link count becomes zero and no process has the directory open
(opendir()). If a process has the directory open when the last link is
removed, the . and .. entries are removed and no new entries can be
created in the directory. In this case, the directory will be removed
when all references to it have been closed (closedir()).

When successful, rmdir() marks st ctime and st mtime for update in
the parent directory.

May 31, 2004 Manifests 2477

rmdir() 2004, QNX Software Systems Ltd.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EACCES Search permission is denied for a component of

path, or write permission is denied on the parent
directory of the directory to be removed.

EBUSY The directory named by path can’t be removed
because it’s being used by another process, and the
implementation considers this to be an error.

EEXIST The path argument names a directory that isn’t
empty.

ELOOP Too many levels of symbolic links.

ENAMETOOLONG

The argument path exceeds PATH MAX in length,
or a pathname component is longer than
NAME MAX.

ENOENT The specified path doesn’t exist, or path is an
empty string.

ENOSYS The rmdir() function isn’t implemented for the
filesystem specified in path.

ENOTDIR A component of path isn’t a directory.

ENOTEMPTY The path argument names a directory that isn’t
empty.

EROFS The directory entry to be removed resides on a
read-only filesystem.

2478 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rmdir()

Examples:
To remove the directory called /home/terry:

#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>

int main(void)
{

(void)rmdir("/home/terry");

return EXIT SUCCESS;
}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
chdir(), chmod(), errno, getcwd(), mkdir(), stat()

May 31, 2004 Manifests 2479

ROUTE 2004, QNX Software Systems Ltd.

System packet forwarding database

Synopsis:
#include <sys/socket.h>
#include <net/if.h>
#include <net/route.h>

int socket(PF ROUTE,
SOCK RAW,
int family);

Description:
QNX TCP/IP provides some packet routing facilities.

The following information applies only to the full TCP/IP stack. For
information on how the tiny TCP/IP stack can change the routing
table, see npm-ttcpip.so.

�

The socket manager maintains a routing information database that’s
used in selecting the appropriate network interface when transmitting
packets.

A user process (or possibly multiple cooperating processes) maintains
this database by sending messages over a special kind of socket. This
supplants fixed-size ioctl()s used in earlier releases. Routing table
changes may be carried out only by the superuser.

This interface may spontaneously emit routing messages in response
to external events, such as receipt of a redirect or of a failure to locate
a suitable route for a request. The message types are described in
greater detail below.

Routing database entries

Routing database entries come in two flavors: for a specific host or for
all hosts on a generic subnetwork (as specified by a bit mask and
value under the mask). The effect of wildcard or default routing may
be achieved by using a mask of all zeros. There may be hierarchical
routes.

2480 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ROUTE

When the system is booted and addresses are assigned to the network
interfaces, each protocol family installs a routing table entry for each
interface when it’s ready for traffic. Normally the protocol specifies
the route through each interface as a “direct” connection to the
destination host or network. If the route is direct, the transport layer
of a protocol family usually requests the packet be sent to the same
host specified in the packet. Otherwise, the interface is requested to
address the packet to the gateway listed in the routing entry (i.e. the
packet is forwarded).

Routing packets

When routing a packet, the kernel attempts to find the most specific
route matching the destination. (If there are two different mask and
value-under-the-mask pairs that match, the more specific is the one
with more bits in the mask. A route to a host is regarded as being
supplied with a mask of as many ones as there are bits in the
destination). If no entry is found, the destination is declared to be
unreachable, and a routing-miss message is generated if there are any
listeners on the routing control socket described below.

A wildcard routing entry is specified with a zero destination address
value and a mask of all zeroes. Wildcard routes are used when the
system fails to find other routes matching the destination. The
combination of wildcard routes and routing redirects can provide an
economical mechanism for routing traffic.

Routing control messages

To open the channel for passing routing control messages, use the
socket call shown in the synopsis above.

The family parameter may be AF UNSPEC, which provides routing
information for all address families, or it can be restricted to a specific
address family. There can be more than one routing socket open per
system.

Messages are formed by a header followed by a small number of
sockaddrs (with variable length) interpreted by position and
delimited by the new length entry in the sockaddr. An example of a

May 31, 2004 Manifests 2481

ROUTE 2004, QNX Software Systems Ltd.

message with four addresses might be a redirect: Destination,
Netmask, Gateway, and Author of the redirect. The interpretation of
which addresses are present is given by a bit mask within the header;
the sequence is least-significant to most-significant bit within the
vector.

Any messages sent to the socket manager are returned, and copies are
sent to all interested listeners. The interface provides the process ID
for the sender. To distinguish between outstanding messages, the
sender may use an additional sequence field. However, message
replies may be lost when socket manager buffers are exhausted.

The interface may reject certain messages, as indicated in the
rtm errno field.

This error occurs: If:

EEXIST Requested to duplicate an existing entry.

ESRCH Requested to delete a nonexistent entry.

ENOBUFS Insufficient resources were available to
install a new route.

In the current implementation, all routing processes run locally, and
the values for rtm errno are available through the normal errno
mechanism, even if the routing reply message is lost.

A process may avoid the expense of reading replies to its own
messages by calling setsockopt(), to turn off the SO USELOOPBACK
option at the SOL SOCKET level. A process may ignore all messages
from the routing socket by doing a shutdown() system call for further
input.

If a route is in use when it’s deleted, the routing entry is marked down
and removed from the routing table, but the resources associated with
it won’t be reclaimed until all references to it are released. User
processes can obtain information about the routing entry to a specific
destination by using a RTM GET message or by calling sysctl().

2482 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ROUTE

The messages are:

#define RTM ADD 0x1 /* Add Route */
#define RTM DELETE 0x2 /* Delete Route */

#define RTM CHANGE 0x3 /* Change Metrics, Flags, or Gateway */

#define RTM GET 0x4 /* Report Information */
#define RTM LOSING 0x5 /* Kernel Suspects Partitioning */

#define RTM REDIRECT 0x6 /* Told to use different route */

#define RTM MISS 0x7 /* Lookup failed on this address */
#define RTM RESOLVE 0xb /* request to resolve dst to LL addr */

#define RTM NEWADDR 0xc /* address being added to iface */

#define RTM DELADDR 0xd /* address being removed from iface */
#define RTM IFINFO 0xe /* iface going up/down etc. */

A message header consists of one of the following:

struct rt msghdr {

u short rtm msglen; /* skip over non-understood msgs */

u char rtm version; /* future binary compatibility */
u char rtm type; /* message type */

u short rtm index; /* index for associated ifp */

int rtm flags; /* flags, incl kern & message, e.g. DONE */
int rtm addrs; /* bitmask identifying sockaddrs in msg */

pid t rtm pid; /* identify sender */

int rtm seq; /* for sender to identify action */
int rtm errno; /* why failed */

int rtm use; /* from rtentry */

u long rtm inits; /* which metrics we’re initializing */
struct rt metrics rtm rmx; /* metrics themselves */

};

struct if msghdr {

u short ifm msglen; /* to skip over non-understood msgs */
u char ifm version; /* future binary compatibility */

u char ifm type; /* message type */

int ifm addrs; /* like rtm addrs */
int ifm flags; /* value of if flags */

u short ifm index; /* index for associated ifp */

struct if data ifm dat /* statistics and other data about if */
};

struct ifa msghdr {
u short ifam msglen; /* to skip over non-understood msgs */

u char ifam version; /* future binary compatibility */

u char ifam type; /* message type */
int ifam addrs; /* like rtm addrs */

int ifam flags; /* value of ifa flags */

u short ifam index; /* index for associated ifp */
int ifam metric; /* value of ifa metric */

};

The RTM IFINFO message uses an if msghdr header. The
RTM NEWADDR and RTM DELADDR messages use an ifa msghdr

header. All other messages use the rt msghdr header.

The metrics structure is:

May 31, 2004 Manifests 2483

ROUTE 2004, QNX Software Systems Ltd.

struct rt metrics {
u long rmx locks; /* Kernel must leave these values alone */
u long rmx mtu; /* MTU for this path */
u long rmx hopcount; /* max hops expected */
u long rmx expire; /* lifetime for route, e.g. redirect */
u long rmx recvpipe; /* inbound delay-bandwidth product */
u long rmx sendpipe; /* outbound delay-bandwidth product */
u long rmx ssthresh; /* outbound gateway buffer limit */
u long rmx rtt; /* estimated round trip time */
u long rmx rttvar; /* estimated rtt variance */
u long rmx pksent; /* packets sent using this route */

};

Flags include the values:

#define RTF UP 0x1 /* route usable */
#define RTF GATEWAY 0x2 /* destination is a gateway */
#define RTF HOST 0x4 /* host entry (net otherwise) */
#define RTF REJECT 0x8 /* host or net unreachable */
#define RTF DYNAMIC 0x10 /* created dynamically (by redirect) */
#define RTF MODIFIED 0x20 /* modified dynamically (by redirect) */
#define RTF DONE 0x40 /* message confirmed */
#define RTF MASK 0x80 /* subnet mask present */
#define RTF CLONING 0x100 /* generate new routes on use */
#define RTF XRESOLVE 0x200 /* external daemon resolves name */
#define RTF LLINFO 0x400 /* generated by ARP or ESIS */
#define RTF STATIC 0x800 /* manually added */
#define RTF BLACKHOLE 0x1000 /* just discard pkts (during updates) */
#define RTF PROTO2 0x4000 /* protocol specific routing flag */
#define RTF PROTO1 0x8000 /* protocol specific routing flag */

Specifiers for metric values in rmx locks and rtm inits are:

#define RTV MTU 0x1 /* init or lock mtu */
#define RTV HOPCOUNT 0x2 /* init or lock hopcount */
#define RTV EXPIRE 0x4 /* init or lock expire */
#define RTV RPIPE 0x8 /* init or lock recvpipe */
#define RTV SPIPE 0x10 /* init or lock sendpipe */
#define RTV SSTHRESH 0x20 /* init or lock ssthresh */
#define RTV RTT 0x40 /* init or lock rtt */
#define RTV RTTVAR 0x80 /* init or lock rttvar */

Specifiers for which addresses are present in the messages are:

#define RTA DST 0x1 /* destination sockaddr present */
#define RTA GATEWAY 0x2 /* gateway sockaddr present */
#define RTA NETMASK 0x4 /* netmask sockaddr present */

2484 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ROUTE

#define RTA GENMASK 0x8 /* cloning mask sockaddr present */
#define RTA IFP 0x10 /* interface name sockaddr present */
#define RTA IFA 0x20 /* interface addr sockaddr present */
#define RTA AUTHOR 0x40 /* sockaddr for author of redirect */
#define RTA BRD 0x80 /* for NEWADDR, */

/* broadcast or p-p dest addr */

Examples:
Use the following code to set the default route:

#include <sys/socket.h>
#include <sys/uio.h>
#include <unistd.h>
#include <net/route.h>
#include <netinet/in.h>
#include <stdio.h>
#include <libgen.h>
#include <arpa/inet.h>
#include <process.h>
#include <errno.h>

struct my rt
{

struct rt msghdr rt;
struct sockaddr in dst;
struct sockaddr in gate;
struct sockaddr in mask;

};

int main(int argc, char **argv)
{

int s;
struct rt msghdr *rtm;
struct sockaddr in *dst, *gate, *mask;
struct my rt my rt;

if(argc < 2)
{

fprintf(stderr, "Usage: %s: <ip addr of default gateway>\n",
basename(argv[0]));

return 1;
}

if((s = socket(AF ROUTE, SOCK RAW, 0)) == -1)
{

perror("socket");

May 31, 2004 Manifests 2485

ROUTE 2004, QNX Software Systems Ltd.

return 1;
}

memset(&my rt, 0x00, sizeof(my rt));

rtm = &my rt.rt;

dst = &my rt.dst;
gate = &my rt.gate;
mask = &my rt.mask;

rtm->rtm type = RTM ADD;
rtm->rtm flags = RTF UP | RTF GATEWAY | RTF STATIC;
rtm->rtm msglen = sizeof(my rt);
rtm->rtm version = RTM VERSION;
rtm->rtm seq = 1234;
rtm->rtm addrs = RTA DST | RTA GATEWAY | RTA NETMASK;
rtm->rtm pid = getpid();

dst->sin len = sizeof(*dst);
dst->sin family = AF INET;

mask->sin len = sizeof(*mask);
mask->sin family = AF INET;

gate->sin len = sizeof(*gate);
gate->sin family = AF INET;
inet aton(argv[1], &gate->sin addr);

AGAIN:
if(write(s, rtm, rtm->rtm msglen) < 0)
{

if(errno == EEXIST && rtm->rtm type == RTM ADD)
{

rtm->rtm type = RTM CHANGE;
goto AGAIN;

}
perror("write");
return 1;

}
return 0;

}

2486 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ROUTE

See also:
setsockopt(), socket(), sysctl()

npm-tcpip.so in the Utilities Reference

May 31, 2004 Manifests 2487

Rrcmd() 2004, QNX Software Systems Ltd.

Execute a command on a remote host (via a SOCKS server)

Synopsis:
int Rrcmd(char ** ahost,

int inport,
const char * locuser,
const char * remuser,
const char * cmd,
int * fd2p);

Arguments:
ahost The name of the host that you want to execute the

command on. If the function can find the host, it sets
*ahost to the standard name of the host.

inport The well-known Internet port on the host, where the
server resides.

locuser The user ID on the local machine.

remuser The user ID on the remote machine.

cmd The command that you want to execute.

fd2p See rcmd().

Library:
libsocks

Description:
The Rrcmd() function is a cover function for rcmd() — the difference
is that Rrcmd() does its job via a SOCKS server.

For more information about SOCKS and its libraries, see the
appendix, SOCKS — A Basic Firewall.

2488 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. Rrcmd()

Returns:
A valid socket descriptor; or -1 if an error occurs and a message is
printed to standard error.

Classification:
SOCKS

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

See also:
Raccept(), Rbind(), rcmd() Rconnect(), Rgetsockname(), Rlisten(),
Rselect(), SOCKSinit()

SOCKS — A Basic Firewall

May 31, 2004 Manifests 2489

rresvport() 2004, QNX Software Systems Ltd.

Obtain a socket with a privileged address

Synopsis:
#include <unistd.h>

int rresvport(int * port);

Arguments:
port An address in the privileged port space. Privileged Internet

ports are those in the range 0 to 1023. Only the superuser
may bind this type of address to a socket.

Library:
libsocket

Description:
The rresvport() function returns a descriptor to a socket with an
address in the privileged port space. The ruserok() function is used by
servers to authenticate clients requesting service with rcmd(). All
three functions are present in the same file and are used by the rshd
server (see the Utilities Reference), among others.

The rresvport() function obtains a socket with a privileged address
bound to it. This socket can be used by rcmd() and several other
functions.

Returns:
A valid, bound socket descriptor, or -1 if an error occurs (errno is set).

Errors:
The error code EAGAIN is overloaded to mean “All network ports in
use.”

2490 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rresvport()

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
rcmd(), ruserok()

rshd in the Utilities Reference

May 31, 2004 Manifests 2491

Rselect() 2004, QNX Software Systems Ltd.

Check for descriptors that are ready for reading or writing (via a SOCKS server)

Synopsis:
int Rselect(int width,

fd set * readfds,
fd set * writefds,
fd set * exceptionfds,
struct timeval * timeout);

Arguments:
width The number of descriptors to check in the given sets.

Only the descriptors from 0 through (width-1) in the
descriptor sets are examined. Therefore, the value of
width must be at least as large as:

(highest valued file descriptor in the sets) +1

readfds NULL, or a pointer to a fd set object that specifies
the descriptors to check for files that are ready for
reading. The function replaces the set with the file
descriptors that are actually ready for reading.

writefds NULL, or a pointer to a fd set object that specifies
the descriptors to check for files that are ready for
writing. The function replaces the set with the file
descriptors that are actually ready for writing.

exceptionfds NULL, or a pointer to a fd set object that specifies
the descriptors to check for files that have an
exceptional condition pending. The function
replaces the set with the file descriptors that actually
have an exceptional condition pending.

timeout NULL, or a pointer to a timeval that specifies how
long to wait for the selection to complete.

2492 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. Rselect()

Library:
libsocks

Description:
The Rselect() function is a cover function for select() — the
difference is that Rselect() does its job via a SOCKS server.

For more information about SOCKS and its libraries, see the
appendix, SOCKS — A Basic Firewall.

Returns:
The number of ready descriptors in the descriptor sets, 0 if the timeout
expired, or -1 if an error occurs (errno is set).

Classification:
SOCKS

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

See also:
select()

SOCKS — A Basic Firewall

May 31, 2004 Manifests 2493

rsrcdbmgr attach() 2004, QNX Software Systems Ltd.

Reserve a system resource for a process

Synopsis:
#include <sys/rsrcdbmgr.h>
#include <sys/rsrcdbmsg.h>

int rsrcdbmgr attach(rsrc request t * list,
int count);

Arguments:
list An array of rsrc request t structures that describe the

resources that you want to reserve; see below.

count The number of entries in the array.

Library:
libc

Description:
The resource database manager allocates and keeps track of system
resources i.e. it manages these resources. The system resources
currently tracked are:

� memory

� IRQs

� DMA channels

� I/O ports.

Major and minor device numbers are handled with separate
rsrcdbmgr devno attach() and rsrcdbmgr devno detach() functions.

There are two main functions that drivers can use to communicate
with the resource database:

� rsrcdbmgr attach()

� rsrcdbmgr detach()

2494 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rsrcdbmgr attach()

The rsrcdbmgr attach() function reserves a resource range(s) from the
database of available resources for a process. Other processes can’t
reserve this resource range until the resource is returned to the system
(usually with the rsrcdbmgr detach() call). The requested resources
are returned in a list of rsrc request structures with the start and
end fields filled in. The number of resources requested is specified in
count.

Reserving the resources doesn’t give you access to them; you still
have to use mmap(), InterruptAttach(), or another means.

�

When you’re finished with the resource, you must return it to the
system. The easiest way to return the resource is to call
rsrcdbmgr detach() with the same start, end, and type (via the flags
field) that were issued for the resource.

rsrc request t structure

The resource requests structure looks like this:

typedef struct rsrc request {
uint64 t length;
uint64 t align;
uint64 t start;
uint64 t end;
uint32 t flags;
uint32 t zero[3]; /* Reserved */

} rsrc request t;

The members include:

length The length of the resource that you want to reserve.
You must set this member.

align The alignment of the resource.

start, end The range of resource that you want to reserve.

flags The type of the resource, as well as flags that affect the
request. You must set this member to be one of the
following resource types (defined in
<sys/rsrcdbmgr.h>):

May 31, 2004 Manifests 2495

rsrcdbmgr attach() 2004, QNX Software Systems Ltd.

� RSRCDBMGR DMA CHANNEL — DMA channel

� RSRCDBMGR IO PORT — I/O port address

� RSRCDBMGR IRQ — Interrupt address

� RSRCDBMGR MEMORY — Memory address

� RSRCDBMGR PCI MEMORY — PCI memory
address

You can OR in the following flags (also defined in
<sys/rsrcdbmgr.h>):

� RSRCDBMGR FLAG ALIGN — the contents of the
align field are valid, and the requested resource
starts with the given alignment.

� RSRCDBMGR FLAG RANGE — the contents of the
start and end fields are valid, and the requested
resource is in the range start to end, inclusive.

� RSRCDBMGR FLAG SHARE — other processes can
have access to an allocated resource.

� RSRCDBMGR FLAG TOPDOWN — start the search
for a free resource block from end. If you also set
RSRCDBMGR FLAG RANGE, this flag makes the
search start from the end of the available range.

Returns:
EOK, or -1 if an error occurred (errno is set).

Errors:
EAGAIN The resource request can’t be filled.

EINVAL Invalid argument.

ENOMEM Insufficient memory to allocate internal data
structures.

2496 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rsrcdbmgr attach()

Examples:
When you start the system, the startup code and special programs that
know how to probe the hardware call rsrcdbmgr create() to register
the hardware in the resource database. The following examples don’t
do this seeding, so they’ll fail with an error code of EINVAL.

�

Example 1

/*
* Request one DMA Channel, with length 1, from the
* entire range of available DMA channel resources.
*/

#include <stdio.h>
#include <sys/rsrcdbmgr.h>
#include <sys/rsrcdbmsg.h>

int main(int argc, char **argv) {
int count;
rsrc request t req;

memset(&req, 0, sizeof(req));
req.length = 1;
req.flags = RSRCDBMGR DMA CHANNEL;
count = 1;

if (rsrcdbmgr attach(&req, count) == -1) {
perror("Problem attaching to resource ");
exit(1);

}

printf("You can use DMA channel 0x%llx \n",
req.start);

...
/* Do something with the acquired resource */
...

/* To return the resource to the database: */
if (rsrcdbmgr detach(&req, count) == -1) {

perror("Problem detaching resource \n");
exit(1);

}

return(0);
}

May 31, 2004 Manifests 2497

rsrcdbmgr attach() 2004, QNX Software Systems Ltd.

Example 2

/*
* Request memory that’s 4-byte aligned
* and has a length of 50.
*/

#include <stdio.h>
#include <sys/rsrcdbmgr.h>
#include <sys/rsrcdbmsg.h>

int main(int argc, char **argv) {
int count;
rsrc request t req;

memset(&req, 0, sizeof(req));
req.align = 4;
req.length = 50;
req.flags = RSRCDBMGR FLAG ALIGN | RSRCDBMGR MEMORY;
count = 1;

if (rsrcdbmgr attach(&req, count) == -1) {
perror("Problem attaching to resource ");
exit(1);

}

printf("You can use memory from 0x%llx 0x%llx inclusive. \n",
req.start, req.end);

...
/* Do something with the acquired resource */
...

/* To return the resource to the database: */
if (rsrcdbmgr detach(&req, count) == -1) {

perror("Problem detaching resource \n");
exit(1);

}

return(0);
}

Example 3

/*
* Request two resources:
* I/O port 0 and an IRQ in the range 10-12
* from the available resources.

2498 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rsrcdbmgr attach()

*/
#include <stdio.h>
#include <sys/rsrcdbmgr.h>
#include <sys/rsrcdbmsg.h>

int main(int argc, char **argv) {
int count;
rsrc request t req[2];

memset(req, 0, 2*sizeof(*req));
req[0].start = 0;
req[0].end = 0;
req[0].length = 1;
req[0].flags = RSRCDBMGR FLAG RANGE | RSRCDBMGR IO PORT;

req[1].start = 10;
req[1].end = 12;
req[1].length = 1;
req[1].flags = RSRCDBMGR FLAG RANGE | RSRCDBMGR IRQ;
count = 2;

if (rsrcdbmgr attach(req, count) == -1) {
perror("Problem attaching to resource ");
exit(1);

}

printf("You can use io-port 0x%llx \n",
req[0].start);

printf("You can use irq 0x%llx \n",
req[1].start);

...
/* Do something with the acquired resource */
...

/* To return the resource to the database: */
if (rsrcdbmgr detach(req, count) == -1) {

perror("Problem detaching resource \n");
exit(1);

}

return(0);
}

May 31, 2004 Manifests 2499

rsrcdbmgr attach() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
rsrcdbmgr create(), rsrcdbmgr detach(), rsrcdbmgr destroy(),
rsrcdbmgr devno attach(), rsrcdbmgr devno detach(),
rsrcdbmgr query()

2500 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rsrcdbmgr create()
Create a system resource

Synopsis:
#include <sys/rsrcdbmgr.h>
#include <sys/rsrcdbmsg.h>

int rsrcdbmgr create(rsrc alloc t *item,
int count);

Arguments:
item An array of rsrc alloc t structures that describe the

resources that you want to create; see below.

count The number of entries in the array.

Library:
libc

Description:
The rsrcdbmgr create() function creates one or more system
resources. If the function completes successfully, count resources are
returned in item.

rsrc alloc t structure

The structure of a basic resource request looks like this:

typedef struct rsrc alloc {
uint64 t start; /* Start of resource range */
uint64 t end; /* End of resource range */
uint32 t flags; /* Resource type | Resource flags */

} rsrc alloc t;

The members include:

start, end The resource range.

May 31, 2004 Manifests 2501

rsrcdbmgr create() 2004, QNX Software Systems Ltd.

flags The type of the resource, as well as flags that affect the
request. You must set this member to be one of the
following resource types (defined in
<sys/rsrcdbmgr.h>):

� RSRCDBMGR DMA CHANNEL — DMA channel

� RSRCDBMGR IO PORT — I/O port address

� RSRCDBMGR IRQ or RSRCMGR IRQ — interrupt
address

� RSRCDBMGR MEMORY — Memory address

� RSRCDBMGR PCI MEMORY — PCI memory
address

You can OR in the following flag (also defined in
<sys/rsrcdbmgr.h>):

� RSRCDBMGR FLAG RSVP — create and reserve a
resource with a higher priority than other resources.
The resource is given out only when there are no
other valid ranges available.

You must set all the members.

Returns:
EOK, or -1 if an error occurred (errno is set).

Errors:
EAGAIN The resource request can’t be created.

EINVAL Invalid argument.

ENOMEM Insufficient memory to allocate internal data
structures.

2502 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rsrcdbmgr create()

Examples:
/*
* Create two resources:
* 0-4K memory allocation and 5 DMA channels.
*/

#include <stdio.h>
#include <sys/rsrcdbmgr.h>
#include <sys/rsrcdbmsg.h>

int main(int argc, char **argv) {
rsrc alloc t alloc[2];

memset(alloc, 0, 2* sizeof(*alloc));
alloc[0].start = 0;
alloc[0].end = 4*1024;
alloc[0].flags = RSRCDBMGR MEMORY;

alloc[1].start = 1;
alloc[1].end = 5;
alloc[1].flags = RSRCDBMGR DMA CHANNEL;

/* Allocate resources to the system. */
if (rsrcdbmgr create(alloc, 2) == -1) {

perror("Problem creating resources \n");
exit(1);

}

...
/* Do something with the created resource */
...

/* Remove the allocated resources. */
rsrcdbmgr destroy (alloc, 2);

return(0);
}

Classification:
QNX Neutrino

Safety

Cancellation point Yes

continued. . .

May 31, 2004 Manifests 2503

rsrcdbmgr create() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
rsrcdbmgr attach(), rsrcdbmgr destroy()

2504 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rsrcdbmgr destroy()
Destroy a system resource

Synopsis:
#include <sys/rsrcdbmgr.h>
#include <sys/rsrcdbmsg.h>

int rsrcdbmgr destroy(rsrc alloc t *item,
int count);

Arguments:
item An array of rsrc alloc t structures that describe the

resources that you want to destroy. For more information
about this structure, see the documentation for
rsrcdbmgr create().

count The number of entries in the array.

Library:
libc

Description:
The rsrcdbmgr destroy() function removes count system resources
that are defined in the array item.

Returns:
EOK Success.

-1 An error occurred; errno is set.

Errors:
EINVAL Invalid argument, or the resource is in use.

ENOMEM Insufficient memory to allocate internal data structures.

May 31, 2004 Manifests 2505

rsrcdbmgr destroy() 2004, QNX Software Systems Ltd.

Examples:
See the example in rsrcdbmgr create().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
rsrcdbmgr attach(), rsrcdbmgr create(), rsrcdbmgr detach()

2506 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rsrcdbmgr detach()
Return a system resource to the resource database

Synopsis:
#include <sys/rsrcdbmgr.h>
#include <sys/rsrcdbmsg.h>

int rsrcdbmgr detach(rsrc request t *list,
int count);

Arguments:
list An array of rsrc request t structures that describe the

resources that you want to return. For information about
this structure, see the documentation for
rsrcdbmgr attach().

count The number of entries in the array.

Library:
libc

Description:
The rsrcdbmgr detach() function returns count resources in list to the
database of available system resources. You must return the resource
with the same start, end, and flags (type) that were issued for the
resource when it was allocated with rsrcdbmgr attach().

Returns:
EOK Success.

-1 An error occurred; errno is set.

Errors:
EINVAL Invalid argument, or the resource is in use by a process,

isn’t found in the database, or can’t be returned to the
system.

ENOMEM Insufficient memory to allocate internal data structures.

May 31, 2004 Manifests 2507

rsrcdbmgr detach() 2004, QNX Software Systems Ltd.

Examples:
See the examples in rsrcdbmgr attach().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
rsrcdbmgr attach(), rsrcdbmgr destroy()

2508 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rsrcdbmgr devno attach()
Get major and minor device numbers

Synopsis:
#include <sys/rsrcdbmgr.h>
#include <sys/rsrcdbmsg.h>

dev t rsrcdbmgr devno attach(const char * name,
int minor request,
int flags);

Arguments:
name The name of the class of devices that you want to

get the major number for. This string can be
anything, but the following class names are defined
in <sys/ftype.h>:

Constant Value Class

MAJOR PATHMGR "pathmgr" Used only
by the path
manager

MAJOR DEV "dev" Devices in
/dev with
only one
instance
(e.g.
/dev/tty)

MAJOR BLK PREFIX "blk-" All block
devices
(e.g.
/dev/hd[0-9]*
would be
"blk-hd")

continued. . .

May 31, 2004 Manifests 2509

rsrcdbmgr devno attach() 2004, QNX Software Systems Ltd.

Constant Value Class

MAJOR CHAR PREFIX "char-" All
character
devices
(e.g.
/dev/ser[0-9]*
would be
"char-ser")

MAJOR FSYS "fsys" All
filesystems

minor request The minor device number that you want to reserve,
or -1 to let the system assign the next available
minor number.

flags Presently, there are no flags; pass zero for this
argument.

Library:
libc

Description:
The function rsrcdbmgr devno attach() reserves a device number that
consists of:

� a major number that corresponds to the given device class. If there
isn’t already a major number associated with the class, a new
major number is assigned to it.

� a minor number that’s based on minor request. If minor request is
-1, the function returns the first free minor number in the specified
class.

There’s a maximum of 64 major numbers (0 through 63) on the
system, and a maximum of 1024 minor numbers (0 through 1023) per
major number.

2510 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rsrcdbmgr devno attach()

Major and minor numbers are used only by resource managers and
are exposed through the rdev member of the iofunc attr t

structure , and correspondingly the st rdev member of the stat
structure. They aren’t required for proper operation; on simple
devices, an entry will be simulated for you.

Returns:
A dev t object that contains the major and minor numbers, or -1 if
an error occurs (errno is set).

You can extract the major and minor number values from the dev t

object by using the major() and minor() macros defined in
<sys/types.h>. For more information, see the documentation for
stat().

Errors:
EINVAL Invalid argument.

Examples:
#include <sys/rsrcdbmgr.h>
#include <sys/rsrcdbmsg.h>

char *dev name;
int myminor request, flags=0;
dev t major minor;

major minor = rsrcdbmgr devno attach
(dev name, myminor request, flags);

...

rsrcdbmgr devno detach(major minor, flags);

Classification:
QNX Neutrino

May 31, 2004 Manifests 2511

rsrcdbmgr devno attach() 2004, QNX Software Systems Ltd.

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
iofunc attr t, rsrcdbmgr attach(), rsrcdbmgr devno detach(),
stat()

2512 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rsrcdbmgr devno detach()
Detach a major and minor number

Synopsis:
#include <sys/rsrcdbmgr.h>
#include <sys/rsrcdbmsg.h>

int rsrcdbmgr devno detach(dev t devno,
int flags);

Arguments:
devno A dev t object that was returned by

rsrcdbmgr devno attach().

flags Presently, there are no flags; pass zero for this argument.

Library:
libc

Description:
The function rsrcdbmgr devno detach() detaches device number that
was attached with rsrcdbmgr devno attach().

Returns:
EOK Success.

-1 An error occurred.

Examples:
#include <sys/rsrcdbmgr.h>
#include <sys/rsrcdbmsg.h>

dev t dev num;
int flags=0;

...

rsrcdbmgr devno detach(dev num, flags);

May 31, 2004 Manifests 2513

rsrcdbmgr devno detach() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
rsrcdbmgr attach(), rsrcdbmgr devno attach()

2514 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rsrcdbmgr query()
Query the resource database

Synopsis:
#include <sys/rsrcdbmgr.h>
#include <sys/rsrcdbmsg.h>

int rsrcdbmgr query(rsrc alloc t *list,
int listcnt,
int start,
uint32 t type);

Arguments:
item NULL, or an array of rsrc alloc t structures that the

function can fill with information about the resources that
it finds. For more information about this structure, see the
documentation for rsrcdbmgr create().

listcnt The number of entries in the array.

start The index that you want to start searching at.

type The type of resource that you want to query; one of the
following (defined in <sys/rsrcdbmgr.h>):

� RSRCDBMGR DMA CHANNEL — DMA channel

� RSRCDBMGR IO PORT — I/O port address

� RSRCDBMGR IRQ or RSRCMGR IRQ — interrupt
address

� RSRCDBMGR MEMORY — Memory address

� RSRCDBMGR PCI MEMORY — PCI memory address

Library:
libc

May 31, 2004 Manifests 2515

rsrcdbmgr query() 2004, QNX Software Systems Ltd.

Description:
The rsrcdbmgr query() function queries the database for listcnt count
of type resources in use, beginning at the index start. If you make the
query with a non-NULL list, then the function stores a maximum of
found listcnt resources in the array.

Returns:
If list is NULL or listcnt is 0, then the function returns the number of
resources of type in the database.

If list is non-NULL, then the function returns the number of type
resources available in the system.

If an error occurs, the function returns -1 and sets errno.

Errors:
EINVAL Invalid argument

ENOMEM Insufficient memory to allocate internal data structures.

Examples:
List all of the memory resource blocks available in the system:

rsrc alloc t list[20];
int size, count = 0, start = 0;

while (1) {
count = rsrcdbmgr query(&list, 20, start, RSRCDBMGR MEMORY);
if (count == -1)
break;

size = min(count-start, 20); /* In case more than 20 blocks
were returned. */

printf("Retrieved %d of a possible %d resource blocks", \
size, count);

for (count=0; count<size; count++) {
printf("RSRC[%d] Start %d End %d \n", \

start+count, list[count].start, list[count].end);
}
start += size; /* Loop again, in case there are more than

2516 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. rsrcdbmgr query()

20 blocks. */
}

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
rsrcdbmgr attach()

May 31, 2004 Manifests 2517

ruserok() 2004, QNX Software Systems Ltd.

Check the identity of a remote host

Synopsis:
#include <unistd.h>

int ruserok(char * rhost,
int superuser,
char * ruser,
char * luser);

Arguments:
rhost The name of the remote host, as returned by

gethostbyaddr().

superuser Nonzero if the local user is the superuser, zero
otherwise.

ruser The name of the remote user.

luser The name of the local user.

Library:
libsocket

Description:
The ruserok() routine checks the identity of a remote host. It’s used
by servers to authenticate clients requesting service with rcmd().

The rcmd(), rresvport(), and ruserok() functions are used by the rshd
server (see the Utilities Reference), among others.

The ruserok() function takes a remote host’s name (as returned by the
gethostbyaddr() routine), two user names, and a flag indicating
whether the local user’s name is that of the superuser. Then, if the
user is not the superuser, it checks the file /etc/hosts.equiv
(described in the Utilities Reference).

If that lookup isn’t done, or is unsuccessful, the .rhosts file in the
local user’s home directory is checked to see if the request for service

2518 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ruserok()

is allowed. If this file is owned by anyone other than the user or the
superuser, or if it’s writable by anyone other than the owner, the check
automatically fails.

If the local domain obtained from gethostname() is the same as the
remote domain, only the machine name need be specified.

Returns:
0 The machine name is listed in the hosts.equiv file, or the

host and remote username were found in the .rhosts file.

-1 An error occurred (errno is set).

Errors:
The error code EAGAIN is overloaded to mean “All network ports in
use.”

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
gethostbyaddr(), gethostname(), rcmd(), rresvport()

/etc/hosts.equiv, rshd in the Utilities Reference

May 31, 2004 Manifests 2519

sbrk() 2004, QNX Software Systems Ltd.

Set the allocation break value

Synopsis:
#include <unistd.h>

void* sbrk(int increment);

Arguments:
increment The amount by which to increase the current break

value. This increment may be positive or negative.

Library:
libc

Description:
The break value is the address of the first byte of unallocated memory.
When a program starts execution, the break value is placed following
the code and constant data for the program. As memory is allocated,
this pointer advances when there is no free block large enough to
satisfy an allocation request. The sbrk() function sets a new break
value for the program by adding the value of increment to the current
break value.

The variable amblksiz (defined in <stdlib.h>) contains the default
increment. This value may be changed by a program at any time.

Returns:
A pointer to the start of the new block of memory for success, or -1 if
an error occurs (errno is set).

Errors:
EAGAIN The total amount of system memory available for

allocation to this process is temporarily insufficient.
This may occur although the space requested is less
than the maximum data segment size.

2520 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sbrk()

ENOMEM The requested change allocated more space than
allowed, is impossible since there’s insufficient swap
space available, or it caused a memory allocation
conflict.

Examples:
#include <stdio.h>
#include <stdlib.h>

#define alloc(x, y) y = sbrk(x);

int main(void)
{

void* brk;

brk = sbrk(0x3100);
printf("New break value after sbrk(0x3100) \t%p\n",

brk);

brk = sbrk(0x0200);
printf("New break value after sbrk(0x0200) \t%p\n",

brk);

return EXIT SUCCESS;
}

Classification:
Legacy Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 2521

sbrk() 2004, QNX Software Systems Ltd.

See also:
amblksiz, btext, edata, end, etext, brk(), calloc(), errno, free(),

malloc(), realloc()

2522 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. scalb(), scalbf()
Load the exponent of a radix-independent floating point number

Synopsis:
#include <math.h>

double scalb(double x,
double n);

float scalbf(float x,
float n);

Arguments:
x The floating point number that you want to multiply by the

exponent.

n The exponent to apply to the radix of the machine’s
floating-point arithmetic.

Library:
libm

Description:

We recommend that you use scalbn() since it computes by exponent
manipulation rather than mock multiplications or additions.

�

These functions compute x � rn, where r is the radix of the machine’s
floating point arithmetic and n is a finite number. When r is 2, scalb()
is equivalent to ldexp().

Returns:
x � rn

May 31, 2004 Manifests 2523

scalb(), scalbf() 2004, QNX Software Systems Ltd.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <errno.h>
#include <inttypes.h>
#include <math.h>
#include <fpstatus.h>

int main(int argc, char** argv)
{

double a, b, c, d;

a = 10;
b = 2;
c = scalb(a, b);
d = sqrt(c/a);
printf("Radix of machines fp arithmetic is %f \n", d);
printf("So %f = %f * (%f ˆ %f) \n", c, a, d, b);

return(0);
}

produces the output:

Radix of machines fp arithmetic is 2.000000
So 40.000000 = 10.000000 * (2.000000 ˆ 2.000000)

Classification:
scalb() is standard Unix; scalbf() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

continued. . .

2524 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. scalb(), scalbf()

Safety

Signal handler No

Thread Yes

See also:
ldexp(), scalbn()

May 31, 2004 Manifests 2525

scalbn(), scalbnf() 2004, QNX Software Systems Ltd.

Load the exponent of a radix-independent floating point number

Synopsis:
#include <math.h>

double scalbn (double x,
int n);

float scalbnf (float x,
int n);

Arguments:
x The floating point number that you want to multiply by the

exponent.

n The exponent to apply to the radix of the machine’s
floating-point arithmetic.

Library:
libm

Description:
The scalbn() and scalbnf() functions compute x � rn, where r is the
radix of the machine’s floating point arithmetic.

Returns:
x � rn

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

2526 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. scalbn(), scalbnf()

Examples:
#include <stdio.h>
#include <errno.h>
#include <inttypes.h>
#include <math.h>
#include <fpstatus.h>

int main(int argc, char** argv)
{

double a, b, c, d;

a = 10;
b = 2;
c = scalbn(a, b);
d = sqrt(c/a);
printf("Radix of machines fp arithmetic is %f \n", d);
printf("So %f = %f * (%f ˆ %f) \n", c, a, d, b);

return(0);
}

produces the output:

Radix of machines fp arithmetic is 2.000000
So 40.000000 = 10.000000 * (2.000000 ˆ 2.000000)

Classification:
scalbn() is standard Unix; scalbnf() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 2527

scalbn(), scalbnf() 2004, QNX Software Systems Ltd.

See also:
scalb()

2528 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. scalloc()
Allocate space for an array

Synopsis:
#include <malloc.h>

void* scalloc(size t size);

Arguments:
size The number of bytes to allocate.

Library:
libc

Description:
The scalloc() functions allocate space for an array of length size
bytes. Each element is initialized to 0.

You must use sfree() to deallocate the memory allocated by
scalloc().

Returns:
A pointer to the start of the allocated memory, or NULL if there’s
insufficient memory available or if the size is zero.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 2529

scalloc() 2004, QNX Software Systems Ltd.

See also:
calloc(), free(), realloc(), sfree(), smalloc(), srealloc()

2530 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. scandir()
Scan a directory

Synopsis:
#include <sys/types.h>
#include <sys/dir.h>

int scandir(char * dirname,
struct direct * (* namelist[]),
int (*select)(struct dirent *),
int (*compar)(const void *,const void *));

Arguments:
dirname The name of the directory that you want to scan.

namelist A pointer to a location where scandir() can store a
pointer to the array of directory entries that it builds.

select A pointer to a user-supplied subroutine that scandir()
calls to select which entries to included in the array. The
select routine is passed a pointer to a directory entry and
should return a nonzero value if the directory entry is to
be included in the array.

If select is NULL, all the directory entries are included.

compar A pointer to a user-supplied subroutine that’s passed to
qsort() to sort the completed array. If this pointer is
NULL, the array isn’t sorted.

You can use alphasort() as the compar parameter to sort
the array alphabetically.

Library:
libc

Description:
The scandir() function reads the directory dirname and builds an array
of pointers to directory entries, using malloc() to allocate the space.

May 31, 2004 Manifests 2531

scandir() 2004, QNX Software Systems Ltd.

The scandir() function returns the number of entries in the array, and
stores a pointer to the array in the location referenced by namelist.

You can deallocate the memory allocated for the array by calling
free(). Free each pointer in the array, and then free the array itself.

Returns:
The number of entries in the array, or -1 if the directory can’t be
opened for reading, or malloc() can’t allocate enough memory to hold
all the data structures.

Classification:
Legacy Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
alphasort(), closedir(), free(), malloc(), opendir(), qsort(), readdir(),
rewinddir(), seekdir(), telldir()

2532 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. scanf()
Scan formatted input from stdin

Synopsis:
#include <stdio.h>

int scanf(const char* format,
...);

Arguments:
format A string that controls the format of the input, as described

below. The formatting string determines what additional
arguments you need to provide.

Library:
libc

Description:
The scanf() function scans input from stdin under control of the
format argument, assigning values to the remaining arguments.

Format control string

The format control string consists of zero or more format directives
that specify what you consider to be acceptable input data.
Subsequent arguments are pointers to various types of objects that the
function assigns values to as it processes the format string.

A format directive can be a sequence of one or more whitespace
characters or:

multibyte characters

Any character in the format string, other than a whitespace
character or the percent character (%), that isn’t part of a
conversion specifier.

conversion specifiers

A sequence of characters in the format string that begins with a
percent character (%) and is followed by:

May 31, 2004 Manifests 2533

scanf() 2004, QNX Software Systems Ltd.

� an optional assignment suppression indicator: the asterisk
character (*)

� an optional decimal integer that specifies the maximum field
width to be scanned for the conversion

� an optional type length specification; one of h, L, or l

� a character that specifies the type of conversion to be
performed; one of the characters: c, d, e, f, g, i, n, o, p, s,
u, X, x, [

As each format directive in the format string is processed, the
directive may successfully complete, fail because of a lack of input
data, or fail because of a matching error as defined by the directive.

If end-of-file is encountered on the input data before any characters
that match the current directive have been processed (other than
leading whitespace, where permitted), the directive fails for lack of
data.

If end-of-file occurs after a matching character has been processed,
the directive is completed (unless a matching error occurs), and the
function returns without processing the next directive.

If a directive fails because of an input character mismatch, the
character is left unread in the input stream.

Trailing whitespace characters, including newline characters, aren’t
read unless matched by a directive. When a format directive fails, or
the end of the format string is encountered, the scanning is completed,
and the function returns.

When one or more whitespace characters (space, horizontal tab \t,
vertical tab \v, form feed \f, carriage return \r, newline or linefeed
\n) occur in the format string, input data up to the first
non-whitespace character is read, or until no more data remains. If no
whitespace characters are found in the input data, the scanning is
complete, and the function returns.

An ordinary character in the format string is expected to match the
same character in the input stream.

2534 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. scanf()

Conversion specifiers

A conversion specifier in the format string is processed as follows:

� For conversion types other than [, c and n, leading whitespace
characters are skipped.

� For conversion types other than n, all input characters, up to any
specified maximum field length, that can be matched by the
conversion type are read and converted to the appropriate type of
value; the character immediately following the last character to be
matched is left unread; if no characters are matched, the format
directive fails.

� Unless you specify the assignment suppression indicator (*), the
result of the conversion is assigned to the object pointed to by the
next unused argument (if assignment suppression was specified, no
argument is skipped); the arguments must correspond in number,
type and order to the conversion specifiers in the format string.

Type length specifiers

A type length specifier affects the conversion as follows:

� hh causes a d, i, o, u, x, X or n format conversion to assign the
converted value to an object of type signed char or unsigned
char.

� h causes a d, i, o, u, x, X or n (integer) format conversion to
assign the converted value to an object of type short or
unsigned short.

� j causes a d, i, o, u, x, X or n conversion to assign the converted
value to an object of type intmax t or uintmax t.

� l (“el”) causes a d, i, o, u, x, X or n (integer) conversion to assign
the converted value to an object of type long or unsigned long.

� l (“el”) causes an a, A, e, E, f, F, g or G conversion to assign the
converted value to an object of type double.

May 31, 2004 Manifests 2535

scanf() 2004, QNX Software Systems Ltd.

� l (“el”) causes a c, s or [conversion to assign the converted value
to an object of type wchar t.

� ll (double “el”) causes a d, i, o, u, x, X or n format conversion to
assign the converted value to an object of type long long or
unsigned long long.

� L causes an a, A, e, E, f, F, g or G conversion to assign the
converted value to an object of type long double.

� t causes a d, i, o, u, x, X or n conversion to assign the converted
value to an object of type ptrdiff t or to the corresponding
unsigned type.

� z causes a d, i, o, u, x, X or n conversion to assign the converted
value to an object of type size t or to the corresponding signed
integer type.

Conversion type specifiers

The valid conversion type specifiers are:

a, A, e, E, f, F, g or G

A floating-point number, infinity, or NaN, all of which have
a format as expected by strtod(). The argument is assumed
to point to an object of type float.

c Any sequence of characters in the input stream of the length
specified by the field width, or a single character if you don’t
specify a field width. The argument is assumed to point to
the first element of a character array of sufficient size to
contain the sequence, without a terminating NUL character
(’\0’). For a single character assignment, a pointer to a
single object of type char is sufficient.

When an l (“el”) qualifier is present, a sequence of
characters are converted from the initial shift state to
wchar t wide characters as if by a call to mbrtowc(). The
conversion state is described by a mbstate t object.

2536 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. scanf()

d A decimal integer with a format as expected by strtol() and a
base of 10. The argument is assumed to point to an object of
type int.

i An optionally signed integer with a format as expected by
strtol() and a base of 0. The argument is assumed to point to
an object of type int.

n No input data is processed. Instead, the number of characters
that have already been read is assigned to the object of type
int that’s pointed to by the argument. The number of items
that have been scanned and assigned (the return value) isn’t
affected by the n conversion type specifier.

o An optionally signed octal integer with a format as expected
by strtoul() and a base of 8.The argument is assumed to
point to an object of type int.

p A hexadecimal integer, as described for x conversions
below. The converted value is taken as a void * and then
assigned to the object pointed to by the argument.

s A sequence of non-whitespace characters. The argument is
assumed to point to the first element of a character array of
sufficient size to contain the sequence of char, signed
char or unsigned char and a terminating NUL character,
which by the conversion operation adds.

When an l (“el”) qualifier is present, a sequence of
characters are converted from the initial shift state to
wchar t wide characters as if by a call to mbrtowc(). The
conversion state is described by a mbstate t object.

u An unsigned decimal integer, consisting of one or more
decimal digits. The argument is assumed to point to an
object of type unsigned int.

x, X A hexadecimal integer, with a format as expected by
strtoul() when base is 16. The argument is assumed to point
to an object of type unsigned.

May 31, 2004 Manifests 2537

scanf() 2004, QNX Software Systems Ltd.

[Matches the scanset, a nonempty sequence of characters.
The argument is assumed to point to the first element of a
character array of sufficient size to contain the sequence and
a terminating NUL character, which by the conversion
operation adds.

When an l (“el”) qualifier is present, a sequence of
characters are converted from the initial shift state to
wchar t wide characters as if by a call to mbrtowc() with
mbstate set to 0. The argument is assumed to point to the
first element of a wchar t array of sufficient size to contain
the sequence and a terminating NUL character, which the
conversion operation adds.

The conversion specification includes all characters in the
scanlist between the beginning [and the terminating]. If
the conversion specification starts with [ˆ, the scanlist
matches all the characters that aren’t in the scanlist. If the
conversion specification starts with [] or [ˆ], the] is
included in the scanlist. (To scan for] only, specify %[]].)

% A % character (The entire specification is %%).

A conversion type specifier of % is treated as a single ordinary
character that matches a single % character in the input data. A
conversion type specifier other than those listed above causes
scanning to terminate, and the function to returns with an error.

Returns:
The number of input arguments for which values were successfully
scanned and stored, or EOF if the scanning stopped by reaching the
end of the input stream before storing any values.

Examples:
The line:

scanf("%s%*f%3hx%d", name, &hexnum, &decnum)

2538 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. scanf()

with input:

some string 34.555e-3 abc1234

copies "some string" into the array name, skips 34.555e-3,
assigns 0xabc to hexnum and 1234 to decnum. The return value is 3.

The program:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{

char string1[80], string2[80];

memset(string1, 0, 80);
memset(string2, 0, 80);

scanf("%[abcdefghijklmnopqrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWZ]%*2s%[ˆ\n]",
string1, string2);

printf("%s\n", string1);
printf("%s\n", string2);

return EXIT SUCCESS;
}

with input:

They may look alike, but they don’t perform alike.

assigns "They may look alike" to string1, skips the comma (the
"%*2s" matches only the comma; the following blank terminates that
field), and assigns " but they don’t perform alike." to
string2.

To scan a date in the form “Friday March 26 1999”:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

May 31, 2004 Manifests 2539

scanf() 2004, QNX Software Systems Ltd.

int main(void)
{

int day, year;
char weekday[10], month[12];
int retval;

memset(weekday, 0, 10);
memset(month, 0, 12);

retval = scanf("%s %s %d %d",
weekday, month, &day, &year);

if(retval != 4) {
printf("Error reading date.\n");
printf("Format is: Friday March 26 1999\n");

return EXIT FAILURE;
}

printf("weekday: %s\n", weekday);
printf("month: %s\n", month);
printf("day: %d\n", day);
printf("year: %d\n", year);

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

2540 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. scanf()

See also:
fscanf(), fwscanf() sscanf(), swscanf(), vfscanf(), vfwscanf(), vscanf(),
vsscanf(), vswscanf(), vwscanf(), wscanf()

May 31, 2004 Manifests 2541

sched getparam() 2004, QNX Software Systems Ltd.

Get the current priority of a process

Synopsis:
#include <sched.h>

int sched getparam(pid t pid,
struct sched param *param);

Arguments:
pid The ID of the process whose priority you want to get, or 0

to get it for the current process.

param A pointer to a sched param that the function fills with
the scheduling parameters.

Library:
libc

Description:
The sched getparam() function gets the current priority of the process
specified by pid, and puts it in the sched priority member of the
sched param structure pointed to by param.

If pid is zero, the priority of the calling process is returned.

Returns:
0 Success

-1 An error occurred (errno is set).

Errors:
EPERM The calling process doesn’t have sufficient privilege to

get the priority.

ESRCH The process pid doesn’t exist.

2542 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sched getparam()

Examples:
#include <sched.h>
#include <stdio.h>

#define PRIORITY ADJUSTMENT 5

int main (void)
{

int max priority;
struct sched param param;

/* Find out the MAX priority for the FIFO Schedular */
max priority = sched get priority max(SCHED FIFO);

/* Find out what the current priority is. */
sched getparam(0, ¶m);

printf("The assigned priority is %d.\n", param.sched priority);
printf("The current priority is %d.\n", param.sched curpriority);

param.sched priority = ((param.sched curpriority +
PRIORITY ADJUSTMENT) <= max priority) ?

(param.sched curpriority + PRIORITY ADJUSTMENT) : -1;

if (param.sched priority == -1)
{

printf("Cannot increase the priority by %d. Try a lesser value\n",
PRIORITY ADJUSTMENT);
return(0);

}

sched setscheduler (0, SCHED FIFO, ¶m);

sched getparam(0, &qparam);
printf("The newly assigned priority is %d.\n", param.sched priority);
printf("The current priority is %d.\n", param.sched curpriority);

return(0);
}

Classification:
POSIX 1003.1 (Realtime Extensions)

May 31, 2004 Manifests 2543

sched getparam() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
Currently, the implementation of sched getparam() isn’t 100%
POSIX 1003.1-1996. The sched getparam() function returns the
scheduling parameters for thread 1 in the process pid, or for the
calling thread if pid is 0.

If you depend on this in new code, it will not be portable. POSIX
1003.1 says sched getparam() should return -1 and set errno to
EPERM in a multithreaded application.

See also:
errno, getprio(), sched get priority max(), sched get priority min(),
sched getscheduler(), sched param, sched setparam(),
sched setscheduler(), sched yield(), setprio()

2544 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sched get priority adjust()
Calculate the allowable priority for the scheduling policy

Synopsis:
#include <sched.h>

int sched get priority adjust(int prio,
int policy,
int adjust);

Arguments:
prio The original priority value. If negative, the priority of the

calling thread is used.

policy The scheduling algorithm being used. The valid arguments
are listed in sched get priority max(). If policy is
SCHED NOCHANGE, the function uses the algorithm of
the calling thread.

adjust The priority change, relative to prio. A value of +10 results
in a final priority of prio+10, provided that this amount of
adjustment is allowed.

Library:
libc

Description:
The sched get priority adjust() function calculates the requested
priority change relative to another thread and returns the allowable
value.

This function makes it easier for you to set relative priorities in order
to ensure proper precedence.

Returns:
>0 The allowed priority value. The value will never exceed the

range of values allowed by sched get priority min() and
sched get priority max().

May 31, 2004 Manifests 2545

sched get priority adjust() 2004, QNX Software Systems Ltd.

<0 Failure; the negative of the errno value.

Errors:
EINVAL The value of the policy parameter doesn’t represent a

defined scheduling policy.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, sched getparam(), sched get priority max(),
sched get priority min(), sched setparam(), sched getscheduler(),
sched setscheduler()

2546 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sched get priority max()
Get the maximum priority for the scheduling policy

Synopsis:
#include <sched.h>

int sched get priority max(int policy);

Arguments:
policy The scheduling policy, which must be one of:

� SCHED FIFO — a fixed-priority scheduler in which the
highest priority ready thread runs until it blocks or is
preempted by a higher priority thread.

� SCHED RR — similar to SCHED FIFO, except that
threads at the same priority level timeslice (round robin)
every 50 msec.

� SCHED OTHER — currently the same as SCHED RR.

� SCHED SPORADIC — sporadic scheduling. For more
information, see pthread attr setschedpolicy(), and
“Scheduling algorithms” in the chapter on the Neutrino
microkernel in the System Architecture guide.

Library:
libc

Description:
The sched get priority max() function returns the maximum value for
the scheduling policy specified by policy.

Returns:
The appropriate minimum for success, or -1 (errno is set).

May 31, 2004 Manifests 2547

sched get priority max() 2004, QNX Software Systems Ltd.

Errors:
EINVAL The value of the policy parameter doesn’t represent a

defined scheduling policy.

ENOSYS The sched get priority max() function isn’t currently
supported.

Examples:
See sched getparam().

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
sched getparam(), sched get priority min(), sched setparam(),
sched getscheduler(), sched setscheduler()

2548 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sched get priority min()
Get the minimum priority for the scheduling policy

Synopsis:
#include <sched.h>

int sched get priority min(int policy);

Arguments:
policy The scheduling policy, which must be one of:

� SCHED FIFO — a fixed-priority scheduler in which the
highest priority ready thread runs until it blocks or is
preempted by a higher priority thread.

� SCHED RR — similar to SCHED FIFO, except that
threads at the same priority level timeslice (round robin)
every 50 msec.

� SCHED OTHER — currently the same as SCHED RR.

� SCHED SPORADIC — sporadic scheduling. For more
information, see pthread attr setschedpolicy(), and
“Scheduling algorithms” in the chapter on the Neutrino
microkernel in the System Architecture guide.

Library:
libc

Description:
The sched get priority min() function returns the minimum value for
the scheduling policy specified by policy.

Returns:
The appropriate minimum for success, or -1 (errno is set).

May 31, 2004 Manifests 2549

sched get priority min() 2004, QNX Software Systems Ltd.

Errors:
EINVAL The value of the policy parameter doesn’t represent a

defined scheduling policy.

ENOSYS The sched get priority min() function isn’t currently
supported.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
sched getparam(), sched get priority max(), sched setparam(),
sched getscheduler(), sched setscheduler()

2550 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sched getscheduler()
Get the current scheduling policy for a process

Synopsis:
#include <sched.h>

int sched getscheduler(pid t pid);

Arguments:
pid The ID of the process whose scheduling policy you want to

find, or zero if you want to get the policy for the current
process.

Library:
libc

Description:
The sched getscheduler() function gets the current scheduling policy
of process pid. If pid is zero, the scheduling policy of the calling
process is returned.

Returns:
The scheduling policy, or -1 if an error occurred (errno is set).

Errors:
ESRCH The process pid doesn’t exist.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

continued. . .

May 31, 2004 Manifests 2551

sched getscheduler() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

Caveats:
Currently, the implementation of sched getscheduler() isn’t 100%
POSIX 1003.1-1996. The sched getscheduler() function returns the
scheduling policy for thread 1 in the process pid, or for the calling
thread if pid is 0.

If you depend on this in new code, it will not be portable. POSIX
1003.1 says sched getscheduler() should return -1 and set errno to
EPERM in a multithreaded application.

See also:
errno, getprio(), sched getparam(), sched get priority max(),
sched get priority min(), sched setparam(), sched setscheduler(),
sched yield(), setprio()

2552 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sched param
Structure that describes scheduling parameters

Synopsis:
#include <sched.h>

struct sched param {
int32 t sched priority;
int32 t sched curpriority;
union {

int32 t reserved[8];
struct {

int32 t ss low priority;
int32 t ss max repl;
struct timespec ss repl period;
struct timespec ss init budget;

} ss;
} ss un;

}

#define sched ss low priority ss un. ss. ss low priority
#define sched ss max repl ss un. ss. ss max repl
#define sched ss repl period ss un. ss. ss repl period
#define sched ss init budget ss un. ss. ss init budget

Description:
You’ll use the sched param structure when you get or set the
scheduling parameters for a thread or process.

You can use these functions to get the scheduling parameters:

� pthread attr getschedparam()

� pthread getschedparam()

� sched getparam()

� SchedGet()

You can use these functions to set the scheduling parameters:

� pthread attr setschedparam()

� pthread setschedparam()

May 31, 2004 Manifests 2553

sched param 2004, QNX Software Systems Ltd.

� sched setparam()

� sched setscheduler()

� SchedSet()

� ThreadCreate()

The members of sched param include:

sched priority When you get the scheduling parameters, this
member reflects the priority that was assigned to
the thread or process. It doesn’t reflect any
temporary adjustments due to priority inheritance.

When you set the scheduling parameters, set this
member to the priority that you want to use. The
priority must be between the minimum and
maximum values returned by
sched get priority min() and
sched get priority max() for the scheduling policy.

sched curpriority

When you get the scheduling parameters, this
member is set to the priority that the thread or
process is currently running at. This is the value
that the kernel uses when making scheduling
decisions.

When you set the scheduling parameters, this
member is ignored.

The other members are used with sporadic scheduling. The following
#define directives create the POSIX names that correspond to those
members and should be used instead of accessing members directly.

sched ss low priority

The background or low priority for the thread that’s executing.

2554 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sched param

sched ss max repl

The maximum number of times a replenishment will be
scheduled, typically because of a blocking operation. After a
thread has blocked this many times, it automatically drops to
the low-priority level for the remainder of its execution until its
execution budget is replenished.

sched ss repl period

The time that should be used for scheduling the replenishment
of an execution budget after being blocked or having overrun
the maximum number of replenishments. This time is used as
an offset against the time that a thread is made READY.

sched ss init budget

The time that should be used for the thread’s execution budget.
As the thread runs at its high-priority level, its execution time is
carved out of this budget. Once the budget is entirely depleted,
the thread drops to its low-priority level, where, if possible
because of priority arrangements, it can continue to run until the
execution budget is replenished.

� The sched priority must always be higher than
sched ss low priority.

� The sched ss max repl must be smaller than SS REPL MAX.

� The sched ss init budget must be larger than sched ss repl period.

�

For more information, see “Scheduling algorithms” in the Neutrino
Microkernel chapter of the System Architecture guide.

Examples:
This code shows a duty-cycle usage of the sporadic server thread:

#include <stdio.h>
#include <errno.h>
#include <sched.h>

May 31, 2004 Manifests 2555

sched param 2004, QNX Software Systems Ltd.

#include <pthread.h>
#include <inttypes.h>
#include <sys/syspage.h>
#include <sys/neutrino.h>

/* 50 % duty cycle of 5 secs on 5 secs off */
struct timespec g init budget = { 5, 0 };
struct timespec g repl period = { 10, 0 };

#define MY HIGH PRIORITY 5
#define MY LOW PRIORITY 4
#define MY REPL PERIOD g repl period
#define MY INIT BUDGET g init budget
#define MY MAX REPL 10

#define DUTY CYCLE LOOPS 10

/*
Run a compute bound thread (minimal blocking) to show the duty cycle.

*/
void *st duty check(void *arg) {
struct sched param params;
uint64 t stime, etime, cps;
double secs;
int ret, prio;
int prevprio, iterations;

stime = ClockCycles();
cps = SYSPAGE ENTRY(qtime)->cycles per sec;
iterations = 0;

printf("\n");

prevprio = -1;
while(iterations < DUTY CYCLE LOOPS) {
etime = ClockCycles();
ret = pthread getschedparam(pthread self(), &prio, ¶ms);

if(ret != 0) {
printf("pthread getschedparam() failed %d \n", errno);
break;
} else if (prevprio != -1 && prevprio != params.sched priority) {
stime = etime - stime;
secs = (double)stime / (double)cps;
printf("pri %d (cur %d) %lld cycles %g secs\n",
params.sched priority,
params.sched curpriority,
stime, secs);
stime = etime;
iterations++;

2556 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sched param

}
prevprio = params.sched priority;
}

return NULL;
}

int main(int argc, char **argv) {
struct sched param params;
pthread attr t attr;
pthread t thr;
int ret;

/* Set the attribute structure with the sporadic values */
printf("# Set sporadic attributes ...");
pthread attr init(&attr);
ret = pthread attr setinheritsched(&attr, PTHREAD EXPLICIT SCHED);
if(ret != 0) {
printf("pthread attr setinheritsched() failed %d \n", errno);
return 1;
}

ret = pthread attr setschedpolicy(&attr, SCHED SPORADIC);
if(ret != 0) {
printf("pthread attr setschedpolicy() failed %d %d\n", ret, errno);
return 1;
}

params.sched priority = MY HIGH PRIORITY;
params.sched ss low priority = MY LOW PRIORITY;
memcpy(¶ms.sched ss init budget, &MY INIT BUDGET, sizeof(MY INIT BUDGET));
memcpy(¶ms.sched ss repl period, &MY REPL PERIOD, sizeof(MY REPL PERIOD));
params.sched ss max repl = MY MAX REPL;
ret = pthread attr setschedparam(&attr, ¶ms);
if(ret != 0) {
printf("pthread attr setschedparam() failed %d \n", errno);
return 1;
}
printf("OK\n");

/* Create a sporadic thread to check the duty cycle */
printf("# Creating thread duty cycle thread (%d changes) ... ", DUTY CYCLE LOOPS);
ret = pthread create(&thr, &attr, st duty check, NULL);
if(ret != 0) {
printf("pthread create() failed %d \n", errno);
return 1;
}
pthread join(thr, NULL);
printf("OK\n");

May 31, 2004 Manifests 2557

sched param 2004, QNX Software Systems Ltd.

return 0;
}

See also sched getparam().

Classification:
POSIX 1003.1 (Realtime Extensions)

See also:
pthread attr getschedparam(), pthread attr setschedparam(),
pthread getschedparam(), pthread setschedparam(),
sched getparam(), sched setparam(), sched setscheduler(),
SchedGet(), SchedSet(), ThreadCreate()

“Scheduling algorithms” in the Neutrino Microkernel chapter of the
System Architecture guide

2558 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sched rr get interval()
Get the execution time limit of a process

Synopsis:
#include <sched.h>

int sched rr get interval(
pid t pid,
struct timespec * interval);

Arguments:
pid The process ID whose execution time limit you want to

get.

interval A pointer to a timespec structure that the function
updates with the process’s current execution time limit.

Library:
libc

Description:
The sched rr get interval() function updates interval with the current
execution time limit for the process, pid. If pid is 0, the current
execution time limit for the calling process is returned.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
ENOSYS The sched rr get interval() function isn’t currently

supported.

ESRCH The process pid can’t be found.

May 31, 2004 Manifests 2559

sched rr get interval() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
timespec

2560 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sched setparam()
Change the priority of a process

Synopsis:
#include <sched.h>

int sched setparam(
pid t pid,
const struct sched param *param);

Arguments:
pid The ID of the process whose priority you want to set, or 0

to set it for the current process.

param A pointer to a sched param structure whose
sched priority member holds the priority that you want to
assign to the process.

Library:
libc

Description:
The sched setparam() function changes the priority of process pid to
that of the sched priority member in the sched param structure
pointed to by param. If pid is zero, the priority of the calling process
is changed.

The sched priority member in param must lie between the minimum
and maximum values returned by sched get priority max() and
sched get priority min().

By default, the process priority and scheduling algorithm are inherited
from or explicitly set by the parent process. Once running, the child
process may change its priority by using this function.

May 31, 2004 Manifests 2561

sched setparam() 2004, QNX Software Systems Ltd.

Returns:
0 Success

-1 An error occurred (errno is set).

Errors:
EFAULT A fault occurred trying to access the buffers provided.

EINVAL The priority isn’t a valid priority.

EPERM The calling process doesn’t have sufficient privilege to
set the priority.

ESRCH The process pid doesn’t exist.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
Currently, the implementation of sched setparam() isn’t 100% POSIX
1003.1-1996. The sched setparam() function sets the scheduling
parameters for thread 1 in the process pid, or for the calling thread if
pid is 0.

If you depend on this in new code, it will not be portable. POSIX
1003.1 says sched setparam() should return -1 and set errno to
EPERM in a multithreaded application.

2562 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sched setparam()

See also:
errno, getprio(), sched getparam(), sched get priority max(),
sched get priority min(), sched getscheduler(), sched param,
sched setscheduler(), sched yield(), setprio()

May 31, 2004 Manifests 2563

sched setscheduler() 2004, QNX Software Systems Ltd.

Change the priority and scheduling policy of a process

Synopsis:
#include <sched.h>

int sched setscheduler(
pid t pid,
int policy,
const struct sched param *param);

Arguments:
pid The ID of the process whose priority and scheduling

policy you want to set, or zero if you want to set them for
the current process.

policy The scheduling policy, which must be one of:

� SCHED FIFO — a fixed-priority scheduler in which the
highest priority ready thread runs until it blocks or is
preempted by a higher priority thread.

� SCHED RR — similar to SCHED FIFO, except that
threads at the same priority level timeslice (round
robin) every 50 msec.

� SCHED OTHER — currently the same as SCHED RR.

Currently, you can set a thread’s scheduling policy to
SCHED SPORADIC only when you create the thread. If you use
sporadic scheduling, you can’t change the policy later. For more
information, see pthread attr setschedpolicy().

�

param A pointer to a sched param structure whose
sched priority member holds the priority that you want to
assign to the process.

2564 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sched setscheduler()

Library:
libc

Description:
The sched setscheduler() function changes the priority of process pid
to that of the sched priority member in the sched param structure
passed as param, and the scheduling policy is set to policy.

If pid is zero, the policy and priority of the calling process are set.

The sched priority member in param must lie between the minimum
and maximum values returned by sched get priority max() and
sched get priority min().

By default, process priority and scheduling algorithm are inherited
from or explicitly set by the parent process. Once running, the child
process may change its priority by using this function.

Returns:
The previous scheduling policy, or -1 if an error occurs (errno is set).

Errors:
EFAULT A fault occurred trying to access the buffers provided.

EINVAL The priority or scheduling policy isn’t a valid value.

EPERM The calling process doesn’t have sufficient privilege to
set the priority.

ESRCH The process pid doesn’t exist.

Examples:
See sched getparam().

May 31, 2004 Manifests 2565

sched setscheduler() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
Currently, the implementation of sched setscheduler() isn’t 100%
POSIX 1003.1-1996. The sched setscheduler() function sets the
scheduling policy for thread 1 in the process pid, or for the calling
thread if pid is 0.

If you depend on this in new code, it won’t be portable. POSIX
1003.1 says sched setscheduler() should return -1 and set errno to
EPERM in a multithreaded application.

See also:
errno, getprio(), sched getparam(), sched get priority max(),
sched get priority min(), sched getscheduler(), sched param,
sched setparam(), sched yield(), setprio()

2566 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sched yield()
Yield to other ready threads at the same priority

Synopsis:
#include <sched.h>

int sched yield(void);

Library:
libc

Description:
The sched yield() function checks to see if other threads, at the same
priority as that of the calling thread, are READY to run. If so, the
calling thread yields to them and places itself at the end of the
READY thread queue. The sched yield() function never yields to a
lower priority thread.

A higher priority thread always forces a lower priority thread to yield
(that is, preempt) the instant the higher priority thread becomes ready
to run, without the need for the lower priority thread to give up the
processor by calling the sched yield() or SchedYield() functions.

The sched yield() function calls the kernel function SchedYield(), and
may be more portable across realtime POSIX systems.

You should avoid designing programs that contain busy wait loops. If
you can’t avoid them, you can use sched yield() to reduce the system
load at a given priority level. Note that a thread that calls
sched yield() in a tight loop will spend a great deal of time in the
kernel, which will have a small effect on interrupt latency.

�

Returns:
This function always succeeds and returns zero.

May 31, 2004 Manifests 2567

sched yield() 2004, QNX Software Systems Ltd.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <sched.h>

int main(void)
{

int i;

for(;;) {
/* Process something... */
for(i = 0 ; i < 1000 ; ++i)

fun();

/* Yield to anyone else at the same priority */
sched yield();

}
return EXIT SUCCESS; /* Never reached */

}

int fun()
{

int i;

for(i = 0 ; i < 10 ; ++i)
i += i;

return(i);
}

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

2568 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sched yield()

See also:
getprio(), sched getparam(), sched get priority max(),
sched get priority min(), sched getscheduler(), sched setparam(),
sched setscheduler(), SchedYield(), setprio(), sleep()

May 31, 2004 Manifests 2569

SchedGet(), SchedGet r() 2004, QNX Software Systems Ltd.

Get the scheduling policy for a thread

Synopsis:
#include <sys/neutrino.h>

int SchedGet(pid t pid,
int tid,
struct sched param *param);

int SchedGet r(pid t pid,
int tid,
struct sched param *param);

Arguments:
pid 0 or a process ID; see below.

tid 0 or a thread ID; see below.

param A pointer to a sched param structure where the function
can store the scheduling parameters.

Library:
libc

Description:
The SchedGet() and SchedGet r() kernel calls return the current
scheduling policy and the parameters for the thread specified by tid in
the process specified by pid. If pid is zero, the current process is used
to look up a nonzero tid. If pid and tid are zero, then the calling
thread is used.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

The scheduling policy is returned on success and is one of
SCHED FIFO, SCHED RR, SCHED SPORADIC, or SCHED OTHER.

2570 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SchedGet(), SchedGet r()

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

SchedGet() The current scheduling policy. If an error occurs, -1
is returned and errno is set.

SchedGet r() The current scheduling policy. This function does
NOT set errno. If an error occurs, the negative of a
value from the Errors section is returned.

Errors:
EFAULT A fault occurred when the kernel tried to access the

buffers provided.

ESRCH The process indicated by pid or thread indicated by tid
doesn’t exist.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 2571

SchedGet(), SchedGet r() 2004, QNX Software Systems Ltd.

See also:
sched param, SchedInfo(), SchedSet(), SchedYield()

2572 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SchedInfo(), SchedInfo r()
Get scheduler information

Synopsis:
#include <sys/neutrino.h>

int SchedInfo(pid t pid,
int policy,
struct sched info* info);

int SchedInfo r(pid t pid,
int policy,
struct sched info* info);

Arguments:
pid A process ID, or 0 to get information about the current

process.

policy One of the following:

� SCHED FIFO — a fixed-priority scheduler in which the
highest priority, ready thread runs until it blocks or is
preempted by a higher-priority thread.

� SCHED RR — the same as SCHED FIFO, except threads
at the same priority level time slice (round robin) every
50 msec.

� SCHED OTHER — currently the same as SCHED RR.

� SCHED SPORADIC — sporadic scheduling. For more
information, see pthread attr setschedpolicy(), and
“Scheduling algorithms” in the chapter on the Neutrino
microkernel in the System Architecture guide.

info A pointer to a sched info structure where the function
can store the scheduler information.

Library:
libc

May 31, 2004 Manifests 2573

SchedInfo(), SchedInfo r() 2004, QNX Software Systems Ltd.

Description:
These kernel calls return information about the kernel’s thread
scheduler, including the minimum and maximum thread priority, for
the process ID specified by pid when using the specified scheduling
policy. If pid is 0, the scheduler information for the current process is
returned. In either case, the struct sched info pointed to by
info is filled in with the appropriate information.

The SchedInfo() and SchedInfo r() functions are identical except in
the way they indicate errors. See the Returns section for details.

The struct sched info structure pointed to by info contains at
least these members:

uint64 t interval

The current execution time limit before the thread is suspended
in favor of the scheduler.

int priority max

The maximum priority for a thread using this scheduling policy.

int priority min

The minimum priority for a thread using this scheduling policy.

Returns:
The only difference between these functions is the way they indicate
errors:

SchedInfo() If an error occurs, -1 is returned and errno is set.
Any other value returned indicates success.

SchedInfo r() EOK is returned on success. This function does
NOT set errno. If an error occurs, any value in the
Errors section may be returned.

2574 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SchedInfo(), SchedInfo r()

Errors:
EINVAL The pid or policy is invalid.

ENOSYS The SchedInfo() function isn’t supported by this system.

ESRCH The process specified by pid doesn’t exist.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
SchedGet(), SchedSet()

May 31, 2004 Manifests 2575

SchedSet(), SchedSet r() 2004, QNX Software Systems Ltd.

Set the scheduling policy for a thread

Synopsis:
#include <sys/neutrino.h>

int SchedSet(
pid t pid,
int tid,
int policy,
const struct sched param *param);

int SchedSet r(
pid t pid,
int tid,
int policy,
const struct sched param *param);

Arguments:
pid 0 or a process ID; see below.

tid 0 or a thread ID; see below.

policy The scheduling policy; one of:

� SCHED FIFO — a fixed-priority scheduler in which the
highest priority, ready thread runs until it blocks or is
preempted by a higher priority thread.

� SCHED RR — the same as SCHED FIFO, except threads
at the same priority level time slice (round robin) every
50 msec.

� SCHED OTHER — currently the same as SCHED RR.

� SCHED NOCHANGE — this isn’t actually a policy, but
a special value that tells the kernel to update the
parameters specified in param, without changing the
policy.

2576 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SchedSet(), SchedSet r()

Currently, you can set a thread’s scheduling policy to
SCHED SPORADIC only when you create the thread. If you use
sporadic scheduling, you can’t change the policy later. For more
information, see pthread attr setschedpolicy().

�

param A pointer to a sched param structure where the function
can store the scheduling parameters.

Library:
libc

Description:
The SchedSet() and SchedSet r() kernel calls set both the scheduling
policy and the associated parameters for the thread specified by tid in
the process specified by pid. If pid is zero the current process is used
to look up a nonzero tid. If tid is zero, then the calling thread is used
and pid is ignored.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

SchedSet() If an error occurs, -1 is returned and errno is set.
Any other value returned indicates success.

SchedSet r() EOK is returned on success. This function does
NOT set errno. If an error occurs, any value in the
Errors section may be returned.

May 31, 2004 Manifests 2577

SchedSet(), SchedSet r() 2004, QNX Software Systems Ltd.

Errors:
EFAULT A fault occurred when the kernel tried to access the

buffers you provided.

EINVAL The given scheduling policy is invalid.

EPERM The process doesn’t have permission to change the
scheduling of the indicated thread.

ESRCH The process indicated by pid or thread indicated by tid
doesn’t exist.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
sched get priority max(), sched get priority min(), sched param,
SchedGet(), SchedInfo(), SchedYield()

2578 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SchedYield(), SchedYield r()
Yield to other threads

Synopsis:
#include <sys/neutrino.h>

int SchedYield(void);

int SchedYield r(void);

Library:
libc

Description:
These kernel calls check to see if other threads at the same priority as
that of the calling thread are ready to run. If so, the calling thread
yields to them and places itself at the end of the ready thread queue
for that priority. SchedYield() never yields to a lower priority thread.
Higher priority threads always force a yield the instant they become
ready to run. This call has no effect with respect to threads running at
priorities other than the calling thread’s.

The SchedYield() and SchedYield r() functions are identical except in
the way they indicate errors. See the Returns section for details.

Avoid designing programs that contain busy-wait loops using
SchedYield() to timeslice. If this is unavoidable, you can use
SchedYield() to reduce the system load at a given priority level. Note
that a program that calls SchedYield() in a tight loop will spend a great
deal of time in the kernel, which will have a small effect on
scheduling interrupt latency.

Blocking states

These calls don’t block. However, if other threads are ready at the
same priority, the calling thread is placed at the end of the ready
queue for this priority.

May 31, 2004 Manifests 2579

SchedYield(), SchedYield r() 2004, QNX Software Systems Ltd.

Returns:
The only difference between these functions is the way they indicate
errors:

SchedYield() If an error occurs, -1 is returned and errno is set.
Any other value returned indicates success.

SchedYield r() EOK is returned on success. This function does
NOT set errno. If an error occurs, any value in the
Errors section may be returned.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
SchedGet(), SchedSet()

2580 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sctp bindx()
Add or remove one or more given addresses from an association

Synopsis:
#include <netinet/sctp.h>

int sctp bindx(int sd,
struct sockaddr *addrs,
int addrcnt,
int flags);

Arguments:
sd Socket descriptor. Depending on the type of sd, the type

of address is determined. If sd is an IPv4 socket, the
address passed is an IPv4 address. If sd is an IPv6

socket, the address passed is either an IPv4 or an IPv6

address. A single adddress is specified as INADDR ANY
or IN6ADDR ANY.

addrs Pointer to an array of one or more socket addresses. Each
address is contained in its appropriate structure (i.e.
struct sockaddr in or struct sockaddr in6). The
family of the address type must be used to distinguish the
address length. This representation is termed a “packed
array” of addresses.

addrcnt Number of addresses in the array.

flags Either SCTP BINDX ADD ADDR or
SCTP BINDX REM ADDR. It is formed from the
bitwise OR of zero or more of these flags.

Library:
libsctp

May 31, 2004 Manifests 2581

sctp bindx() 2004, QNX Software Systems Ltd.

Description:
The sctp bindx() add or remove one or more given addresses from an
association.

An application uses sctp bindx(SCTP BINDX ADD ADDR) to
associate additional addresses with an endpoint after calling bind().
Otherwise, it may also call sctp bindx(SCTP BINDX REM ADDR) to
remove some addresses a listening socket is associated with — so that
no new association will be associated with those addresses. If the
endpoint supports dynamic address, a SCTP BINDX REM ADDR or
SCTP BINDX ADD ADDR may cause an endpoint to send the
appropriate message to change the peer’s address lists.

Returns:
0 Success.

-1 Failure; errno is set.

Errors:
EFAULT Passed-in flag was neither SCTP BINDX ADD ADDR

nor SCTP BINDX REM ADDR.

EINVAL Passed-in address has a wrong family.

Classification:
Socket API extension for stream control transmission protocol in
accord with draft-ietf-tsvwg-sctpsocket-07.txt.

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

2582 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sctp bindx()

See also:
SCTP, sctp connectx(), sctp freeladdrs(), sctp freepaddrs(),
sctp getladdrs(), sctp getpaddrs(), sctp peeloff(), sctp recvmsg(),
sctp sendmsg()

May 31, 2004 Manifests 2583

sctp connectx() 2004, QNX Software Systems Ltd.

Help associate an endpoint that is multi-homed

Synopsis:
#include <netinet/sctp.h>

int sctp connectx(int s,
struct sockaddr *addrs,
int addrcnt);

Arguments:
s Socket descriptor.

addrs Array of addreses.

addrcnt Number of addresses in the array.

Library:
libsctp

Description:
The sctp connectx() function connects a host to a multi-homed
endpoint by specifying a list of peer addresses.

Returns:
0 Success.

-1 Failure; errno is set.

Errors:
EINVAL No valid address is passed in addrs.

Classification:
Socket API extension for stream control transmission protocol in
accordance with draft-ietf-tsvwg-sctpsocket-07.txt.

2584 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sctp connectx()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
SCTP, sctp bindx(), sctp freeladdrs(), sctp freepaddrs(),
sctp getladdrs(), sctp getpaddrs(), sctp peeloff(), sctp recvmsg(),
sctp sendmsg()

May 31, 2004 Manifests 2585

sctp freeladdrs() 2004, QNX Software Systems Ltd.

Free all resources allocated by sctp getladdrs()

Synopsis:
#include <netinet/sctp.h>

void sctp freeladdrs(struct sockaddr *addrs);

Arguments:
addrs Array of peer addresses returned by sctp getladdrs().

Library:
libsctp

Description:
The sctp freeladdrs() free all resources allocated by sctp getladdrs().

Classification:
Socket API extension for stream control transmission protocol in
accord with draft-ietf-tsvwg-sctpsocket-07.txt.

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
SCTP, sctp bindx(), sctp connectx(), sctp freepaddrs(),
sctp getladdrs(), sctp getpaddrs(), sctp peeloff(), sctp recvmsg(),
sctp sendmsg()

2586 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sctp freepaddrs()
Free all resources allocated by sctp getpaddrs()

Synopsis:
#include <netinet/sctp.h>

void sctp freepaddrs(struct sockaddr *addrs);

Arguments:
addrs Array of peer addresses returned by sctp getpaddrs().

Library:
libsctp

Description:
The sctp freepaddrs() free all resources allocated by sctp getpaddrs().

Classification:
Socket API extension for stream control transmission protocol in
accord with draft-ietf-tsvwg-sctpsocket-07.txt.

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
SCTP, sctp bindx(), sctp connectx(), sctp freeladdrs(),
sctp getladdrs(), sctp getpaddrs(), sctp peeloff(), sctp recvmsg(),
sctp sendmsg()

May 31, 2004 Manifests 2587

sctp getladdrs() 2004, QNX Software Systems Ltd.

Return all locally bound addresses on a socket

Synopsis:
#include <netinet/sctp.h>

int sctp getladdrs(int sd,
sctp assoc t id,
struct sockaddr **addrs);

Arguments:
sd Socket descriptor.

id Specifies the association for one-to-many style sockets. It is
ignored for one-to-one style sockets.

addrs A pointer to an array of local addresses, returned by the
stack.

Library:
libsctp

Description:
The sctp getladdrs() return all locally bound addresses on a socket.

On return, addrs points to a dynamically allocated packed array of
sockaddr structures of the appropriate type for each address. The
caller should use sctp freepaddrs() to free the memory. Note that the
in/out parameter addrs must not be NULL.

Returns:
On success, sctp getladdrs() returns the number of local addresses
bound to the socket. If the socket is unbound, sctp getladdrs() returns
0, and the value of *addrs is undefined.

If an error occurs, sctp getladdrs() returns -1, and the value of *addrs
is undefined.

2588 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sctp getladdrs()

Errors:
EINVAL Address is wrong.

ENOTCONN Socket is not bound.

ENOMEM Can’t allocate memory for address.

Classification:
Socket API extension for stream control transmission protocol in
accord with draft-ietf-tsvwg-sctpsocket-07.txt.

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
SCTP, sctp bindx(), sctp connectx(), sctp freeladdrs(),
sctp freepaddrs(), sctp getpaddrs(), sctp peeloff(), sctp recvmsg(),
sctp sendmsg()

May 31, 2004 Manifests 2589

sctp getpaddrs() 2004, QNX Software Systems Ltd.

Return all peer addresses in an association

Synopsis:
#include <netinet/sctp.h>

int sctp getpaddrs(int sd,
sctp assoc t id,
struct sockaddr **addrs);

Arguments:
sd Socket descriptor.

id Specifies the association for one-to-many style sockets. It is
ignored for one-to-one style sockets

addrs A pointer to an array of peer addresses, returned by the
stack.

Library:
libsctp

Description:
The sctp getpaddrs() return all peer addresses in an association.

On return, addrs points to a dynamically packed array of sockaddr
structures of the appropriate type for each address. The caller should
use sctp freepaddrs() to free the memory. Note that in and out
parameters addrs must not be NULL.

Returns:
On success, sctp getpaddrs() returns the number of peer addresses in
the association. If there is no association, this function returns 0 and
the value of *addrs is undefined.

If an error occurs, sctp getpaddrs() returns -1, and the value of *addrs
is undefined.

2590 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sctp getpaddrs()

Errors:
EINVAL Passed-in address is wrong.

ENOMEM Can’t allocate memory for address.

Classification:
Socket API extension for stream control transmission protocol in
accord with draft-ietf-tsvwg-sctpsocket-07.txt.

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
SCTP, sctp bindx(), sctp connectx(), sctp freeladdrs(),
sctp freepaddrs(), sctp getladdrs(), sctp peeloff(), sctp recvmsg(),
sctp sendmsg()

May 31, 2004 Manifests 2591

sctp peeloff() 2004, QNX Software Systems Ltd.

Branch off an association into a seperate socket

Synopsis:
#include <netinet/sctp.h>

int sctp peeloff(int sd,
sctp assoc t assoc id);

Library:
libsctp

Description:
You call this function to branch off an association into a seperate
socket. The new socket is a one-to-one style socket. You should
confine your operation to one that is allowed for a one-to-one style
socket.

Using sctp peeloff(), you create a new socket descriptor as follows:

new sd = sctp peeloff(int sd, sctp assoc t assoc id);

Returns:
On success, it returns a new socket, which has the single association
in it. On failure, it returns -1 and errno is set.

Errors:
EBADF The sd is wrong.

ENOTSOCK Can’t branch off the association.

Classification:
Socket API extension for stream control transmission protocol in
accord with draft-ietf-tsvwg-sctpsocket-07.txt.

2592 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sctp peeloff()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
SCTP, sctp bindx(), sctp connectx(), sctp freeladdrs(),
sctp freepaddrs(), sctp getladdrs(), sctp getpaddrs(), sctp recvmsg(),
sctp sendmsg()

May 31, 2004 Manifests 2593

SCTP 2004, QNX Software Systems Ltd.

Stream Control Transmission Protocol

Synopsis:
#include <sys/socket.h>
#include <netinet/in.h>

int socket(PF INET,
SOCK DGRAM,
IPPROTO SCTP);

Or,

int socket(PF INET,
SOCK STREAM,
IPPROTO SCTP);

Description:
The SCTP protocol provides reliable end-to-end message transport
service. It has the following features:

� Acknowledged error-free non-duplicated transfer of user data

� Data fragmentation to conform to path MTU size

� Sequenced delivery of user messages within multiple streams

� Multi-homing

� Protection against DOS attacks.

Returns:
A descriptor referencing the socket, or -1 if an error occurs (errno is
set).

Errors:
EACCES Permission to create a socket of the specified type

and/or protocol is denied.

EMFILE The per-process descriptor table is full.

2594 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SCTP

ENFILE The system file table is full.

ENOBUFS Insufficient buffer space available. The socket can’t be
created until sufficient resources are freed.

ENOMEM Not enough memory.

EPROTONOSUPPORT

The protocol type or the specified protocol isn’t
supported within this domain.

See also:
IP

sctp bindx(), sctp connectx(), sctp freeladdrs(), sctp freepaddrs(),
sctp getladdrs(), sctp getpaddrs(), sctp peeloff(), sctp recvmsg(),
sctp sendmsg()

RFC 2960, RFC 3257

Drafts:

� Socket API extension for stream control transmission protocol in
accord with draft-ietf-tsvwg-sctpsocket-07.txt.

� Stream control transmission protocol dynamic address
reconfiguration.

May 31, 2004 Manifests 2595

sctp recvmsg() 2004, QNX Software Systems Ltd.

Receive message using advanced SCTP features

Synopsis:
#include <netinet/sctp.h>

ssize t sctp recvmsg(int s,
void *msg,
size t len,
struct sockaddr *from,
socklen t *fromlen,
struct sctp sndrcvinfo *sinfo,
int *msg flags);

Arguments:
s Socket descriptor.

msg Message buffer to be filled.

len Length of the message buffer.

from A pointer to a sockaddr object where the function can
store the source address of the message.

fromlen A pointer to a socklen t object that specifies the size
of the from buffer. The function stores the actual size of
the address in this object.

sinfo A pointer to a sctp sndrcvinfo structure to be filled
upon receipt of the message.

msg flags A pointer to an integer to be filled with any message
flags (e.g. MSG NOTIFICATION).

Library:
libsctp

2596 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sctp recvmsg()

Description:
The sctp recvmsg() function receive a message from socket s, whether
or not a socket is connected. The difference between this function and
the generic function recvmsg() is that you could pass in a pointer to
sctp sndrcvinfo structure, and the structure is filled upon receipt
of the message. The structure has detailed information about the
message you just received. Note that you must enable
sctp data io events with the SCTP EVENTS socket option
first, to be able to have the sctp sndrcvinfo structure be filled in.

Returns:
Number of bytes received, or -1 if an error occurs (errno is set).

Errors:
ENOMEM Not enough stack memory.

Classification:
Socket API extension for stream control transmission protocol in
accordance with draft-ietf-tsvwg-sctpsocket-07.txt.

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
SCTP, sctp bindx(), sctp connectx(), sctp freeladdrs(),
sctp freepaddrs(), sctp getladdrs(), sctp getpaddrs(), sctp peeloff(),
sctp sendmsg()

May 31, 2004 Manifests 2597

sctp sendmsg() 2004, QNX Software Systems Ltd.

Send message using advanced SCTP features

Synopsis:
#include <netinet/sctp.h>

ssize t sctp sendmsg(int s,
const void *msg,
size t len,
struct sockaddr *to,
socklen t tolen,
uint32 t ppid,
uint32 t flags,
uint16 t stream no,
uint32 t timetolive,
uint32 t context);

Arguments:
s Socket descriptor.

msg Message to be sent.

len Length of the message.

to Destination address of the message.

tolen Length of the destination address.

ppid An opaque unsigned value that is passed to the remote
end in each user message. The byte order issues are not
accounted for and this information is passed opaquely
by the SCTP stack from one end to the other.

flags Flags composed of bitwise OR of these values:

MSG UNORDERED

This flag requests the un-ordered
delivery of the message. If the flag is
clear, the datagram is considered an
ordered send.

2598 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sctp sendmsg()

MSG ADDR OVER

This flag, in one-to-many style,
requests the SCTP stack to override
the primary destination address.

MSG ABORT This flag causes the specified
association to abort — by sending an
ABORT message to the peer
(one-to-many style only).

MSG EOF This flag invokes the SCTP graceful
shutdown procedures on the specified
association. Graceful shutdown
assures that all data enqueued by both
endpoints is successfully transmitted
before closing the association
(one-to-many style only).

stream no Message stream number — for the application to send
a message. If a sender specifies an invalid stream
number, an error indication is returned and the call
fails.

timetolive Message time to live in milliseconds. The sending side
expires the message within the specified time period if
the message has not been sent to the peer within this
time period. This value overrides any default value set
using socket option. If you use a value of 0, it indicates
that no timeout should occur on this message.

context An opaque 32-bit context datum. This value is passed
back to the upper layer if an error occurs while sending
a message, and is retrieved with each undelivered
message.

Library:
libsctp

May 31, 2004 Manifests 2599

sctp sendmsg() 2004, QNX Software Systems Ltd.

Description:
The sctp sendmsg() function allows you to send extra information to a
remote application. Using advanced SCTP features, you can send a
message through a specified stream, pass extra opaque information to
a remote application, or define a timeout for the particular message.

Returns:
The number of bytes sent, or -1 if an error occurs (errno is set).

Errors:
EBADF An invalid descriptor was specified.

EDESTADDRREQ

A destination address is required.

EFAULT An invalid user space address was specified for a
parameter.

EMSGSIZE The socket requires that the message be sent
atomically, but the size of the message made this
impossible.

ENOBUFS The system couldn’t allocate an internal buffer. The
operation may succeed when buffers become
available.

ENOTSOCK The argument s isn’t a socket.

EWOULDBLOCK

The socket is marked nonblocking and the requested
operation would block.

Classification:
Socket API extension for stream control transmission protocol in
accord with draft-ietf-tsvwg-sctpsocket-07.txt.

2600 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sctp sendmsg()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
SCTP, sctp bindx(), sctp connectx(), sctp freeladdrs(),
sctp freepaddrs(), sctp getladdrs(), sctp getpaddrs(), sctp peeloff(),
sctp recvmsg(),

May 31, 2004 Manifests 2601

searchenv() 2004, QNX Software Systems Ltd.

Search the directories listed in an environment variable

Synopsis:
#include <stdlib.h>

void searchenv(const char* name,
const char* env var,
char* buffer);

Arguments:
name The name of the file that you want to search for.

env var The name of an environment variable whose value is a
list of directories that you want to search. Common
values for env var are "PATH", "LIB" and "INCLUDE".

The searchenv() function doesn’t search the current directory unless
it’s specified in the environment variable.

�

buffer A buffer where the function can store the full path of the
file found. This buffer should be PATH MAX bytes long.
If the specified file can’t be found, the function stores an
empty string in the buffer.

Library:
libc

Description:
The searchenv() function searches for the file specified by name in the
list of directories assigned to the environment variable specified by
env var.

Use pathfind() or pathfind r() instead of this function.�

2602 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. searchenv()

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>

void display help(FILE *fp)
{

printf("display help T.B.I.\n");
}

int main(void)
{

FILE *help file;
char full path[PATH MAX];

searchenv("lib ref.html", "PATH", full path);
if(full path[0] == ’\0’) {

printf("Unable to find help file\n");
} else {

help file = fopen(full path, "r");
display help(help file);
fclose(help file);

}

return EXIT SUCCESS;
}

Classification:
QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 2603

searchenv() 2004, QNX Software Systems Ltd.

Caveats:
The searchenv() function manipulates the environment pointed to by
the global environ variable.

See also:
getenv(), pathfind(), pathfind r(), setenv()

2604 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. seed48()
Initialize the seed for a sequence of pseudo-random numbers

Synopsis:
#include <stdlib.h>

unsigned short int *seed48(
unsigned short int seed16v[3]);

Arguments:
seed16v An array that comprises the 48 bits of the seed.

Library:
libc

Description:
The seed48() initializes the internal buffer r(n) of drand48(),
lrand48(), and mrand48(). All 48 bits of the seed can be specified in
an array of 3 short integers, where the entry with index 0 specifies the
lowest bits. The constant multiplicand and addend of the algorithm
are reset to the defaults: the multiplicand a = 0xFDEECE66D =
25214903917 and the addend c = 0xB = 11.

Returns:
A pointer to an array of 3 shorts which contains the old seed. This
array is statically allocated, thus its contents are lost after each new
call to seed48().

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

continued. . .

May 31, 2004 Manifests 2605

seed48() 2004, QNX Software Systems Ltd.

Safety

Signal handler No

Thread Yes

See also:
drand48(), erand48(), jrand48(), lcong48(), lrand48(), mrand48(),
nrand48(), srand48()

2606 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. seekdir()
Set the position for the next read of the directory stream

Synopsis:
#include <dirent.h>

void seekdir(DIR * dirp,
long int pos);

Arguments:
dirp A pointer to the directory stream, for which you want to set

the current location.

pos The new position for the directory stream. You should have
obtained this value from an earlier call to telldir().

Library:
libc

Description:
The seekdir() function sets the position of the next readdir() operation
on the directory stream specified by dirp to the position specified by
pos.

The new position reverts to the one associated with the directory
stream when the telldir() operation was performed.

Values returned by telldir() are good only for the lifetime of the DIR
pointer, dirp, from which they’re derived. If the directory is closed
and then reopened, the telldir() value may be invalidated due to
undetected directory compaction. It’s safe to use a previous telldir()
value immediately after a call to opendir() and before any calls to
readdir().

Classification:
POSIX 1003.1

May 31, 2004 Manifests 2607

seekdir() 2004, QNX Software Systems Ltd.

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
closedir(), errno, lstat(), opendir(), readdir(), readdir r(), rewinddir(),
telldir(), stat()

2608 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. select()
Check for files that are ready for reading or writing

Synopsis:
#include <sys/select.h>

int select(int width,
fd set * readfds,
fd set * writefds,
fd set * exceptfds,
struct timeval * timeout);

FD SET(int fd, fd set * fdset);
FD CLR(int fd, fd set * fdset);
FD ISSET(int fd, fd set * fdset);
FD ZERO(fd set * fdset);

Arguments:
width The number of descriptors to check in the given sets.

Only the descriptors from 0 through (width-1) in the
descriptor sets are examined. Therefore, the value of
width must be at least as large as:

(highest valued file descriptor in the sets) +1

readfds NULL, or a pointer to a fd set object that specifies the
descriptors to check for files that are ready for reading.
The function replaces the set with the file descriptors
that are actually ready for reading.

writefds NULL, or a pointer to a fd set object that specifies the
descriptors to check for files that are ready for writing.
The function replaces the set with the file descriptors
that are actually ready for writing.

exceptfds NULL, or a pointer to a fd set object that specifies the
descriptors to check for files that have an exceptional
condition pending. The function replaces the set with
the file descriptors that actually have an exceptional
condition pending.

May 31, 2004 Manifests 2609

select() 2004, QNX Software Systems Ltd.

timeout NULL, or a pointer to a timeval that specifies how
long to wait for the selection to complete.

Library:
libc

Description:
The select() function examines the file descriptor sets whose
addresses are passed in readfds, writefds, and exceptfds to see if some
of their descriptors are ready for reading, ready for writing, or have an
exceptional condition pending. Any of readfds, writefds, and
exceptfds may be NULL pointers if no descriptors are of interest.

In earlier versions of QNX Neutrino, select() and the associated
macros were defined in sys/time.h. They’re now defined in
sys/select.h, which sys/time.h includes.

�

The select() function replaces the given descriptor sets with subsets
consisting of those descriptors that are ready for the requested
operation, and returns the total number of ready descriptors in all the
sets.

If timeout isn’t NULL, it specifies a maximum interval to wait for the
selection to complete. If timeout is NULL, select() blocks until one of
the selected conditions occurs. To effect a poll, the timeout argument
should be a non-NULL pointer, pointing to a zero-valued timeval
structure.

If the current operating system configuration supports a larger number
of open files than is specified in FD SETSIZE, you can increase the
number of open file descriptors used with select() by changing the
definition of FD SETSIZE before including <sys/select.h> or
<sys/time.h>.

If you use select() with a timeout, you should reset the timeout value
after calling select().

2610 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. select()

If you’re using select() in conjunction with the socket API package,
note that selecting for reading on a socket descriptor on which a
listen() has been performed indicates that a subsequent accept() on
that descriptor won’t block.

�

Manipulating file-descriptor sets

At least the following macros are defined in <sys/select.h> for
manipulating file-descriptor sets:

FD ZERO(&fdset)

Initialize a descriptor set fdset to the null set.

FD SET(fd, &fdset)

Add the file descriptor fd to the set fdset.

FD CLR(fd, &fdset)

Remove fd from fdset.

FD ISSET(fd, &fdset)

Is nonzero if fd is a member of fdset; otherwise, zero.

The behavior of these macros is undefined if a descriptor value is less
than zero, or greater than or equal to FD SETSIZE.

Returns:
The number of ready descriptors in the descriptor sets, 0 if the timeout
expired, or -1 if an error occurs (errno is set).

Errors:
EBADF One of the descriptor sets specified an invalid descriptor.

EFAULT One of the pointers given in the call referred to a
nonexistent portion of the address space for the process.

May 31, 2004 Manifests 2611

select() 2004, QNX Software Systems Ltd.

EINTR A signal was delivered before any of the selected events
occurred, or before the time limit expired.

EINVAL A component of the pointed-to time limit is outside the
acceptable range: t sec must be between 0 and 10ˆ8,
inclusive; t usec must be greater than or equal to 0, and
less than 10ˆ6.

Examples:
/*
* This example opens a console and a serial port for
* read mode, and calls select() with a 5 second timeout.
* It waits for data to be available on either descriptor.
*/

#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/select.h>

int main(void)
{

int console, serial;
struct timeval tv;
fd set rfd;
int n;

if((console = open("/dev/con1", O RDONLY)) == -1
|| (serial = open("/dev/ser1", O RDONLY)) == -1)
{
perror("open");
return EXIT FAILURE;

}

/*
* Clear the set of read file descriptors, and
* add the two we just got from the open calls.
*/

FD ZERO(&rfd);
FD SET(console, &rfd);
FD SET(serial, &rfd);

/*
* Set a 5 second timeout.
*/

tv.tv sec = 5;
tv.tv usec = 0;

2612 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. select()

switch (n = select(1 + max(console, serial),
&rfd, 0, 0, &tv)) {

case -1:
perror("select");
return EXIT FAILURE;

case 0:
puts("select timed out");
break;

default:
printf("%d descriptors ready ...\n", n);
if(FD ISSET(console, &rfd))
puts(" -- console descriptor has data pending");

if(FD ISSET(serial, &rfd))
puts(" -- serial descriptor has data pending");

}
return EXIT SUCCESS;

}

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

Caveats:
The select() function only works with raw file descriptors; it doesn’t
work with file descriptors in edited mode. See the ICANON flag in the
description of the tcgetattr() function.

May 31, 2004 Manifests 2613

select() 2004, QNX Software Systems Ltd.

See also:
errno, fcntl(), read(), sysconf(), tcsetattr(), write()

2614 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. select attach()
Attach a file descriptor to a dispatch handle

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int select attach
(void *dpp,
select attr t *attr,
int fd,
unsigned flags,
int (*func)(select context t *ctp,

int fd,
unsigned flags,
void *handle),

void *handle);

Arguments:
dpp The dispatch handle, as returned by dispatch create(), that

you want to attach to a file descriptor.

attr A pointer to a select attr t structure. This structure
is defined as:

typedef struct select attr {
unsigned flags;

} select attr t;

Currently, no attribute flags are defined.

fd The file descriptor that you want to attach to the dispatch
handle.

flags Flags that specify the events that you’re interested in. For
more information, see “Flags,” below.

func The function that you want to call when the file descriptor
unblocks. For more information, see “Function,” below.

handle A pointer to arbitrary data that you want to pass to func.

May 31, 2004 Manifests 2615

select attach() 2004, QNX Software Systems Ltd.

Library:
libc

Description:
The function select attach() attaches the file descriptor fd to the
dispatch handle dpp and selects flags events. When fd “unblocks”,
func is called with handle.

Flags

The available flags are defined in <sys/dispatch.h>. The
following flags use ionotify() mechanisms (see ionotify() for further
details):

SELECT FLAG EXCEPT

Out-of-band data is available. The definition of out-of-band
data depends on the resource manager.

SELECT FLAG READ

There’s input data available. The amount of data available
defaults to 1. For a character device such as a serial port, this is
a character. For a POSIX message queue, it’s a message. Each
resource manager selects an appropriate object.

SELECT FLAG WRITE

There’s room in the output buffer for more data. The amount of
room available needed to satisfy this condition depends on the
resource manager. Some resource managers may default to an
empty output buffer, while others may choose some percentage
of the empty buffer.

These flags are specific to dispatch:

SELECT FLAG REARM

Rearm the fd after an event is dispatched.

2616 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. select attach()

SELECT FLAG SRVEXCEPT

Register a function that’s called whenever a server, to which
this client is connected, dies. (This flag uses the
ChannelCreate() function’s NTO CHF COID THREADDEATH
flag. In this case, fd is ignored.)

Function

The argument func is the user-supplied function that’s called when
one of the registered events occurs on fd. This function should return
0 (zero); other values are reserved. The function is passed the
following arguments:

ctp Context pointer.

fd The fd on which the event occurred.

flags The type of event that occurred. The possible flags are:

� SELECT FLAG EXCEPT

� SELECT FLAG READ

� SELECT FLAG WRITE

For descriptions of the flags passed to func, see “Flags,”
above.

handle The handle passed to select attach().

Returns:
Zero on success, or -1 if an error occurred (errno is set).

Errors:
EINVAL Invalid argument.

ENOMEM Insufficient memory was available.

May 31, 2004 Manifests 2617

select attach() 2004, QNX Software Systems Ltd.

Examples:
For an example with select attach(), see dispatch create(). For other
examples using the dispatch interface, see message attach(),
resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
select detach(), select query()

2618 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. select detach()
Detach a file descriptor from a dispatch handle

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int select detach(void *dpp,
int fd);

Arguments:
dpp The dispatch handle, as returned by dispatch create(), that

you want to detach from the file descriptor.

fd The file descriptor that you want to detach.

Library:
libc

Description:
The function select detach() detaches the file descriptor fd that was
registered with dispatch dpp, using the select attach() call.

Returns:
0 Success.

-1 The file descriptor fd wasn’t registered with the dispatch dpp.

Examples:
#include <sys/dispatch.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>

int my func(...) {
...

}

int main(int argc, char **argv) {

May 31, 2004 Manifests 2619

select detach() 2004, QNX Software Systems Ltd.

dispatch t *dpp;
int fd;
select attr t attr;

if((dpp = dispatch create()) == NULL) {
fprintf(stderr, "%s: Unable to allocate \

dispatch handle.\n",argv[0]);
return EXIT FAILURE;

}

if(argc ≤ 2 || (fd = open(argv[1],
O RDWR | O NONBLOCK)) == -1) {

exit(0);
}

select attach(dpp, &attr, fd,
SELECT FLAG READ | SELECT FLAG REARM, my func, NULL);

...

if ((select detach(dpp, fd)) == -1) {
fprintf(stderr, "Failed to detach \

the file descriptor.\n");
return 1;

}
}

For examples using the dispatch interface, see dispatch create(),
message attach(), resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

2620 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. select detach()

See also:
select attach(), select query()

May 31, 2004 Manifests 2621

select query() 2004, QNX Software Systems Ltd.

Decode the last select event

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int select query
(select context t *ctp,
int *fd,
unsigned *flags,
int (**func)(select context t *ctp,

int fd,
unsigned flags,
void *handle),

void **handle);

Arguments:
ctp A pointer to a select context t structure that defines

the context of the event that you want to get information
about.

fd A pointer to a location where the function can store the
file descriptor that’s associated with the event.

flags A pointer to a location where the function can store the
flags associated with the event; see “Flags” in the
documentation for select attach().

func A pointer to a location where the function can store the
function associated with the event; see “Function” in the
documentation for select attach().

handle A pointer to a location where the function can store the
address of any data that you arranged to pass to func.

Library:
libc

2622 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. select query()

Description:
The function select query() stores the values of the last select event,
for context ctp, in fd, flags, func, and handle.

Returns:
If an error occurs, the function returns -1. An error occurs if the
received event doesn’t belong to one of the file descriptors attached
with select attach().

Examples:
#include <sys/dispatch.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>

int my func(select context t *ctp,
int fd,
unsigned flags,
void *handle) {

...

}

int main(int argc, char **argv) {
dispatch t *dpp;
dispatch context t *ctp;
int fd;
unsigned flag;
void *handle;
select attr t *attr;
int (*func)(select context t *,

int, unsigned, void *);

if((dpp = dispatch create()) == NULL) {
fprintf(stderr, "%s: Unable to allocate \

dispatch handle.\n",argv[0]);
return EXIT FAILURE;

}

if(argc ≤ 2 || (fd = open(argv[1],
O RDWR | O NONBLOCK)) == -1) {

exit(0);
}

May 31, 2004 Manifests 2623

select query() 2004, QNX Software Systems Ltd.

select attach(dpp, attr, fd,
SELECT FLAG READ | SELECT FLAG REARM, &my func, NULL);

ctp = dispatch context alloc(dpp);

...

if(select query((select context t *)ctp, &fd, &flag,
&func, &handle) == -1) {

fprintf(stderr, "Failed to decode last select event.\n");
return 1;

}
}

For more examples using the dispatch interface, see dispatch create(),
message attach(), resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
select attach(), select detach()

2624 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sem close()
Close a named semaphore

Synopsis:
#include <semaphore.h>

int sem close(sem t * sem);

Arguments:
sem A pointer to a semaphore, as returned by sem open().

Library:
libc

Description:
The sem close() function closes the named semaphore sem opened by
sem open(), releasing any system resources associated with the sem.

Don’t mix named semaphore operations (sem open() and sem close())
with unnamed semaphore operations (sem init() and sem destroy())
on the same semaphore.

�

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EINVAL Invalid semaphore descriptor sem.

Classification:
POSIX 1003.1

May 31, 2004 Manifests 2625

sem close() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The mqueue manager must be running for applications to use named
semaphores.

See also:
sem init(), sem open(), sem unlink()

mqueue in the Utilities Reference

2626 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sem destroy()
Destroy a semaphore

Synopsis:
#include <semaphore.h>

int sem destroy(sem t * sem);

Arguments:
sem A pointer to the sem t object for the semaphore that you

want to destroy.

Library:
libc

Description:
The sem destroy() function destroys the unnamed semaphore referred
to by the sem argument. The semaphore must have been previously
initialized by the sem init() function.

The effect of using a semaphore after it has been destroyed is
undefined. If you destroy a semaphore that other processes are
currently blocked on, they’re unblocked, with an error (EINVAL).

Don’t mix named semaphore operations (sem open() and sem close())
with unnamed semaphore operations (sem init() and sem destroy())
on the same semaphore.

�

Returns:
0 Success.

-1 An error occurred (errno is set).

May 31, 2004 Manifests 2627

sem destroy() 2004, QNX Software Systems Ltd.

Errors:
EINVAL Invalid semaphore descriptor sem.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
sem init(), sem post(), sem trywait(), sem wait()

2628 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sem getvalue()
Get the value of a named or unnamed semaphore

Synopsis:
#include <semaphore.h>

int sem getvalue(sem t * sem,
int * value);

Arguments:
sem A pointer to the sem t object for the semaphore whose

value you want to get.

value A pointer to a location where the function can store the
semaphore’s value. A positive value (i.e. greater than zero)
indicates an unlocked semaphore, and a value of 0 (zero)
indicates a locked semaphore.

Library:
libc

Description:
The sem getvalue() function takes a snapshot of the value of the
semaphore, sem, and stores it in value. This value can change at any
time, and is guaranteed valid only at some point in the sem getvalue()
call.

This function is provided for debugging semaphore code.

Returns:
0 Success.

-1 An error occurred (errno is set).

May 31, 2004 Manifests 2629

sem getvalue() 2004, QNX Software Systems Ltd.

Errors:
EINVAL Invalid semaphore descriptor sem.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
sem destroy(), sem init(), sem trywait(), sem wait()

2630 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sem init()
Initialize a semaphore

Synopsis:
#include <semaphore.h>

int sem init(sem t * sem,
int pshared,
unsigned value);

Arguments:
sem A pointer to the sem t object for the semaphore that you

want to initialize.

pshared Nonzero if you want the semaphore to be shared between
processes via shared memory.

value The initial value of the semaphore. A positive value (i.e.
greater than zero) indicates an unlocked semaphore, and
a value of 0 (zero) indicates a locked semaphore. This
value must not exceed SEM VALUE MAX.

Library:
libc

Description:
The sem init() function initializes the unnamed semaphore referred to
by the sem argument. The initial counter value of this semaphore is
specified by the value argument.

You can use the initialized semaphore in subsequent calls to
sem wait(), sem trywait(), sem post(), and sem destroy(). An
initialized semaphore is valid until it’s destroyed by the sem destroy()
function, or until the memory where the semaphore resides is
released.

If the pshared argument is nonzero, then the semaphore can be shared
between processes via shared memory. Any process can then use sem

May 31, 2004 Manifests 2631

sem init() 2004, QNX Software Systems Ltd.

with the sem wait(), sem trywait(), sem post() and sem destroy()
functions.

Don’t mix named semaphore operations (sem open() and sem close())
with unnamed semaphore operations (sem init() and sem destroy())
on the same semaphore.

�

Returns:
0 Success. The semaphore referred to by sem is initialized.

-1 An error occurred (errno is set).

Errors:
EAGAIN A resource required to initialize the semaphore has

been exhausted.

EINVAL The value argument exceeds SEM VALUE MAX.

EPERM The process lacks the appropriate privileges to initialize
the semaphore.

ENOSPC A resource required to initialize the semaphore has
been exhausted.

ENOSYS The sem init() function isn’t supported.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

2632 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sem init()

Caveats:
Don’t initialize the same semaphore from more than one thread. It’s
best to set up semaphores before starting any threads.

See also:
errno, sem destroy(), sem post(), sem trywait(), sem wait()

May 31, 2004 Manifests 2633

sem open() 2004, QNX Software Systems Ltd.

Create or access a named semaphore

Synopsis:
#include <semaphore.h>

sem t * sem open(const char * sem name,
int oflags,
...);

Arguments:
sem name The name of the semaphore that you want to create or

access; see below.

oflags Flags that affect how the function creates a new
semaphore. This argument is a combination of:

� O CREAT

� O EXCL

Don’t set oflags to O RDONLY, O RDWR, or O WRONLY. A
semaphore’s behavior is undefined with these flags. The QNX
libraries silently ignore these options, but they may reduce your
code’s portability.

�

For more information, see below.

If you set O CREAT in oflags, you must also pass the following
arguments:

mode t mode The semaphore’s mode (just like file modes). For
portability, you should set the read, write, and
execute bits to the same value. An easy way of
doing this is to use the constants from
<sys/stat.h>:

� S IRWXG for group access.

� S IRWXO for other’s access.

� S IRWXU for your own access.

2634 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sem open()

For more information, see “Access permissions” in
the documentation for stat().

unsigned int value

The initial value of the semaphore. A positive
value (i.e. greater than zero) indicates an unlocked
semaphore, and a value of 0 (zero) indicates a
locked semaphore. This value must not exceed
SEM VALUE MAX.

Library:
libc

Description:
The sem open() function creates or accesses a named semaphore.
Named semaphores are slower than the unnamed semaphores created
with sem init(). Semaphores persist as long as the system is up.

The sem open() function returns a semaphore descriptor that you can
use with sem wait(), sem trywait(), and sem post(). You can use it
until you call sem close().

The sem name argument is interpreted as follows:

name Pathname space entry

entry CWD/entry

/entry /dev/sem/entry

entry/newentry CWD/entry/newentry

/entry/newentry /entry/newentry

where CWD is the current working directory for the program at the
point that it calls mq open().

May 31, 2004 Manifests 2635

sem open() 2004, QNX Software Systems Ltd.

If you want to create or access a semaphore on another node, you
have to specify the name as /net/node/sem location.

�

The oflags argument is used only for semaphore creation. When
creating a new semaphore, you can set oflags to O CREAT or
(O CREAT|O EXCL):

O CREAT Create a new named semaphore. If you set this bit, you
must provide the mode and value arguments to
sem open().

O EXCL When creating a new named semaphore, O EXCL
causes sem open() to fail if a semaphore with
sem name already exists. Without O EXCL,
sem open() attaches to an existing semaphore or
creates a new one if sem name doesn’t exist.

Don’t mix named semaphore operations (sem open() and sem close())
with unnamed semaphore operations (sem init() and sem destroy())
on the same semaphore.

�

Returns:
A pointer to the created or accessed semaphore, or -1 for failure
(errno is set).

Errors:
EACCES Either the named semaphore exists and you don’t have

permission to access it, or you’re trying to create a new
semaphore and you don’t have permission.

EEXIST You specified O CREAT and O EXCL in oflags, but the
semaphore already exists.

EINVAL The sem name argument is invalid or, when creating a
semaphore, value is greater than SEM VALUE MAX.

2636 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sem open()

EINTR The call was interrupted by a signal.

ELOOP Too many levels of symbolic links or prefixes.

EMFILE The process is using too many files or semaphores.

ENFILE The system ran out of resources and couldn’t open the
semaphore.

ENAMETOOLONG

The sem name argument is longer than
(NAME MAX - 8).

ENOENT Either the mqueue manager isn’t running, or the
sem name argument doesn’t exist and you didn’t
specify O CREAT in oflags.

ENOSPC There’s insufficient space to create a new named
semaphore.

ENOSYS The sem open() function isn’t implemented for the
filesystem specified in sem name.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 2637

sem open() 2004, QNX Software Systems Ltd.

Caveats:
The mqueue manager must be running for applications to use named
semaphores.

See also:
sem close(), sem destroy(), sem init(), sem post(), sem trywait(),
sem unlink(), sem wait()

mqueue in the Utilities Reference

2638 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sem post()
Increment a semaphore

Synopsis:
#include <semaphore.h>

int sem post(sem t * sem);

Arguments:
sem A pointer to the sem t object for the semaphore whose value

you want to increment.

Library:
libc

Description:
The sem post() function increments the semaphore referenced by the
sem argument. If any processes are currently blocked waiting for the
semaphore, then one of these processes will return successfully from
its call to sem wait.

The process to be unblocked is determined in accordance with the
scheduling policies in effect for the blocked processes. The highest
priority waiting process is unblocked, and if there is more than one
highest priority process blocked waiting for the semaphore, then the
highest priority process that has been waiting the longest is
unblocked.

The sem post() function is reentrant with respect to signals, and can
be called from a signal handler.

Returns:
0 Success.

-1 An error occurred (errno is set).

May 31, 2004 Manifests 2639

sem post() 2004, QNX Software Systems Ltd.

Errors:
EINVAL Invalid semaphore descriptor sem.

ENOSYS The sem post() function isn’t supported.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, sem destroy(), sem init(), sem trywait(), sem wait()

2640 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sem timedwait()
Wait on a semaphore, with a timeout

Synopsis:
#include <semaphore.h>
#include <time.h>

int sem timedwait(
sem t * sem,
const struct timespec * abs timeout);

Arguments:
sem The semaphore that you want to wait on.

abs timeout A pointer to a timespec structure that specifies the
maximum time to wait to lock the semaphore,
expressed as an absolute time.

Library:
libc

Description:
The sem timedwait() function locks the semaphore referenced by sem
as in the sem wait() function. However, if the semaphore can’t be
locked without waiting for another process or thread to unlock the
semaphore by calling sem post(), the wait is terminated when the
specified timeout expires.

The timeout expires when the absolute time specified by abs timeout
passes, as measured by the clock on which timeouts are based (i.e.
when the value of that clock equals or exceeds abs timeout), or if the
absolute time specified by abs timeout has already been passed at the
time of the call. The timeout is based on the CLOCK REALTIME
clock.

May 31, 2004 Manifests 2641

sem timedwait() 2004, QNX Software Systems Ltd.

Returns:
0 The calling process successfully performed the semaphore

lock operation on the semaphore designated by sem.

-1 The call was unsuccessful (errno is set). The state of the
semaphore is unchanged.

Errors:
EDEADLK A deadlock condition was detected.

EINTR A signal interrupted this function.

EINVAL Invalid semaphore sem, or the thread would have
blocked, and the abs timeout parameter specified a
nanoseconds field value less than zero or greater
than or equal to 1000 million.

ETIMEDOUT The semaphore couldn’t be locked before the
specified timeout expired.

Examples:
#include <stdio.h>
#include <semaphore.h>
#include <time.h>

main(){

struct timespec tm;
sem t sem;
int i=0;

sem init(&sem, 0, 0);

do {
clock gettime(CLOCK REALTIME, &tm);
tm.tv sec += 1;
i++;
printf("i=%d\n",i);
if (i==10) {

sem post(&sem);
}

} while (sem timedwait(&sem, &tm) == -1);

2642 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sem timedwait()

printf("Semaphore acquired after %d timeouts\n", i);
return;

}

Classification:
POSIX 1003.1d (draft)

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
sem post(), sem trywait(), sem wait(), time(), timespec

May 31, 2004 Manifests 2643

sem trywait() 2004, QNX Software Systems Ltd.

Wait on a semaphore, but don’t block

Synopsis:
#include <semaphore.h>

int sem trywait(sem t * sem);

Arguments:
sem A pointer to the sem t object for the semaphore that you

want to wait on.

Library:
libc

Description:
The sem trywait() function decrements the semaphore if the
semaphore’s value is greater than zero; otherwise, the function simply
returns.

Returns:
0 The semaphore was successfully decremented.

-1 The state of the semaphore is unchanged (errno is set).

Errors:
EAGAIN The semaphore was already locked, so it couldn’t be

immediately locked by the sem trywait() function.

EDEADLK A deadlock condition was detected.

EINVAL Invalid semaphore descriptor sem.

EINTR A signal interrupted this function.

2644 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sem trywait()

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
sem destroy(), sem init(), sem post(), sem wait()

May 31, 2004 Manifests 2645

sem unlink() 2004, QNX Software Systems Ltd.

Destroy a named semaphore

Synopsis:
#include <semaphore.h>

int sem unlink(const char * sem name);

Arguments:
sem name The name of the semaphore that you want to destroy.

Library:
libc

Description:
The sem unlink() function destroys the named semaphore, sem name.
Open semaphores are removed the same way that unlink() removes
open files; the processes that have the semaphore open can still use it,
but the semaphore will disappear as soon as the last process uses
sem close() to close it.

Any attempt to use sem open() on an unlinked semaphore will refer to
a new semaphore.

Semaphores are persistent as long as the system remains up.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EACCESS You don’t have permission to unlink the semaphore.

ELOOP Too many levels of symbolic links or prefixes.

ENOENT The semaphore sem name doesn’t exist.

2646 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sem unlink()

ENAMETOOLONG

The sem name argument is longer than
(NAME MAX - 8).

ENOSYS The sem unlink() function isn’t implemented for the
filesystem specified in path.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The mqueue manager must be running for applications to use named
semaphores.

See also:
sem open(), sem close(), sem wait(), sem trywait(), sem post()

mqueue in the Utilities Reference

May 31, 2004 Manifests 2647

sem wait() 2004, QNX Software Systems Ltd.

Wait on a semaphore

Synopsis:
#include <semaphore.h>

int sem wait(sem t * sem);

Arguments:
sem A pointer to the sem t object for the semaphore that you

want to wait on.

Library:
libc

Description:
The sem wait() function decrements the semaphore referred to by the
sem argument. If the semaphore value is not greater than zero, then
the calling process blocks until it can decrement the counter, or the
call is interrupted by signal.

Some process should eventually call sem post() to increment the
semaphore.

Returns:
0 The semaphore was successfully decremented.

-1 The state of the semaphore is unchanged (errno is set).

Errors:
EDEADLK A deadlock condition was detected.

EINVAL Invalid semaphore descriptor sem.

EINTR A signal interrupted this function.

2648 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sem wait()

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
sem destroy(), sem init(), sem post(), sem trywait()

May 31, 2004 Manifests 2649

send() 2004, QNX Software Systems Ltd.

Send a message to a connected socket

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>

ssize t send(int s,
const void * msg,
size t len,
int flags);

Arguments:
s The descriptor for the socket; see socket().

msg A pointer to the message that you want to send.

len The length of the message.

flags A combination of the following:

� MSG OOB — process out-of-band data. Use this bit
when you send “out-of-band” data on sockets that
support this notion (e.g. SOCK STREAM). The
underlying protocol must also support out-of-band data.

� MSG DONTROUTE — bypass routing; create a direct
interface. You normally use this bit only in diagnostic or
routing programs.

The tiny TCP/IP stack doesn’t support MSG OOB and
MSG DONTROUTE. For more information, see npm-ttcpip.so in
the Utilities Reference.

�

Library:
libsocket

2650 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. send()

Description:
The send(), sendto(), and sendmsg() functions are used to transmit a
message to another socket. The send() function can be used only
when the socket is in a connected state, while sendto() and sendmsg()
can be used at any time.

The length of the message is given by len. If the message is too long
to pass atomically through the underlying protocol, the error
EMSGSIZE is returned, and the message isn’t transmitted.

No indication of failure to deliver is implicit in a send(). Locally
detected errors are indicated by a return value of -1.

If no message space is available at the socket to hold the message to
be transmitted, then send() normally blocks, unless the socket has
been placed in nonblocking I/O mode. You can use select() to
determine when it’s possible to send more data.

Returns:
The number of bytes sent, or -1 if an error occurs (errno is set).

Errors:
EBADF An invalid descriptor was specified.

EDESTADDRREQ

A destination address is required.

EFAULT An invalid user space address was specified for a
parameter.

EMSGSIZE The socket requires that the message be sent
atomically, but the size of the message made this
impossible.

ENOBUFS The system couldn’t allocate an internal buffer. The
operation may succeed when buffers become
available.

ENOTSOCK The argument s isn’t a socket.

May 31, 2004 Manifests 2651

send() 2004, QNX Software Systems Ltd.

EPIPE An attempt was made to write to a pipe (or FIFO)
that isn’t open for reading by any process. A
SIGPIPE signal is also sent to the process.

EWOULDBLOCK

The socket is marked nonblocking and the requested
operation would block.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
getsockopt(), ioctl(), recv(), select(), sendmsg(), sendto(), socket(),
write()

2652 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sendmsg()
Send a message and its header to a socket

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>

ssize t sendmsg(int s,
const struct msghdr * msg,
int flags);

Arguments:
s The descriptor for the socket; see socket().

msg A pointer to the message that you want to send. For a
description of the msghdr structure, see recvmsg().

flags A combination of the following:

� MSG OOB — process out-of-band data. Use this bit
when you send “out-of-band” data on sockets that
support this notion (e.g. SOCK STREAM). The
underlying protocol must also support out-of-band data.

� MSG DONTROUTE — bypass routing; create a direct
interface. You normally use this bit only in diagnostic or
routing programs.

The tiny TCP/IP stack doesn’t support MSG OOB and
MSG DONTROUTE. For more information, see npm-ttcpip.so in
the Utilities Reference.

�

Library:
libsocket

Description:
The sendmsg() function is used to transmit a message to another
socket. You can use send() only when the socket is in a connected
state; you can use sendmsg() at any time.

May 31, 2004 Manifests 2653

sendmsg() 2004, QNX Software Systems Ltd.

No indication of failure to deliver is implicit in a sendmsg(). Locally
detected errors are indicated by a return value of -1.

If no message space is available at the socket to hold the message to
be transmitted, then sendmsg() normally blocks, unless the socket has
been placed in nonblocking I/O mode. You can use select() to
determine when it’s possible to send more data.

Returns:
The number of bytes sent, or -1 if an error occurs (errno is set).

Errors:
EBADF An invalid descriptor was specified.

EDESTADDRREQ

A destination address is required.

EFAULT An invalid user space address was specified for a
parameter.

EMSGSIZE The socket requires that the message be sent
atomically, but the size of the message made this
impossible.

ENOBUFS The system couldn’t allocate an internal buffer. The
operation may succeed when buffers become
available.

ENOTSOCK The argument s isn’t a socket.

EWOULDBLOCK

The socket is marked nonblocking and the requested
operation would block.

Classification:
Standard Unix, POSIX 1003.1-2001

2654 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sendmsg()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
getsockopt(), ioctl(), recv(), select(), send(), sendto(), socket(), write()

May 31, 2004 Manifests 2655

sendto() 2004, QNX Software Systems Ltd.

Send a message to a socket at a specific address

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>

ssize t sendto(int s,
const void * msg,
size t len,
int flags,
const struct sockaddr * to,
socklen t tolen);

Arguments:
s The descriptor for the socket; see socket().

msg A pointer to the message that you want to send.

len The length of the message.

flags A combination of the following:

� MSG OOB — process out-of-band data. Use this bit
when you send “out-of-band” data on sockets that
support this notion (e.g. SOCK STREAM). The
underlying protocol must also support out-of-band data.

� MSG DONTROUTE — bypass routing; create a direct
interface. You normally use this bit only in diagnostic or
routing programs.

The tiny TCP/IP stack doesn’t support MSG OOB and
MSG DONTROUTE. For more information, see npm-ttcpip.so in
the Utilities Reference.

�

to A pointer to a sockaddr object that specifies the address of
the target.

tolen A socklen t object that specifies the size of the to address.

2656 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sendto()

Library:
libsocket

Description:
The sendto() function is used to transmit a message to another socket.
You can use send() only when the socket is in a connected state; you
can use sendto() at any time.

The address of the target is given by to, with tolen specifying its size.
The length of the message is given by len. If the message is too long
to pass atomically through the underlying protocol, the error
EMSGSIZE is returned, and the message isn’t transmitted.

No indication of failure to deliver is implicit in a sendto(). Locally
detected errors are indicated by a return value of -1.

If no message space is available at the socket to hold the message to
be transmitted, then sendto() normally blocks, unless the socket has
been placed in nonblocking I/O mode. You can use select() to
determine when it’s possible to send more data.

Returns:
The number of bytes sent, or -1 if an error occurs (errno is set).

Errors:
EBADF An invalid descriptor was specified.

EDESTADDRREQ

A destination address is required.

EFAULT An invalid user space address was specified for a
parameter.

EMSGSIZE The socket requires that the message be sent
atomically, but the size of the message made this
impossible.

May 31, 2004 Manifests 2657

sendto() 2004, QNX Software Systems Ltd.

ENOBUFS The system couldn’t allocate an internal buffer. The
operation may succeed when buffers become
available.

ENOTSOCK The argument s isn’t a socket.

EWOULDBLOCK

The socket is marked nonblocking and the requested
operation would block.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
getsockopt(), ioctl(), recv(), select(), send(), sendmsg(), socket(),
write()

2658 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. servent
Structure for information from the services database

Synopsis:
#include <netdb.h>

struct servent {
char * s name;
char ** s aliases;
int s port;
char * s proto;

};

Description:
This structure is used to hold the broken-out fields of a line in the
network services database, /etc/services. The members of this
structure are:

s name The name of the service.

s aliases A zero-terminated list of alternate names for the
service.

s port The port number that the service resides at. Port
numbers are returned in network byte order.

s proto The name of the protocol to use when contacting the
service.

Classification:
Unix, POSIX 1003.1-2001

See also:
endservent(), getservbyname(), getservbyport(), getservent(),
setservent()

/etc/services in the Utilities Reference

May 31, 2004 Manifests 2659

setbuf() 2004, QNX Software Systems Ltd.

Associate a buffer with a stream

Synopsis:
#include <stdio.h>

void setbuf(FILE *fp,
char *buffer);

Arguments:
fp The stream that you want to associate with a buffer.

buffer NULL, or a pointer to the buffer; see below.

Library:
libc

Description:
The setbuf() function associates the supplied buffer with the stream
specified by fp. If you want to call setbuf(), you must call it after
opening the stream, but before doing any reading, writing, or seeking.

If buffer is NULL, all input/output for the stream is completely
unbuffered. If buffer isn’t NULL, then it must point to an array that’s
at least BUFSIZ characters long, and all input/output is fully buffered.

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

char *buffer;
FILE *fp;

buffer = (char *)malloc(BUFSIZ);
if(buffer == NULL) {

return EXIT FAILURE;
}

fp = fopen("some file", "r");

2660 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setbuf()

setbuf(fp, buffer);

/* . */
/* . */
/* . */

fclose(fp);

free(buffer);

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
fopen(), setvbuf()

May 31, 2004 Manifests 2661

setbuffer() 2004, QNX Software Systems Ltd.

Assign block buffering to a stream

Synopsis:
#include <unix.h>

void setbuffer(FILE *iop,
char *abuf,
size t asize);

Arguments:
iop The stream that you want to set the buffering for.

abuf NULL, or a pointer to the buffer that you want the stream to
use.

asize The size of the buffer.

Library:
libc

Description:
The setbuffer() and setlinebuf() functions assign buffering to a stream.
The types of buffering available are:

Unbuffered Information appears on the destination file or
terminal as soon as written.

Block-buffered Many characters are saved and written as a block.

Line-buffered Characters are saved until either a newline is
encountered or input is read from stdin.

You can use fflush() to force the block out early. Normally all files are
block-buffered. A buffer is obtained from malloc() when you perform
the first getc() or putc() on the file. If the standard stream stdout refers
to a terminal, it’s line-buffered. The standard stream stderr is
unbuffered by default.

2662 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setbuffer()

If you want to use setbuffer(), you must call it after opening the
stream, but before doing any reading or writing. It uses the character
array abuf , whose size is given by asize, instead of an automatically
allocated buffer. If abuf is NULL, input and output are completely
unbuffered. A manifest constant BUFSIZ, defined in the <stdio.h>
header, tells how large an array is needed:

char buf[BUFSIZ];

You can use freopen(). to change a stream from unbuffered or
line-buffered to block buffered. To change a stream from
block-buffered or line-buffered to unbuffered, call freopen(), and then
call setbuf() with a buffer argument of NULL.

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
A common source of error is allocating buffer space as an
automatic variable in a code block, and then failing to close the
stream in the same block.

See also:
fclose(), fflush(), fopen(), fread(), freopen(), getc(), malloc(), printf(),
putc(), puts(), setbuf(), setlinebuf(), setvbuf()

May 31, 2004 Manifests 2663

setdomainname() 2004, QNX Software Systems Ltd.

Set the domain name of the current host

Synopsis:
#include <unistd.h>

int setdomainname(const char * name,
size t namelen);

Arguments:
name The domain name.

namelen The length of the name.

Library:
libsocket

Description:
The setdomainname() function sets the domain name of the host
machine. Only the superuser (root) can use this function and even
then, the function is normally used only when bootstrapping a system.

Returns:
0 Success.

-1 Failure; errno is set.

Errors:
EFAULT The name or namelen parameters gave an invalid

address.

EPERM The caller tried to set the domain name without being
the superuser.

2664 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setdomainname()

Classification:
Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
getdomainname()

May 31, 2004 Manifests 2665

setegid() 2004, QNX Software Systems Ltd.

Set the effective group ID for a process

Synopsis:
#include <unistd.h>

int setegid(gid t gid);

Arguments:
gid The effective group ID that you want to use for the process.

Library:
libc

Description:
The setegid() function lets the calling process set the effective group
ID based on the following:

� If the process is the superuser, the setegid() function sets the
effective group ID to gid.

� If the process isn’t the superuser, but gid is equal to the real group
ID or saved set-group ID, setegid() sets the effective group ID to
gid.

The real and saved group ID aren’t changed.

If a set-group ID process sets its effective group ID to its real group
ID, it can still set its effective group ID back to the saved set-group
ID.

�

The “superuser” is defined as any process with an effective user ID of
0, or an effective user ID of root.

2666 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setegid()

Returns:
Zero for success, or -1 if an error occurs (errno is set).

Errors:
EINVAL The value of gid is out of range.

EPERM The process isn’t the superuser, and gid doesn’t match
the real group ID or the saved set-group ID.

Examples:
/*
* This process sets its effective group ID to 2
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int main(void)
{

gid t oegid;

oegid = getegid();
if(setegid(2) == -1) {

perror("setegid");
return EXIT FAILURE;

}

printf("Was effective group %d, is 2\n", oegid);
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1a

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 2667

setegid() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, getegid(), seteuid(), setgid(), setuid()

2668 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setenv()
Create or change an environment variable

Synopsis:
#include <stdlib.h>

int setenv(const char* name,
const char* value,
int overwrite);

Arguments:
name The name of the environment variable that you want to

set.

value NULL, or the value for the environment variable; see
below.

overwrite A nonzero value if you want the function to overwrite
the variable if it exists, or 0 if you don’t want to
overwrite the variable.

Library:
libc

Description:
The setenv() function sets the environment variable name to value. If
name doesn’t exist in the environment, it’s created; if name exists and
overwrite is nonzero, the variable’s old value is overwritten with
value; otherwise, it isn’t changed.

Copies of the specified name and value are placed in the environment.

If value is NULL, the environment variable specified by name is
removed from the environment.

May 31, 2004 Manifests 2669

setenv() 2004, QNX Software Systems Ltd.

The value of the global environ pointer could be changed by a call to
the setenv() function.

�

Environment variable names are case-sensitive.

Returns:
0 Success.

Nonzero An error occurred (errno is set).

Errors:
ENOMEM Not enough memory to allocate a new environment

variable.

Examples:
Change the string assigned to INCLUDE and then display the new
string:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

char* path;

if(setenv("INCLUDE",
"/usr/nto/include:/home/fred/include",
1) == 0) {

if((path = getenv("INCLUDE")) != NULL) {
printf("INCLUDE=%s\n", path);

}
}

return EXIT SUCCESS;
}

2670 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setenv()

Classification:
POSIX 1003.1a

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

Caveats:
The setenv() function manipulates the environment pointed to by the
global environ variable.

See also:
clearenv(), errno, execl(), execle(), execlp(), execlpe(), execv(),
execve(), execvp(), execvpe(), getenv(), putenv(), searchenv(),
spawn(), spawnl(), spawnle(), spawnlp(), spawnlpe(), spawnp(),
spawnv(), spawnve(), spawnvp(), spawnvpe(), system(), unsetenv()

May 31, 2004 Manifests 2671

seteuid() 2004, QNX Software Systems Ltd.

Set the effective user ID

Synopsis:
#include <unistd.h>

int seteuid(uid t uid);

Arguments:
uid The effective user ID that you want to use for the process.

Library:
libc

Description:
The seteuid() function lets the calling process set the effective user
ID, based on the following:

� If the process is the superuser, the seteuid() function sets the
effective user ID to uid.

� If the process isn’t the superuser, and uid is equal to the real user
ID or saved set-user ID, seteuid() sets the effective user ID to uid.

The real and saved user IDs aren’t changed.

If a set-UID process sets its effective user ID to its real user ID, it can
still set its effective user ID back to the saved set-UID.

�

The “superuser” is defined as any process with an effective user ID of
0, or an effective user ID of root.

Returns:
0 Success.

-1 An error occurred (errno is set).

2672 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. seteuid()

Errors:
EINVAL The value of uid is out of range.

EPERM The process isn’t the superuser, and uid doesn’t match
the real user ID or the saved set-user ID.

Examples:
/*
* This process sets its effective userid to 0 (root).
*/

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{

uid t oeuid;

oeuid = geteuid();
if(seteuid(0) == -1) {

perror("seteuid");
return EXIT FAILURE;

}

printf("effective userid now 0, was %d\n",
oeuid);

return EXIT SUCCESS;
}

Classification:
POSIX 1003.1a

Safety

Cancellation point No

Interrupt handler No

continued. . .

May 31, 2004 Manifests 2673

seteuid() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

See also:
errno, geteuid(), setegid(), setuid(), setgid()

2674 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setgid()
Set the real, effective and saved group IDs

Synopsis:
#include <unistd.h>

int setgid(gid t gid);

Arguments:
gid The group ID that you want to use for the process.

Library:
libc

Description:
The setgid() function lets the calling process set the real, effective and
saved group IDs, based on the following:

� If the process is the superuser, the setgid() function sets the real
group ID, effective group ID and saved group ID to gid.

� If the process isn’t the superuser, but gid is equal to the real group
ID, setgid() sets the effective group ID to gid; the real and saved
group IDs aren’t changed.

This function doesn’t change any supplementary group IDs of the
calling process.

If you wish to change only the effective group ID, and even if you are
the superuser, you should consider using the setegid() function.

The “superuser” is defined as any process with an effective user ID of
0, or an effective user ID of root.

Returns:
0 Success.

-1 An error occurred; errno is set to indicate the error.

May 31, 2004 Manifests 2675

setgid() 2004, QNX Software Systems Ltd.

Errors:
EINVAL The value of gid is invalid.

EPERM The process doesn’t have appropriate privileges, and gid
doesn’t match the real group ID.

Examples:
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{

gid t ogid;

ogid = getgid();
if(setgid(2) == -1) {

perror("setgid");
return EXIT FAILURE;

}
printf("group id is now 2, was %d\n", ogid);
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

2676 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setgid()

See also:
errno, setegid(), seteuid(), setuid()

May 31, 2004 Manifests 2677

setgrent() 2004, QNX Software Systems Ltd.

Rewind to the start of the group database file

Synopsis:
#include <grp.h>

int setgrent(void);

Library:
libc

Description:
The setgrent() function rewinds to the start of the group name
database file. It’s provided for programs that make multiple lookups
in the group database (using the getgrgid() and getgrnam() calls) to
avoid the default opening and closing of the group database for each
access.

Returns:
0 Success.

-1 An error occurred.

Errors:
The setgrent() function uses fopen(). As a result, errno can be set to
an error for the fopen() call.

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

continued. . .

2678 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setgrent()

Safety

Signal handler No

Thread No

See also:
endgrent(), getgrent()

May 31, 2004 Manifests 2679

setgroups() 2004, QNX Software Systems Ltd.

Set supplementary group IDs

Synopsis:
#include <unistd.h>

int setgroups(int ngroups,
const gid t *gidset);

Arguments:
ngroups The number of entries in the gidset array.

gidset An array of the supplementary group IDs that you want
to assign to the current user. This number of entries in
this array can’t exceed NGROUPS MAX.

Library:
libc

Description:
The setgroups() function sets the group access list of the current user
to the array of group IDs in gidset.

Only root can set new groups.�

Returns:
0, or -1 if an error occurred (errno is set).

Errors:
EFAULT The gidset argument isn’t a valid pointer.

EPERM The caller isn’t root.

2680 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setgroups()

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
getgroups(), initgroups()

May 31, 2004 Manifests 2681

sethostent() 2004, QNX Software Systems Ltd.

Open the host database file

Synopsis:
#include <netdb.h>

void sethostent(int stayopen);

Arguments:
stayopen Nonzero if you want all queries to the name server to

use TCP and you want the connection to be retained
after each call to gethostbyname() or gethostbyaddr().

If the stayopen flag is zero, queries use UDP datagrams.

Library:
libsocket

Description:
The sethostent() routine opens the host database file.

You can use the sethostent() function to request the use of a connected
TCP socket for queries.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

2682 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sethostent()

Caveats:
This function uses static data; if the data is needed for future use, it
should be copied before any subsequent calls overwrite it.

See also:
endhostent(), gethostbyaddr(), gethostbyname(), gethostent(),
gethostent r(), hostent

/etc/hosts, /etc/resolv.conf in the Utilities Reference

May 31, 2004 Manifests 2683

sethostname() 2004, QNX Software Systems Ltd.

Set the name of the current host

Synopsis:
#include <unistd.h>

int sethostname(const char * name,
size t namelen);

Arguments:
name The name that you want to use for the host machine.

Hostnames are limited to MAXHOSTNAMELEN
characters (defined in <sys/param.h>).

namelen The length of the name.

Library:
libc

Description:
The sethostname() function sets the name of the host machine to be
name. Only the superuser can call this function; this is normally done
only at boot time.

This function sets the value of the CS HOSTNAME configuration
string, not that of the HOSTNAME environment variable.

�

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EFAULT Either name or namelen gave an invalid address.

EPERM Although the caller wasn’t the superuser, it tried to set
the hostname.

2684 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sethostname()

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
This function is restricted to the superuser, and is normally used only
at boot time.

See also:
gethostname()

May 31, 2004 Manifests 2685

SETIOV() 2004, QNX Software Systems Ltd.

Fill in the fields of an iov t structure

Synopsis:
#include <unistd.h>

void SETIOV(iov t *msg,
void *addr,
size t len);

Arguments:
msg A pointer to the iov t structure structure that you want to

set.

addr The value you want to use for the structure’s iov base
member.

len The value you want to use for the structure’s iov len
member.

Description:
The SETIOV() macro fills in the fields of an iov t message structure.
The iov t structure consists of two fields:

typedef struct iovec {
void *iov base;
size t iov len;

} iov t;

SETIOV() doesn’t make a copy of the data that addr points to; it just
copies the pointer.

�

Classification:
QNX Neutrino

2686 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SETIOV()

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
GETIOVBASE(), GETIOVLEN(), MsgKeyData(), MsgReadv(),
MsgReceivev(), MsgReplyv(), MsgSendv(), MsgWritev()

May 31, 2004 Manifests 2687

setitimer() 2004, QNX Software Systems Ltd.

Set the value of an interval timer

Synopsis:
#include <sys/time.h>

int setitimer (int which,
const struct itimerval *value,
struct itimerval *ovalue);

Arguments:
which The interval time whose value you want to set. Currently,

this must be ITIMER REAL.

value A pointer to a itimerval structure that specifies the
value that you want to set the interval timer to.

ovalue NULL, or a pointer to a itimerval structure where the
function can store the old value of the interval timer.

Library:
libc

Description:
The system provides each process with interval timers, defined in
<sys/time.h>. The setitimer() function sets the value of the timer
specified by which to the value specified in the structure pointed to by
value, and if ovalue isn’t NULL, stores the previous value of the timer
in the structure it points to.

A timer value is defined by the itimerval structure (see
gettimeofday() for the definition of timeval), which includes the
following members:

struct timeval it interval; /* timer interval */
struct timeval it value; /* current value */

The it value member indicates the time to the next timer expiration.
The it interval member specifies a value to be used in reloading

2688 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setitimer()

it value when the timer expires. Setting it value to 0 disables a timer,
regardless of the value of it interval. Setting it interval to 0 disables a
timer after its next expiration (assuming it value is nonzero).

Time values smaller than the resolution of the system clock are
rounded up to the resolution of the system clock.

The only supported timer is ITIMER REAL, which decrements in real
time. A SIGALRM signal is delivered when this timer expires.

The SIGALRM so generated isn’t maskable on this bound thread by
any signal-masking function, pthread sigmask(), or sigprocmask().

Returns:
0 Success.

-1 An error occurred; errno is set.

Errors:
EINVAL The specified number of seconds is greater than

100,000,000, the number of microseconds is greater than
or equal to 1,000,000, or the which argument is
unrecognized.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 2689

setitimer() 2004, QNX Software Systems Ltd.

Caveats:
All flags to setitimer() other than ITIMER REAL behave as
documented only with “bound” threads. Their ability to mask the
signal works only with bound threads. If the call is made using one of
these flags from an unbound thread, the system call returns -1 and sets
errno to EACCES.

These behaviors are the same for bound or unbound POSIX threads.
A POSIX thread with system-wide scope, created by the call:

pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);

is equivalent to a Solaris bound thread. A POSIX thread with local
process scope, created by the call:

pthread attr setscope(&attr, PTHREAD SCOPE PROCESS);

is equivalent to a Solaris unbound thread.

The microseconds field shouldn’t be equal to or greater than one
second.

The setitimer() function is independent of alarm().

Don’t use setitimer(ITIMER REAL) with the sleep() routine. A sleep()
call wipes out knowledge of the user signal handler for SIGALRM.

The granularity of the resolution of the alarm time is
platform-dependent.

See also:
alarm(), getitimer(), gettimeofday(), pthread attr setscope(),
pthread sigmask(), sigprocmask(), sleep(), sysconf()

2690 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setjmp()
Save the calling environment for longjmp()

Synopsis:
#include <setjmp.h>

int setjmp(jmp buf env);

Arguments:
env A buffer where the function can save the calling environment.

Library:
libc

Description:
The setjmp() function saves the calling environment in its env
argument for use by the longjmp() function.

Error handling can be implemented by using setjmp() to record the
point to return to following an error. When an error is detected in a
function, that function uses longjmp() to jump back to the recorded
position. The original function that called setjmp() must still be active
(that is, it can’t have returned to the function that called it).

Be careful to ensure that any resources (allocated memory, opened
files, etc) are cleaned up properly.

WARNING: Do not use longjmp() or siglongjmp() to restore an
environment saved by a call to setjmp() or sigsetjmp() in another
thread. If you’re lucky, your application will crash; if not, it’ll
look as if it works for a while, until random scribbling on the
stack causes it to crash.

Returns:
Zero on the first call, or nonzero if the return is the result of a call to
the longjmp() function.

May 31, 2004 Manifests 2691

setjmp() 2004, QNX Software Systems Ltd.

Examples:
#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp buf env;

void rtn(void)
{

printf("about to longjmp()\n");
longjmp(env, 14);

}

int main(void)
{

int ret val;

ret val = setjmp(env);

if(ret val == 0) {
printf("after setjmp(): %d\n", ret val);
rtn();
printf("back from rtn(): %d\n", ret val);

} else {
printf("back from longjmp(): %d\n", ret val);

}

return EXIT SUCCESS;
}

produces the output:

after setjmp(): 0
about to longjmp()
back from longjmp(): 14

Classification:
ANSI, POSIX 1003.1

Safety

Cancellation point No

continued. . .

2692 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setjmp()

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
longjmp()

May 31, 2004 Manifests 2693

setkey() 2004, QNX Software Systems Ltd.

Set the key used in encryption

Synopsis:
#include <stdlib.h>

void setkey(const char * key);

Arguments:
key A 64-character array of binary values (numeric 0 or 1).

Library:
libc

Description:
The setkey() function allows limited access to the NBS Data
Encryption Standard (DES) algorithm itself. It derives a 56-bit key
from the given key by dividing the array into groups of 8 and
ignoring the last bit in each group.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

2694 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setkey()

See also:
crypt(), encrypt()

May 31, 2004 Manifests 2695

setlinebuf() 2004, QNX Software Systems Ltd.

Assign line buffering to a stream

Synopsis:
#include <unix.h>

int setlinebuf(FILE *iop);

Arguments:
iop The stream that you want to use line buffering.

Library:
libc

Description:
The setbuffer() and setlinebuf() functions assign buffering to a stream.
The types of buffering available are:

Unbuffered Information appears on the destination file or
terminal as soon as written.

Block-buffered Many characters are saved and written as a block.

Line-buffered Characters are saved until either a newline is
encountered or input is read from stdin.

You can use fflush() to force the block out early. Normally all files are
block-buffered. A buffer is obtained from malloc() when the first
getc() or putc() is performed on the file. If the standard stream stdout
refers to a terminal, it’s line-buffered. The standard stream stderr is
unbuffered by default.

You can use setlinebuf() to change the buffering on a stream from
block-buffered or unbuffered to line-buffered. Unlike setbuffer(), you
can call setlinebuf() at any time that the stream iop is active.

You can use freopen(). to change a stream from unbuffered or
line-buffered to block buffered. To change a stream from
block-buffered or line-buffered to unbuffered, call freopen(), and then
call setbuf() with a buffer argument of NULL.

2696 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setlinebuf()

Returns:
No useful value.

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
fclose(), fflush(), fopen(), fread(), freopen(), getc(), malloc(), printf(),
putc(), puts(), setbuf(), setbuffer(), setvbuf()

May 31, 2004 Manifests 2697

setlocale() 2004, QNX Software Systems Ltd.

Select a program’s locale

Synopsis:
#include <locale.h>

char * setlocale(int category,
const char * locale);

Arguments:
category The part of the environment that you want to set; one of:

� LC ALL — select the entire locale environment.

� LC COLLATE — select only the collating sequence.

� LC CTYPE — select only the character-handling
information.

� LC MESSAGES — specify the language to be used
for messages.

� LC MONETARY — select only monetary formatting
information.

� LC NUMERIC — select only the numeric-format
environment.

� LC TIME — select only the time-related
environment.

locale The locale that you want to use. The following built-in
locales are offered:

� C (default)

� C-TRADITIONAL

� POSIX

Library:
libc

2698 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setlocale()

Description:
The setlocale() function selects a program’s locale, according to the
specified category and the specified locale.

A locale affects several things:

� The collating sequence (the order in which characters compare
with one another) used by strcoll() or wcscoll().

� The way certain character-handling functions (such as isalnum()
and isalpha()) operate. The wide-character versions include
iswalnum() and iswalpha().

� The decimal-point character used in formatted input/output and
string conversion (printf(), scanf(), and friends).

� The format and names used in the string produced by the strftime()
and wcsftime() functions.

See the localeconv() function for more information about the locale.

At the start of a program, the default C locale is initialized as if the
following call to setlocale() appeared at the start of main():

(void)setlocale(LC ALL, "C");

Returns:
A pointer to a system-generated string indicating the previous locale,
or NULL if an error occurs.

Classification:
ANSI

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 2699

setlocale() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
isalpha(), isascii(), localeconv(), printf(), scanf(), strcat(), strchr(),
strcmp(), strcoll(), strcpy(), strftime(), strlen(), strpbrk(), strspn(),
strtod(), strtok(), strxfrm() tm,

2700 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setlogmask()
Set the system log priority mask

Synopsis:
#include <syslog.h>

int setlogmask(int maskpri);

Arguments:
maskpri The new log priority mask; see below.

Library:
libc

Description:
The setlogmask() function sets the log priority mask to maskpri and
returns the previous mask. Calls to syslog() or vsyslog() with a
priority that isn’t set in maskpri are rejected.

You can calculate the mask for an individual priority pri with the
macro:

LOG MASK(pri);

You can get the mask for all priorities up to and including toppri with
the macro:

LOG UPTO(toppri);

The default allows all priorities to be logged. See the syslog()
function for a list of the priorities.

Returns:
The previous log mask level.

May 31, 2004 Manifests 2701

setlogmask() 2004, QNX Software Systems Ltd.

Examples:
See syslog().

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

See also:
closelog(), openlog(), syslog(), vsyslog(),

logger, syslogd in the Utilities Reference

2702 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setnetent()
Open the network name database file

Synopsis:
#include <netdb.h>

void setnetent(int stayopen);

Arguments:
stayopen Nonzero if you don’t want the network database to be

closed after each call to getnetbyname() or
getnetbyaddr().

Library:
libsocket

Description:
The setnetent() function opens and rewinds the network name
database file.

Files:
/etc/networks

Network name database file.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

May 31, 2004 Manifests 2703

setnetent() 2004, QNX Software Systems Ltd.

Caveats:
This function uses static data; if you need the data for future use, you
should copy it before any subsequent calls overwrite it.

See also:
endnetent(), getnetbyaddr(), getnetbyname(), getnetent(), netent

/etc/networks in the Utilities Reference

2704 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setpgid()
Join or create a process group

Synopsis:
#include <process.h>

int setpgid(pid t pid,
pid t pgid);

Arguments:
pid 0, or the ID of the process whose process group you want to

set.

pgid 0, or the process group ID that you want to join or create.

Library:
libc

Description:
The setpgid() function is used either to join an existing process group
or to create a new process group within the session of the calling
process. The process group ID of a session leader doesn’t change.

The following definitions are worth mentioning:

Process An executing instance of a program, identified by a
nonnegative integer called a process ID.

Process group A collection of one or more processes, with a
unique process group ID. A process group ID is a
positive integer.

On successful completion, the process group ID of the process with a
process ID matching pid is set to pgid. As a special case, you can
specify either pid or pgid as zero, meaning that the process ID of the
calling process is to be used.

May 31, 2004 Manifests 2705

setpgid() 2004, QNX Software Systems Ltd.

Returns:
0 Success.

-1 An error occurred; errno is set.

Errors:
EACCES The value of the pid argument matches the process ID

of a child process of the calling process, and the child
process has successfully executed one of the exec*()
functions.

EINVAL The value of pgid is less than zero.

ENOSYS The setpgid() function isn’t supported by this
implementation (included for POSIX compatibility).

EPERM The calling process doesn’t have sufficient privilege to
set the process group id pgid on process pid.

ESRCH The process pid doesn’t exist.

Examples:
/*
* The process joins process group 0.
*/

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <process.h>

int main(void)
{

if(setpgid(getpid(), 0) == -1) {
perror("setpgid");

}
printf("%d belongs to process group %d\n",

getpid(), getpgrp());
return EXIT SUCCESS;

}

2706 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setpgid()

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, getpgid(), getsid(), setsid()

May 31, 2004 Manifests 2707

setpgrp() 2004, QNX Software Systems Ltd.

Set the process group

Synopsis:
#include <unistd.h>

pid t setpgrp(void);

Library:
libc

Description:
If the calling process isn’t already a session leader, setpgrp() makes it
one by setting its process group ID and session ID to the value of its
process ID, and releases its controlling terminal.

Returns:
The new process group ID.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
execl(), execle(), execlp(), execlpe(), execv(), execve(), execvp(),
execvpe(), fork(), getpid(), getpgrp(), getsid(), kill(), signal()

2708 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setprio()
Set the priority of a process

Synopsis:
#include <sched.h>

int setprio(pid t pid,
int prio);

Arguments:
pid The process ID of the process whose priority you want to set.

prio The new priority.

Library:
libc

Description:
The setprio() function changes the priority of thread 1 of process pid
to priority prio. If pid is zero, the priority of the calling thread is set.

Returns:
The previous priority, or -1 if an error occurred (errno is set).

Errors:
EINVAL The priority prio isn’t a valid priority.

EPERM The calling process doesn’t have sufficient privilege to
set the priority.

ESRCH The process pid doesn’t exist.

Classification:
QNX 4

May 31, 2004 Manifests 2709

setprio() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The getprio() and setprio() functions are included in the QNX
Neutrino libraries for porting QNX 4 applications. For new programs,
use sched setparam() or pthread setschedparam().

See also:
errno, getprio(), pthread getschedparam(), pthread setschedparam(),
sched getparam(), sched get priority max(), sched get priority min(),
sched getscheduler(), sched setscheduler(), sched yield()

2710 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setprotoent()
Open the protocol name database file

Synopsis:
#include <netdb.h>

void setprotoent(int stayopen);

Arguments:
stayopen Nonzero if you don’t want the database to be closed

after each call to getprotobyname() or
getprotobynumber().

Library:
libsocket

Description:
The setprotoent() function opens and rewinds the protocol name
database file. If the stayopen flag is nonzero, the protocol name
database isn’t closed after each call to getprotobyname() or
getprotobynumber().

Files:
/etc/protocols

Protocol name database file.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

continued. . .

May 31, 2004 Manifests 2711

setprotoent() 2004, QNX Software Systems Ltd.

Safety

Thread No

Caveats:
This function uses static data; if you need the data for future use, you
should copy it before any subsequent calls overwrite it.

Currently, only the Internet protocols are understood.

See also:
endprotoent(), getprotobyname(), getprotobynumber(), getprotoent(),
protoent

/etc/protocols in the Utilities Reference

2712 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setpwent()
Rewind the password database file

Synopsis:
#include <sys/types.h>
#include <pwd.h>

int setpwent(void);

Library:
libc

Description:
The setpwent() function rewinds to the start of the password name
database file. It’s provided for programs that make multiple lookups
in the password database (using the getpwuid() and getpwnam() calls)
to avoid opening and closing the password database for each access.

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
endpwent(), getpwent()

May 31, 2004 Manifests 2713

setregid() 2004, QNX Software Systems Ltd.

Set real and effective group IDs

Synopsis:
#include <unistd.h>

int setregid(gid t rgid,
gid t egid);

Arguments:
rgid The real group ID that you want to use for the process, or -1

if you don’t want to change it.

egid The effective group ID that you want to use for the process,
or -1 if you don’t want to change it.

Library:
libc

Description:
The setregid() function sets the real and effective group IDs of the
calling process. If rgid or egid is -1, the corresponding real or
effective group ID is left unchanged.

If the effective user ID of the calling process is the superuser, you can
set the real group ID and the effective group ID to any legal value.

If the effective user ID of the calling process isn’t the superuser, you
can set either the real group ID to the saved set-group ID, or the
effective group ID to either the saved set-group ID or the real group
ID.

If a set-group ID process sets its effective group ID to its real group
ID, it can still set its effective group ID back to the saved set-group
ID.

�

The “superuser” is defined as any process with an effective user ID of
0, or an effective user ID of root.

2714 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setregid()

In either case, if you’re changing the real group ID (i.e. rgid isn’t -1),
or you’re changing the effective group ID to a value that isn’t equal to
the real group ID, the saved set-group ID is set to the new effective
group ID.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EINVAL The rgid or egid is out of range.

EPERM The calling process isn’t the superuser, and you tried to
change the effective group ID to a value other than the
real or saved set-group ID.

Or:

The calling process isn’t the superuser, and you tried to
change the real group ID to a value other than the
effective group ID.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 2715

setregid() 2004, QNX Software Systems Ltd.

See also:
execve(), getgid(), setreuid(), setuid()

2716 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setreuid()
Set real and effect user IDs

Synopsis:
#include <unistd.h>

int setreuid(uit t ruid,
uid t euid);

Arguments:
ruid The real user ID that you want to use for the process, or -1 if

you don’t want to change it.

euid The effective user ID that you want to use for the process, or
-1 if you don’t want to change it.

Library:
libc

Description:
The setreuid() function sets the real and effective user IDs of the
calling process. If ruid or euid is -1, the corresponding real or
effective user ID isn’t changed.

If the effective user ID of the calling process is the superuser, you can
set the real user ID and the effective user ID to any legal value.

If the effective user ID of the calling process isn’t the superuser, you
can set either the real user ID to the effective user ID, or the effective
user ID to the saved set-user ID or the real user ID.

If a set-UID process sets its effective user ID to its real user ID, it can
still set its effective user ID back to the saved set-UID.

�

In either case, if you’re changing the real user ID (i.e. ruid is not -1),
or you’re changing the effective user ID to a value that isn’t equal to
the real user ID, the saved set-user ID is set equal to the new effective
user ID.

May 31, 2004 Manifests 2717

setreuid() 2004, QNX Software Systems Ltd.

The “superuser” is defined as any process with an effective user ID of
0, or an effective user ID of root.

Returns:
Zero on success, or -1 if an error occurs (errno is set).

Errors:
EINVAL The ruid or euid is out of range.

EPERM The calling process isn’t the superuser, and you tried to
change the effective user ID to a value other than the
real or saved set-user ID.

Or

The calling process isn’t the superuser, and you tried to
change the real user ID to a value other than the
effective user ID.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
execve(), getuid(), setregid(), setuid()

2718 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setrlimit(), setrlimit64()
Set the limit on a system resource

Synopsis:
#include <sys/resource.h>

int setrlimit(int resource,
const struct rlimit * rlp);

int setrlimit64(int resource,
const struct rlimit64 * rlp);

Arguments:
resource The resource whose limit you want to get. For a list of

the possible resources, their descriptions, and the actions
taken when the current limit is exceeded, see below.

rlp A pointer to a rlimit or rlimit64 structure that
specifies the limit that you want to set for the resource.
The rlimit and rlimit64 structures include at least
the following members:

rlim t rlim cur; /* current (soft) limit */
rlim t rlim max; /* hard limit */

The rlim t type is an arithmetic data type to which you
can cast objects of type int, size t, and off t

without loss of information.

Library:
libc

Description:
The setrlimit() function sets the limits on the consumption of a variety
of system resources by a process and each process it creates. The
setrlimit64() function is a 64-bit version of setrlimit().

Each call to setrlimit() identifies a specific resource to be operated
upon as well as a resource limit. A resource limit is a pair of values:

May 31, 2004 Manifests 2719

setrlimit(), setrlimit64() 2004, QNX Software Systems Ltd.

one specifying the current (soft) limit, the other a maximum (hard)
limit.

A process can change soft limits to any value that’s less than or equal
to the hard limit. A process may (irreversibly) lower its hard limit to
any value that’s greater than or equal to the soft limit. Only a process
with an effective user ID of superuser can raise a hard limit. Both
hard and soft limits can be changed in a single call to setrlimit(),
subject to the constraints described above. Limits may have an
“infinite” value of RLIM INFINITY.

RLIM INFINITY is a special value, and it’s actual numerical value
doesn’t represent a valid VM/AS size in bytes.

�

The possible resources, their descriptions, and the actions taken when
the current limit is exceeded are summarized below:

Resource Description Action

RLIMIT CORE The maximum size, in bytes,
of a core file that may be
created by a process. A limit
of 0 prevents the creation of a
core file.

The writing of a core file
terminates at this size.

RLIMIT CPU The maximum amount of
CPU time, in seconds, used by
a process. This is a soft limit
only.

SIGXCPU is sent to the
process. If the process is
holding or ignoring SIGXCPU,
the behavior is defined by the
scheduling class.

RLIMIT DATA The maximum size of a
process’s heap in bytes

The brk() function fails with
errno set to ENOMEM.

continued. . .

2720 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setrlimit(), setrlimit64()

Resource Description Action

RLIMIT FSIZE The maximum size of a file in
bytes that may be created by a
process. A limit of 0 prevents
the creation of a file.

The SIGXFSZ signal is sent to
the process. If the process is
holding or ignoring SIGXFSZ,
continued attempts to increase
the size of a file beyond the
limit fail with errno set to
EFBIG.

RLIMIT NOFILE One more than the maximum
value that the system may
assign to a newly created
descriptor. This limit
constrains the number of file
descriptors that a process may
create.

continued. . .

May 31, 2004 Manifests 2721

setrlimit(), setrlimit64() 2004, QNX Software Systems Ltd.

Resource Description Action

RLIMIT STACK The maximum size of a
process’s stack in bytes. The
system will not automatically
grow the stack beyond this
limit.
Within a process, setrlimit()
increases the limit on the size
of your stack, but doesn’t
move current memory
segments to allow for that
growth. To guarantee that the
process stack can grow to the
limit, the limit must be altered
prior to the execution of the
process in which the new stack
size is to be used.
Within a multithreaded
process, setrlimit() has no
impact on the stack size limit
for the calling thread if the
calling thread isn’t the main
thread. A call to setrlimit() for
RLIMIT STACK impacts only
the main thread’s stack, and
should be made only from the
main thread, if at all.

The SIGSEGV signal is sent to
the process. If the process is
holding or ignoring SIGSEGV,
or is catching SIGSEGV and
hasn’t made arrangements to
use an alternate stack, the
disposition of SIGSEGV is set
to SIG DFL before it’s sent.

RLIMIT VMEM The maximum size of a
process’s mapped address
space in bytes.

If the limit is exceeded, the
brk(), mmap() and sbrk()
functions fail with errno set to
ENOMEM. In addition, the
automatic stack growth fails
with the effects outlined
above.

continued. . .

2722 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setrlimit(), setrlimit64()

Resource Description Action

RLIMIT AS Same as RLIMIT VMEM. Same as RLIMIT VMEM.

Because limit information is stored in the per-process information, the
shell builtin ulimit command must directly execute this system call
if it’s to affect all future processes created by the shell.

The values of the current limit of the following resources affect these
parameters:

Resource Parameter

RLIMIT FSIZE FCHR MAX

RLIMIT NOFILE OPEN MAX

When using the setrlimit() function, if the requested new limit is
RLIM INFINITY, there’s no new limit; otherwise, if the requested new
limit is RLIM SAVED MAX, the new limit is the corresponding saved
hard limit; otherwise, if the requested new limit is
RLIM SAVED CUR, the new limit is the corresponding saved soft
limit; otherwise, the new limit is the requested value. In addition, if
the corresponding saved limit can be represented correctly in an
object of type rlim t, then it’s overwritten with the new limit.

The result of setting a limit to RLIM SAVED MAX or
RLIM SAVED CUR is unspecified unless a previous call to getrlimit()
returned that value as the soft or hard limit for the corresponding
resource limit.

A limit whose value is greater than RLIM INFINITY is permitted.

The exec* family of functions also cause resource limits to be saved.

Returns:
0 Success.

-1 An error occurred (errno is set).

May 31, 2004 Manifests 2723

setrlimit(), setrlimit64() 2004, QNX Software Systems Ltd.

Errors:
EFAULT The rlp argument points to an illegal address.

EINVAL An invalid resource was specified, the new rlim cur
exceeds the new rlim max, or the limit specified can’t be
lowered because current usage is already higher than the
limit.

EPERM The limit specified to setrlimit() would’ve raised the
maximum limit value, and the effective user of the
calling process isn’t the superuser.

Classification:
setrlimit() is standard Unix; setrlimit64() is for large-file support

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
brk(), execl(), execle(), execlp(), execlpe(), execv(), execve(), execvp(),
execvpe(), fork(), getdtablesize(), getrlimit(), getrlimit64(), malloc(),
open(), signal(), sysconf()

2724 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setservent()
Open the network services database file

Synopsis:
#include <netdb.h>

void setservent(int stayopen);

Arguments:
stayopen Nonzero if you don’t want the database to be closed

after each call to getservbyname() or getservbyport().

Library:
libsocket

Description:
The setservent() function opens and rewinds the network services
database file. If the stayopen flag is nonzero, the network services
database won’t be closed after each call to getservbyname() or
getservbyport().

Files:
/etc/services

Network services database file.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

May 31, 2004 Manifests 2725

setservent() 2004, QNX Software Systems Ltd.

Caveats:
This function uses static data; if you need the data for future use, you
should copy it before any subsequent calls overwrite it.

See also:
endservent(), getservbyname(), getservbyport(), getservent(),
servent

/etc/services in the Utilities Reference.

2726 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setsid()
Create a new session

Synopsis:
#include <unistd.h>

pid t setsid(void);

Library:
libc

Description:
The setsid() function creates a new session with the calling process
becoming the process group leader with no controlling terminal. The
process group ID of the calling process is set to the process ID of the
calling process. The calling process is the only process in the new
process group, and is also the only process in the new session.

If the calling process is already a process group leader, a new session
isn’t created and an error is returned.

Returns:
The new process group ID for the calling process, or -1 if an error
occurred (errno is set).

Errors:
EPERM The calling process is already a process group leader, or

the process group ID of a process other than the calling
process matches the process ID of the calling process.

Examples:
/*
* You can only become a session leader if you are not
* a process group leader that is the default for a
* command run from the shell.
*/

#include <stdio.h>
#include <sys/types.h>

May 31, 2004 Manifests 2727

setsid() 2004, QNX Software Systems Ltd.

#include <unistd.h>
#include <stdlib.h>

int main(void)
{

if(fork())
{
if(setsid() == -1)

perror("parent: setsid");
else

printf("parent: I am a session leader\n");
}

else
{
if(setsid() == -1)

perror("child: setsid");
else

printf("child: I am a session leader\n");
}

return EXIT SUCCESS;
}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, getsid(), setpgid()

2728 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setsockopt()
Set options associated with a socket

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>

int setsockopt(int s,
int level,
int optname,
const void * optval,
socklen t optlen);

Arguments:
s The file descriptor of the socket that the option is to be

applied on, as returned by socket().

level The protocol layer that the option is to be applied to. In
most cases, it’s a socket-level option and is indicated by
SOL SOCKET.

optname The option for the socket file descriptor.

optval A pointer to the value of the option (in most cases,
whether the option is to be turned on or off). If no
option value is to be returned, optval may be NULL.

Most socket-level options use an int parameter for
optval. Others, such as the SO LINGER,
SO SNDTIMEO, and SO RCVTIMEO options, use
structures that also let you get data associated with the
option.

optlen A pointer to the length of the value of the option. This
argument is a value-result parameter; you should
initialize it to indicate the size of the buffer pointed to
by optval.

May 31, 2004 Manifests 2729

setsockopt() 2004, QNX Software Systems Ltd.

Library:
libsocket

Description:
The setsockopt() function sets the options associated with a socket.

See getsockopt() for more detailed information.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Invalid file descriptor s.

EDOM Value was set out of range.

EFAULT The address pointed to by optval isn’t in a valid part of
the process address space.

EINVAL No optval value was specified.

ENOPROTOOPT

The option is unknown at the level indicated.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

2730 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setsockopt()

See also:
ICMP, IP, TCP, and UDP protocols

getsockopt(), socket()

May 31, 2004 Manifests 2731

setspent() 2004, QNX Software Systems Ltd.

Rewind the shadow password database file

Synopsis:
#include <sys/types.h>
#include <shadow.h>

void setspent(void);

Library:
libc

Description:
The setspent() function rewinds to the start of the shadow password
database file. It’s provided for programs that make multiple lookups
in the database (using the getspnam() call) to avoid opening and
closing the shadow password database for each access.

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

See also:
fgetspent() endspent(), getspnam(), getspent() putspent()

2732 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setstate()
Reset the state of a pseudo-random number generator

Synopsis:
#include <stdlib.h>

char *setstate(const char *state);

Arguments:
state A pointer to the state array that you want to use.

Library:
libc

Description:
Once the state of the pseudo-random number generator has been
initialized, setstate() allows switching between state arrays. The array
defined by the state argument is used for further random-number
generation until initstate() is called or setstate() is called again. The
setstate() function returns a pointer to the previous state array.

This function is used in conjunction with the following:

initstate() Initialize the state of the pseudo-random number
generator.

random() Generate a pseudo-random number using a default
state.

srandom() Set the seed used by the pseudo-random number
generator.

After initialization, you can restart a state array at a different point in
one of two ways:

� Call initstate() with the desired seed, state array, and size of the
array.

May 31, 2004 Manifests 2733

setstate() 2004, QNX Software Systems Ltd.

� Call setstate() with the desired state, then call srandom() with the
desired seed. The advantage of using both of these functions is that
the size of the state array doesn’t have to be saved once it’s
initialized.

Returns:
A pointer to the previous state array, or NULL if an error occurred.

Examples:
See initstate().

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

See also:
drand48(), initstate(), rand(), random(), srand(), srandom()

2734 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. settimeofday()
Set the time and date

Synopsis:
#include <sys/time.h>

int settimeofday(const struct timeval *when,
void *not used);

Arguments:
when A pointer to a timeval structure that specifies the the

time that you want to set. The struct timeval

contains the following members:

� long tv sec — the number of seconds since the start
of the Unix Epoch.

� long tv usec — the number of microseconds.

not used This pointer must be NULL or the behavior of
settimeofday() is unspecified. This argument is provided
only for backwards compatibility.

Library:
libc

Description:
This function sets the time and date to the values stored in the
structure pointed to by when.

Returns:
0, or -1 if an error occurred (errno is set).

Errors:
EFAULT An error occurred while accessing the when buffer.

EPERM The calling process doesn’t have superuser permissions.

May 31, 2004 Manifests 2735

settimeofday() 2004, QNX Software Systems Ltd.

Classification:
Legacy Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The settimeofday() function is provided for compatibility with
existing Unix code. You shouldn’t use it in new code — use
clock settime() instead.

See also:
asctime(), asctime r(), clock gettime(), clock settime(), ctime(),
ctime r(), difftime(), gettimeofday(), gmtime(), gmtime r(),
localtime(), localtime r(), time()

2736 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setuid()
Set the real, effective and saved user IDs

Synopsis:
#include <unistd.h>

int setuid(uid t uid);

Arguments:
uid The user ID that you want to use for the process.

Library:
libc

Description:
The setuid() function lets the calling process set the real, effective and
saved user IDs based on the following:

� If the process is the superuser, setuid() sets the real user ID,
effective user ID and saved user ID to uid.

� If the process isn’t the superuser, but uid is equal to the real user
ID or saved set-user ID, setuid() sets the effective user ID to uid;
the real and saved user IDs aren’t changed.

If a set-UID process sets its effective user ID to its real user ID, it can
still set its effective user ID back to the saved set-UID.

�

If you wish to change only the effective user ID, and even if you are
the superuser, you should consider using the seteuid() function.

The “superuser” is defined as any process with an effective user ID of
0, or an effective user ID of root.

May 31, 2004 Manifests 2737

setuid() 2004, QNX Software Systems Ltd.

Returns:
0 for success, or -1 if an error occurs (errno is set).

Errors:
EINVAL The value of uid is out of range.

EPERM The process isn’t the superuser, and uid doesn’t match
the real user ID or saved set-user ID.

Examples:
/*
* This process sets its userid to 0 (root)
*/

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{

uid t ouid;

ouid = getuid();
if(setuid(0) == -1) {

perror("setuid");
return EXIT FAILURE;

}

printf("userid %d switched to 0\n", ouid);
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

continued. . .

2738 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setuid()

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, getuid(), setegid(), seteuid(), setgid()

May 31, 2004 Manifests 2739

setutent() 2004, QNX Software Systems Ltd.

Return to the beginning of the user-information file

Synopsis:
#include <utmp.h>

void setutent(void);

Library:
libc

Description:
The setutent() function resets the input stream to the beginning of the
file specified in PATH UTMP. Do this before each search for a new
entry if you want the entire file to be examined.

Files:
PATH UTMP

Specifies the user information file.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

2740 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setutent()

See also:
endutent(), getutent(), getutid(), getutline(), pututline(), utmp,
utmpname()

login in the Utilities Reference

May 31, 2004 Manifests 2741

setvbuf() 2004, QNX Software Systems Ltd.

Associate a buffer with a stream

Synopsis:
#include <stdio.h>

int setvbuf(FILE *fp,
char *buf,
int mode,
size t size);

Arguments:
fp The stream that you want to associate with a buffer.

buffer NULL, or a pointer to the buffer; see below.

mode How you want the stream to be buffered:

� IOFBF — input and output are fully buffered.

� IOLBF — output is line buffered (i.e. the buffer is
flushed when a newline character is written, when the
buffer is full, or when input is requested).

� IONBF — input and output are completely unbuffered.

size The size of the buffer.

Library:
libc

Description:
The setvbuf() function associates a buffer with the stream designated
by fp. If you want to call setvbuf(), you must call it after opening the
stream, but before doing any reading, writing, or seeking.

If buf isn’t NULL, the buffer it points to is used instead of an
automatically allocated buffer.

2742 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. setvbuf()

Returns:
0 Success.

EINVAL The mode argument isn’t valid.

ENOMEM The buf argument is NULL, size isn’t 0, and there isn’t
enough memory available to allocate a buffer.

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

char *buf;
FILE *fp;

fp = fopen("file", "r");
buf = malloc(1024);
setvbuf(fp, buf, IOFBF, 1024);

/* work with fp */
...

fclose(fp);

/* This is OUR buffer, so we have
* to free it. Do that AFTER
* you’ve closed the file.
*/

free(buf);
return EXIT SUCCESS;

}

Classification:
ANSI

May 31, 2004 Manifests 2743

setvbuf() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
fopen(), setbuf()

2744 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sfree()
Deallocate a block of memory

Synopsis:
#include <malloc.h>

void sfree(void *ptr,
size t size);

Arguments:
ptr NULL, or a pointer to the block of memory that you want to

free.

size The number of bytes to deallocate.

Library:
libc

Description:
When the value of the argument ptr is NULL, the sfree() function
does nothing; otherwise, the sfree() function deallocates size bytes of
memory located by the argument ptr, which was previously returned
by a call to the appropriate version of scalloc() or smalloc(). After
the call, the freed block is available for allocation.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 2745

sfree() 2004, QNX Software Systems Ltd.

Caveats:
Calling sfree() on a pointer already deallocated by a call to sfree()
could corrupt the memory allocator’s data structures.

The size must match the size of the allocated block.

See also:
calloc(), free(), realloc(), scalloc(), smalloc(), srealloc()

2746 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. shm ctl()
Give special attributes to a shared memory object

Synopsis:
#include <sys/mman.h>

int shm ctl(int fd,
int flags,
uint64 paddr,
uint64 size);

Arguments:
fd The file descriptor that’s associated with the shared

memory object, as returned by shm open().

flags One or more of the following bits, defined in
<sys/mman.h>:

� SHMCTL ANON — grow the object to be size bytes.

� SHMCTL PHYS — assign the physical address, paddr,
to the object.

� SHMCTL GLOBAL — a hint that any mapping to the
object could be global across all processes.

� SHMCTL PRIV — a hint that a mapping of this object
may require privileged access.

� SHMCTL LOWERPROT — a hint that the system may
map this object in such a way that it trades lower
memory protection for better performance.

paddr A physical address to assign to the object, if you set
SHMCTL PHYS in flags.

size The new size of the object, in bytes, if you set
SHMCTL ANON in flags.

May 31, 2004 Manifests 2747

shm ctl() 2004, QNX Software Systems Ltd.

Library:
libc

Description:
The shm ctl() function modifies the attributes of the shared memory
object identified by the handle, fd. This handle is the value returned
by shm open().

The combination SHMCTL ANON | SHMCTL PHYS has the same
behavior as for mmap(): it indicates that you want physically
contiguous RAM to be allocated for the object.

�

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EINVAL An invalid combination of flags was specified, or the

shared memory object is already “special.”

Examples:
The following examples go together. Run sharephyscreator,
followed by sharephysuser.

The sharephyscreator process maps in an area of physical
memory and then overlays it with a shared memory object. The
sharephysuser process opens that shared memory object in order
to access the physical memory.

/*

* sharephyscreator.c
*

* This maps in an area of physical memory and then

* overlays it with a shared memory object. This way, another process
* can open that shared memory object in order to access the physical

* memory. The other process in this case is sharephysuser.

2748 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. shm ctl()

*
* Note that the size and address that you pass to shm ctl() must be

* even multiples of the page size (sysconf(SC PAGE SIZE)).

*
* For VGA color text mode video memory:

* sharephyscreator /wally b8000

* Note that for VGA color text mode video memory, each character
* is followed by an attribute byte. Here we just use a space.

*/

#include <errno.h>

#include <fcntl.h>
#include <inttypes.h>

#include <stdio.h>

#include <stdlib.h>
#include <string.h>

#include <unistd.h>

#include <sys/mman.h>
#include <sys/neutrino.h>

#include <sys/stat.h>

char *progname = "sharephyscreator";

main(int argc, char *argv[])
{

char *text = "H e l l o w o r l d ! ";
int fd, memsize;

char *ptr, *name;

uint64 t physaddr;

if (argc != 3) {

printf("use: sharephyscreator shared memory object name physical address in hex\n");
printf("Example: sharephyscreator wally b8000\n");

exit(EXIT FAILURE);

}
name = argv[1];

physaddr = atoh(argv[2]);

memsize = sysconf(SC PAGE SIZE); /* this should be enough
for our string */

/* map in the physical memory */

ptr = mmap device memory(0, memsize, PROT READ|PROT WRITE, 0, physaddr);
if (ptr == MAP FAILED) {

printf("%s: mmap device memory for physical address %llx failed: %s\n",

progname, physaddr, strerror(errno));
exit(EXIT FAILURE);

}

/* open the shared memory object, create it if it doesn’t exist */

fd = shm open(name, O RDWR | O CREAT, 0);
if (fd == -1) {

printf("%s: error creating the shared memory object ’%s’: %s\n",

progname, name, strerror(errno));
exit(EXIT FAILURE);

}

/* overlay the shared memory object onto the physical memory */

May 31, 2004 Manifests 2749

shm ctl() 2004, QNX Software Systems Ltd.

if (shm ctl(fd, SHMCTL PHYS, physaddr, memsize) == -1) {
printf("%s: shm ctl failed: %s\n", progname, strerror(errno));

close(fd);

munmap(ptr, memsize);
shm unlink(name);

exit(EXIT FAILURE);

}
strcpy(ptr, text); /* write to the shared memory */

printf("\n%s: Physical memory mapped in, shared memory overlayed onto it.\n"

"%s: Wrote ’%s’ to physical memory.\n"

"%s: Sleeping for 20 seconds. While this program is sleeping\n"
"%s: run ’sharephysuser %s %d’.\n",

progname, progname, ptr, progname, progname, name,

strlen(text)+1);
sleep(20);

printf("%s: Woke up. Cleaning up and exiting ...\n", progname);

close(fd);

munmap(ptr, memsize);
shm unlink(name);

}

The following is meant to be run with sharephyscreator.

/*
* sharephysuser.c
*
* This one is meant to be run in tandem with sharephyscreator.
*
* Run it as: sharephysuser shared memory object name length
* Example: sharephysuser wally 49
*

*/

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/neutrino.h>
#include <sys/stat.h>

char *progname = "sharephysuser";

main(int argc, char *argv[])
{

int fd, len, i;
char *ptr, *name;

2750 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. shm ctl()

if (argc != 3) {
fprintf(stderr, "use: sharephysuser shared memory object name length\n");
fprintf(stderr, "Example: sharephysuser wally 49\n");
exit(EXIT FAILURE);

}
name = argv[1];
len = atoi(argv[2]);

/* open the shared memory object */

fd = shm open(name, O RDWR, 0);
if (fd == -1) {

fprintf(stderr, "%s: error opening the shared memory object ’%s’: %s\n",
progname, name, strerror(errno));

exit(EXIT FAILURE);
}

/* get a pointer to a piece of the shared memory, note that we
only map in the amount we need to */

ptr = mmap(0, len, PROT READ | PROT WRITE, MAP SHARED, fd, 0);
if (ptr == MAP FAILED) {

fprintf(stderr, "%s: mmap failed: %s\n", progname, strerror(errno));
exit(EXIT FAILURE);

}

printf("%s: reading the text: ", progname);
for (i = 0; i < len; i++)

printf("%c", ptr[i]);
printf("\n");

close(fd);
munmap(ptr, len);

}

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

continued. . .

May 31, 2004 Manifests 2751

shm ctl() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

See also:
mmap(), munmap(), mprotect(), shm open(), shm unlink()

2752 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. shm open()
Open a shared memory object

Synopsis:
#include <fcntl.h>
#include <sys/mman.h>

int shm open(const char * name,
int oflag,
mode t mode);

Arguments:
name The name of the shared memory object that you want to

open; see below.

oflag A combination of the following bits (defined in
<fcntl.h>):

� O RDONLY — open for read access only.

� O RDWR — open for read and write access.

� O CREAT — if the shared memory object exists, this flag
has no effect, except as noted under O EXCL below.
Otherwise, the shared memory object is created, and its
permissions are set in accordance with the value of mode
and the file mode creation mask of the process.

� O EXCL — if O EXCL and O CREAT are set, then
shm open() fails if the shared memory segment exists.
The check for the existence of the shared memory
object, and the creation of the object if it doesn’t exist,
are atomic with respect to other processes executing
shm open(), naming the same shared memory object
with O EXCL and O CREAT set.

� O TRUNC — if the shared memory object exists, and it’s
successfully opened O RDWR, the object is truncated to
zero length and the mode and owner are unchanged.

mode The permission bits for the memory object are set to the
value of mode, except those bits set in the process’s file
creation mask. For more information, see umask(), and
“Access permissions” in the documentation for stat().

May 31, 2004 Manifests 2753

shm open() 2004, QNX Software Systems Ltd.

Library:
libc

Description:
The shm open() function returns a file descriptor that’s associated
with the shared “memory object” specified by name. This file
descriptor is used by other functions to refer to the shared memory
object (for example, mmap(), mprotect()). The FD CLOEXEC file
descriptor flag in fcntl() is set for this file descriptor.

The name argument is interpreted as follows:

name Pathname space entry

entry CWD/entry

/entry /dev/shmem/entry

entry/newentry CWD/entry/newentry

/entry/newentry /entry/newentry

where CWD is the current working directory for the program at the
point that it calls mq open().

If you want to open a shared memory object on another node, you
have to specify the name as /net/node/shmem location.

�

The state of the shared memory object, including all data associated
with it, persists until the shared memory object is unlinked and all
other references are gone.

Returns:
A nonnegative integer, which is the lowest numbered unused file
descriptor, or -1 if an error occurred (errno is set).

2754 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. shm open()

Errors:
EACCES Permission to create the shared memory object is

denied.

The shared memory object exists and the permissions
specified by oflag are denied, or O TRUNC is specified
and write permission is denied.

EEXIST O CREAT and O EXCL are set, and the named shared
memory object already exists.

EINTR The shm open() call was interrupted by a signal.

ELOOP Too many levels of symbolic links or prefixes.

EMFILE Too many file descriptors are currently in use by this
process.

ENAMETOOLONG

The length of the name argument exceeds NAME MAX.

ENFILE Too many shared memory objects are currently open in
the system.

ENOENT O CREAT isn’t set, and the named shared memory
object doesn’t exist, or O CREAT is set and either the
name prefix doesn’t exist or the name argument points
to an empty string.

ENOSPC There isn’t enough space to create the new shared
memory object.

ENOSYS The shm open() function isn’t supported by this
implementation.

Examples:
This example sets up a shared memory object, but doesn’t really do
anything with it:

May 31, 2004 Manifests 2755

shm open() 2004, QNX Software Systems Ltd.

#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <limits.h>
#include <sys/mman.h>

int main(int argc, char** argv)
{

int fd;
unsigned* addr;

/*
* In case the unlink code isn’t executed at the end
*/

if(argc != 1) {
shm unlink("/bolts");
return EXIT SUCCESS;

}

/* Create a new memory object */
fd = shm open("/bolts", O RDWR | O CREAT, 0777);
if(fd == -1) {

fprintf(stderr, "Open failed:%s\n",
strerror(errno));

return EXIT FAILURE;
}

/* Set the memory object’s size */
if(ftruncate(fd, sizeof(*addr)) == -1) {

fprintf(stderr, "ftruncate: %s\n",
strerror(errno));

return EXIT FAILURE;
}

/* Map the memory object */
addr = mmap(0, sizeof(*addr),

PROT READ | PROT WRITE,
MAP SHARED, fd, 0);

if(addr == MAP FAILED) {
fprintf(stderr, "mmap failed: %s\n",

strerror(errno));
return EXIT FAILURE;

}

printf("Map addr is 0x%08x\n", addr);

/* Write to shared memory */

2756 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. shm open()

*addr = 1;

/*
* The memory object remains in
* the system after the close
*/

close(fd);

/*
* To remove a memory object
* you must unlink it like a file.
*
* This may be done by another process.
*/

shm unlink("/bolts");

return EXIT SUCCESS;
}

This example uses a shared memory object to share data with a forked
process:

#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>

main(int argc, char * argv[])
{
int fd;
unsigned *addr;

/*
* In case the unlink code isn’t executed at the end
*/

if (argc != 1) {
shm unlink("/bolts");
return EXIT SUCCESS;

}

/* Create a new memory object */
fd = shm open("/bolts", O RDWR | O CREAT, 0777);
if (fd == -1) {

fprintf(stderr, "Open failed : %s\n",
strerror(errno));

return EXIT FAILURE;

May 31, 2004 Manifests 2757

shm open() 2004, QNX Software Systems Ltd.

}

/* Set the memory object’s size */
if (ftruncate(fd, sizeof(*addr)) == -1) {

fprintf(stderr, "ftruncate : %s\n", strerror(errno));
return EXIT FAILURE;

}

/* Map the memory object */
addr = mmap(0, sizeof(*addr), PROT READ | PROT WRITE,

MAP SHARED, fd, 0);
if (addr == MAP FAILED) {

fprintf(stderr, "mmap failed:%s\n", strerror(errno));
return EXIT FAILURE;

}

printf("Map addr is %6.6X\n", addr);
printf("Press break to stop.\n");
sleep(3); /* So you can read above message */

/*
* We unlink so object goes away on last close.
*/

shm unlink("/bolts");

*addr = ’0’;
if (fork())

for (;;)
if (*addr == ’0’)
putc(*addr = ’1’, stderr);

else
sched yield();

else
for (;;)

if (*addr == ’1’)
putc(*addr = ’0’, stderr);

else
sched yield();

return EXIT SUCCESS;
}

Classification:
POSIX 1003.1 (Realtime Extensions)

2758 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. shm open()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
fcntl(), ftruncate(), mmap(), munmap(), mprotect(), open(), shm ctl(),
shm unlink(), sysconf()

May 31, 2004 Manifests 2759

shm unlink() 2004, QNX Software Systems Ltd.

Remove a shared memory object

Synopsis:
#include <sys/mman.h>

int shm unlink(const char * name);

Arguments:
name The name of the shared memory object that you want to

remove.

Library:
libc

Description:
The shm unlink() function removes the name of the shared memory
object specified by name. After removing the name, you can’t use
shm open() to access the object.

This function doesn’t affect any references to the shared memory
object (i.e. file descriptors or memory mappings). If more than one
reference to the shared memory object exists, then the link count is
decremented, but the shared memory segment isn’t actually removed
until you remove all open and map references to it.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EACCES Permission to unlink the shared memory object is

denied.

ELOOP Too many levels of symbolic links or prefixes.

2760 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. shm unlink()

ENAMETOOLONG

The length of the name argument exceeds NAME MAX.

ENOENT The named shared memory object doesn’t exist, or the
name argument points to an empty string.

ENOSYS The shm unlink() function isn’t supported by this
implementation.

Examples:
See shm open().

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
mmap(), munmap(), mprotect(), shm ctl(), shm open()

May 31, 2004 Manifests 2761

shutdown() 2004, QNX Software Systems Ltd.

Shut down part of a full-duplex connection

Synopsis:
#include <sys/socket.h>

int shutdown(int s,
int how);

Arguments:
s A descriptor for the socket, as returned by socket().

how How you want to shut down the connection:

If how is: The TCP/IP manager won’t allow:

SHUT RD Further receives

SHUT WR Further sends

SHUT RDWR Further sends and receives

Library:
libsocket

Description:
The shutdown() call shuts down all or part of a full-duplex connection
on the socket associated with s.

Returns:
0 Success.

-1 An error occurred (errno is set).

2762 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. shutdown()

Errors:
EBADF Invalid descriptor s.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
close(), connect(), socket()

May 31, 2004 Manifests 2763

sigaction() 2004, QNX Software Systems Ltd.

Examine or specify the action associated with a signal

Synopsis:
#include <signal.h>

int sigaction(int sig,
const struct sigaction * act,
struct sigaction * oact);

Arguments:
sig The signal number (defined in <signal.h>). For more

information, see “POSIX signals” in the documentation for
SignalAction().

act NULL, or a pointer to a sigaction structure that specifies
how you want to modify the action for the given signal. For
more information about this structure, see below.

oact NULL, or a pointer to a sigaction structure that the
function fills with information about the current action for
the signal.

Library:
libc

Description:
You can use sigaction() to examine or specify (or both) the action
that’s associated with a specific signal:

� If act isn’t NULL, the specified signal is modified.

� If oact isn’t NULL, the previous action is stored in the structure it
points to.

The structure sigaction contains the following members:

void (*sa handler)();

Address of a signal handler or action for nonqueued
signals.

2764 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigaction()

void (*sa sigaction)(int signo, siginfo t* info, void* other);
Address of a signal handler or action for queued
signals.

sigset t sa mask

An additional set of signals to be masked (blocked)
during execution of the signal-catching function.

int sa flags Special flags to affect behavior of the signal:

� SA NOCLDSTOP is only used when the signal is
SIGCHLD. It tells the system not to generate a
SIGCHLD on the parent for children who stop via
SIGSTOP.

� SA SIGINFO tells the OS to queue this signal.
The default is not to queue a signal delivered to a
process. If a signal isn’t queued, setting the same
signal multiple times on a process or thread
before it runs results in only the last signal’s
being delivered. If you set SA SIGINFO, the
signals are queued and they’re all delivered.

The sa handler and sa sigaction members of act are implemented as
a union and share common storage. They differ only in their
prototypes, with sa handler being used for POSIX 1003.1a signals
and sa sigaction being used for POSIX 1003.1b queued realtime
signals. The values stored using either name can be one of:

function The address of a signal catching function. See below
for details.

SIG DFL This sets the signal to the default action:

� SIGCHLD, SIGIO, SIGURG and SIGWINCH —
ignore the signal (SIG IGN).

� SIGSTOP — stop the process.

� SIGCONT — continue the program.

May 31, 2004 Manifests 2765

sigaction() 2004, QNX Software Systems Ltd.

� All other signals — kill the process.

SIG IGN This ignores the signal. Setting SIG IGN for a signal
that’s pending discards all pending signals, whether it’s
blocked or not. New signals are discarded. If you
ignore SIGCHLD, your process’s children don’t enter
the zombie state and you’re unable to wait on their
death using wait() or waitpid().

The function member of sa handler or sa sigaction is always invoked
with the following arguments:

void handler(int signo, siginfo t *info, void *other)

If you have an old-style signal handler of the form:

void handler(int signo)

the extra arguments are still placed by the kernel, but the function
simply ignores them.

While in the handler, signo is masked, preventing nested signals of the
same type. In addition, any signals set in the sa mask member of act
are also ORed into the mask. When the handler returns through a
normal return, the previous mask is restored and any pending and now
unmasked signals are acted on. You return to the point in the program
where it was interrupted. If the thread was blocked in the kernel when
the interruption occurred, the kernel call returns with an EINTR (see
ChannelCreate() and SyncMutexLock() for exceptions to this).

The siginfo t structure of the function in sa handler or
sa sigaction contains at least the following members:

int si signo The signal number, which should match the signo
argument to the handler.

int si code A signal code, provided by the generator of the
signal:

2766 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigaction()

� SI USER — the kill() function generated the
signal.

� SI QUEUE — the sigqueue() function generated
the signal.

� SI TIMER — a timer generated the signal.

� SI ASYNCIO — asynchronous I/O generated the
signal.

� SI MESGQ — POSIX (not QNX) messages
queues generated the signal.

union sigval si value

A value associated with the signal, provided by the
generator of the signal.

You can’t ignore or catch SIGKILL or SIGSTOP.

Signal handlers and actions are defined for the process and affect all
threads in the process. For example, if one thread ignores a signal,
then all threads ignore the signal.

You can target a signal at a thread, process, or process group (see
SignalKill()). When targeted at a process, at most one thread receives
the signal. This thread must have the signal unblocked (see
SignalProcmask()) to be a candidate for receiving it. All
synchronously generated signals (e.g. SIGSEGV) are always delivered
to the thread that caused them.

If you use longjmp() to return from a signal handler, the signal
remains masked. You can use siglongjmp() to restore the mask to the
state saved by a previous call to sigsetjmp().

�

Returns:
0 Success.

-1 An error occurred (errno is set).

May 31, 2004 Manifests 2767

sigaction() 2004, QNX Software Systems Ltd.

Errors:
EAGAIN Insufficient system resources are available to set up the

signal’s action.

EFAULT A fault occurred trying to access the buffers provided.

EINVAL The signal signo isn’t valid.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

int main(void)
{

extern void handler();
struct sigaction act;
sigset t set;

sigemptyset(&set);
sigaddset(&set, SIGUSR1);
sigaddset(&set, SIGUSR2);

/*
* Define a handler for SIGUSR1 such that when
* entered both SIGUSR1 and SIGUSR2 are masked.
*/

act.sa flags = 0;
act.sa mask = set;
act.sa handler = &handler;
sigaction(SIGUSR1, &act, NULL);

kill(getpid(), SIGUSR1);

/* Program will terminate with a SIGUSR2 */
return EXIT SUCCESS;

}

void handler(signo)
{

static int first = 1;

if(first) {
first = 0;
kill(getpid(), SIGUSR1); /* Prove signal masked */
kill(getpid(), SIGUSR2); /* Prove signal masked */

2768 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigaction()

}
}

/*
* - SIGUSR1 is set from main(), handler() is called.
* - SIGUSR1 and SIGUSR2 are set from handler().
* - however, signals are masked until we return to main().
* - returning to main() unmasks SIGUSR1 and SIGUSR2.
* - pending SIGUSR1 now occurs, handler() is called.
* - pending SIGUSR2 now occurs. Since we don’t have
* a handler for SIGUSR2, we are killed.
*/

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, kill(), raise(), sigaddset(), sigdelset(), sigemptyset(), sigfillset(),
sigismember(), signal(), SignalAction(), SignalKill(), sigpending(),
sigprocmask()

May 31, 2004 Manifests 2769

sigaddset() 2004, QNX Software Systems Ltd.

Add a signal to a set

Synopsis:
#include <signal.h>

int sigaddset(sigset t *set,
int signo);

Arguments:
set A pointer to the sigset t object that you want to add the

signal to.

signo The signal that you want to add. For more information, see
“POSIX signals” in the documentation for SignalAction().

Library:
libc

Description:
The sigaddset() function adds signo to the set pointed to by set.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EINVAL The signal signo isn’t valid.

Examples:
See sigemptyset().

2770 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigaddset()

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
kill(), raise(), sigaction(), sigdelset(), sigemptyset(), sigfillset(),
sigismember(), signal(), sigpending(), sigprocmask()

May 31, 2004 Manifests 2771

sigblock() 2004, QNX Software Systems Ltd.

Add to the mask of signals to block

Synopsis:
#include <unix.h>

int sigblock(int mask);

Arguments:
mask A bitmask of the signals that you want to block.

Library:
libc

Description:
The sigblock() function adds the signals specified in mask to the set of
signals currently being blocked from delivery. Signals are blocked if
the appropriate bit in mask is a 1; the macro sigmask() is provided to
construct the mask for a given signum. The sigblock() returns the
previous mask. You can restore the previous mask by calling
sigsetmask().

In normal usage, a signal is blocked using sigblock(). To begin a
critical section, variables modified on the occurrence of the signal are
examined to determine that there’s no work to be done, and the
process pauses awaiting work by using sigpause() with the mask
returned by sigblock().

It isn’t possible to block SIGKILL, SIGSTOP, or SIGCONT; this
restriction is silently imposed by the system.

Returns:
The previous set of masked signals.

2772 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigblock()

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread No

Caveats:
Use of these interfaces should be restricted to only applications
written on BSD platforms. Use of these interfaces with any of the
system libraries or in multithreaded applications is unsupported.

See also:
kill(), sigaction(), sigmask(), signal(), sigpause(), sigprocmask(),
sigsetmask(), sigunblock()

May 31, 2004 Manifests 2773

sigdelset() 2004, QNX Software Systems Ltd.

Delete a signal from a set

Synopsis:
#include <signal.h>

int sigdelset(sigset t *set,
int signo);

Arguments:
set A pointer to the sigset t object that you want to remove

the signal from.

signo The signal that you want to remove. For more information,
see “POSIX signals” in the documentation for
SignalAction().

Library:
libc

Description:
The sigdelset() function deletes signo from the set pointed to by set.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EINVAL The signal signo isn’t valid.

Examples:
See sigemptyset().

2774 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigdelset()

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
kill(), raise(), sigaction(), sigaddset(), sigemptyset(), sigfillset(),
sigismember(), signal(), sigpending(), sigprocmask()

May 31, 2004 Manifests 2775

sigemptyset() 2004, QNX Software Systems Ltd.

Initialize a set to contain no signals

Synopsis:
#include <signal.h>

int sigemptyset(sigset t *set);

Arguments:
set A pointer to the sigset t object that you want to initialize.

Library:
libc

Description:
The sigemptyset() function initializes set to contain no signals.

Returns:
0 Success.

-1 An error occurred (errno is set).

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

void print(sigset t set, int signo)
{

printf("Set %8.8lx. Signal %d is ", set, signo);
if(sigismember(&set, signo))
printf("a member.\n");

else
printf("not a member.\n");

}

int main(void)
{

sigset t set;

2776 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigemptyset()

sigemptyset(&set);
print(set, SIGINT);

sigfillset(&set);
print(set, SIGINT);

sigdelset(&set, SIGINT);
print(set, SIGINT);

sigaddset(&set, SIGINT);
print(set, SIGINT);
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
kill(), raise(), sigaction(), sigaddset(), sigdelset(), sigfillset(),
sigismember(), signal(), sigpending(), sigprocmask()

May 31, 2004 Manifests 2777

sigevent 2004, QNX Software Systems Ltd.

Structure that describes an event

Synopsis:
#include <sys/siginfo.h>

union sigval {
int sival int;
void * sival ptr;

};

The sigevent structure is complicated; see below.

Description:
This structure describes an event. The int sigev notify member
indicates how the notification is to occur, as well as which of the other
members are used:

sigev notify sigev signo sigev coid sigev priority sigev code sigev value

SIGEV INTR

SIGEV NONE

SIGEV PULSE Connection Priority Code Value

SIGEV SIGNAL Signal

SIGEV SIGNAL CODESignal Code Value

SIGEV SIGNAL THREADSignal Code Value

SIGEV THREAD
(special —
see below)

Value

SIGEV UNBLOCK

The <sys/siginfo.h> file also defines some macros to make
initializing the sigevent structure easier. All the macros take a
pointer to a sigevent structure as their first argument, event, and set
the sigev notify member to the appropriate value.

2778 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigevent

These macros are QNX Neutrino extensions.�

SIGEV INTR

Raise an interrupt. No other fields in the structure are used.

The initialization macro is:

SIGEV INTR INIT(&event)

SIGEV NONE

Don’t send any notification. No other fields in the structure are used.

The initialization macro is:

SIGEV NONE INIT(&event)

SIGEV PULSE

Send a pulse. The following fields are used:

int sigev coid

The connection ID. This should be attached to the channel with
which the pulse will be received.

short sigev priority

The priority of the pulse.

short sigev code

A code to be interpreted by the pulse handler. Although
sigev code can be any 8-bit signed value, you should avoid
sigev code values less than zero in order to avoid conflict with
kernel or pulse codes generated by a QNX manager. These
codes all start with PULSE CODE and are defined in
<sys/neutrino.h>; for more information, see the
documentation for the pulse structure. A safe range of pulse
values is PULSE CODE MINAVAIL to
PULSE CODE MAXAVAIL.

May 31, 2004 Manifests 2779

sigevent 2004, QNX Software Systems Ltd.

void *sigev value.sival ptr

A 32-bit value to be interpreted by the pulse handler.

The initialization macro is:

SIGEV PULSE INIT(&event, coid, priority, code, value)

SIGEV SIGNAL

Send a signal to a process. The following fields are used:

int sigev signo

The signal to raise. This must be in the range from 1 through
NSIG − 1.

The initialization macro is:

SIGEV SIGNAL INIT(&event, signal)

If you need to set the sigev value for a SIGEV SIGNAL event (for
example if SA SIGINFO is set), you can use this macro:

SIGEV SIGNAL VALUE INIT(&event, signal, value)

SIGEV SIGNAL CODE

This is similar to SIGEV SIGNAL, except that SIGEV SIGNAL CODE
also includes a value and a code. The following fields are used:

int sigev signo

The signal to raise. This must be in the range from 1 through
NSIG − 1.

short sigev code

A code to be interpreted by the signal handler. This must be in
the range from SI MINAVAIL through SI MAXAVAIL.

void *sigev value.sival ptr

A 32-bit value to be interpreted by the signal handler.

2780 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigevent

The initialization macro is:

SIGEV SIGNAL CODE INIT(&event, signal, value, code)

SIGEV SIGNAL THREAD

Send a signal to a specific thread. The following fields are used:

int sigev signo

The signal to raise. This must be in the range from 1 through
NSIG − 1.

short sigev code

A code to be interpreted by the signal handler. This must be in
the range from SI MINAVAIL through SI MAXAVAIL.

void *sigev value.sival ptr

A 32-bit value to be interpreted by the signal handler.

The initialization macro is:

SIGEV SIGNAL THREAD INIT(&event, signal, value, code)

SIGEV THREAD

Create a new thread.

We don’t recommend using this type of event. Pulses are more
efficient.

�

The following fields are used:

void (*sigev notify function) (union sigval)

A pointer to the function to be notified.

pthread attr *sigev notify attributes

A pointer to thread attributes. This must be NULL, or point to a
structure initialized by pthread attr init() at the time of delivery.

May 31, 2004 Manifests 2781

sigevent 2004, QNX Software Systems Ltd.

void *sigev value.sival ptr

A value that’s to be passed to the notification function.

The initialization macro is:

SIGEV THREAD INIT(&event, fn, value, attr)

SIGEV UNBLOCK

Force a thread to become unblocked. No other fields in the structure
are used.

The initialization macro is:

SIGEV UNBLOCK INIT(&event)

Classification:
QNX Neutrino

See also:
ds create(), InterruptAttach(), InterruptAttachEvent(), iofunc notify(),
iofunc notify trigger(), ionotify(), lio listio(), mq notify(),
MsgDeliverEvent(), procmgr event notify(), pulse, TimerCreate(),
timer create(), TimerInfo(), TimerTimeout(), timer timeout()

“Neutrino IPC” in the Neutrino microkernel chapter of the System
Architecture guide

2782 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigfillset()
Initialize a set to contain all signals

Synopsis:
#include <signal.h>

int sigfillset(sigset t *set);

Arguments:
set A pointer to the sigset t object that you want to initialize.

Library:
libc

Description:
The sigfillset() function initializes set to contain all signals.

Returns:
0 Success.

-1 An error occurred (errno is set).

Examples:
See sigemptyset().

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 2783

sigfillset() 2004, QNX Software Systems Ltd.

See also:
kill(), raise(), sigaction(), sigaddset(), sigdelset(), sigemptyset(),
sigismember(), signal(), sigpending(), sigprocmask()

2784 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigismember()
See if a given signal is in a given set

Synopsis:
#include <signal.h>

int sigismember(const sigset t *set,
int signo);

Arguments:
set A pointer to the sigset t object that you want to check.

signo The signal that you want to check for membership in the
set. For more information, see “POSIX signals” in the
documentation for SignalAction().

Library:
libc

Description:
The sigismember() function tests if signo is in the set pointed to by
set.

Returns:
1 The signo is in the set.

0 The signo isn’t in the set.

-1 An error occurred (errno is set).

Errors:
EINVAL The signal signo isn’t valid.

May 31, 2004 Manifests 2785

sigismember() 2004, QNX Software Systems Ltd.

Examples:
See sigemptyset().

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
kill(), raise(), sigaction(), sigaddset(), sigdelset(), sigemptyset(),
sigfillset(), signal(), sigpending(), sigprocmask()

2786 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. siglongjmp()
Restore the environment saved by sigsetjmp(), including the signal mask

Synopsis:
#include <setjmp.h>

void siglongjmp(sigjmp buf env,
int val);

Arguments:
env The environment saved by the most recent call to sigsetjmp().

val The value that you want sigsetjmp() to return.

Library:
libc

Description:
The siglongjmp() function is a superset of the longjmp() function, but
also restores the thread’s saved signal mask if (and only if) one was
saved in the env argument by a previous call to sigsetjmp().

WARNING: Don’t use longjmp() or siglongjmp() to restore an
environment saved by a call to setjmp() or sigsetjmp() in another
thread. If you’re lucky, your application will crash; if not, it’ll
look as if it works for a while, until random scribbling on the
stack causes it to crash.

Returns:
The same values that longjmp() returns.

Examples:
See longjmp().

May 31, 2004 Manifests 2787

siglongjmp() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
longjmp(), sigaction(), sigprocmask(), sigsuspend()

2788 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigmask()
Construct a mask for a signal number

Synopsis:
#include <unix.h>

#define sigmask(s) (1L<<((s)-1))

Arguments:
s The signal that you want to create a mask for. For more

information, see “POSIX signals” in the documentation for
SignalAction().

Library:
libc

Description:
This macro constructs the mask for a given signal number. Use
sigmask() in conjunction with sigblock(), sigsetmask(), and
sigunblock().

Returns:
The signal mask.

Classification:
Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 2789

sigmask() 2004, QNX Software Systems Ltd.

Caveats:
Use of these interfaces should be restricted to only applications
written on BSD platforms. Use of these interfaces with any of the
system libraries or in multithreaded applications is unsupported.

See also:
kill(), sigaction(), sigblock(), signal(), sigpause(), sigsetmask(),
sigunblock()

2790 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. signal()
Set handling for exceptional conditions

Synopsis:
#include <signal.h>

void (* signal(int sig,
void (* func)(int)))(int);

Arguments:
sig The signal number (defined in <signal.h>). For more

information, see “POSIX signals” in the documentation for
SignalAction().

func The function that you want to call when the signal is raised.

Library:
libc

Description:
The signal() function is used to specify an action to take place when
certain conditions are detected while a program executes. See the
<signal.h> header file for definitions of these conditions, and also
refer to the System Architecture manual.

There are three types of actions that can be associated with a signal:
SIG DFL, SIG IGN or a pointer to a function. Initially, all signals are
set to SIG DFL or SIG IGN prior to entry of the main() routine. An
action can be specified for each of the conditions, depending upon the
value of the func argument, as discussed below.

func is a function

When func is a function name, that function is called in a manner
equivalent to the following code sequence:

/* "sig no" is condition being signalled */
signal(sig no, SIG DFL);
(*func)(sig no);

May 31, 2004 Manifests 2791

signal() 2004, QNX Software Systems Ltd.

The func function may do the following:

� Return.

� Terminate the program by calling exit() or abort().

� Call longjmp() or siglongjmp(). If you use longjmp() to return
from a signal handler, the signal remains masked. You can use
siglongjmp() to restore the mask to the state saved in a previous
call to sigsetjmp().

After returning from the signal-catching function, the receiving
process resumes execution at the point at which it was interrupted.

The signal catching function is described as follows:

void func(int sig no)
{
...

}

It isn’t possible to catch the SIGSTOP or SIGKILL signals.

Since signal-catching functions are invoked asynchronously with
process execution, use the atomic *, InterruptLock(), and
InterruptUnlock() functions for atomic operations.

func is SIG DFL

If func is SIG DFL, the default action for the condition is taken.

If the default action is to stop the process, the execution of that
process is temporarily suspended. When a process stops, a SIGCHLD
signal is generated for its parent process, unless the parent process has
set the SA NOCLDSTOP flag (see sigaction()). While a process is
stopped, any additional signals that are sent to the process aren’t
delivered until the process is continued, except SIGKILL, which
always terminates the receiving process.

Setting a signal action to SIG DFL for a signal that is pending, and
whose default action is to ignore the signal (for example, SIGCHLD),
causes the pending signal to be discarded, whether or not it’s blocked.

2792 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. signal()

func is SIG IGN

If func is SIG IGN, the indicated condition is ignored.

You can’t set the action for the SIGSTOP and SIGKILL signals to
SIG IGN.

Setting a signal action to SIG IGN for a signal that’s pending causes
the pending signal to be discarded, whether or not it is blocked.

If a process sets the action for the SIGCHLD signal to SIG IGN, the
behavior is unspecified.

Handling a condition

When a condition is detected, it may be handled by a program, it may
be ignored, or it may be handled by the usual default action (often
causing an error message to be printed on the stderr stream followed
by program termination).

A condition can be generated by a program using the raise() or kill()
function

Returns:
The previous value of func for the indicated condition, or SIG ERR if
the request couldn’t be handled (errno is set to EINVAL).

Examples:
#include <stdlib.h>
#include <signal.h>

sig atomic t signal count;

void MyHandler(int sig number)
{

++signal count;
}

int main(void)
{

signal(SIGFPE, MyHandler); /* set own handler */
signal(SIGABRT, SIG DFL); /* Default action */
signal(SIGFPE, SIG IGN); /* Ignore condition */
return (EXIT SUCCESS);

May 31, 2004 Manifests 2793

signal() 2004, QNX Software Systems Ltd.

}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
atomic add(), atomic add value(), atomic clr(), atomic clr value(),
atomic set(), atomic set value(), atomic sub(), atomic sub value(),
atomic toggle(), atomic toggle value(), InterruptLock(),
InterruptUnlock(), kill(), longjmp(), raise(), siglongjmp(),
sigprocmask()

2794 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SignalAction(), SignalAction r()
Examine and/or specify actions for signals

Synopsis:
#include <sys/neutrino.h>

int SignalAction(pid t pid,
void (* sigstub)(),
int signo,
const struct sigaction * act,
struct sigaction * oact);

int SignalAction r(pid t pid,
void * (sigstub)(),
int signo,
const struct sigaction * act,
struct sigaction * oact);

Arguments:
pid A process ID, or 0 for the current process.

sigstub The address of a signal stub handler. This is a small piece
of code in the user’s space that interfaces the user’s signal
handler to the kernel. The library provides a standard one,

signalstub().

signo The signal whose action you want to set or get; see
“POSIX signals,” below.

act NULL, or a pointer to a sigaction structure that
specifies the new action for the signal. For more
information, see “Signal actions,” below.

oact NULL, or a pointer to a sigaction structure where the
function can store the old action.

Library:
libc

May 31, 2004 Manifests 2795

SignalAction(), SignalAction r() 2004, QNX Software Systems Ltd.

Description:
The SignalAction() and SignalAction r() kernel calls let the calling
process examine or specify (or both) the action to be associated with a
specific signal in the process pid. If pid is zero, the calling process is
used. The argument signo specifies the signal.

You should call sigaction() instead of using these kernel calls directly.�

These functions are identical except in the way they indicate errors.
See the Returns section for details.

POSIX signals

The signals are defined in <signal.h>, and so are these global
variables:

char * const sys siglist[]

An array of signal names.

int sys nsig The number of entries in the sys siglist array.

There are 32 POSIX 1003.1a signals, including:

SIGHUP Hangup.

SIGINT Interrupt.

SIGQUIT Quit.

SIGILL Illegal instruction (not reset when caught).

SIGTRAP Trace trap (not reset when caught).

SIGIOT IOT instruction.

SIGABRT Used by abort().

SIGEMT EMT instruction.

2796 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SignalAction(), SignalAction r()

SIGFPE Floating point exception.

SIGKILL Kill (can’t be caught or ignored)

SIGBUS Bus error.

SIGSEGV Segmentation violation.

SIGSYS Bad argument to system call.

SIGPIPE Write on pipe with no reader.

SIGALRM Realtime alarm clock.

SIGTERM Software termination signal from kill.

SIGUSR1 User-defined signal 1.

SIGUSR2 User-defined signal 2.

SIGCHLD Death of child.

SIGPWR Power-fail restart.

SIGWINCH Window change.

SIGURG Urgent condition on I/O channel.

SIGPOLL System V name for SIGIO.

SIGIO Asynchronous I/O.

SIGSTOP Sendable stop signal not from tty.

SIGTSTP Stop signal from tty.

SIGCONT Continue a stopped process.

SIGTTIN Attempted background tty read.

SIGTTOU Attempted background tty write.

May 31, 2004 Manifests 2797

SignalAction(), SignalAction r() 2004, QNX Software Systems Ltd.

You can’t ignore or catch SIGKILL or SIGSTOP.�

There are 16 POSIX 1003.1b realtime signals, including:

SIGRTMIN First realtime signal.

SIGRTMAX Last realtime signal.

The entire range of signals goes from SIGMIN (1) to SIGMAX (64).

Signal actions

If act isn’t NULL, then the specified signal is modified. If oact isn’t
NULL, the previous action is stored in the structure it points to. You
can use various combinations of act and oact to query or set (or both)
the action for a signal.

The structure sigaction contains the following members:

void (*sa handler)();

The address of a signal handler or action for
nonqueued signals.

void (*sa sigaction) (int signo, siginfo t *info, void *other);
The address of a signal handler or action for queued
signals.

sigset t sa mask

An additional set of signals to be masked (blocked)
during execution of the signal-catching function.

int sa flags Special flags that affect the behavior of the signal:

� SA NOCLDSTOP — don’t generate a SIGCHLD
on the parent for children who stop via SIGSTOP.
This flag is used only when the signal is
SIGCHLD.

2798 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SignalAction(), SignalAction r()

� SA SIGINFO — queue this signal. The default is
not to queue a signal delivered to a process. If a
signal isn’t queued, and the same signal is set
multiple times on a process or thread before it
runs, only the last signal is delivered. If you set
the SA SIGINFO flag, the signals are queued, and
they’re all delivered.

The sa handler and sa sigaction members of act are implemented as
a union, and share common storage. They differ only in their
prototype, with sa handler being used for POSIX 1003.1a signals,
and sa sigaction being used for POSIX 1003.1b queued realtime
signals. The values stored using either name can be one of:

function The address of a signal-catching function. See below for
details.

SIG DFL Use the default action for the signal:

� SIGCHLD, SIGIO, SIGURG, and SIGWINCH —
ignore the signal (SIG IGN).

� SIGSTOP — stop the process.

� SIGCONT — continue the program.

� All other signals — kill the process.

SIG IGN Ignore the signal. Setting SIG IGN for a signal that’s
pending discards all pending signals, whether it’s
blocked or not. New signals are discarded. If your
process ignores SIGCHLD, its children won’t enter the
zombie state and the process can’t use wait() or
waitpid() to wait on their deaths.

The function member of sa handler or sa sigaction is always invoked
with the following arguments:

void handler(int signo, siginfo t* info, void* other)

If you have an old-style signal handler of the form:

May 31, 2004 Manifests 2799

SignalAction(), SignalAction r() 2004, QNX Software Systems Ltd.

void handler(int signo)

the microkernel passes the extra arguments, but the function simply
ignores them.

While in the handler, signo is masked, preventing nested signals of the
same type. In addition, any signals set in the sa mask member of act
are also ORed into the mask. When the handler returns through a
normal return, the previous mask is restored, and any pending and
now unmasked signals are acted on. You return to the point in the
program where it was interrupted. If the thread was blocked in the
kernel when the interruption occurred, the kernel call returns with an
EINTR (see ChannelCreate() and SyncMutexLock() for exceptions to
this).

When you specify a handler, you must provide the address of a signal
stub handler for sigstub. This is a small piece of code in the user’s
space that interfaces the user’s signal handler to the kernel. The
library provides a standard one, signalstub().

The siginfo t structure of the function in sa handler or
sa sigaction contains at least the following members:

int si signo The signal number, which should match the signo
argument to the handler.

int si code A signal code, provided by the generator of the
signal:

� SI USER — the kill() function generated the
signal.

� SI QUEUE — the sigqueue() function generated
the signal.

� SI TIMER — a timer generated the signal.

� SI ASYNCIO — asynchronous I/O generated the
signal.

� SI MESGQ — POSIX (not QNX) messages
queues generated the signal.

2800 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SignalAction(), SignalAction r()

union sigval si value

A value associated with the signal, provided by the
generator of the signal.

Signal handlers and actions are defined for the process and affect all
threads in the process. For example, if one thread ignores a signal,
then all threads ignore the signal.

You can target a signal at a thread, process or process group (see
SignalKill()). When targeted at a process, at most one thread receives
the signal. This thread must have the signal unblocked (see
SignalProcmask()) to be a candidate for receiving it. All
synchronously generated signals (e.g. SIGSEGV) are always delivered
to the thread that caused them.

In a multithreaded process, if a signal terminates a thread, by default
all threads and thus the process are terminated. You can override this
standard POSIX behavior when you create the thread; see
ThreadCreate().

CAUTION: If you use longjmp() to return from a signal handler, the
signal remains masked. You can use siglongjmp() to restore the mask
to the state saved by a previous call to sigsetjmp().

!

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

SignalAction() If an error occurs, -1 is returned and errno is set.
Any other value returned indicates success.

SignalAction r() EOK is returned on success. This function does
NOT set errno. If an error occurs, any value in the
Errors section may be returned.

May 31, 2004 Manifests 2801

SignalAction(), SignalAction r() 2004, QNX Software Systems Ltd.

Errors:
EAGAIN The system was unable to allocate a signal handler. This

indicated critically low memory.

EFAULT A fault occurred when the kernel tried to access the
buffers provided.

EINVAL The value of signo is less than 1 or greater than
SIGMAX, or you tried to set SIGKILL or SIGSTOP to

something other than SIG DFL.

EPERM The process doesn’t have permission to change the
signal actions of the specified process.

ESRCH The process indicated by pid doesn’t exist.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
abort(), ChannelCreate(), kill(), longjmp(), siglongjmp(), SignalKill(),
SignalProcmask(), sigqueue(), sigsetjmp(), SyncMutexLock(),
ThreadCreate(), wait(), waitpid()

2802 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SignalKill(), SignalKill r()
Send a signal to a process group, process, or thread

Synopsis:
#include <sys/neutrino.h>

int SignalKill(uint32 t nd,
pid t pid,
int tid,
int signo,
int code,
int value);

int SignalKill r(uint32 t nd,
pid t pid,
int tid,
int signo,
int code,
int value);

Arguments:
nd The node descriptor of the node on which to look for

pid and tid. To search the local node, set nd to
ND LOCAL NODE or 0.

pid 0, or the ID of the process to send the signal to; see
below.

tid 0, or the ID of the thread to send the signal to; see
below.

signo The signal that you want to send. There are a total of
64 signals available. Of these, at least 8 are POSIX
realtime signals that range from SIGRTMIN to
SIGRTMAX. For a complete list of signals, see
“POSIX signals” in the documentation for
SignalAction(). Valid user signals range from 1 to
(NSIG - 1).

code, value The code and value associated with the signal; see
SignalAction().

May 31, 2004 Manifests 2803

SignalKill(), SignalKill r() 2004, QNX Software Systems Ltd.

Library:
libc

Description:
The SignalKill() and SignalKill r() kernel calls send the signal signo
with a code specified by code and a value specified by value to a
process group, process, or thread.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

If signo is zero, no signal is sent, but the validity of pid and tid are
checked. You can use this as a test for existence.

SignalKill() implements the capabilities of the POSIX functions kill(),
sigqueue(), and pthread kill() in one call. The pid and tid determine
the target of the signal, as follows:

pid tid target

= 0 — Hit the process group of the caller

< 0 — Hit a process group identified by -pid

> 0 = 0 Hit a single process identified by pid

> 0 > 0 Hit a single thread in process pid identified by tid

If the target is a thread, the signal is always delivered to exactly that
thread. If the thread has the signal blocked — see SignalProcmask()
— the signal remains pending on the thread.

If the target is a process, the signal is delivered to a thread that has the
signal unblocked; see SignalProcmask(), SignalSuspend(), and
SignalWaitinfo(). If multiple threads have the signal unblocked, only
one thread is given the signal. Which thread receives the signal isn’t
deterministic. To make it deterministic, you can:

� Have all threads except one block all signals; that thread handles
all signals.

2804 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SignalKill(), SignalKill r()

Or:

� Target the signals to specific threads.

If all threads have the signal blocked, it’s made pending on the
process. The first thread to unblock the signal receives the pending
signal. If a signal is pending on a thread, it’s never retargetted to the
process or another thread, regardless of changes to the signal-blocked
mask.

If the target is a process group, the signal is delivered as above to each
process in the group.

A multithreaded application typically has one thread responsible for
catching most or all signals. Threads that don’t wish to be directly
involved with signals block all signals in their mask.

The signal-blocked mask is maintained on a per-thread basis. The
signal-ignore mask and signal handlers are maintained at the process
level and are shared by all threads.

If multiple signals are delivered before the target can run and process
the signals, the system queues them in priority order if the
SA SIGINFO bit was set for signo. Lower numbered signals have
greater priority. If the SA SIGINFO bit isn’t set for signo, then at most
one signal is queued at any time. Additional signals with the same
signo replace existing ones. This is the default behavior for POSIX
signal handlers installed using the old signal() function. The newer
sigaction() function lets you control queuing or not on a per-signal
basis. Signals with a code of SI TIMER are never queued.

The code and value are always saved with the signal. This allows you
to deliver data with the signal whether or not SA SIGINFO has been
set on the signo. If SA SIGINFO is set, you can use signals to deliver
small amounts of data without loss. If you wish to pass significant
data, you may wish to consider using MsgSendPulse() and
MsgSendv(), which deliver data with much greater efficiency.

When a thread receives a signal by a signal handler or
SignalWaitinfo() call, it can retrieve the signo, code and value from a
siginfo t structure, which contains at least the following members:

May 31, 2004 Manifests 2805

SignalKill(), SignalKill r() 2004, QNX Software Systems Ltd.

int si signo The signal number.

int si code The signal code.

union sigval si value

The signal value.

The value of si code is limited to an 8-bit signed value as follows:

Value Description

-128 <= si code <= 0 User values

0 < signo <= 127 System values generated by the kernel

Some of the common user values defined by POSIX are:

� SI USER — the kill() function generated the signal.

� SI QUEUE — the sigqueue() function generated the signal.

� SI TIMER — a timer generated the signal.

� SI ASYNCIO — asynchronous I/O generated the signal.

� SI MESGQ — POSIX (not QNX) messages queues generated the
signal.

A successful return from this function means the signal has been
delivered. What the process(es) or thread does with the signal isn’t
considered.

If a thread delivers signals that the receiving process has marked as
queued faster than the receiver can consume them, the kernel may fail
the call if it runs out of signal queue entries. If the signo, code, and
value don’t change, the kernel performs signal compression by saving
an 8-bit count with each queued signal.

2806 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SignalKill(), SignalKill r()

Blocking states

None. In the network case, lower priority threads may run.

Returns:
The only difference between these functions is the way they indicate
errors:

SignalKill() If an error occurs, -1 is returned and sets errno.
Any other value returned indicates success.

SignalKill r() EOK is returned on success. This function does
NOT set errno. If an error occurs, any value in the
Errors section may be returned.

Errors:
EINVAL The value of signo is less than 0 or greater than

(NSIG -1).

ESRCH The process or process group indicated by pid or thread
indicated by tid doesn’t exist.

EPERM The process doesn’t have permission to send the signal
to any receiving process.

EAGAIN The kernel had insufficient resources to enqueue the
signal.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

continued. . .

May 31, 2004 Manifests 2807

SignalKill(), SignalKill r() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

See also:
SignalAction(), SignalProcmask(), SignalSuspend(), SignalWaitinfo()

2808 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SignalProcmask(),
SignalProcmask r()

Modify or examine the signal-blocked mask of a thread

Synopsis:
#include <sys/neutrino.h>

int SignalProcmask(pid t pid,
int tid,
int how,
const sigset t* set,
sigset t* oldset);

int SignalProcmask r(pid t pid,
int tid,
int how,
const sigset t* set,
sigset t* oldset);

Arguments:
pid 0, or a process ID; see below.

tid 0, or a thread ID; see below.

how The manner in which you want to change the set:

� SIG BLOCK — the resulting set is the union of the
current set and the signal set pointed to by set.

� SIG UNBLOCK — the resulting set is the intersection of
the current set and the signal set pointed to by set.

� SIG SETMASK — the resulting set is the signal set
pointed to by set.

As a special case, you can use the how argument to query
the current set of pending signals:

� SIG PENDING — the combined set of pending signals
on the thread and process are saved in the signal set
pointed to by oldset. The set argument is ignored.

set NULL, or a pointer to a sigset t object that specified the
set of signals to be used to change the currently blocked set.

May 31, 2004 Manifests 2809

SignalProcmask(), SignalProcmask r() 2004, QNX Software

Systems Ltd.

oldset NULL, or a pointer to a sigset t object where the
function can store the previous blocked mask.

You can use various combinations of set and oldset to
query or change (or both) the signal-blocked mask for a
signal.

Library:
libc

Description:
These kernel calls modify or examine the signal-blocked mask of the
thread tid in process pid. If pid is zero, the current process is
assumed. If tid is zero, pid is ignored and the calling thread is used.

The SignalProcmask() and SignalProcmask r() functions are
identical, except in the way they indicate errors. See the Returns
section for details.

When a signal is unmasked, the kernel checks for pending signals on
the thread and, if there aren’t any pending, checks for pending signals
on the process:

Check Action

Signal pending on thread The signal is immediately acted upon.

Signal pending on process The signal is moved to the thread and
is immediately acted upon.

No signal pending No signal action performed until
delivery of an unblocked signal.

It isn’t possible to block the SIGKILL or SIGSTOP signals.

When a signal handler is invoked, the signal responsible is
automatically masked before its handler is called; see SignalAction().
If the handler returns normally, the operating system restores the

2810 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SignalProcmask(),
SignalProcmask r()

signal mask present just before the handler was called as an atomic
operation. Changes made using SignalProcmask() in the handler are
undone.

When a signal is targeted at a process, the kernel delivers it to at most
one thread (see SignalKill()) that has the signal unblocked. If multiple
threads have the signal unblocked, only one thread is given the signal.
Which thread receives the signal isn’t deterministic. To make it
deterministic, you can:

� Have all threads except one block all signals; that thread handles
all signals.

Or:

� Target signals to specific threads.

If all threads have the signal blocked, it’s made pending on the
process. The first thread to unblock the signal receives the pending
signal. If a signal is pending on a thread, it’s never retargetted to the
process or another thread, regardless of changes to the signal-blocked
mask.

Signals targeted at a thread always affect that thread alone.

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

SignalProcmask()

If an error occurs, -1 is returned and errno is set. Any other
value returned indicates success.

SignalProcmask r()

EOK is returned on success. This function does NOT set errno.
If an error occurs, any value in the Errors section may be
returned.

May 31, 2004 Manifests 2811

SignalProcmask(), SignalProcmask r() 2004, QNX Software

Systems Ltd.

Errors:
EAGAIN The system was unable to allocate a signal handler. This

indicates critically low memory.

EFAULT A fault occurred when the kernel tried to access the
buffers provided.

EINVAL The value of how is invalid, or you tried to set SIGKILL
or SIGSTOP to something other than SIG DFL.

EPERM The process doesn’t have permission to change the
signal mask of the specified process.

ESRCH The process indicated by pid or thread indicated by tid
doesn’t exist.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
SignalAction(), SignalKill()

2812 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SignalSuspend(),
SignalSuspend r()

Suspend a thread until a signal is received

Synopsis:
#include <sys/neutrino.h>

int SignalSuspend(const sigset t* set);

int SignalSuspend r(const sigset t* set);

Arguments:
set A pointer to a sigset t object that specifies the signals you

want to wait for.

Library:
libc

Description:
These kernel calls replace the thread’s signal mask with the set of
signals pointed to by set and then suspends the thread until delivery of
a signal whose action is either to execute a signal-catching function
(then return), or to terminate the thread. On return, the previous signal
mask is restored.

The SignalSuspend() and SignalSuspend r() functions are identical,
except in the way they indicate errors. See the Returns section for
details.

Attempts to block SIGKILL or SIGSTOP are ignored. This is done
without causing an error.

If you’re using SignalSuspend() to synchronously wait for a signal,
consider using the more efficient POSIX 1003.1b realtime
sigwaitinfo() call.

May 31, 2004 Manifests 2813

SignalSuspend(), SignalSuspend r() 2004, QNX Software Systems

Ltd.

Blocking states

STATE SIGSUSPEND

The calling thread blocks waiting for a signal.

Returns:
The only difference between these functions is the way they indicate
errors.

Since SignalSuspend() and SignalSuspend r() block until interrupted,
there’s no successful return value.

SignalSuspend()

-1 is always returned and errno is set.

SignalSuspend r()

errno is NOT set, a value in the Errors section is returned.

If the signal handler calls longjmp() or siglongjmp(), SignalSuspend()
and SignalSuspend r() don’t return.

Errors:
EINTR The call was interrupted by a signal (this is the

normal error).

EFAULT A fault occurred when the kernel tried to access the
buffers provided.

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

Classification:
QNX Neutrino

2814 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SignalSuspend(),
SignalSuspend r()

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
SignalKill()

May 31, 2004 Manifests 2815

SignalWaitinfo(), SignalWaitinfo r() 2004, QNX Software Systems

Ltd.

Select a pending signal

Synopsis:
#include <sys/neutrino.h>

int SignalWaitinfo(const sigset t* set,
siginfo t* info);

int SignalWaitinfo r(const sigset t* set,
siginfo t* info);

Arguments:
set A pointer to a sigset t object that specifies the signals you

want to wait for.

info NULL, or a pointer to a siginfo t structure where the
function can store information about the signal.

Library:
libc

Description:
The SignalWaitinfo() and SignalWaitinfo r() kernel calls select the
pending signal from the set specified by set. If no signal in set is
pending at the time of the call, the thread blocks until one or more
signals in set become pending or until interrupted by an unblocked,
caught signal.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

If the info argument isn’t NULL, information on the selected signal is
stored there as follows:

2816 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SignalWaitinfo(),
SignalWaitinfo r()

siginfo t member Description

si signo Selected signal number

si code Signal code

si value Signal value

If, while SignalWaitinfo() is waiting, a caught signal occurs that isn’t
blocked, the signal handler is invoked and SignalWaitinfo() is
interrupted with an error of EINTR.

Blocking states

STATE SIGWAITINFO

The calling thread blocks waiting for a signal.

Returns:
The only difference between these functions is the way they indicate
errors:

SignalWaitinfo()

A signal number. If an error occurs, -1 is returned and errno is
set.

SignalWaitinfo r()

A signal number. This function does NOT set errno. If an error
occurs, the negative of a value from the Errors section is
returned.

Errors:
EINTR The call was interrupted by a signal.

EFAULT A fault occurred when the kernel tried to access the
buffers provided.

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

May 31, 2004 Manifests 2817

SignalWaitinfo(), SignalWaitinfo r() 2004, QNX Software Systems

Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
SignalKill(), SignalKill r()

2818 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. significand(), significandf()
Compute the “significant bits” of a floating-point number

Synopsis:
#include <math.h>

double significand (double x);

float significandf (float x);

Arguments:
x A floating-point number.

Library:
libm

Description:
The significand() and significandf() functions are math functions that
compute the “significant bits” of a floating-point number.

When encoding a floating-point number into binary notation, you
remove the sign, and then shift the bits to the right or left until the
shifted result is in the range [0.5, 1). The negative of the number of
positions shifted is the exponent of the number, and the shifted result
is the significand.

If x equals sig � 2n with 1 < sig < 2, then significand(x) returns
sig for exercising the fraction-part(F) test vector. The function
significand(x) isn’t defined when x is one of:

� 0

� positive or negative infinity

� NAN.

May 31, 2004 Manifests 2819

significand(), significandf() 2004, QNX Software Systems Ltd.

Returns:
scalb (x, (double) -ilogb (x))

Since significand(x) = scalb(x, -ilogb(x)) where ilogb() returns the
exponent part of x and scalb(x, n) returns a, such that x = a � 2 n,
then:

When x is: scalbn(x, n) returns:

�infinity x

NAN NAN

Examples:
#include <stdio.h>
#include <errno.h>
#include <inttypes.h>
#include <math.h>
#include <fpstatus.h>

int main(int argc, char** argv)
{

double a, b, c, d;

a = 5;
b = ilogb(d);
printf("The exponent part of %f is %f \n", a, b);
c = significand(a);
printf("%f = %f * (2 ˆ %f) \n", a, c, b);

return(0);
}

produces the output:

The exponent part of 5.000000 is -895.000000
5.000000 = 1.250000 * (2 ˆ -895.000000)

2820 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. significand(), significandf()

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ilogb(), scalb(), scalbn()

May 31, 2004 Manifests 2821

sigpause() 2004, QNX Software Systems Ltd.

Wait for a signal

Synopsis:
#include <signal.h>

int sigpause(int sig);

Arguments:
sig A mask containing the signal number that you want to wait

for.

Library:
libc

Description:
The sigpause() function assigns sig to the set of masked signals and
then waits for a signal to arrive; on return, the set of masked signals is
restored. The mask argument is usually 0 to indicate that no signals
are now to be blocked. This function always terminates by being
interrupted, returning -1, and setting errno to EINTR.

In normal usage, a signal is blocked using sigblock(). To begin a
critical section, variables modified on the occurrence of the signal are
examined to determine that there is no work to be done, and the
process pauses awaiting work by using sigpause() with the mask
returned by sigblock().

It isn’t possible to block SIGKILL, SIGSTOP, or SIGCONT; this
restriction is silently imposed by the system.

Returns:
-1; errno is set to EINTR.

2822 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigpause()

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
Use of these interfaces should be restricted to only applications
written on BSD platforms. Use of these interfaces with any of the
system libraries or in multithreaded applications is unsupported.

See also:
kill(), sigaction(), sigblock(), sigmask(), signal(), sigsetmask(),
sigsuspend(), sigunblock()

May 31, 2004 Manifests 2823

sigpending() 2004, QNX Software Systems Ltd.

Examine the set of pending, masked signals for a process

Synopsis:
#include <signal.h>

int sigpending(sigset t *set);

Arguments:
set A pointer to a sigset t object that the function sets to

indicate the pending, masked signals.

Library:
libc

Description:
The sigpending() function is used to examine the set of pending
signals that are masked (blocked) from delivery to the calling thread
and that are pending on the calling process or thread. They’re saved in
the signal set pointed to by set.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EFAULT A fault occurred while accessing the buffer pointed to by

set.

Examples:
See sigprocmask().

2824 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigpending()

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
kill(), raise(), sigaction(), sigaddset(), sigdelset(), sigemptyset(),
sigfillset(), sigismember(), signal(), sigprocmask()

May 31, 2004 Manifests 2825

sigprocmask() 2004, QNX Software Systems Ltd.

Examine or change the signal mask for a thread

Synopsis:
#include <signal.h>

int sigprocmask(int how,
const sigset t *set,
sigset t *oset);

Arguments:
how The manner in which you want to change the set:

� SIG BLOCK — add the signals pointed to by set to the
thread mask.

� SIG UNBLOCK — remove the signals pointed to by set
from the thread mask.

� SIG SETMASK — set the thread mask to be the signals
pointed to by set.

set NULL, or a pointer to a sigset t object that defines the
signals that you want to change in the thread’s signal mask.
If this argument is NULL, the how argument is ignored.

oset NULL, or a pointer to a sigset t object that the function
sets to indicate the thread’s current signal mask.

Library:
libc

Description:
The sigprocmask() function is used to examine or change (or both) the
signal mask for the calling thread. If the value of set isn’t NULL, it
points to a set of signals to be used to change the currently blocked
set.

The set argument isn’t changed. The resulting set is maintained in the
process table of the calling thread. If a signal occurs on a signal that’s

2826 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigprocmask()

masked, it becomes pending, but doesn’t affect the execution of the
process. You can examine pending signals by calling sigpending().
When a pending signal is unmasked, it’s acted upon immediately,
before this function returns.

When a signal handler is invoked, the signal responsible is
automatically masked before its handler is called. If the handler
returns normally, the operating system restores the signal mask
present just before the handler was called as an atomic operation.
Changes made using sigprocmask() in the handler are undone.

The sigaction() function lets you specify any mask that’s applied
before a handler is invoked. This can simplify multiple signal handler
design.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EAGAIN Insufficient system resources are available to mask the

signals.

EFAULT A fault occurred trying to access the buffers provided.

EINVAL The value of how is invalid, or you tried to set SIGKILL
or SIGSTOP to something other than SIG DFL.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

int main(void)
{

sigset t set, oset, pset;

sigemptyset(&set);

May 31, 2004 Manifests 2827

sigprocmask() 2004, QNX Software Systems Ltd.

sigaddset(&set, SIGINT);
sigprocmask(SIG BLOCK, &set, &oset);
printf("Old set was %8.8ld.\n", oset);

sigpending(&pset);
printf("Pending set is %8.8ld.\n", pset);

kill(getpid(), SIGINT);

sigpending(&pset);
printf("Pending set is %8.8ld.\n", pset);

sigprocmask(SIG UNBLOCK, &set, &oset);

/* The program terminates with a SIGINT */
return(EXIT SUCCESS);

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
kill(), raise(), sigaction(), sigaddset(), sigdelset(), sigemptyset(),
sigfillset(), sigismember(), signal(), SignalProcmask(), sigpending()

2828 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigqueue()
Queue a signal to a process

Synopsis:
#include <signal.h>

int sigqueue (pid t pid,
int signo,
const union sigval value);

Arguments:
pid The ID of the process that you want to signal.

signo Zero, or the number of the signal that you want to queue for
the process. For more information, see “POSIX signals” in
the documentation for SignalAction().

value The value to queue with the signal.

Library:
libc

Description:
The sigqueue() function causes the signal, signo to be sent with the
specified value to the process, pid. If signo is zero, error checking is
performed, but no signal is actually sent. This is one way of checking
to see if pid is valid.

The condition required for a process to have permission to queue a
signal to another process is the same as for the kill() function — the
real or effective user ID of the sending process must match the real or
effective user ID of the receiving process.

The sigqueue() function returns immediately. If SA SIGINFO is set for
signo and if the resources are available to queue the signal, the signal
is queued and sent to the receiving process. If SA SIGINFO isn’t set
for the signo, then signo is sent to the receiving process if the signal
isn’t already pending.

May 31, 2004 Manifests 2829

sigqueue() 2004, QNX Software Systems Ltd.

If pid causes signo to be generated for the sending process, and if
signo isn’t blocked for the calling thread and if no other thread has
signo unblocked or is waiting in a sigwait() function for signo, then
either signo or at least one pending unblocked signal is delivered to
the calling thread before sigqueue() returns.

Should any of multiple pending signals in the range SIGRTMIN to
SIGRTMAX be selected for delivery, the lowest numbered one is
delivered. The selection order between realtime and nonrealtime
signals, or between multiple pending nonrealtime signals, is
unspecified.

Returns:
0 Success.

-1 An error occurred; errno is set.

Errors:
EAGAIN No resources were available to queue the signal. The

process has already queued the maximum number of
signals as returned by:

sysconf (SC SIGQUEUE MAX)

that are still pending at the receiver(s), or a system-wide
resource limit has been exceeded.

EINVAL The value of the signo argument is an invalid or
unsupported signal number.

ENOSYS The function sigqueue() isn’t supported by this
implementation.

EPERM The process doesn’t have the appropriate privilege to
send the signal to the receiving process.

ESRCH The process pid doesn’t exist.

2830 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigqueue()

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
kill(), signal()

May 31, 2004 Manifests 2831

sigsetjmp() 2004, QNX Software Systems Ltd.

Save the environment, including the signal mask

Synopsis:
#include <setjmp.h>

int sigsetjmp(sigjmp buf env,
int savemask);

Arguments:
env A buffer where the function can save the calling

environment.

savemask Nonzero if you want to save the process’s current signal
mask, otherwise 0.

Library:
libc

Description:
The sigsetjmp() function behaves in the same way as the setjmp()
function when savemask is zero. If savemask is nonzero, then
sigsetjmp() also saves the thread’s current signal mask as part of the
calling environment.

WARNING: Don’t use longjmp() or siglongjmp() to restore an
environment saved by a call to setjmp() or sigsetjmp() in another
thread. If you’re lucky, your application will crash; if not, it’ll
look as if it works for a while, until random scribbling on the
stack causes it to crash.

Returns:
Zero on the first call, or nonzero if the return is the result of a call to
siglongjmp().

2832 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigsetjmp()

Examples:
See setjmp().

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
setjmp(), sigaction(), sigprocmask(), sigsuspend()

May 31, 2004 Manifests 2833

sigsetmask() 2004, QNX Software Systems Ltd.

Set the mask of signals to block

Synopsis:
#include <unix.h>

int sigsetmask(int mask);

Arguments:
mask A bitmask of the signals that you want to block.

Library:
libc

Description:
The sigsetmask() function sets the current signal mask (those signals
that are blocked from delivery). Signals are blocked if the
corresponding bit in mask is a 1; the macro sigmask() is provided to
construct the mask for a given signum.

In normal usage, a signal is blocked using sigblock(). To begin a
critical section, variables modified on the occurrence of the signal are
examined to determine that there is no work to be done, and the
process pauses awaiting work by using sigpause() with the mask
returned by sigblock().

It isn’t possible to block SIGKILL, SIGSTOP, or SIGCONT; this
restriction is silently imposed by the system.

Returns:
The previous set of masked signals.

Classification:
Unix

2834 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigsetmask()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
Use of these interfaces should be restricted to only applications
written on BSD platforms. Use of these interfaces with any of the
system libraries or in multithreaded applications is unsupported.

See also:
kill(), sigaction(), sigblock(), sigmask(), signal(), sigpause(),
sigprocmask(), sigunblock()

May 31, 2004 Manifests 2835

sigsuspend() 2004, QNX Software Systems Ltd.

Replace the signal mask, and then suspend the thread

Synopsis:
#include <signal.h>

int sigsuspend(const sigset t *sigmask);

Arguments:
sigmask A pointer to a sigset t object that specifies the signals

that you want in the thread’s signal mask.

Library:
libc

Description:
The sigsuspend() function replaces the thread’s signal mask with the
set of signals pointed to by sigmask and then suspends the thread until
delivery of a signal whose action is either to execute a signal-catching
function (then return), or to terminate the thread.

Returns:
-1 (if the function returns); errno is set.

Errors:
EFAULT A fault occurred trying to access the buffers provided.

EINTR A signal was caught by the calling thread, and control is
returned from the signal-catching function.

Examples:
/*
* This program pauses until a signal other than
* a SIGINT occurs. In this case a SIGALRM.
*/

#include <stdio.h>
#include <signal.h>

2836 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigsuspend()

#include <stdlib.h>
#include <unistd.h>

sigset t set;

int main(void)
{

sigemptyset(&set);
sigaddset(&set, SIGINT);

printf("Program suspended and immune to breaks.\n");
printf("A SIGALRM will terminate the program"

" in 10 seconds.\n");
alarm(10);
sigsuspend(&set);
return(EXIT SUCCESS);

}

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pause(), sigaction(), sigpending(), sigprocmask()

May 31, 2004 Manifests 2837

sigtimedwait() 2004, QNX Software Systems Ltd.

Wait for a signal or a timeout

Synopsis:
#include <signal.h>

int sigtimedwait(const sigset t *set,
siginfo t *info,
const struct timespec *timeout);

Arguments:
set A set of signals from which the function selects a pending

signal.

info If this argument is NULL, the selected signal is returned
by sigwaitinfo(); otherwise, the selected signal is stored
in the si signo member of info, and the cause of the signal
is stored in the si code member.

timeout NULL, or a pointer to a timespec structure that specifies
the maximum time to wait for a pending signal.

Library:
libc

Description:
The sigtimedwait() function selects a pending signal from set,
atomically clears it from the set of pending signals in the process, and
returns that signal number.

If any value is queued to the selected signal, the first queued value is
dequeued and, if the info argument is non-NULL, the value is stored in
the si value member of info. The system resources used to queue the
signal are released and made available to queue other signals. If no
value is queued, the content of the si value member is undefined.

If no further signals are queued for the selected signal, the pending
indication for that signal is reset.

2838 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigtimedwait()

If none of the signals specified by set are pending, sigtimedwait()
waits for the time interval specified by the timespec structure
timeout. If timeout is zero and if none of the signals specified by set
are pending, then sigtimedwait() returns immediately with an error. If
timeout is NULL, sigtimedwait() behaves the same as sigwaitinfo().

Returns:
The selected signal number, or -1 if an error occurred (errno is set).

Errors:
EAGAIN The timeout expired before a signal specified in set was

generated, or all kernel timers are in use.

EFAULT A fault occurred while accessing the provided buffers.

EINTR The wait was interrupted by an unblocked, caught signal.

EINVAL The timeout argument specified a tv nsec value less than
zero or greater than or equal to 1000 million or set
contains an invalid or unsupported signal number.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 2839

sigtimedwait() 2004, QNX Software Systems Ltd.

See also:
pause(), pthread sigmask(), sigaction(), SignalWaitinfo(),
sigpending(), sigsuspend(), sigwaitinfo(), timespec

2840 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigunblock()
Unblock signals

Synopsis:
#include <unix.h>

int sigunblock(int mask);

Arguments:
mask A bitmask of the signals that you want to unblock.

Library:
libc

Description:
The sigunblock() function removes the signals specified in mask from
the set of signals currently being blocked from delivery. Signals are
unblocked if the appropriate bit in mask is a 1; the macro sigmask() is
provided to construct the mask for a given signum. The sigunblock()
returns the previous mask. You can restore the previous mask by
calling sigsetmask().

In normal usage, a signal is blocked using sigblock(). To begin a
critical section, variables modified on the occurrence of the signal are
examined to determine that there is no work to be done, and the
process pauses awaiting work by using sigpause() with the mask
returned by sigblock().

It isn’t possible to block SIGKILL, SIGSTOP, or SIGCONT; this
restriction is silently imposed by the system.

Returns:
The previous set of masked signals.

May 31, 2004 Manifests 2841

sigunblock() 2004, QNX Software Systems Ltd.

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
Use of these interfaces should be restricted to only applications
written on BSD platforms. Use of these interfaces with any of the
system libraries or in multithreaded applications is unsupported.

See also:
kill(), sigaction(), sigblock(), sigmask(), signal(), sigpause(),
sigprocmask(), sigsetmask()

2842 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigwait()
Wait for a pending signal

Synopsis:
#include <signal.h>

int sigwait(const sigset t *set,
int *sig);

Arguments:
set A pointer to a sigset t object that specifies the signals you

want to wait for.

sig A pointer to a location where the function can store the signal
that it cleared.

Library:
libc

Description:
The sigwait() function selects a pending signal from set, atomically
clears it from the set of pending signals in the system, and returns that
signal number in sig. If there are multiple signals queued for the
signal number selected, the first signal causes a return from sigwait()
and the rest remain queued. If no signal in set is pending at the time of
the call, the thread is suspended until one or more becomes pending.

The signals defined by set must be blocked before you call sigwait();
otherwise, the behavior is undefined. The effect of sigwait() on the
signal actions for the signals in set is unspecified.

If more than one thread is using sigwait() to wait for the same signal,
only one of the threads returns from sigwait() with the signal number
— which one is unspecified.

May 31, 2004 Manifests 2843

sigwait() 2004, QNX Software Systems Ltd.

Returns:
0 Success (that is, one of the signals specified by set is

pending or has been generated).

EINTR The sigwait() function was interrupted by a signal.

EINVAL The set argument contains an invalid or unsupported
signal number.

EFAULT A fault occurred while accessing the provided buffers.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pause(), pthread sigmask(), sigaction(), sigpending(), sigsuspend()

2844 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sigwaitinfo()
Wait for a pending signal and get its information

Synopsis:
#include <signal.h>

int sigwaitinfo (const sigset t *set,
siginfo t *info);

Arguments:
set A pointer to a sigset t object that specifies the signals you

want to wait for.

info NULL, or a pointer to a siginfo t structure where the
function can store information about the signal.

Library:
libc

Description:
The sigwaitinfo() function selects a pending signal from set,
atomically clears it from the set of pending signals in the system, and
returns that signal number.

If info is NULL, the selected signal is returned by sigwaitinfo();
otherwise, the selected signal is stored in the si signo member of info
and the cause of the signal is stored in the si code member.

If any value is queued to the selected signal, the first queued value is
dequeued and, if the info argument is non-NULL, the value is stored in
the si value member of info. The system resources used to queue the
signal are released and made available to queue other signals. If no
value is queued, the content of the si value member is undefined.

If no further signals are queued for the selected signal, the pending
indication for that signal is reset.

May 31, 2004 Manifests 2845

sigwaitinfo() 2004, QNX Software Systems Ltd.

Returns:
A signal number, or -1 if an error occurred (errno is set).

Errors:
EFAULT A fault occurred while accessing the buffers.

EINTR The wait was interrupted by an unblocked, caught signal.

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pause(), pthread sigmask(), sigaction(), SignalWaitinfo(),
sigpending(), sigsuspend(), sigtimedwait(), sigwait()

2846 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sin(), sinf()
Calculate the sine of an angle

Synopsis:
#include <math.h>

double sin(double x);

float sinf(float x);

Arguments:
x The angle, in radians, for which you want to compute the sine.

Library:
libm

Description:
The sin() and sinf() functions compute the sine (specified in radians)
of x. An argument with a large magnitude may yield a result with
little or no significance.

Returns:
The sine value.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

int main(void)
{

printf("%f\n", sin(.5));

May 31, 2004 Manifests 2847

sin(), sinf() 2004, QNX Software Systems Ltd.

return(EXIT SUCCESS);
}

produces the output:

0.479426

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
acos(), asin(), atan(), atan2(), cos(), tan()

2848 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sinh(), sinhf()
Compute the hyperbolic sine

Synopsis:
#include <math.h>

double sinh(double x);

float sinhf(float x);

Arguments:
x The angle, in radians, for which you want to compute the

hyperbolic sine.

Library:
libm

Description:
The sinh() and sinhf() functions compute the hyperbolic sine
(specified in radians) of x. A range error occurs if the magnitude of x
is too large.

Returns:
The hyperbolic sine value.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

int main(void)
{

printf("%f\n", sinh(.5));

May 31, 2004 Manifests 2849

sinh(), sinhf() 2004, QNX Software Systems Ltd.

return(EXIT SUCCESS);
}

produces the output:

0.521095

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
cosh(), errno, tanh()

2850 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sleep()
Suspend a thread for a given length of time

Synopsis:
#include <unistd.h>

unsigned int sleep(unsigned int seconds);

Arguments:
seconds The number of realtime seconds that you want to suspend

the thread for.

Library:
libc

Description:
The sleep() function suspends the calling thread until the number of
realtime seconds specified by the seconds argument have elapsed, or
the thread receives a signal whose action is either to terminate the
process or to call a signal handler. The suspension time may be
greater than the requested amount, due to the scheduling of other,
higher priority threads by the system.

Returns:
0 if the full time specified was completed; otherwise, the number of
seconds unslept if interrupted by a signal.

Errors:
EAGAIN No timer resources were available to satisfy the request.

Examples:
/*
* The following program sleeps for the
* number of seconds specified in argv[1].
*/

#include <stdlib.h>
#include <unistd.h>

May 31, 2004 Manifests 2851

sleep() 2004, QNX Software Systems Ltd.

int main(int argc, char **argv)
{

unsigned seconds;

seconds = (unsigned) strtol(argv[1], NULL, 0);
sleep(seconds);

return EXIT SUCCESS;
}

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
alarm(), delay(), errno, nanosleep(), timer create(), timer gettime(),
timer settime(), usleep()

2852 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sleepon broadcast()
Wake up multiple threads

Synopsis:
#include <pthread.h>

int sleepon broadcast(sleepon t * l,
const volatile void * addr);

Arguments:
l A pointer to a sleepon t that you created by calling

sleepon init().

addr The handle that the threads are waiting on. The value of
addr is typically a data structure that controls a resource.

Library:
libc

Description:
The sleepon signal() and sleepon broadcast() functions are very
similar:

� sleepon signal() wakes up a single thread that’s waiting on the
key, addr.

� sleepon broadcast() wakes up all threads that are waiting on the
key, addr.

The waiting threads must have used the same sleepon, l and key, addr,
in order to be woken up.

To be woken up, the calling threads must have been locked by
sleepon lock().

Returns:
0 Success.

≠0 Failure.

May 31, 2004 Manifests 2853

sleepon broadcast() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
pthread sleepon broadcast(), pthread sleepon signal(),
sleepon destroy(), sleepon init(), sleepon lock(), sleepon signal(),
sleepon unlock()

2854 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sleepon destroy()
Destroy a sleepon

Synopsis:
#include <pthread.h>

int sleepon destroy(sleepon t * l);

Arguments:
l A pointer to a sleepon t that you created by calling

sleepon init().

Library:
libc

Description:
The sleepon destroy() function destroys a sleepon t structure, l,
that has been previously initialized by sleepon init().

If l hasn’t been locked by sleepon lock(), sleepon destroy() locks it
before destroying it.

The sleepon structure is reference-counted such that, if other threads
are blocked waiting for a condition, they’re be signaled to wake up,
and the last one to wake up frees the memory allocated to the sleepon.

Returns:
0 Success.

≠0 Failure

Classification:
QNX Neutrino

May 31, 2004 Manifests 2855

sleepon destroy() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
sleepon broadcast(), sleepon init(), sleepon lock(),
sleepon signal(), sleepon unlock()

2856 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sleepon init()
Initialize a sleepon

Synopsis:
#include <pthread.h>

int sleepon init(sleepon t ** pl,
unsigned flags);

Arguments:
pl The address of a location where the function can store a

pointer to the sleepon t object that it creates.

flags There are currently no flags defined; pass zero for this
argument.

Library:
libc

Description:
The sleepon init() function allocates a sleepon t object (which is
an opaque data structure) and stores a pointer to it in the location that
pl points to.

Returns:
0 Success.

≠0 Failure.

Classification:
QNX Neutrino

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 2857

sleepon init() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
sleepon broadcast(), sleepon destroy(), sleepon lock(),
sleepon signal(), sleepon unlock()

2858 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sleepon lock()
Lock a sleepon

Synopsis:
#include <pthread.h>

int sleepon lock(sleepon t * l);

Arguments:
l A pointer to a sleepon t that you created by calling

sleepon init().

Library:
libc

Description:
The sleepon lock() function locks the mutex associated with the
sleepon structure, l.

You must call this function before calling sleepon wait(),
sleepon signal(), or sleepon broadcast().

Returns:
EOK Success.

EAGAIN Insufficient system resources were available to lock
the mutex.

EDEADLK The calling thread already owns mutex, and the mutex
doesn’t allow recursive behavior.

EINVAL Invalid mutex.

The sleepon lock() function returns the same values as
pthread mutex lock().

May 31, 2004 Manifests 2859

sleepon lock() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
pthread mutex lock(), sleepon broadcast(), sleepon destroy(),
sleepon init(), sleepon signal(), sleepon unlock(), sleepon wait()

2860 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sleepon signal()
Wake up a single thread

Synopsis:
#include <pthread.h>

int sleepon signal(sleepon t * l,
const volatile void * addr);

Arguments:
l A pointer to a sleepon t that you created by calling

sleepon init().

addr The handle that the thread is waiting on. The value of addr
is typically a data structure that controls a resource.

Library:
libc

Description:
The sleepon signal() and sleepon broadcast() functions are very
similar:

� sleepon signal() wakes up a single thread that’s waiting on the
key, addr.

� sleepon broadcast() wakes up all threads that are waiting on the
key, addr.

The waiting threads must have used the same sleepon, l and key, addr,
in order to be woken up.

To be woken up, the calling threads must have been locked by
sleepon lock().

Returns:
0 Success.

≠0 Failure.

May 31, 2004 Manifests 2861

sleepon signal() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
pthread sleepon broadcast(), pthread sleepon signal(),
sleepon broadcast(), sleepon destroy(), sleepon init(),
sleepon lock(), sleepon unlock()

2862 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sleepon unlock()
Unlock a sleepon

Synopsis:
#include <pthread.h>

int sleepon unlock(sleepon t * l);

Arguments:
l A pointer to a sleepon t that you created by calling

sleepon init().

Library:
libc

Description:
The sleepon unlock() function unlocks the mutex associated with the
sleepon structure, l. You must have previously locked the mutex by
calling sleepon lock().

Returns:
EOK Success.

EINVAL Invalid mutex mutex.

EPERM The current thread doesn’t own mutex.

The sleepon unlock() function returns the same values as
pthread mutex unlock().

Classification:
QNX Neutrino

May 31, 2004 Manifests 2863

sleepon unlock() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
pthread mutex unlock(), sleepon broadcast(), sleepon destroy(),
sleepon init(), sleepon lock()

2864 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sleepon wait()
Wait on a sleepon lock

Synopsis:
#include <pthread.h>

int sleepon wait(sleepon t * l,
const volatile void * addr,
uint64 nsec);

Arguments:
l A pointer to a sleepon t that you created by calling

sleepon init().

addr The handle that you want to wait on. The value of addr is
typically a data structure that controls a resource.

nsec Zero, or the amount of time, in nanoseconds, to wait before
the thread wakes up. If this timeout occurs, ETIMEDOUT is
returned.

Library:
libc

Description:
The sleepon wait() function blocks on the sleepon l using the key
addr until woken up by either a sleepon signal() or a
sleepon broadcast() call that uses the same addr key.

The calling thread must first have locked the sleepon by calling
sleepon lock().

When the thread returns from this function, it must release the
sleepon lock by calling sleepon unlock().

Returns:
0 Success.

≠0 Failure; a nonzero errno value.

May 31, 2004 Manifests 2865

sleepon wait() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
sleepon broadcast(), sleepon lock(), sleepon unlock(),
sleepon signal()

2866 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. slogb()
Send a message to the system logger

Synopsis:
#include <stdio.h>
#include <sys/slog.h>

int slogb(int code,
int severity,
void * data,
int size);

Arguments:
opcode A combination of a major and minor code.

severity The severity of the log message; see “Severity levels,” in
the documentation for slogf().

data A block of raw data.

size The size of the raw data.

Library:
libc

Description:
The slog*() functions send log messages to the system logger,
slogger. To send formatted messages, use slogf(). If you have
programs that scan log files for specified codes, you can use slogb() or
slogi() to send a block of structures or int’s, respectively.

Errors:
Any value from the Errors section in MsgSend(), as well as:

EACCES Insufficient permission to write to the log file.

EINVAL The size of the data buffer exceeds 255�4 bytes, or an
odd number of bytes is being read.

May 31, 2004 Manifests 2867

slogb() 2004, QNX Software Systems Ltd.

ENOENT Invalid log file or directory specified, or slogger isn’t
running.

Examples:
See slogf().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
slogf(), slogi(), vslogf()

slogger, sloginfo in the Utilities Reference

2868 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. slogf()
Send a message to the system logger

Synopsis:
#include <stdio.h>
#include <sys/slog.h>

int slogf(int opcode,
int severity,
const char * fmt,
...);

Arguments:
opcode A combination of a major and minor code. Create the

opcode using the SLOG SETCODE(major, minor)
macro that’s defined in <sys/slog.h>.

The major and minor codes are defined in
<sys/slogcodes.h>.

severity The severity of the log message; see “Severity levels,”
below.

fmt A standard printf() string followed by printf() arguments.

The formatting characters that you use in the message determine any
additional arguments.

Library:
libc

Description:
The slog*() functions send log messages to the system logger,
slogger. To send formatted messages, use slogf(). If you have
programs that scan log files for specified codes, you can use slogb() or
slogi() to send a block of structures or int’s, respectively.

The vslogf() function is an alternate form in which the arguments have
already been captured using the variable-length argument facilities of
<stdarg.h>.

May 31, 2004 Manifests 2869

slogf() 2004, QNX Software Systems Ltd.

Severity levels

There are eight levels of severity defined. The lowest severity is 7 and
the highest is 0. The default is 7.

Manifest Name Severity value Description

SLOG SHUTDOWN 0 Shut down the system
NOW (e.g. for OEM use)

SLOG CRITICAL 1 Unexpected
unrecoverable error (e.g.
hard disk error)

SLOG ERROR 2 Unexpected recoverable
error (e.g. needed to reset
a hardware controller)

SLOG WARNING 3 Expected error (e.g.
parity error on a serial
port)

SLOG NOTICE 4 Warnings (e.g. out of
paper)

SLOG INFO 5 Information (e.g. printing
page 3)

SLOG DEBUG1 6 Debug messages (normal
detail)

SLOG DEBUG2 7 Debug messages (fine
detail)

Returns:
The size of the message sent to slogger, or -1 if an error occurs.

2870 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. slogf()

Errors:
Any value from the Errors section in MsgSend(), as well as:

EACCES Insufficient permission to write to the log file.

EINVAL The size of the data buffer exceeds 255�4 bytes, or an
odd number of bytes is being read.

ENOENT Invalid log file or directory specified, or slogger isn’t
running.

Examples:
#include <stdio.h>

#include <unistd.h>
#include <stdlib.h>

#include <sys/slog.h>

#include <sys/slogcodes.h>

int main() {

int i;

for(i = 0 ; ; i++) {

switch(rand() % 3) {
case 0:

slogb(SLOG SETCODE(SLOGC TEST, 0),

SLOG DEBUG1, &i, sizeof(i));
break;

case 1:
slogi(SLOG SETCODE(SLOGC TEST, 1),

SLOG CRITICAL, 1, i);
break;

case 2:
slogf(SLOG SETCODE(SLOGC TEST, 2),

SLOG ERROR,

"This is number %d", i);
break;

}

sleep(1);

}

}

May 31, 2004 Manifests 2871

slogf() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
slogb(), slogi(), vslogf()

slogger, sloginfo in the Utilities Reference

2872 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. slogi()
Send a message to the system logger

Synopsis:
#include <stdio.h>
#include <sys/slog.h>

int slogi(int code,
int severity,
int nargs,
...);

Arguments:
opcode A combination of a major and minor code.

severity The severity of the log message; see “Severity levels,” in
the documentation for slogf().

nargs The number of integers to send. A maximum of 32
integers is allowed.

The additional arguments are the integers that you want to write.

Library:
libc

Description:
The slog*() functions send log messages to the system logger,
slogger. To send formatted messages, use slogf(). If you have
programs that scan log files for specified codes, you can use slogb() or
slogi() to send a block of structures or int’s, respectively.

Errors:
Any value from the Errors section in MsgSend(), as well as:

EACCES Insufficient permission to write to the log file.

EINVAL The size of the data buffer exceeded 32 integers.

May 31, 2004 Manifests 2873

slogi() 2004, QNX Software Systems Ltd.

ENOENT Invalid log file or directory specified, or slogger isn’t
running.

Examples:
See slogf()

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
slogb(), slogf(), slogi(), vslogf()

slogger, sloginfo in the Utilities Reference

2874 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. smalloc()
Allocate memory in blocks

Synopsis:
#include <malloc.h>

void* smalloc(size t size);

Arguments:
size The size of the block to allocate, in bytes.

Library:
libc

Description:
The smalloc() function allocates space for an object of size bytes.
Nothing is allocated when the size argument has a value of zero.

This function allocates memory in blocks of amblksiz bytes;
amblksiz is a global variable defined in <stdlib.h>.

�

You must use sfree() to deallocate the memory allocated by
smalloc().

Returns:
A pointer to the start of the allocated memory, or NULL if there’s
insufficient memory available, or if the requested size is zero.

Classification:
QNX Neutrino

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 2875

smalloc() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
calloc(), free(), realloc(), scalloc(), sfree(), srealloc()

2876 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. snmp close()
Close an SNMP session

Synopsis:
#include <sys/types.h>
#include <snmp/asn1.h>
#include <snmp/snmp api.h>

extern int snmp errno

int snmp close(struct snmp session * session);

Arguments:
session A pointer to the snmp session structure that identifies

the SNMP session that you want to close. This pointer
was returned by a call to snmp open().

Library:
libsnmp

Description:
The snmp close() function closes the input session, frees any data
allocated for it, dequeues any pending requests, and closes any
sockets allocated for the session.

Returns:
1 Success.

0 An error occurred (snmp errno is set).

Errors:
If an error occurs, this function sets snmp errno to:

SNMPERR BAD SESSION

The specified session wasn’t open.

May 31, 2004 Manifests 2877

snmp close() 2004, QNX Software Systems Ltd.

Classification:
SNMP

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
select(), snmp free pdu(), snmp open(), snmp pdu,
snmp pdu create(), snmp read(), snmp select info(), snmp send(),
snmp session, snmp timeout()

RFC 1157, FAQ in Internet newsgroup comp.protocols.snmp

Marshall T. Rose, The Simple Book: An Introduction to Internet
Management, Revised 2nd ed. (Prentice-Hall, 1996, ISBN
0-13-451659-1)

2878 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. snmp free pdu()
Free an SNMP Protocol Data Unit message structure

Synopsis:
#include <sys/types.h>
#include <netinet/in.h>
#include <snmp/asn1.h>
#include <snmp/snmp api.h>

void snmp free pdu(struct snmp pdu * pdu);

Arguments:
pdu A pointer to the snmp pdu structure that you want to free.

Library:
libsnmp

Description:
The snmp free pdu() function frees the snmp pdu structure pointed to
by pdu, and any data that it contains that was allocated with malloc().

Classification:
SNMP

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

May 31, 2004 Manifests 2879

snmp free pdu() 2004, QNX Software Systems Ltd.

See also:
select(), snmp close(), snmp open(), snmp pdu, snmp read(),
snmp select info(), snmp send(), snmp session, snmp timeout()

RFC 1157, FAQ in Internet newsgroup comp.protocols.snmp

Marshall T. Rose, The Simple Book: An Introduction to Internet
Management, Revised 2nd ed. (Prentice-Hall, 1996, ISBN
0-13-451659-1)

2880 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. snmp open()
Open an SNMP session

Synopsis:
#include <sys/types.h>
#include <snmp/asn1.h>
#include <snmp/snmp api.h>

extern int snmp errno;

struct snmp session * snmp open(
struct snmp session * session);

Arguments:
session A pointer to a snmp session structure that defines the

SNMP session that you want to open.

Library:
libsnmp

Description:
The snmp open() function sets up an SNMP session with the
information supplied by the application in the snmp session

structure pointed to by session. Next, snmp open() opens and binds
the necessary UDP port.

Returns:
A pointer to a snmp session structure for the created session
(which is different from the pointer passed to the function), or NULL
if an error occurs (snmp errno is set).

Errors:
If an error occurs, this function sets snmp errno to one of:

SNMPERR BAD ADDRESS

Unknown host.

May 31, 2004 Manifests 2881

snmp open() 2004, QNX Software Systems Ltd.

SNMPERR BAD LOCPORT

Couldn’t bind to the specified port.

SNMPERR GENERR

Couldn’t open the socket.

Classification:
SNMP

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
read main config file(), select(), snmp close(), snmp free pdu(),
snmp pdu, snmp pdu create(), snmp read(), snmp select info(),
snmp send(), snmp session, snmp timeout()

RFC 1157, FAQ in Internet newsgroup comp.protocols.snmp

Marshall T. Rose, The Simple Book: An Introduction to Internet
Management, Revised 2nd ed. (Prentice-Hall, 1996, ISBN
0-13-451659-1)

2882 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. snmp pdu
Structure that describes an SNMP Protocol Data Unit (transaction)

Synopsis:
#include <snmp/snmp api.h>

struct snmp pdu {
int version;
ipaddr address;
oid * srcParty;
int srcPartyLen;
oid * dstParty;
int dstPartyLen;
oid * context;
int contextLen;
u char * community;
int community len;
int command;
long reqid;
long errstat;
long errindex;

/* Trap information */
oid * enterprise;
int enterprise length;
ipaddr agent addr;
int trap type;
int specific type;
u long time;

struct variable list * variables;
};

Description:
The snmp pdu structure describes a Protocol Data Unit (PDU), a
transaction that’s performed over an open session. It contains the
headers and variables of an SNMP packet. The structure includes the
following members:

version The version of SNMP: either SNMP VERSION 1 or
SNMP VERSION 2.

May 31, 2004 Manifests 2883

snmp pdu 2004, QNX Software Systems Ltd.

address The destination IP address.

srcParty The source party being used.

srcPartyLen The number of object identifier (OID) elements in
srcParty. For example, if srcParty is .1.3.6, the
length is 3.

dstParty The destination party being used.

dstPartyLen The number of OID elements in dstParty.

context The context being used.

contextLen The number of OID elements in context.

community The community for outgoing requests.

community len The length of the community name.

command The type of this PDU.

reqid The request ID. The default is
SNMP DEFAULT REQID (0).

errstat The error status (non repeaters in GetBulk). The
default is SNMP DEFAULT ERRSTAT (-1).

errindex The error index (max repetitions in GetBulk). The
default is SNMP DEFAULT ERRINDEX (-1).

enterprise The system OID.

enterprise length

The number of OID elements in enterprise. The
default is SNMP DEFAULT ENTERPRISE LENGTH
(0).

agent addr The address of the object generating the trap.

trap type The trap type.

specific type The specific type.

2884 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. snmp pdu

time The up time. The default is SNMP DEFAULT TIME
(0).

variables A linked list of variables, of type variable list.

The variable list structure is defined as:

typedef struct sockaddr in ipaddr;

struct variable list {
struct variable list* next variable;
oid* name;
int name length;
u char type;
union {

long* integer;
u char* string;
oid* objid;
u char* bitstring;
struct counter64* counter64;

} val;
int val len;

};

The members are:

next variable A pointer to the next variable. This is NULL for the
last variable in the list.

name The object identifier of the variable.

name length The number of sub IDs in name.

type The ASN type of variable.

val.integer The value of the variable if it’s an integer.

val.string The value of the variable if it’s a string.

val.objid The value of the variable if it’s an object ID.

bitstring The value of the variable if it’s a bitstring.

counter64 The value of the variable if it’s a counter64.

val len The length of the value.

May 31, 2004 Manifests 2885

snmp pdu 2004, QNX Software Systems Ltd.

Classification:
SNMP

See also:
snmp close(), snmp free pdu(), snmp open(), snmp pdu create(),
snmp read(), snmp send(), snmp session

RFC 1157, FAQ in Internet newsgroup comp.protocols.snmp

Marshall T. Rose, The Simple Book: An Introduction to Internet
Management, Revised 2nd ed. (Prentice-Hall, 1996, ISBN
0-13-451659-1)

2886 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. snmp pdu create()
Create an SNMP Protocol Data Unit message structure

Synopsis:
#include <sys/types.h>
#include <netinet/in.h>
#include <snmp/snmp.h>
#include <snmp/asn1.h>
#include <snmp/snmp api.h>
#include <snmp/snmp client.h>

extern int snmp errno;

struct snmp pdu * snmp pdu create (int command);

Arguments:
command The type of message that the PDU represents:

� BULK REQ MSG

� GET REQ MSG

� GET RSP MSG

� GETNEXT REQ MSG

� INFORM REQ MSG

� SET REQ MSG

� TRP REQ MSG

� TRP2 REQ MSG

as defined in <snmp/snmp.h>.

Library:
libsnmp

Description:
The snmp pdu create() function allocates memory for a Protocol
Data Unit (PDU) structure for SNMP message passing. The PDU
structure is initialized with default values; see the documentation for
snmp pdu.

May 31, 2004 Manifests 2887

snmp pdu create() 2004, QNX Software Systems Ltd.

Returns:
A pointer to the PDU structure created, or NULL if an error occurs
(snmp errno is set).

Errors:
If an error occurs, this function sets snmp errno to:

SNMPERR GENERR

Not enough memory to create the snmp pdu structure.

Classification:
SNMP

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

See also:
snmp free pdu(), snmp pdu, snmp read(), snmp send()

RFC 1157, FAQ in Internet newsgroup comp.protocols.snmp

Marshall T. Rose, The Simple Book: An Introduction to Internet
Management, Revised 2nd ed. (Prentice-Hall, 1996, ISBN
0-13-451659-1)

2888 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. snmp read()
Read an SNMP message

Synopsis:
#include <sys/select.h>
#include <snmp/snmp impl.h>

void snmp read(struct fd set * fdset);

Arguments:
fdset A pointer to a fd set structure that contains all the file

descriptors that you want to read from.

Library:
libsnmp

Description:
The snmp read() function reads a packet from each socket and its set
of file descriptors and parses the packet. The resulting Protocol Data
Unit (PDU) is passed to the callback routine for the session (see
snmp session); if the callback returns successfully, the PDU and its
request are deleted.

For information on asynchronous SNMP transactions, see
snmp select info().

Classification:
SNMP

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

May 31, 2004 Manifests 2889

snmp read() 2004, QNX Software Systems Ltd.

See also:
select(), snmp close(), snmp open(), snmp pdu, snmp read(),
snmp select info(), snmp send(), snmp session, snmp timeout()

RFC 1157, FAQ in Internet newsgroup comp.protocols.snmp

Marshall T. Rose, The Simple Book: An Introduction to Internet
Management, Revised 2nd ed. (Prentice-Hall, 1996, ISBN
0-13-451659-1)

2890 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. snmp select info()
Get information that select() needs for SNMP

Synopsis:
#include <sys/types.h>
#include <sys/select.h>
#include <sys/time.h>
#include <snmp/snmp api.h>

int snmp select info(int * numfds,
struct fd set * fdset,
struct timeval * timeout,
int * block);

Arguments:
numfds The number of significant file descriptors in fdset.

fdset A pointer to a set of file descriptors that contains all of
the file descriptors that you’ve opened for SNMP. If
activity occurs on any of these file descriptors, you
should call snmp read() with that file-descriptor set.

timeout A pointer to a timeval structure that defines the longest
time that SNMP can wait for a timeout. You should call
select() with the minimum time between timeout and any
other timeouts necessary. You should check this on each
invocation of select(). If a timeout is received, you
should call snmp timeout() to see if the timeout was for
SNMP. (The snmp timeout() function is idempotent.)

You must provide the timeout, even if block is 1 (see
below).

block Governs the behavior of select():

� If block is 0, select() is requested to time out.

� If block is 1, select() is requested to block indefinitely.
The timeout value is treated as undefined, although
you must provide it. On return, if block is nonzero,
the value of timeout is undefined.

May 31, 2004 Manifests 2891

snmp select info() 2004, QNX Software Systems Ltd.

Library:
libsnmp

Description:
The snmp select info() function is used to return information about
what SNMP requires from a select() call.

Asynchronous SNMP transactions:

To have SNMP transactions occur asynchronously, you can invoke the
functions snmp select info(), snmp timeout(), and snmp read() in
conjunction with the system call select(). For more information, see
select().

For asynchronous transactions, invoke snmp select info() with the
information you would have passed to select() in the absence of
SNMP. The snmp select info() function modifies the information,
which is subsequently passed to select().

Parameters to select(): Corresponding parameters to
snmp select info():

nfds numfds

readfds fdset

timeout timeout — must point to an allocated
(but not necessarily initialized)
timeval structure.

The following code segment shows how to use these SNMP functions
in conjunction with select():

FD ZERO(&fdset);
numfds=sd+1;
FD SET(sd,&fdset);
block=0;
tvp=&timeout;
timerclear(tvp);
tvp->tv sec = 5;

2892 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. snmp select info()

snmp select info(&numfds, &fdset, tvp, &block);

if(block==1)
{
tvp = NULL;

}
count = select(numfds, &fdset, 0, 0, tvp);

if(count==0)
snmp timeout();

if(count>0)
snmp read(&fdset);

Returns:
The number of open sockets (i.e. the number of open sessions).

Classification:
SNMP

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

See also:
select(), snmp close(), snmp open(), snmp pdu, snmp read(),
snmp select info(), snmp send(), snmp session, snmp timeout()

RFC 1157, FAQ in Internet newsgroup comp.protocols.snmp

Marshall T. Rose, The Simple Book: An Introduction to Internet
Management, Revised 2nd ed. (Prentice-Hall, 1996, ISBN
0-13-451659-1)

May 31, 2004 Manifests 2893

snmp send() 2004, QNX Software Systems Ltd.

Send SNMP messages

Synopsis:
#include <sys/types.h>
#include <snmp/asn1.h>
#include <netinet/in.h>
#include <snmp/snmp api.h>

extern int snmp errno

int snmp send(struct snmp session * session,
struct snmp pdu * pdu);

Arguments:
session A pointer to the snmp session structure that identifies

the SNMP session that you want to send the message on.
This pointer was returned by a call to snmp open().

pdu A pointer to the snmp pdu structure that defines the
Protocol Data Unit that you want to send. Create this
structure by calling snmp pdu create().

Library:
libsnmp

Description:
The snmp send() function sends the PDU on the session provided. If
necessary, some of the snmp pdu structure data is set from the
session defaults. A request corresponding to this PDU is added to the
list of outstanding requests on this session and then the packet is sent.

This function frees pdu unless an error occurs.

Returns:
The request ID of the generated packet, if applicable, 1 if not
applicable, or 0 if an error occurs (snmp errno is set).

2894 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. snmp send()

Errors:
If an error occurs, this function sets snmp errno to one of:

SNMPERR BAD ADDRESS

A necessary entity in the pdu structure was omitted. These
include:

� version

� address and the snmp session peername member

� srcParty (SNMP version 2 only)

� dstParty (SNMP version 2 only)

� context (SNMP version 2 only)

� community len (SNMP version 1 only)

SNMPERR BAD SESSION

The specified session wasn’t open.

SNMPERR GENERR

An error occurred forming the packet.

Classification:
SNMP

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

May 31, 2004 Manifests 2895

snmp send() 2004, QNX Software Systems Ltd.

See also:
select(), snmp close(), snmp open(), snmp pdu, snmp pdu create(),
snmp read(), snmp select info(), snmp send(), snmp session,
snmp timeout()

RFC 1157, FAQ in Internet newsgroup comp.protocols.snmp

Marshall T. Rose, The Simple Book: An Introduction to Internet
Management, Revised 2nd ed. (Prentice-Hall, 1996, ISBN
0-13-451659-1)

2896 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. snmp session
Structure that defines a set of transactions with similar transport characteristics

Synopsis:
#include <snmp/snmp api.h>

struct snmp session {
u char * community;
int community len;
int retries;
long timeout;
char * peername;
u short remote port;
u short local port;
u char * (*authenticator)();
int (* callback)();
void * callback magic;
int version;
oid * srcParty;
int srcPartyLen;
oid * dstParty;
int dstPartyLen;
oid * context;
int contextLen;

};

Description:
The snmp session structure describes a set of transactions sharing
similar transport characteristics. It includes the following members:

community The community for outgoing requests. The default
is 0.

community len The length of the community name. The default is
SNMP DEFAULT COMMUNITY LEN (0).

retries The number of retries before timing out. The
default is SNMP DEFAULT RETRIES (-1).

timeout The number of microseconds until the first timeout.
Subsequent timeouts increase exponentially. The
default is SNMP DEFAULT TIMEOUT (-1).

May 31, 2004 Manifests 2897

snmp session 2004, QNX Software Systems Ltd.

peername The domain name or dotted IP address of the
default peer. The default is
SNMP DEFAULT PEERNAME (NULL).

remote port The UDP port number of the peer. The default is
SNMP DEFAULT REMPORT (0).

local port My UDP port number. The default is
SNMP DEFAULT ADDRESS (0), for picked
randomly.

authenticator The authentication function, or NULL if null
authentication is used. If your application is using
version 1 of SNMP, you must supply this member.

The authenticator() function is defined as:

u char* authenticator(u char* pdu,
int* length,
u char* community,
int community len)

The arguments are:

� pdu — the rest of the PDU to be authenticated.

� length — the length of the remaining data in the
PDU, updated by authenticator().

� community — the community name for
authentication.

� community len — the length of the community
name.

To specify null authentication, set the
authenticator field in snmp session to NULL.

The authenticator() function returns an
authenticated PDU, or NULL if an error occurs.

callback A function used to extract the data from the
received packet (the snmp pdu structure passed to

2898 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. snmp session

the callback). The application must supply this
member.

The callback() function is defined as:

int callback(int operation,
struct snmp session* session,
int reqid,
struct snmp pdu* pdu,
void* magic);

The arguments are:

� operation — the possible operations are
RECEIVED MESSAGE and TIMED OUT.

� session — the session that was authenticated
using community.

� reqid — the request ID identifying the
transaction within this session. Use 0 for traps.

� pdu — A pointer to PDU information. You
must copy the information because it will be
freed elsewhere.

� magic — a pointer to the data for callback().

The callback should return 1 on successful
completion, or 0 if it should be kept pending.

callback magic A pointer to data that the callback function may
consider important.

version The version of SNMP: either SNMP VERSION 1 or
SNMP VERSION 2.

srcParty The source party being used for this session.

srcPartyLen The number of object identifier (OID) elements in
srcParty. For example, if srcParty is .1.3.6, the
length is 3.

dstParty The destination party being used for this session.

May 31, 2004 Manifests 2899

snmp session 2004, QNX Software Systems Ltd.

dstPartyLen The number of OID elements in dstParty.

context The context being used for this session.

contextLen The number of OID elements in context.

Classification:
SNMP

See also:
snmp close(), snmp free pdu(), snmp open(), snmp pdu,
snmp send()

RFC 1157, FAQ in Internet newsgroup comp.protocols.snmp

Marshall T. Rose, The Simple Book: An Introduction to Internet
Management, Revised 2nd ed. (Prentice-Hall, 1996, ISBN
0-13-451659-1)

2900 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. snmp timeout()
Timeout during an SNMP session

Synopsis:
#include <snmp/snmp api.h>

void snmp timeout(void);

Library:
libsnmp

Description:
The snmp timeout() function handles any outstanding SNMP
requests. It should be called whenever the timeout from
snmp select info() expires. The snmp timeout() function checks to see
if any of the sessions has an outstanding request that has timed out.

If it finds one or more, and that PDU has more retries available, a new
packet is formed from the PDU and is resent. If there are no more
retries available, the callback for the session is used to alert the user of
the timeout by setting the callback’s operation argument to
TIMED OUT (2).

For information on asynchronous SNMP transactions, see
snmp select info().

Classification:
SNMP

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

May 31, 2004 Manifests 2901

snmp timeout() 2004, QNX Software Systems Ltd.

See also:
select(), snmp close(), snmp open(), snmp pdu, snmp read(),
snmp select info(), snmp send(), snmp session, snmp timeout()

RFC 1157, FAQ in Internet newsgroup comp.protocols.snmp

Marshall T. Rose, The Simple Book: An Introduction to Internet
Management, Revised 2nd ed. (Prentice-Hall, 1996, ISBN
0-13-451659-1)

2902 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. snprintf()
Write formatted output to a character array, up to a given maximum number of characters

Synopsis:
#include <stdio.h>

int snprintf(char* buf,
size t count,
const char* format,
...);

Arguments:
buf A pointer to the buffer where you want to function to store

the formatted string.

count The maximum number of characters to store in the buffer,
including a terminating null character.

format A string that specifies the format of the output. The
formatting string determines what additional arguments
you need to provide. For more information, see printf().

Library:
libc

Description:
The snprintf() function is similar to fprintf(), except that snprintf()
places the generated output into the character array pointed to by buf ,
instead of writing it to a file. A null character is placed at the end of
the generated character string.

Returns:
The number of characters that would have been written into the array,
not counting the terminating null character, had count been large
enough. It does this even if count is zero; in this case buf can be
NULL.

If an error occurred, snprintf() returns a negative value and sets errno.

May 31, 2004 Manifests 2903

snprintf() 2004, QNX Software Systems Ltd.

Examples:
#include <stdio.h>
#include <stdlib.h>

/* Create temporary file names using a counter */

char namebuf[13];
int TempCount = 0;

char *make temp name(void)
{

snprintf(namebuf, 13, "ZZ%.6o.TMP",
TempCount++);

return(namebuf);
}

int main(void)
{

FILE *tf1, *tf2;

tf1 = fopen(make temp name(), "w");
tf2 = fopen(make temp name(), "w");
fputs("temp file 1", tf1);
fputs("temp file 2", tf2);
fclose(tf1);
fclose(tf2);

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

2904 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. snprintf()

Caveats:
Be careful if you’re using snprintf() to build a string one piece at a
time. For example, this code:

len += snprintf(&buf[len], RECSIZE - 1 - len, ...);

could have a problem if snprintf() truncates the string. Without a
separate test to compare len with RECSIZE, this code doesn’t protect
against a buffer overflow. After the call that truncates the output, len
is larger than RECSIZE, and RECSIZE - 1 - len is a very large
(unsigned) number; the next call generates unlimited output
somewhere beyond the buffer.

See also:
errno, fprintf(), fwprintf(), printf(), sprintf(), swprintf(), vfprintf(),
vfwprintf(), vprintf(), vsnprintf(), vsprintf(), vswprintf(), vwprintf(),
wprintf()

May 31, 2004 Manifests 2905

sockatmark() 2004, QNX Software Systems Ltd.

Determine whether a socket is at the out-of-band mark

Synopsis:
#include <sys/socket.h>

int sockatmark(int s);

Arguments:
s The file descriptor of the socket that you want to check, as

returned by socket().

Library:
libsocket

Description:
The sockatmark() function determines whether the socket specified by
s is at the out-of-band data mark. If the protocol for the socket
supports out-of-band data by marking the stream with an out-of-band
data mark, sockatmark() returns 1 when all data preceding the mark
has been read and the out-of-band data mark is the first element in the
receive queue.

The sockatmark() function doesn’t remove the out-of-band data mark
from the stream.

Using this function between receive operations lets an application
determine which data comes before and after out-of-band data.

Returns:
0 The socket isn’t at the out-of-band data mark.

1 The socket is at the out-of-band data mark.

-1 An error occurred (errno is set).

2906 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sockatmark()

Errors:
EBADF Invalid file descriptor s.

ENOTTY The s argument isn’t the file descriptor of a valid socket.

Classification:
POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
recv(), recvmsg()

May 31, 2004 Manifests 2907

socket() 2004, QNX Software Systems Ltd.

Create an endpoint for communication

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain,
int type,
int protocol);

Arguments:
domain The communications domain that you want to use. This

selects the protocol family that should be used. These
families are defined in <sys/socket.h>.

type The type of socket you want to create. This determines
the semantics of communication. Here are the currently
defined types:

� SOCK STREAM — provides sequenced, reliable,
two-way, connection-based byte streams. An
out-of-band data transmission mechanism may be
supported.

� SOCK DGRAM — supports datagrams, which are
connectionless, unreliable messages of a fixed
(typically small) maximum length.

� SOCK RAW — provides access to internal network
protocols and interfaces. Available only to the
superuser, this type isn’t described here.

For more information, see below.

protocol The particular protocol that you want to use with the
socket. Normally, only a single protocol exists to support
a particular socket type within a given protocol family.
But if many protocols exist, you must specify one. The
protocol number you give is particular to the
communication domain where communication is to take
place (see /etc/protocols in the Utilities Reference).

2908 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. socket()

Library:
libsocket

Description:
The socket() function creates an endpoint for communication and
returns a descriptor.

SOCK STREAM sockets

SOCK STREAM sockets are full-duplex byte streams, similar to pipes.
A stream socket must be in a connected state before any data may be
sent or received on it. To create a connection to another socket, call
connect() call.

Once the socket is connected, you can transfer data by using read()
and write() or some variant of send() and recv(). When a session has
been completed, a close() may be performed. Out-of-band data may
also be transmitted (as described in send()) and received (as described
in recv()).

The communications protocols used to implement a SOCK STREAM
socket ensure that data isn’t lost or duplicated. If a piece of data that
the peer protocol has buffer space for can’t be successfully
transmitted within a reasonable length of time, the connection is
considered broken and calls will indicate an error by returning -1 and
setting errno to ETIMEDOUT.

SOCK DGRAM and SOCK RAW sockets

With SOCK DGRAM and SOCK RAW sockets, datagrams can be sent
to correspondents named in send() calls. Datagrams are generally
received with recvfrom(), which returns the next datagram with its
return address.

Using the ioctl() call

You can use the ioctl() call to specify a process group to receive a
SIGURG signal when the out-of-band data arrives. The call may also
enable nonblocking I/O and asynchronous notification of I/O events
via SIGIO.

May 31, 2004 Manifests 2909

socket() 2004, QNX Software Systems Ltd.

Socket-level options

The operation of sockets is controlled by socket-level options. These
options are defined in the file <sys/socket.h>. Use setsockopt()
and getsockopt() to set and get options.

Returns:
A descriptor referencing the socket, or -1 if an error occurs (errno is
set).

Errors:
EACCES Permission to create a socket of the specified type

and/or protocol is denied.

EMFILE The per-process descriptor table is full.

ENFILE The system file table is full.

ENOBUFS Insufficient buffer space available. The socket can’t be
created until sufficient resources are freed.

ENOMEM Not enough memory.

EPROTONOSUPPORT

The protocol type or the specified protocol isn’t
supported within this domain.

Classification:
Standard Unix, POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

2910 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. socket()

Caveats:
By default, socket() communicates with the TCP/IP stack managing
the /dev/socket portion of the namespace. This behavior can be
controlled via the SOCK environmental variable. See the examples in
the npm-tcpip.so utility.

See also:
ICMP6, ICMP, INET6, IPv6, IP, IPsec, ROUTE, TCP, UDP, UNIX
protocols

accept(), bind(), close(), connect(), getprotobyname(), getsockname(),
getsockopt(), ioctl(), listen(), read(), recv(), select(), send(),
shutdown(), socketpair(), write()

May 31, 2004 Manifests 2911

socketpair() 2004, QNX Software Systems Ltd.

Create a pair of connected sockets

Synopsis:
#include <sys/types.h>
#include <sys/socket.h>

int socketpair(int domain,
int type,
int protocol,
int * fd[2]);

Arguments:
domain The communications domain where the sockets are to be

created.

type The type of sockets to create.

protocol The protocol to use with the sockets. A protocol of 0
causes socketpair() to use an unspecified default protocol
appropriate for the requested socket type.

fd[2] The 2-digit integer array where the file descriptors of the
created socket pair are to be held.

Library:
libsocket

Description:
The socketpair() call creates an unnamed pair of connected sockets in
the specified domain, of the specified type, using the optionally
specified protocol argument. The file descriptors are returned in the
vector fd and are identical.

Valid types are described in socket().

If the protocol argument is nonzero, it must be a protocol that’s
understood by the address family. No such protocols are defined at
this time.

2912 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. socketpair()

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EAFNOSUPPORT

The specified address family isn’t supported on this
machine.

EFAULT The address sv doesn’t specify a valid part of the process
address space.

EMFILE Too many descriptors are in use by this process.

EOPNOTSUPP

The specified protocol doesn’t support creation of socket
pairs.

EPROTONOSUPPORT

The specified protocol isn’t supported on this machine.

Examples:
#include <stdio.h>
#include <sys/socket.h>

#define CHAR BUFSIZE 20
int main(int argc, char **argv) {
int fd[2], len;
char message[CHAR BUFSIZE];

if(socketpair(AF LOCAL, SOCK STREAM, 0, fd) == -1) {
return 1;
}

/* Print a message into one end of the socket */
snprintf(message, CHAR BUFSIZE, "First message");
write(fd[0], message, strlen(message) + 1);

/* Print a message into the other end of the socket */
snprintf(message, CHAR BUFSIZE, "Second message");

May 31, 2004 Manifests 2913

socketpair() 2004, QNX Software Systems Ltd.

write(fd[1], message, strlen(message) + 1);

/* Read back the data written to the first socket */
len = read(fd[0], message, CHAR BUFSIZE-1);
message[len] = ’\0’;
printf("Read [%s] from first fd \n", message);

/* Read back the data written to the second socket */
len = read(fd[1], message, CHAR BUFSIZE-1);
message[len] = ’\0’;
printf("Read [%s] from second fd \n", message);

close(fd[0]);
close(fd[1]);

return 0;
}

Classification:
POSIX 1003.1-2001

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
read(), socket(), write()

2914 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SOCKSinit()
Initialize a connection with a SOCKS server

Synopsis:
#include <sys/select.h>

int SOCKSinit(char * progname);

Arguments:
progname The name that you want to associate with the your

program. The default is SOCKSclient.

Library:
libsocks

Description:
The SOCKSinit() function initializes some defaults for the SOCKS
library and also sets the program name that appears in the syslog
output.

You don’t have to call this function before making a SOCKS library
call (but if you don’t, a generic “SOCKSclient” appears instead of the
program name).

For more information about SOCKS and its libraries, see the
appendix, SOCKS — A Basic Firewall.

Returns:
0 Success.

1 An error occurred (errno is set).

Classification:
SOCKS

May 31, 2004 Manifests 2915

SOCKSinit() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

See also:
Raccept(), Rbind(), Rconnect(), Rgetsockname(), Rlisten(), Rrcmd(),
Rselect()

SOCKS — A Basic Firewall

2916 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sopen()
Open a file for shared access

Synopsis:
#include <unistd.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <share.h>

int sopen(const char* filename,
int oflag,
int share,
...);

Arguments:
filename The path name of the file that you want to open.

oflag Flags that specify the status and access modes of the file.
This argument is a combination of the following bits
(defined in <fcntl.h>):

� O RDONLY — permit the file to be only read.

� O WRONLY — permit the file to be only written.

� O RDWR — permit the file to be both read and
written.

� O APPEND — cause each record that’s written to be
written at the end of the file.

� O CREAT — create the file if it doesn’t exist. This bit
has no effect if the file already exists.

� O TRUNC — truncate the file to contain no data if the
file exists; this bit has no effect if the file doesn’t
exist.

� O EXCL — open the file for exclusive access. If the
file exists and you also specify O CREAT, the open
fails (that is, use O EXCL to ensure that the file
doesn’t already exist).

May 31, 2004 Manifests 2917

sopen() 2004, QNX Software Systems Ltd.

share The shared access for the file. This is a combination of
the following bits (defined in <share.h>):

� SH COMPAT — set compatibility mode.

� SH DENYRW — prevent read or write access to the
file.

� SH DENYWR — prevent write access to the file.

� SH DENYRD — prevent read access to the file.

� SH DENYNO — permit both read and write access to
the file.

If you set O CREAT in oflag, you must also specify the following
argument:

mode An object of type mode t that specifies the access mode
that you want to use for a newly created file. For more
information, see “Access permissions” in the
documentation for stat().

Library:
libc

Description:
The sopen() function opens a file at the operating system level for
shared access. The name of the file to be opened is given by filename.

The file is accessed according to the access mode specified by oflag.
You must specify O CREAT if the file doesn’t exist.

The sharing mode of the file is given by the share argument. The
optional argument is the file permissions to be used when O CREAT
flag is on in the oflag mode; you must provide this when the file is to
be created.

The sopen() function applies the current file permission mask to the
specified permissions (see umask()).

Note that

2918 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sopen()

open(path, oflag, ...);

is the same as:

sopen(path, oflag, SH COMPAT, ...);

The sopen() function ignores advisory locks that you may have set by
calling fcntl().

�

Returns:
A descriptor for the file, or -1 if an error occurs while opening the file
(errno is set).

Errors:
EACCES Search permission is denied on a component of the path

prefix, or the file exists and the permissions specified
by oflag are denied, or the file doesn’t exist and write
permission is denied for the parent directory of the file
to be created.

EBUSY Sharing mode (share) was denied due to a conflicting
open.

EISDIR The named file is a directory, and the oflag argument
specifies write-only or read/write access.

ELOOP Too many levels of symbolic links or prefixes.

EMFILE No more descriptors available (too many open files).

ENOENT Path or file not found.

ENOSYS The sopen() function isn’t implemented for the
filesystem specified in path.

May 31, 2004 Manifests 2919

sopen() 2004, QNX Software Systems Ltd.

Examples:
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <share.h>

int main(void)
{

int filedes ;

/* open a file for output */
/* replace existing file if it exists */

filedes = sopen("file",
O WRONLY | O CREAT | O TRUNC,
SH DENYWR,
S IRUSR | S IWUSR | S IRGRP | S IWGRP);

/* read a file which is assumed to exist */

filedes = sopen("file", O RDONLY, SH DENYWR);

/* append to the end of an existing file */
/* write a new file if file doesn’t exist */

filedes = sopen("file",
O WRONLY | O CREAT | O APPEND,
SH DENYWR,
S IRUSR | S IWUSR | S IRGRP | S IWGRP);

return EXIT SUCCESS;
}

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

continued. . .

2920 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sopen()

Safety

Thread Yes

See also:
chsize(), close(), creat(), dup(), dup2(), eof(), execl(), execle(),
execlp(), execlpe(), execv(), execve(), execvp(), execvpe(), fcntl(),
fileno(), fstat(), isatty(), lseek(), open(), read(), stat(), tell(), umask(),
write()

May 31, 2004 Manifests 2921

sopenfd() 2004, QNX Software Systems Ltd.

Open for shared access a file associated with a given descriptor

Synopsis:
#include <unistd.h>

int sopenfd(int fd,
int oflag,
int sflag);

Arguments:
fd A file descriptor associated with the file that you want to

open.

oflag How you want to open the file; a combination of the
following bits:

� O RDONLY — permit the file to be only read.

� O WRONLY — permit the file to be only written.

� O RDWR — permit the file to be both read and written.

� O APPEND — cause each record that’s written to be
written at the end of the file.

� O TRUNC — if the file exists, truncate it to contain no
data. This flag has no effect if the file doesn’t exist.

sflag How you want the file to be shared; a combination of the
following bits:

� SH COMPAT — set compatibility mode.

� SH DENYRW — prevent read or write access to the file.

� SH DENYWR — prevent write access to the file.

� SH DENYRD — prevent read access to the file.

� SH DENYNO — permit both read and write access to the
file.

2922 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sopenfd()

Library:
libc

Description:
The sopenfd() function opens for shared access the file associated
with the file descriptor, fd. The access mode, oflag, must be equal to
or more restrictive than the access mode of the source fd.

Note that:

openfd(fd, oflag);

is the same as:

sopenfd(fd, oflag, SH DENYNO);

Returns:
The file descriptor, or -1 if an error occurs (errno is set).

Errors:
EBADF Invalid file descriptor fd.

EACCES The access mode specified by oflag isn’t equal to or
more restrictive than the access mode of the source fd.

EBUSY Sharing mode (sflag) was denied due to a conflicting
open.

Classification:
Unix

May 31, 2004 Manifests 2923

sopenfd() 2004, QNX Software Systems Ltd.

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
openfd()

2924 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawn()
Create and execute a new child process

Synopsis:
#include <spawn.h>

pid t spawn(const char * path,
int fd count,
const int fd map[],
const struct inheritance * inherit,
char * const argv[],
char * const envp[]);

Arguments:
path The full path name of the executable.

fd count The number of entries in the fd map array.

fd map An array of file descriptors that you want the child
process to inherit. If fd count isn’t 0, fd map must
contain at least fd count file descriptors, up to
OPEN MAX FDs. If fd count is 0, fd map is ignored.

When fdmap[X] has the value of SPAWN FDCLOSED
instead of a valid file descriptor, the file descriptor X will
be closed in the child process.

If fd count is 0, all file descriptors (except for the ones
created with fcntl()’s FD CLOEXEC flag) are inherited by
the child process.

inherit A structure, of type struct inheritance, that
indicates what you want the child process to inherit from
the parent. This structure contains at least these
members:

unsigned long flags

One or more of the following bits:

� SPAWN CHECK SCRIPT — let
spawn() start a shell, passing path as
a script.

May 31, 2004 Manifests 2925

spawn() 2004, QNX Software Systems Ltd.

� SPAWN SEARCH PATH — search
the PATH environment variable for
the executable.

� SPAWN SETGROUP — set the
child’s process group to the value in
the pgroup member. If this flag isn’t
set, the child process is part of the
current process group.

� SPAWN SETND — spawn the child
process on the node specified by the
nd member.

� SPAWN SETSIGDEF — use the
sigdefault member to specify the
child process’s set of defaulted
signals. If this flag isn’t specified,
the child process inherits the parent
process’s signal actions.

� SPAWN SETSIGMASK — use the
sigmask member to specify the child
process’s signal mask.

pid t pgroup The child process’s group if
SPAWN SETGROUP is specified in the
flags member.

If SPAWN SETGROUP is set in
inherit.flags and inherit.pgroup is set to
SPAWN NEWPGROUP, the child
process starts a new process group with
the process group ID set to its process
ID.

sigset t sigmask

The child process’s signal mask if
SPAWN SETSIGMASK is specified in
the flags member.

2926 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawn()

sigset t sigdefault

The child process’s set of defaulted
signals if SPAWN SETSIGDEF is
specified in the flags member.

uint32 t nd The node descriptor of the remote node
on which to spawn the child process.
This member is used only if
SPAWN SETND is set in the flags
member.

argv A pointer to an argument vector. The value in argv[0]
should point to the filename of program being loaded,
but can be NULL if no arguments are being passed. The
last member of argv must be a NULL pointer. The value
of argv can’t be NULL.

envp A pointer to an array of character pointers, each pointing
to a string defining an environment variable. The array is
terminated with a NULL pointer. Each pointer points to a
character string of the form:

variable=value

that’s used to define an environment variable. If the
value of envp is NULL, then the child process inherits the
environment of the parent process.

Library:
libc

Description:
The spawn() function creates and executes a new child process,
named in path.

May 31, 2004 Manifests 2927

spawn() 2004, QNX Software Systems Ltd.

If the child process is a shell script, the first line must start with #!,
followed by the path and arguments of the shell to be run to interpret
the script. The script must also be marked as executable.

�

The spawn() function is a QNX Neutrino function (based on the
POSIX 1003.1d draft standard). The C library also includes several
specialized spawn*() functions. Their names consist of spawn
followed by several letters:

This suffix: Indicates the function takes these arguments:

e An array of environment variables.

l A NULL-terminated list of arguments to the
program.

p A relative path. If the path doesn’t contain a slash,
the PATH environment variable is searched for the
program.

v A vector of arguments to the program.

As shown below, these functions eventually call spawn(), which in
turn sends a message to the process manager.

2928 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawn()

spawnlp() spawnvp() spawnlpe()

Build argv[] Build argv[]

Build env[] Build env[]

spawnvpe()

spawnp()

spawnle()

Build argv[]

spawnv() spawnl()

Build argv[]

spawnve()

Set SPAWN_SEARCH_PATH
and SPAWN_CHECK_SCRIPT

spawn()

Message

Process manager

Most of the spawn*() functions do a lot of work before a message is sent to

procnto.

The child process inherits the following attributes of the parent
process:

� Process group ID (unless SPAWN SETGROUP is set in
inherit.flags)

� Session membership

� Real user ID and real group ID

� Supplementary group IDs

� Priority and scheduling policy

� Current working directory and root directory

� File creation mask

� Signal mask (unless SPAWN SETSIGMASK is set in inherit.flags)

� Signal actions specified as SIG DFL

May 31, 2004 Manifests 2929

spawn() 2004, QNX Software Systems Ltd.

� Signal actions specified as SIG IGN (except the ones modified by
inherit.sigdefault when SPAWN SETSIGDEF is set in inherit.flags)

The child process has several differences from the parent process:

� Signals set to be caught by the parent process are set to the default
action (SIG DFL).

� The child process’s tms utime, tms stime, tms cutime, and
tms cstime are tracked separately from the parent’s.

� The number of seconds left until a SIGALRM signal would be
generated is set to zero for the child process.

� The set of pending signals for the child process is empty.

� File locks set by the parent aren’t inherited.

� Per-process timers created by the parent aren’t inherited.

� Memory locks and mappings set by the parent aren’t inherited.

If the child process is spawned on a remote node, the process group
ID and the session membership aren’t set; the child process is put into
a new session and a new process group.

The child process can access the parent process’s environment by
using the environ global variable (found in <unistd.h>).

If the path is on a filesystem mounted with the ST NOSUID flag set,
the effective user ID, effective group ID, saved set-user ID and saved
set-group ID are unchanged for the child process. Otherwise, if the
set-user ID mode bit is set, the effective user ID of the child process is
set to the owner ID of path. Similarly, if the set-group ID mode bit is
set, the effective group ID of the child process is set to the group ID
of path.

The real user ID, real group ID and supplementary group IDs of the
child process remain the same as those of the parent process. The
effective user ID and effective group ID of the child process are saved
as the saved set-user ID and the saved set-group ID used by the
setuid().

2930 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawn()

A parent/child relationship doesn’t imply that the child process dies
when the parent process dies.

�

Returns:
The process ID of the child process, or -1 if an error occurs (errno is
set).

Errors:
E2BIG The number of bytes used by the argument list and

environment list of the new child process is greater
than ARG MAX bytes.

EACCESS Search permission is denied for a directory listed in
the path prefix of the new child process or the child
process’s file doesn’t have the execute bit set or path’s
filesystem was mounted with the ST NOEXEC flag.

EAGAIN Insufficient resources available to create the child
process.

EBADF An entry in fd map refers to an invalid file descriptor.

EFAULT One of the buffers specified in the function call is
invalid.

ELOOP Too many levels of symbolic links or prefixes.

EMFILE Insufficient resources available to remap file
descriptors in the child process.

ENAMETOOLONG

The length of path exceeds PATH MAX or a pathname
component is longer than NAME MAX.

ENOENT The file identified by the path argument is empty, or
one or more components of the pathname of the child
process don’t exist.

May 31, 2004 Manifests 2931

spawn() 2004, QNX Software Systems Ltd.

ENOEXEC The child process’s file has the correct permissions,
but isn’t in the correct format for an executable. (This
error doesn’t occur if SPAWN CHECK SCRIPT is set
in the flags member of the inheritance structure.)

ENOMEM Insufficient memory available to create the child
process.

ENOSYS The spawn() function isn’t implemented for the
filesystem specified in path.

ENOTDIR A component of the path prefix of the child process
isn’t a directory.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
execl(), execle(), execlp(), execlpe(), execv(), execve(), execvp(),
execvpe(), getenv(), putenv(), setenv(), sigaddset(), sigdelset(),
sigemptyset(), sigfillset(), spawnl(), spawnle(), spawnlp(), spawnlpe(),
spawnp(), spawnv(), spawnve(), spawnvp(), spawnvpe(), wait(),
waitpid()

2932 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnl()
Spawn a child process, given a list of arguments

Synopsis:
#include <process.h>

int spawnl(int mode,
const char * path,
const char * arg0,
const char * arg1...,
const char * argn,
NULL);

Arguments:
mode How you want to load the child process, and how you want

the parent program to behave after the child program is
initiated:

� P WAIT — load the child program into available
memory, execute it, and make the parent program
resume execution after the child process ends.

� P NOWAIT — execute the parent program concurrently
with the new child process.

� P NOWAITO — execute the parent program concurrently
with the new child process. You can’t use wait() to
obtain the exit code.

� P OVERLAY — replace the parent program with the
child program in memory and execute the child. No
return is made to the parent program. This is equivalent
to calling the appropriate exec*() function.

path The full path name of the executable.

arg0, argn, NULL

The arguments that you want to pass to the new process.
You must terminate the list with an argument of NULL.

May 31, 2004 Manifests 2933

spawnl() 2004, QNX Software Systems Ltd.

Library:
libc

Description:
The spawnl() function creates and executes a new child process,
named in path with a NULL-terminated list of arguments in
arg0 . . . argn.

If the new child process is a shell script, the first line must start with
#!, followed by the path and arguments of the shell to be run to
interpret the script. The script must also be marked as executable.

�

The spawnl() function isn’t a POSIX 1003.1 function, and isn’t
guaranteed to behave the same on all operating systems. It builds an
argv[] array before calling spawn().

For a diagram of how the spawn* functions are related, see the
description of spawn().

Arguments are passed to the child process by supplying one or more
pointers to character strings as arguments. These character strings are
concatenated with spaces inserted to separate the arguments to form
one argument string for the child process. At least one argument,
arg0, must be passed to the child process. By convention, this first
argument is a pointer to the name of the new child process.

The child process inherits the parent’s environment. The environment
is the collection of environment variables whose values that have been
defined with the export shell command, the env utility, or by the
successful execution of the putenv() or setenv() function. A program
may read these values with the getenv() function.

A parent/child relationship doesn’t imply that the child process dies
when the parent process dies.

�

2934 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnl()

Returns:
The spawnl() function’s return value depends on the mode argument:

mode Return value

P WAIT The exit status of the child process.

P NOWAIT The process ID of the child process. To get the exit
status for a P NOWAIT process, you must use the
waitpid() function, giving it this process ID.

P NOWAITO The process ID of the child process, or 0 if the
process is being started on a remote node. You can’t
get the exit status of a P NOWAITO process.

If an error occurs, -1 is returned (errno is set).

Errors:
E2BIG The number of bytes used by the argument list of the

new child process is greater than ARG MAX bytes.

EACCESS Search permission is denied for a directory listed in
the path prefix of the new child process or the new
child process’s file doesn’t have the execute bit set.

EAGAIN Insufficient resources available to create the child
process.

EFAULT One of the buffers specified in the function call is
invalid.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of path exceeds PATH MAX or a pathname
component is longer than NAME MAX.

May 31, 2004 Manifests 2935

spawnl() 2004, QNX Software Systems Ltd.

ENOENT The file identified by the path argument is empty, or
one or more components of the pathname of the child
process don’t exist.

ENOEXEC The child process’s file has the correct permissions,
but isn’t in the correct format for an executable.

ENOMEM Insufficient memory available to create the child
process.

ENOSYS The spawnl() function isn’t implemented for the
filesystem specified in path.

ENOTDIR A component of the path prefix of the child process
isn’t a directory.

Examples:
Run myprog as if the user had typed:

myprog ARG1 ARG2

at the command-line:

#include <stddef.h>
#include <process.h>

int exit val;
...
exit val = spawnl(P WAIT, "myprog",

"myprog", "ARG1", "ARG2", NULL);
...

The program is found if myprog is in the current working directory.

Classification:
QNX 4

2936 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnl()

Safety

Cancellation point Read the Caveats

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
If mode is P WAIT, this function is a cancellation point.

See also:
execl(), execle(), execlp(), execlpe(), execv(), execve(), execvp(),
execvpe(), getenv(), putenv(), setenv(), spawn(), spawnle(), spawnlp(),
spawnlpe(), spawnp(), spawnv(), spawnve(), spawnvp(), spawnvpe(),
wait(), waitpid()

May 31, 2004 Manifests 2937

spawnle() 2004, QNX Software Systems Ltd.

Spawn a child process, given a list of arguments and an environment

Synopsis:
#include <process.h>

int spawnle(int mode,
const char * path,
const char * arg0,
const char * arg1...,
const char * argn,
NULL,
const char * envp[]);

Arguments:
mode How you want to load the child process, and how you want

the parent program to behave after the child program is
initiated:

� P WAIT — load the child program into available
memory, execute it, and make the parent program
resume execution after the child process ends.

� P NOWAIT — execute the parent program concurrently
with the new child process.

� P NOWAITO — execute the parent program concurrently
with the new child process. You can’t use wait() to
obtain the exit code.

� P OVERLAY — replace the parent program with the
child program in memory and execute the child. No
return is made to the parent program. This is equivalent
to calling the appropriate exec*() function.

path The full path name of the executable.

arg0, argn, NULL

The arguments that you want to pass to the new process.
You must terminate the list with an argument of NULL.

envp NULL, or a pointer to an array of character pointers, each
pointing to a string that defines an environment variable.

2938 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnle()

The array is terminated with a NULL pointer. Each pointer
points to a character string of the form:

variable=value

that’s used to define an environment variable.

Library:
libc

Description:
The spawnle() function creates and executes a new child process,
named in path with NULL-terminated list of arguments in
arg0 . . . argn and with the environment specified in envp.

If the new child process is a shell script, the first line must start with
#!, followed by the path and arguments of the shell to be run to
interpret the script. The script must also be marked as executable.

�

The spawnle() function isn’t a POSIX 1003.1 function, and isn’t
guaranteed to behave the same on all operating systems. It builds
argv[] and envp[] arrays before calling spawn().

For a diagram of how the spawn* functions are related, see the
description of spawn().

Arguments are passed to the child process by supplying one or more
pointers to character strings as arguments. These character strings are
concatenated with spaces inserted to separate the arguments to form
one argument string for the child process. At least one argument,
arg0, must be passed to the child process. By convention, this first
argument is a pointer to the name of the new child process.

If envp is NULL, the child process inherits the environment of the
parent process. The new process can access the calling process
environment by using the environ global variable (found in
<unistd.h>).

May 31, 2004 Manifests 2939

spawnle() 2004, QNX Software Systems Ltd.

A parent/child relationship doesn’t imply that the child process dies
when the parent process dies.

�

Returns:
The spawnle() function’s return value depends on the mode argument:

mode Return value

P WAIT The exit status of the child process.

P NOWAIT The process ID of the child process. To get the exit
status for a P NOWAIT process, you must use the
waitpid() function, giving it this process ID.

P NOWAITO The process ID of the child process, or 0 if the
process is being started on a remote node. You can’t
get the exit status of a P NOWAITO process.

If an error occurs, -1 is returned (errno is set).

Errors:
E2BIG The number of bytes used by the argument list or

environment list of the new child process is greater
than ARG MAX bytes.

EACCESS Search permission is denied for a directory listed in
the path prefix of the new child process or the new
child process’s file doesn’t have the execute bit set.

EAGAIN Insufficient resources available to create the child
process.

EFAULT One of the buffers specified in the function call is
invalid.

ELOOP Too many levels of symbolic links or prefixes.

2940 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnle()

ENAMETOOLONG

The length of path exceeds PATH MAX or a pathname
component is longer than NAME MAX.

ENOENT The file identified by the path argument is empty, or
one or more components of the pathname of the child
process don’t exist.

ENOEXEC The child process’s file has the correct permissions,
but isn’t in the correct format for an executable.

ENOMEM Insufficient memory available to create the child
process.

ENOSYS The spawnle() function isn’t implemented for the
filesystem specified in path.

ENOTDIR A component of the path prefix of the child process
isn’t a directory.

Examples:
Run myprog as if the user had typed:

myprog ARG1 ARG2

at the command-line:

#include <stddef.h>
#include <process.h>

char *env list[] = { "SOURCE=MYDATA",
"TARGET=OUTPUT",
"lines=65",
NULL

};

spawnle(P WAIT, "myprog",
"myprog", "ARG1", "ARG2", NULL,
env list);

The program is found if myprog is in the current working directory.
The environment for the child program consists of the three
environment variables SOURCE, TARGET and lines.

May 31, 2004 Manifests 2941

spawnle() 2004, QNX Software Systems Ltd.

Classification:
QNX 4

Safety

Cancellation point Read the Caveats

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
If mode is P WAIT, this function is a cancellation point.

See also:
execl(), execle(), execlp(), execlpe(), execv(), execve(), execvp(),
execvpe(), getenv(), putenv(), setenv(), spawn(), spawnl(), spawnlp(),
spawnlpe(), spawnp(), spawnv(), spawnve(), spawnvp(), spawnvpe(),
wait(), waitpid()

2942 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnlp()
Spawn a child process, given a list of arguments and a relative path

Synopsis:
#include <process.h>

int spawnlp(int mode,
const char * file,
const char * arg0,
const char * arg1...,
const char * argn,
NULL);

Arguments:
mode How you want to load the child process, and how you want

the parent program to behave after the child program is
initiated:

� P WAIT — load the child program into available
memory, execute it, and make the parent program
resume execution after the child process ends.

� P NOWAIT — execute the parent program concurrently
with the new child process.

� P NOWAITO — execute the parent program concurrently
with the new child process. You can’t use wait() to
obtain the exit code.

� P OVERLAY — replace the parent program with the
child program in memory and execute the child. No
return is made to the parent program. This is equivalent
to calling the appropriate exec*() function.

file The name of the executable file. If this argument contains a
slash, it’s used as the pathname of the executable;
otherwise, the function searches for file in the directories
listed in the PATH environment variable.

arg0, argn, NULL

The arguments that you want to pass to the new process.
You must terminate the list with an argument of NULL.

May 31, 2004 Manifests 2943

spawnlp() 2004, QNX Software Systems Ltd.

Library:
libc

Description:
The spawnlp() function creates and executes a new child process,
named in file with NULL-terminated list of arguments in
arg0 . . . argn.

If the new child process is a shell script, the first line must start with
#!, followed by the path and arguments of the shell to be run to
interpret the script. The script must also be marked as executable.

�

The spawnlp() function isn’t a POSIX 1003.1 function, and isn’t
guaranteed to behave the same on all operating systems. It builds an
argv[] array before calling spawnp().

For a diagram of how the spawn* functions are related, see the
description of spawn().

Arguments are passed to the child process by supplying one or more
pointers to character strings as arguments. These character strings are
concatenated with spaces inserted to separate the arguments to form
one argument string for the child process. At least one argument,
arg0, must be passed to the child process. By convention, this first
argument is a pointer to the name of the new child process.

The child process inherits the parent’s environment. The environment
is the collection of environment variables whose values that have been
defined with the export shell command, the env utility, or by the
successful execution of the putenv() or setenv() function. A program
may read these values with the getenv() function.

A parent/child relationship doesn’t imply that the child process dies
when the parent process dies.

�

2944 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnlp()

Returns:
The spawnlp() function’s return value depends on the mode argument:

mode Return value

P WAIT The exit status of the child process.

P NOWAIT The process ID of the child process. To get the exit
status for a P NOWAIT process, you must use the
waitpid() function, giving it this process ID.

P NOWAITO The process ID of the child process, or 0 if the
process is being started on a remote node. You can’t
get the exit status of a P NOWAITO process.

If an error occurs, -1 is returned (errno is set).

Errors:
E2BIG The number of bytes used by the argument list of the

new child process is greater than ARG MAX bytes.

EACCESS Search permission is denied for a directory listed in
the path prefix of the new child process or the new
child process’s file doesn’t have the execute bit set.

EAGAIN Insufficient resources available to create the child
process.

EFAULT One of the buffers specified in the function call is
invalid.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of file exceeds PATH MAX or a pathname
component is longer than NAME MAX.

May 31, 2004 Manifests 2945

spawnlp() 2004, QNX Software Systems Ltd.

ENOENT The file identified by the file argument is empty, or
one or more components of the pathname of the child
process don’t exist.

ENOEXEC The child process’s file has the correct permissions,
but isn’t in the correct format for an executable.

ENOMEM Insufficient memory available to create the child
process.

ENOSYS The spawnlp() function isn’t implemented for the
filesystem specified in file.

ENOTDIR A component of the path prefix of the child process
isn’t a directory.

Classification:
QNX 4

Safety

Cancellation point Read the Caveats

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
If mode is P WAIT, this function is a cancellation point.

See also:
execl(), execle(), execlp(), execlpe(), execv(), execve(), execvp(),
execvpe(), getenv(), putenv(), setenv(), spawn(), spawnl(), spawnle(),
spawnlpe(), spawnp(), spawnv(), spawnve(), spawnvp(), spawnvpe(),
wait(), waitpid()

2946 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnlpe()
Spawn a child process, given a list of arguments, an environment, and a relative path

Synopsis:
#include <process.h>

int spawnlpe(int mode,
const char * file,
const char * arg0,
const char * arg1...,
const char * argn,
NULL,
const char * envp[]);

Arguments:
mode How you want to load the child process, and how you want

the parent program to behave after the child program is
initiated:

� P WAIT — load the child program into available
memory, execute it, and make the parent program
resume execution after the child process ends.

� P NOWAIT — execute the parent program concurrently
with the new child process.

� P NOWAITO — execute the parent program concurrently
with the new child process. You can’t use wait() to
obtain the exit code.

� P OVERLAY — replace the parent program with the
child program in memory and execute the child. No
return is made to the parent program. This is equivalent
to calling the appropriate exec*() function.

file The name of the executable file. If this argument contains a
slash, it’s used as the pathname of the executable;
otherwise, the function searches for file in the directories
listed in the PATH environment variable.

arg0, argn, NULL

The arguments that you want to pass to the new process.
You must terminate the list with an argument of NULL.

May 31, 2004 Manifests 2947

spawnlpe() 2004, QNX Software Systems Ltd.

envp NULL, or a pointer to an array of character pointers, each
pointing to a string that defines an environment variable.
The array is terminated with a NULL pointer. Each pointer
points to a character string of the form:

variable=value

that’s used to define an environment variable.

Library:
libc

Description:
The spawnlpe() function creates and executes a new child process,
named in file with NULL-terminated list of arguments in arg0 . . . argn
and with the environment specified in envp.

If the new child process is a shell script, the first line must start with
#!, followed by the path and arguments of the shell to be run to
interpret the script. The script must also be marked as executable.

�

The spawnlpe() function isn’t a POSIX 1003.1 function, and isn’t
guaranteed to behave the same on all operating systems. It builds
argv[] and envp[] arrays before calling spawnp().

For a diagram of how the spawn* functions are related, see the
description of spawn().

Arguments are passed to the child process by supplying one or more
pointers to character strings as arguments. These character strings are
concatenated with spaces inserted to separate the arguments to form
one argument string for the child process. At least one argument,
arg0, must be passed to the child process. By convention, this first
argument is a pointer to the name of the new child process.

If the value of envp is NULL, then the child process inherits the
environment of the parent process. The new process can access the

2948 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnlpe()

calling process environment by using the environ global variable
(found in <unistd.h>).

A parent/child relationship doesn’t imply that the child process dies
when the parent process dies.

�

Returns:
The spawnlpe() function’s return value depends on the mode
argument:

mode Return value

P WAIT The exit status of the child process.

P NOWAIT The process ID of the child process. To get the exit
status for a P NOWAIT process, you must use the
waitpid() function, giving it this process ID.

P NOWAITO The process ID of the child process, or 0 if the
process is being started on a remote node. You can’t
get the exit status of a P NOWAITO process.

If an error occurs, -1 is returned (errno is set).

Errors:
E2BIG The number of bytes used by the argument list or

environment list of the new child process is greater
than ARG MAX bytes.

EACCESS Search permission is denied for a directory listed in
the path prefix of the new child process or the new
child process’s file doesn’t have the execute bit set.

EAGAIN Insufficient resources available to create the child
process.

EFAULT One of the buffers specified in the function call is
invalid.

May 31, 2004 Manifests 2949

spawnlpe() 2004, QNX Software Systems Ltd.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of file exceeds PATH MAX or a pathname
component is longer than NAME MAX.

ENOENT The file identified by the file argument is empty, or
one or more components of the pathname of the child
process don’t exist.

ENOEXEC The child process’s file has the correct permissions,
but isn’t in the correct format for an executable.

ENOMEM Insufficient memory available to create the child
process.

ENOSYS The spawnlpe() function isn’t implemented for the
filesystem specified in file.

ENOTDIR A component of the path prefix of the child process
isn’t a directory.

Classification:
QNX 4

Safety

Cancellation point Read the Caveats

Interrupt handler No

Signal handler No

Thread Yes

2950 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnlpe()

Caveats:
If mode is P WAIT, this function is a cancellation point.

See also:
execl(), execle(), execlp(), execlpe(), execv(), execve(), execvp(),
execvpe(), getenv(), putenv(), setenv(), spawn(), spawnl(), spawnle(),
spawnlp(), spawnp(), spawnv(), spawnve(), spawnvp(), spawnvpe(),
wait(), waitpid()

May 31, 2004 Manifests 2951

spawnp() 2004, QNX Software Systems Ltd.

Create and execute a new child process, given a relative path

Synopsis:
#include <spawn.h>

pid t spawnp(const char * file,
int fd count,
const int fd map[],
const struct inheritance * inherit,
char * const argv[],
char * const envp[]);

Arguments:
file If this argument contains a slash, it’s used as the

pathname of the executable; otherwise, the PATH
environment variable is searched for file.

fd count The number of entries in the fd map array.

fd map An array of file descriptors that you want the child
process to inherit. If fd count isn’t 0, fd map must
contain at least fd count file descriptors, up to
OPEN MAX FDs. If fd count is 0, fd map is ignored.

When fdmap[X] has the value of SPAWN FDCLOSED
instead of a valid file descriptor, the file descriptor X will
be closed in the child process.

If fd count is 0, all file descriptors (except for the ones
created with fcntl()’s FD CLOEXEC flag) are inherited by
the child process.

inherit A structure, of type struct inheritance, that
indicates what you want the child process to inherit from
the parent. This structure contains at least these
members:

unsigned long flags

One or more of the following bits:

2952 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnp()

� SPAWN CHECK SCRIPT — let
spawn() start a shell, passing path as
a script.

� SPAWN SEARCH PATH — search
the PATH environment variable for
the executable.

� SPAWN SETGROUP — set the child
process’s group to the value in the
pgroup member. If this flag isn’t set,
the child process is part of the
current process group.

� SPAWN SETND — spawn the child
process on the node specified by the
nd member.

� SPAWN SETSIGDEF — use the
sigdefault member to specify the
child process’s set of defaulted
signals. If this flag isn’t specified,
the child process inherits the parent
process’s signal actions.

� SPAWN SETSIGMASK — use the
sigmask member to specify the child
process’s signal mask.

pid t pgroup The child process’s group if
SPAWN SETGROUP is specified in the
flags member.

If SPAWN SETGROUP is set in
inherit.flags and inherit.pgroup is set to
SPAWN NEWPGROUP, the child
process starts a new process group with
the process group ID set to its process
ID.

sigset t sigmask

The child process’s signal mask if
SPAWN SETSIGMASK is specified in
the flags member.

May 31, 2004 Manifests 2953

spawnp() 2004, QNX Software Systems Ltd.

sigset t sigdefault

The child process’s set of defaulted
signals if SPAWN SETSIGDEF is
specified in the flags member.

uint32 t nd The node descriptor of the remote node
on which to spawn the child process.
This member is used only if
SPAWN SETND is set in the flags
member.

argv A pointer to an argument vector. The value in argv[0]
should point to the filename of program being loaded,
but can be NULL if no arguments are being passed. The
last member of argv must be a NULL pointer. The value
of argv can’t be NULL.

envp A pointer to an array of character pointers, each pointing
to a string defining an environment variable. The array is
terminated with a NULL pointer. Each pointer points to a
character string of the form:

variable=value

that’s used to define an environment variable. If the
value of envp is NULL, then the child process inherits the
environment of the parent process.

Library:
libc

Description:
The spawnp() function creates and executes a new child process,
named in file. It sets the SPAWN CHECK SCRIPT and
SPAWN SEARCH PATH flags (see below), and calls spawn().

2954 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnp()

If the new child process is a shell script, the first line must start with
#!, followed by the path and arguments of the shell to be run to
interpret the script. The script must also be marked as executable.

�

The spawnp() function is a QNX function (based on the POSIX
1003.1d draft standard). The C library also includes several
specialized spawn*() functions. Their names consist of spawn
followed by several letters:

This suffix: Indicates the function takes these arguments:

e An array of environment variables.

l A NULL-terminated list of arguments to the
program.

p A relative path. If the path doesn’t contain a slash,
the PATH environment variable is searched for the
program.

v A vector of arguments to the program.

For a diagram of how the spawn* functions are related, see the
description of spawn().

The child process inherits the following attributes of the parent
process:

� Process group ID (unless SPAWN SETGROUP is set in
inherit.flags)

� Session membership

� Real user ID and real group ID

� Supplementary group IDs

� Priority and scheduling policy

� Current working directory and root directory

May 31, 2004 Manifests 2955

spawnp() 2004, QNX Software Systems Ltd.

� File creation mask

� Signal mask (unless SPAWN SETSIGMASK is set in inherit.flags)

� Signal actions specified as SIG DFL

� Signal actions specified as SIG IGN (except the ones modified by
inherit.sigdefault when SPAWN SETSIGDEF is set in inherit.flags)

The child process has several differences from the parent process:

� Signals set to be caught by the parent process are set to the default
action (SIG DFL).

� The child process’s tms utime, tms stime, tms cutime, and
tms cstime are tracked separately from the parent’s.

� The number of seconds left until a SIGALRM signal would be
generated is set to zero for the child process.

� The set of pending signals for the child process is empty.

� File locks set by the parent aren’t inherited.

� Per-process timers created by the parent aren’t inherited.

� Memory locks and mappings set by the parent aren’t inherited.

If the child process is spawned on a remote node, the process group
ID and the session membership aren’t set; the child process is put into
a new session and a new process group.

The child process can access the parent process’s environment by
using the environ global variable (found in <unistd.h>).

If the file is on a filesystem mounted with the ST NOSUID flag set, the
effective user ID, effective group ID, saved set-user ID and saved
set-group ID are unchanged for the child process. Otherwise, if the
set-user ID mode bit is set, the effective user ID of the child process is
set to the owner ID of file. Similarly, if the set-group ID mode bit is
set, the effective group ID of the child process is set to the group ID
of file. The real user ID, real group ID and supplementary group IDs

2956 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnp()

of the child process remain the same as those of the parent process.
The effective user ID and effective group ID of the child process are
saved as the saved set-user ID and the saved set-group ID used by the
setuid().

A parent/child relationship doesn’t imply that the child process dies
when the parent process dies.

�

Returns:
The process ID of the child process, or -1 if an error occurs (errno is
set).

Errors:
E2BIG The number of bytes used by the argument list and

environment list of the new child process is greater
than ARG MAX bytes.

EACCESS Search permission is denied for a directory listed in
the path prefix of the new child process or the new
child process’s file doesn’t have the execute bit set or
file’s filesystem was mounted with the ST NOEXEC
flag.

EAGAIN Insufficient resources available to create the child
process.

EBADF An entry in fd map refers to an invalid file descriptor.

EFAULT One of the buffers specified in the function call is
invalid.

ELOOP Too many levels of symbolic links or prefixes.

EMFILE Insufficient resources available to remap file
descriptors in the child process.

May 31, 2004 Manifests 2957

spawnp() 2004, QNX Software Systems Ltd.

ENAMETOOLONG

The length of file exceeds PATH MAX or a pathname
component is longer than NAME MAX.

ENOENT The file identified by the file argument is empty, or
one or more components of the pathname of the child
process don’t exist.

ENOEXEC The child process’s file has the correct permissions,
but isn’t in the correct format for an executable.

ENOMEM Insufficient memory available to create the child
process.

ENOSYS The spawnp() function isn’t implemented for the
filesystem specified in file.

ENOTDIR A component of the path prefix of the child process
isn’t a directory.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
execl(), execle(), execlp(), execlpe(), execv(), execve(), execvp(),
execvpe(), getenv(), putenv(), setenv(), sigaddset(), sigdelset(),
sigemptyset(), sigfillset(), spawn(), spawnl(), spawnle(), spawnlp(),

2958 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnp()

spawnlpe(), spawnv(), spawnve(), spawnvp(), spawnvpe(), wait(),
waitpid()

May 31, 2004 Manifests 2959

spawnv() 2004, QNX Software Systems Ltd.

Spawn a child process, given a vector of arguments

Synopsis:
#include <process.h>

int spawnv(int mode,
const char * path,
char * const argv[]);

Arguments:
mode How you want to load the child process, and how you want

the parent program to behave after the child program is
initiated:

� P WAIT — load the child program into available
memory, execute it, and make the parent program
resume execution after the child process ends.

� P NOWAIT — execute the parent program concurrently
with the new child process.

� P NOWAITO — execute the parent program concurrently
with the new child process. You can’t use wait() to
obtain the exit code.

� P OVERLAY — replace the parent program with the
child program in memory and execute the child. No
return is made to the parent program. This is equivalent
to calling the appropriate exec*() function.

path The full path name of the executable.

argv A pointer to an argument vector. The value in argv[0]
should point to a filename that’s associated with the
program that you’re loading. The last member of argv must
be a NULL pointer. The value of argv can’t be NULL, and
argv[0] can’t be a NULL pointer, even if you’re not passing
any argument strings.

2960 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnv()

Library:
libc

Description:
The spawnv() function creates and executes a new child process,
named in path with the NULL-terminated list of arguments in the argv
vector.

If the new child process is a shell script, the first line must start with
#!, followed by the path and arguments of the shell to be run to
interpret the script. The script must also be marked as executable.

�

The spawnv() function isn’t a POSIX 1003.1 function, and isn’t
guaranteed to behave the same on all operating systems. It calls
spawnve() before calling spawn().

For a diagram of how the spawn* functions are related, see the
description of spawn().

The child process inherits the parent’s environment. The environment
is the collection of environment variables whose values that have been
defined with the export shell command, the env utility, or by the
successful execution of the putenv() or setenv() function. A program
may read these values with the getenv() function.

A parent/child relationship doesn’t imply that the child process dies
when the parent process dies.

�

Returns:
The spawnv() function’s return value depends on the mode argument:

May 31, 2004 Manifests 2961

spawnv() 2004, QNX Software Systems Ltd.

mode Return value

P WAIT The exit status of the child process.

P NOWAIT The process ID of the child process. To get the exit
status for a P NOWAIT process, you must use the
waitpid() function, giving it this process ID.

P NOWAITO The process ID of the child process, or 0 if the
process is being started on a remote node. You can’t
get the exit status of a P NOWAITO process.

If an error occurs, -1 is returned (errno is set).

Errors:
E2BIG The number of bytes used by the argument list of the

new child process is greater than ARG MAX bytes.

EACCESS Search permission is denied for a directory listed in
the path prefix of the new child process or the new
child process’s file doesn’t have the execute bit set.

EAGAIN Insufficient resources available to create the child
process.

EFAULT One of the buffers specified in the function call is
invalid.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of path exceeds PATH MAX or a pathname
component is longer than NAME MAX.

ENOENT The file identified by the path argument is empty, or
one or more components of the pathname of the child
process don’t exist.

ENOEXEC The child process’s file has the correct permissions,
but isn’t in the correct format for an executable.

2962 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnv()

ENOMEM Insufficient memory available to create the child
process.

ENOSYS The spawnv() function isn’t implemented for the
filesystem specified in path.

ENOTDIR A component of the path prefix of the child process
isn’t a directory.

Examples:
Run myprog as if a user had typed:

myprog ARG1 ARG2

at the command-line:

#include <stddef.h>
#include <process.h>

char *arg list[] = { "myprog", "ARG1", "ARG2", NULL };
...
spawnv(P WAIT, "myprog", arg list);

The program is found if myprog is in the current working directory.

Classification:
QNX 4

Safety

Cancellation point Read the Caveats

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 2963

spawnv() 2004, QNX Software Systems Ltd.

Caveats:
If mode is P WAIT, this function is a cancellation point.

See also:
execl(), execle(), execlp(), execlpe(), execv(), execve(), execvp(),
execvpe(), getenv(), putenv(), setenv(), spawn(), spawnl(), spawnle(),
spawnlp(), spawnlpe(), spawnp(), spawnve(), spawnvp(), spawnvpe(),
wait(), waitpid()

2964 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnve()
Spawn a child process, given a vector of arguments and an environment

Synopsis:
#include <process.h>

int spawnve(int mode,
const char * path,
char * const argv[],
char * const envp[]);

Arguments:
mode How you want to load the child process, and how you want

the parent program to behave after the child program is
initiated:

� P WAIT — load the child program into available
memory, execute it, and make the parent program
resume execution after the child process ends.

� P NOWAIT — execute the parent program concurrently
with the new child process.

� P NOWAITO — execute the parent program concurrently
with the new child process. You can’t use wait() to
obtain the exit code.

� P OVERLAY — replace the parent program with the
child program in memory and execute the child. No
return is made to the parent program. This is equivalent
to calling the appropriate exec*() function.

path The full path name of the executable.

argv A pointer to an argument vector. The value in argv[0]
should point to a filename that’s associated with the
program that you’re loading. The last member of argv must
be a NULL pointer. The value of argv can’t be NULL, and
argv[0] can’t be a NULL pointer, even if you’re not passing
any argument strings.

envp NULL, or a pointer to an array of character pointers, each
pointing to a string that defines an environment variable.

May 31, 2004 Manifests 2965

spawnve() 2004, QNX Software Systems Ltd.

The array is terminated with a NULL pointer. Each pointer
points to a character string of the form:

variable=value

that’s used to define an environment variable.

Library:
libc

Description:
The spawnve() function creates and executes a new child process,
named in path with the NULL-terminated list of arguments in the argv
vector.

If the new child process is a shell script, the first line must start with
#!, followed by the path and arguments of the shell to be run to
interpret the script. The script must also be marked as executable.

�

The spawnve() function isn’t a POSIX 1003.1 function, and isn’t
guaranteed to behave the same on all operating systems. It calls
spawn().

For a diagram of how the spawn* functions are related, see the
description of spawn().

If the value of envp is NULL, then the child process inherits the
environment of the parent process. The new process can access the
calling process environment by using the environ global variable
(found in <unistd.h>).

A parent/child relationship doesn’t imply that the child process dies
when the parent process dies.

�

2966 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnve()

Returns:
The spawnve() function’s return value depends on the mode argument:

mode Return value

P WAIT The exit status of the child process.

P NOWAIT The process ID of the child process. To get the exit
status for a P NOWAIT process, you must use the
waitpid() function, giving it this process ID.

P NOWAITO The process ID of the child process, or 0 if the
process is being started on a remote node. You can’t
get the exit status of a P NOWAITO process.

If an error occurs, -1 is returned (errno is set).

Errors:
E2BIG The number of bytes used by the argument list or

environment list of the new child process is greater
than ARG MAX bytes.

EACCESS Search permission is denied for a directory listed in
the path prefix of the new child process or the new
child process’s file doesn’t have the execute bit set.

EAGAIN Insufficient resources available to create the child
process.

EFAULT One of the buffers specified in the function call is
invalid.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of path exceeds PATH MAX or a pathname
component is longer than NAME MAX.

May 31, 2004 Manifests 2967

spawnve() 2004, QNX Software Systems Ltd.

ENOENT The file identified by the path argument is empty, or
one or more components of the pathname of the child
process don’t exist.

ENOEXEC The child process’s file has the correct permissions,
but isn’t in the correct format for an executable.

ENOMEM Insufficient memory available to create the child
process.

ENOSYS The spawnve() function isn’t implemented for the
filesystem specified in path.

ENOTDIR A component of the path prefix of the child process
isn’t a directory.

Classification:
QNX 4

Safety

Cancellation point Read the Caveats

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
If mode is P WAIT, this function is a cancellation point.

See also:
execl(), execle(), execlp(), execlpe(), execv(), execve(), execvp(),
execvpe(), getenv(), putenv(), setenv(), spawn(), spawnl(), spawnle(),
spawnlp(), spawnlpe(), spawnp(), spawnv(), spawnvp(), spawnvpe(),
wait(), waitpid()

2968 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnvp()
Spawn a child process, given a vector of arguments and a relative path

Synopsis:
#include <process.h>

int spawnvp(int mode,
const char * file,
char * const argv[]);

Arguments:
mode How you want to load the child process, and how you want

the parent program to behave after the child program is
initiated:

� P WAIT — load the child program into available
memory, execute it, and make the parent program
resume execution after the child process ends.

� P NOWAIT — execute the parent program concurrently
with the new child process.

� P NOWAITO — execute the parent program concurrently
with the new child process. You can’t use wait() to
obtain the exit code.

� P OVERLAY — replace the parent program with the
child program in memory and execute the child. No
return is made to the parent program. This is equivalent
to calling the appropriate exec*() function.

file The name of the executable file. If this argument contains a
slash, it’s used as the pathname of the executable;
otherwise, the function searches for file in the directories
listed in the PATH environment variable.

argv A pointer to an argument vector. The value in argv[0]
should point to a filename that’s associated with the
program that you’re loading. The last member of argv must
be a NULL pointer. The value of argv can’t be NULL, and
argv[0] can’t be a NULL pointer, even if you’re not passing
any argument strings.

May 31, 2004 Manifests 2969

spawnvp() 2004, QNX Software Systems Ltd.

Library:
libc

Description:
The spawnvp() function creates and executes a new child process,
named in file with the NULL-terminated list of arguments in the argv
vector.

If the new process is a shell script, the first line must start with #!,
followed by the path and arguments of the shell to be run to interpret
the script. The script must also be marked as executable.

�

The spawnvp() function isn’t a POSIX 1003.1 function, and isn’t
guaranteed to behave the same on all operating systems. It calls
spawnvpe() before calling spawnp().

For a diagram of how the spawn* functions are related, see the
description of spawn().

The child process inherits the parent’s environment. The environment
is the collection of environment variables whose values that have been
defined with the export shell command, the env utility, or by the
successful execution of the putenv() or setenv() function. A program
may read these values with the getenv() function.

A parent/child relationship doesn’t imply that the child process dies
when the parent process dies.

�

Returns:
The spawnvp() function’s return value depends on the mode argument:

2970 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnvp()

mode Return value

P WAIT The exit status of the child process.

P NOWAIT The process ID of the child process. To get the exit
status for a P NOWAIT process, you must use the
waitpid() function, giving it this process ID.

P NOWAITO The process ID of the child process, or 0 if the
process is being started on a remote node. You
cannot get the exit status of a P NOWAITO process.

If an error occurs, -1 is returned (errno is set).

Errors:
E2BIG The number of bytes used by the argument list of the

new child process is greater than ARG MAX bytes.

EACCESS Search permission is denied for a directory listed in
the path prefix of the new child process or the new
child process’s file doesn’t have the execute bit set.

EAGAIN Insufficient resources available to create the child
process.

EFAULT One of the buffers specified in the function call is
invalid.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The length of file and its path exceeds PATH MAX or a
pathname component is longer than NAME MAX.

ENOENT The file identified by the file argument is empty, or
one or more components of the pathname of the new
process don’t exist.

ENOEXEC The child process file has the correct permissions, but
isn’t in the correct format for an executable.

May 31, 2004 Manifests 2971

spawnvp() 2004, QNX Software Systems Ltd.

ENOMEM Insufficient memory available to create the child
process.

ENOSYS The spawnvp() function isn’t implemented for the
filesystem specified in file.

ENOTDIR A component of the path prefix of the child process
isn’t a directory.

Classification:
QNX 4

Safety

Cancellation point Read the Caveats

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
If mode is P WAIT, this function is a cancellation point.

See also:
execl(), execle(), execlp(), execlpe(), execv(), execve(), execvp(),
execvpe(), getenv(), putenv(), setenv(), spawn(), spawnl(), spawnle(),
spawnlp(), spawnlpe(), spawnp(), spawnv(), spawnve(), spawnvpe(),
wait(), waitpid()

2972 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnvpe()
Spawn a child process, given a vector of arguments, an environment, and a relative path

Synopsis:
#include <spawn.h>

int spawnvpe(int mode,
const char * file,
char * const argv[],
char * const envp[]);

Arguments:
mode How you want to load the child process, and how you want

the parent program to behave after the child program is
initiated:

� P WAIT — load the child program into available
memory, execute it, and make the parent program
resume execution after the child process ends.

� P NOWAIT — execute the parent program concurrently
with the new child process.

� P NOWAITO — execute the parent program concurrently
with the new child process. You can’t use wait() to
obtain the exit code.

� P OVERLAY — replace the parent program with the
child program in memory and execute the child. No
return is made to the parent program. This is equivalent
to calling the appropriate exec*() function.

file The name of the executable file. If this argument contains a
slash, it’s used as the pathname of the executable;
otherwise, the function searches for file in the directories
listed in the PATH environment variable.

argv A pointer to an argument vector. The value in argv[0]
should point to a filename that’s associated with the
program that you’re loading. The last member of argv must
be a NULL pointer. The value of argv can’t be NULL, and
argv[0] can’t be a NULL pointer, even if you’re not passing
any argument strings.

May 31, 2004 Manifests 2973

spawnvpe() 2004, QNX Software Systems Ltd.

envp NULL, or a pointer to an array of character pointers, each
pointing to a string that defines an environment variable.
The array is terminated with a NULL pointer. Each pointer
points to a character string of the form:

variable=value

that’s used to define an environment variable.

Library:
libc

Description:
The spawnvpe() function creates and executes a new child process,
named in file with the NULL-terminated list of arguments in the argv
vector.

If the new child process is a shell script, the first line must start with
#!, followed by the path and arguments of the shell to be run to
interpret the script. The script must also be marked as executable.

�

The spawnvpe() function isn’t a POSIX 1003.1 function, and isn’t
guaranteed to behave the same on all operating systems. It calls
spawnp().

For a diagram of how the spawn* functions are related, see the
description of spawn().

If the value of envp is NULL, then the child process inherits the
environment of the parent process. The new process can access the
calling process environment by using the environ global variable
(found in <unistd.h>).

2974 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnvpe()

A parent/child relationship doesn’t imply that the child process dies
when the parent process dies.

�

Returns:
The spawnvpe() function’s return value depends on the mode
argument:

mode Return value

P WAIT The exit status of the child process.

P NOWAIT The process ID of the child process. To get the exit
status for a P NOWAIT process, you must use the
waitpid() function, giving it this process ID.

P NOWAITO The process ID of the child process, or 0 if the
process is being started on a remote node. You
cannot get the exit status of a P NOWAITO process.

If an error occurs, -1 is returned (errno is set).

Errors:
E2BIG The number of bytes used by the argument list or

environment list of the new child process is greater
than ARG MAX bytes.

EACCESS Search permission is denied for a directory listed in
the path prefix of the new child process or the new
child process file doesn’t have the execute bit set.

EAGAIN Insufficient resources available to create the child
process.

EFAULT One of the buffers specified in the function call is
invalid.

ELOOP Too many levels of symbolic links or prefixes.

May 31, 2004 Manifests 2975

spawnvpe() 2004, QNX Software Systems Ltd.

ENAMETOOLONG

The length of file plus its path exceeds PATH MAX or
a pathname component is longer than NAME MAX.

ENOENT The file identified by the file argument is empty, or
one or more components of the pathname of the child
process don’t exist.

ENOEXEC The child process file has the correct permissions, but
isn’t in the correct format for an executable.

ENOMEM Insufficient memory available to create the child
process.

ENOSYS The spawnvpe() function isn’t implemented for the
filesystem specified in file.

ENOTDIR A component of the path prefix of the child process
isn’t a directory.

Classification:
QNX 4

Safety

Cancellation point Read the Caveats

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
If mode is P WAIT, this function is a cancellation point.

2976 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. spawnvpe()

See also:
execl(), execle(), execlp(), execlpe(), execv(), execve(), execvp(),
execvpe(), getenv(), putenv(), setenv(), spawn(), spawnl(), spawnle(),
spawnlp(), spawnlpe(), spawnp(), spawnv(), spawnve(), spawnvp(),
wait(), waitpid()

May 31, 2004 Manifests 2977

sprintf() 2004, QNX Software Systems Ltd.

Print formatted output into a string

Synopsis:
#include <stdio.h>

int sprintf(char* buf,
const char* format,
...);

Arguments:
buf A pointer to the buffer where you want to function to store

the formatted string.

format A string that specifies the format of the output. The
formatting string determines what additional arguments
you need to provide. For more information, see printf().

Library:
libc

Description:
The sprintf() function is similar to fprintf(), except that sprintf()
places the generated output into the character array pointed to by buf ,
instead of writing it to a file. A null character is placed at the end of
the generated character string.

Returns:
The number of characters written into the array, not counting the
terminating null character. An error can occur while converting a
value for output. When an error occurs, errno indicates the type of
error detected.

Examples:
#include <stdio.h>
#include <stdlib.h>

/* Create temporary file names using a counter */

2978 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sprintf()

char namebuf[13];
int TempCount = 0;

char* make temp name()
{

sprintf(namebuf, "ZZ%.6o.TMP", TempCount++);
return(namebuf);

}

int main(void)
{

FILE* tf1,* tf2;

tf1 = fopen(make temp name(), "w");
tf2 = fopen(make temp name(), "w");
fputs("temp file 1", tf1);
fputs("temp file 2", tf2);
fclose(tf1);
fclose(tf2);
return EXIT SUCCESS;

}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, fprintf(), fwprintf(), printf(), snprintf(), swprintf(), vfprintf(),
vfwprintf(), vprintf(), vsnprintf(), vsprintf(), vswprintf(), vwprintf(),
wprintf()

May 31, 2004 Manifests 2979

sqrt(), sqrtf() 2004, QNX Software Systems Ltd.

Calculate the nonnegative square root of a number

Synopsis:
#include <math.h>

double sqrt(double x);

float sqrtf(float x);

Arguments:
x The number that you want to calculate the square root of.

Library:
libm

Description:
These functions compute the nonnegative square root of x. A domain
error occurs if the argument is negative.

Returns:
The nonnegative square root of the given number.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

int main(void)
{

printf("%f\n", sqrt(.5));
return EXIT SUCCESS;

}

2980 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sqrt(), sqrtf()

produces the output:

0.707107

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, exp(), log(), pow()

May 31, 2004 Manifests 2981

srand() 2004, QNX Software Systems Ltd.

Start a new sequence of pseudo-random integers

Synopsis:
#include <stdlib.h>

void srand(unsigned int seed);

Arguments:
seed The seed of the sequence of pseudo-random integers.

Library:
libc

Description:
The srand() function uses the argument seed to start a new sequence
of pseudo-random integers to be returned by subsequent calls to
rand(). A particular sequence of pseudo-random integers can be
repeated by calling srand() with the same seed value. The default
sequence of pseudo-random integers is selected with a seed value of 1.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(void)
{

int i;

srand(982);
for(i = 1; i < 10; ++i) {
printf("%d\n", rand());

}

/* Start the same sequence over again. */

srand(982);
for(i = 1; i < 10; ++i) {
printf("%d\n", rand());

}

2982 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. srand()

/*
Use the current time as a seed to
get a different sequence.

*/

srand((int) time(NULL));
for(i = 1; i < 10; ++i) {
printf("%d\n", rand());

}

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
rand()

May 31, 2004 Manifests 2983

srand48() 2004, QNX Software Systems Ltd.

Initialize a sequence of pseudo-random numbers

Synopsis:
#include <stdlib.h>

void srand48(long seed);

Arguments:
seed The seed of the sequence of pseudo-random integers.

Library:
libc

Description:
The srand48() is used to initialize the internal buffer r(n) of
drand48(), lrand48(), and mrand48() such that the 32 bits of the seed
value are copied into the upper 32 bits of r(n), with the lower 16 bits
of r(n) arbitrarily being set to 0x330E. Additionally, the constant
multiplicand and addend of the algorithm are reset to the default
values: the multiplicand a = 0xFDEECE66D = 25214903917 and the
addend c = 0xB = 11.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

2984 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. srand48()

See also:
drand48(), erand48(), jrand48(), lcong48(), lrand48(), mrand48(),
nrand48(), seed48()

May 31, 2004 Manifests 2985

srandom() 2004, QNX Software Systems Ltd.

Set the seed for a pseudo-random number generator

Synopsis:
#include <stdlib.h>

void srandom(unsigned int seed);

Arguments:
seed The seed of the sequence of pseudo-random integers.

Library:
libc

Description:
The srandom() function initializes the current state array using the
value of seed.

Use this function in conjunction with the following:

initstate() Initialize the state of the pseudo-random number
generator.

random() Generate a pseudo-random number using a default
state.

setstate() Specify the state of the pseudo-random number
generator.

The random() and srandom() functions have (almost) the same calling
sequence and initialization properties as rand() and srand() Unlike
srand(), srandom() doesn’t return the old seed because the amount of
state information used is much more than a single word. The
initstate() and setstate() routines are provided to deal with
restarting/changing random number generators. With 256 bytes of
state information, the period of the random-number generator is
greater than 269.

2986 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. srandom()

Like rand(), random() produces by default a sequence of numbers that
can be duplicated by calling srandom() with 1 as the seed.

After initialization, a state array can be restarted at a different point in
one of two ways:

� The initstate() function can be used, with the desired seed, state
array, and size of the array.

� The setstate() function, with the desired state, can be used,
followed by srandom() with the desired seed. The advantage of
using both of these functions is that the size of the state array does
not have to be saved once it is initialized.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

See also:
drand48(), initstate(), rand(), random(), setstate(), srand()

May 31, 2004 Manifests 2987

srealloc() 2004, QNX Software Systems Ltd.

Allocate, reallocate or free a block of memory

Synopsis:
#include <malloc.h>

void * srealloc(void* ptr,
size t old size,
size t new size);

Arguments:
ptr NULL, or a pointer to the block of memory that you

want to reallocate.

old size The current size of the block, in bytes.

new size The size of the block to allocate, in bytes.

Library:
libc

Description:
When the value of the ptr argument is NULL, a new block of memory
of new size bytes is allocated.

If the value of new size is zero, the corresponding sfree() function is
called to release old size bytes of memory memory pointed to by ptr.

Otherwise, the srealloc() function reallocates space for an object of
new size bytes by doing one of the following:

� Shrinking the allocated size of the allocated memory block ptr
when new size is sufficiently smaller than old size.

Or:

� Extending the allocated size of the allocated memory block ptr if
there is a large enough block of unallocated memory immediately
following ptr.

Or:

2988 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. srealloc()

� Allocating a new block, and copying the contents of ptr to the new
block.

Because it’s possible that a new block will be allocated, don’t
maintain any pointers into the old memory after a successful call to
this function. These pointers will point to freed memory, with
possible disastrous results when a new block is allocated.

�

The function returns NULL when the memory pointed to by ptr can’t
be reallocated. In this case, the memory pointed to by ptr isn’t freed,
so be sure to keep a pointer to the old memory block.

buffer = (char *) srealloc(buffer, 100, 200);

In the above example, buffer is set to NULL if the function fails, and
no longer points to the old memory block. If buffer is your only
pointer to the memory block, then you’ve lost access to this memory.

The srealloc() function reallocates memory from the heap.

You must use sfree() to deallocate the memory allocated by
srealloc().

Returns:
A pointer to the start of the reallocated memory, or NULL if there’s
insufficient memory available, or if the value of the new size
argument is zero.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

continued. . .

May 31, 2004 Manifests 2989

srealloc() 2004, QNX Software Systems Ltd.

Safety

Signal handler No

Thread Yes

See also:
calloc(), free(), realloc(), scalloc(), sfree(), smalloc()

2990 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sscanf()
Scan input from a character string

Synopsis:
#include <stdio.h>

int sscanf(const char* in string,
const char* format,
...);

Arguments:
in string The string that you want to read from.

format A string that specifies the format of the input. For more
information, see scanf(). The formatting string
determines what additional arguments you need to
provide.

Library:
libc

Description:
The sscanf() function scans input from the character string in string,
under control of the argument format. Following the format string is
the list of addresses of items to receive values.

Returns:
The number of input arguments for which values were successfully
scanned and stored, or EOF when the scanning is terminated by
reaching the end of the input string.

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int day, year;
char weekday[20], month[20];

May 31, 2004 Manifests 2991

sscanf() 2004, QNX Software Systems Ltd.

sscanf("Thursday February 0025 1999",
"%s %s %d %d",
weekday, month, &day, &year);

printf("%s %d, %d is a %s\n",
month, day, year, weekday);

return EXIT SUCCESS;
}

produces the following:

February 25, 1999 is a Thursday

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
fscanf(), fwscanf(), scanf(), swscanf(), vfscanf(), vfwscanf(), vscanf(),
vsscanf(), vswscanf(), vwscanf(), wscanf()

2992 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. stat(), stat64()
Get information about a file or directory, given a path

Synopsis:
#include <sys/stat.h>

int stat(const char * path,
struct stat * buf);

int stat64(const char * path,
struct stat64 * buf);

Arguments:
path The path of the file or directory that you want information

about.

buf A pointer to a buffer where the function can store the
information; see below.

Library:
libc

Description:
The stat() and stat64() functions obtain information about the file or
directory referenced in path. This information is placed in the
structure located at the address indicated by buf .

stat structure

Here’s the stat structure that’s defined in <sys/stat.h>:

May 31, 2004 Manifests 2993

stat(), stat64() 2004, QNX Software Systems Ltd.

struct stat {
#if FILE OFFSET BITS - 0 == 64

ino t st ino; /* File serial number. */
off t st size; /* File size in bytes. */

#elif !defined(FILE OFFSET BITS) || FILE OFFSET BITS == 32
#if defined(LITTLEENDIAN)

ino t st ino; /* File serial number. */
ino t st ino hi;
off t st size;
off t st size hi;

#elif defined(BIGENDIAN)
ino t st ino hi;
ino t st ino; /* File serial number. */
off t st size hi;
off t st size;

#else
#error endian not configured for system

#endif
#else
#error FILE OFFSET BITS value is unsupported

#endif
dev t st dev; /* ID of the device containing the file. */
dev t st rdev; /* Device ID. */
uid t st uid; /* User ID of file. */
gid t st gid; /* Group ID of file. */
time t st mtime; /* Time of last data modification. */
time t st atime; /* Time when file data was last accessed.*/
time t st ctime; /* Time of last file status change. */
mode t st mode; /* File types and permissions. */
nlink t st nlink; /* Number of hard links to the file. */
blksize t st blocksize; /* Size of a block used by st nblocks. */
int32 st nblocks; /* Number of blocks st blocksize blocks. */

blksize t st blksize; /* Preferred I/O block size for object. */
#if FILE OFFSET BITS - 0 == 64

blkcnt t st blocks; /* No. of 512-byte blocks allocated for a file. */
#elif !defined(FILE OFFSET BITS) || FILE OFFSET BITS == 32
#if defined(LITTLEENDIAN)

blkcnt t st blocks; /* No. of 512-byte blocks allocated for a file. */
blkcnt t st blocks hi;

#elif defined(BIGENDIAN)
blkcnt t st blocks hi;
blkcnt t st blocks;

#else
#error endian not configured for system

#endif
#else
#error FILE OFFSET BITS value is unsupported

#endif
};

2994 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. stat(), stat64()

Access permissions

The access permissions for the file or directory are specified as a
combination of bits in the st mode field of a stat structure. These
bits are defined in <sys/stat.h>, and are described below:

Owner Group Others Permission

S IRUSR S IRGRP S IROTH Read

S IRWXU S IRWXG S IRWXO Read, write, execute/search. A bitwise
inclusive OR of the other three constants.
(S IRWXU is OR of IRUSR, S IWSUR and
S IXUSR.)

S IWUSR S IWGRP S IWOTH Write

S IXUSR S IXGRP S IXOTH Execute/search

The following bits define miscellaneous permissions used by other
implementations:

Bit Equivalent

S IEXEC S IXUSR

S IREAD S IRUSR

S IWRITE S IWUSR

st mode bits

The following bits are also encoded in the st mode field:

S ISUID Set user ID on execution. The process’s effective user
ID is set to that of the owner of the file when the file is
run as a program. On a regular file, this bit should be
cleared on any write.

May 31, 2004 Manifests 2995

stat(), stat64() 2004, QNX Software Systems Ltd.

S ISGID Set group ID on execution. Set effective group ID on the
process to the file’s group when the file is run as a
program. On a regular file, this bit should be cleared on
any write.

Macros

The following symbolic names for the values of st mode are defined
for these file types:

S IFBLK Block special.

S IFCHR Character special.

S IFDIR Directory.

S IFIFO FIFO special.

S IFLNK Symbolic link.

S IFMT Type of file.

S IFNAM Special named file.

S IFREG Regular.

S IFSOCK Socket.

The following macros test whether a file is of a specified type. The
value m supplied to the macros is the value of the st mode field of a
stat structure. The macros evaluate to a nonzero value if the test is
true, and zero if the test is false.

S ISBLK(m) Test for block special file.

S ISCHR(m) Test for character special file.

S ISDIR(m) Test for directory file.

S ISFIFO(m) Test for FIFO.

2996 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. stat(), stat64()

S ISLNK(m) Test for symbolic link.

S ISNAM(m) Test for special named file.

S ISREG(m) Test for regular file.

S ISSOCK(m) Test for socket.

These macros test whether a file is of the specified type. The value of
the buf argument supplied to the macros is a pointer to a stat
structure. The macro evaluates to a nonzero value if the specified
object is implemented as a distinct file type and the specified file type
is contained in the stat structure referenced by the pointer buf .
Otherwise, the macro evaluates to zero.

S TYPEISMQ(buf)

Test for message queue.

S TYPEISSEM(buf)

Test for semaphore.

S TYPEISSHM(buf)

Test for shared memory object.

These macros manipulate device IDs:

major(device)

Extract the major number from a device ID.

minor(device)

Extract the minor number from a device ID.

makedev(node, major, minor)

Build a device ID from the given numbers. Currently, the node
argument isn’t used and must be zero.

The st rdev member of the stat structure is a device ID that consists
of:

May 31, 2004 Manifests 2997

stat(), stat64() 2004, QNX Software Systems Ltd.

� a major number in the range 0 through 63

� a minor number in the range 0 through 1023.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EACCES Search permission is denied for a component of

path.

EIO A physical error occurred on the block device.

ELOOP Too many levels of symbolic links or prefixes.

ENAMETOOLONG

The argument path exceeds PATH MAX in length,
or a pathname component is longer than
NAME MAX. These manifests are defined in the
<limits.h> header file.

ENOENT The named file doesn’t exist, or path is an empty
string.

ENOSYS The stat() function isn’t implemented for the
filesystem specified in path.

ENOTDIR A component of path isn’t a directory.

EOVERFLOW The file size in bytes or the number of blocks
allocated to the file or the file serial number can’t
be represented correctly in the structure pointed to
by buf .

2998 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. stat(), stat64()

Examples:
Determine the size of a file:

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>

int main(void)
{

struct stat buf;

if(stat("file", &buf) != -1) {
printf("File size = %d\n", buf.st size);

}
return EXIT SUCCESS;

}

Determine the amount of free memory:

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>

int main () {
struct stat buf;

if (stat("/proc", &buf) == -1) {
perror ("stat");
return EXIT FAILURE;

} else {
printf ("Free memory: %d bytes\n", buf.st size);
return EXIT SUCCESS;

}
}

Classification:
stat() is POSIX 1003.1; stat64() is for large-file support

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 2999

stat(), stat64() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, fstat(), fstat64(), lstat()

3000 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. statvfs(), statvfs64()
Get filesystem information, given a path

Synopsis:
#include <sys/statvfs.h>

int statvfs(const char *path,
struct statvfs *buf);

int statvfs64(const char *path,
struct statvfs64 *buf);

Arguments:
path The name of a file that resides on the filesystem.

buf A pointer to a buffer where the function can store the
information.

Library:
libc

Description:
The statvfs() function returns a “generic superblock” describing a
filesystem; it can be used to acquire information about mounted
filesystems. The statvfs64() function is a 64-bit version of statvfs().

The filesystem type is known to the operating system. You don’t need
to have read, write, or execute permission for the named file, but all
directories listed in the path name leading to the file must be
searchable.

The buf argument is a pointer to a statvfs or statvfs64 structure
that’s filled by the function. It contains at least:

unsigned long f bsize

The preferred filesystem blocksize.

unsigned long f frsize

The fundamental filesystem blocksize (if supported)

May 31, 2004 Manifests 3001

statvfs(), statvfs64() 2004, QNX Software Systems Ltd.

fsblkcnt t f blocks

The total number of blocks on the filesystem, in units of f frsize.

fsblkcnt t f bfree

The total number of free blocks.

fsblkcnt t f bavail

The number of free blocks available to a nonsuperuser.

fsfilcnt t f files

The total number of file nodes (inodes).

fsfilcnt t f ffree

The total number of free file nodes.

fsfilcnt t f favail

The number of inodes available to a nonsuperuser.

unsigned long f fsid

The filesystem ID (dev for now).

char f basetype[16]

The type of the target filesystem, as a null-terminated string.

unsigned long f flag

A bitmask of flags; the function can set these flags:

� ST RDONLY — read-only filesystem.

� ST NOSUID — the filesystem doesn’t support
setuid/setgid semantics.

unsigned long f namemax

The maximum filename length.

Returns:
0 Success.

-1 An error occurred (errno is set).

3002 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. statvfs(), statvfs64()

Errors:
EACCES Search permission is denied on a component of the

path prefix.

EFAULT The path or buf argument points to an illegal
address.

EINTR A signal was caught during execution.

EIO An I/O error occurred while reading the filesystem.

ELOOP Too many symbolic links were encountered in
translating path.

EMULTIHOP Components of path require hopping to multiple
remote machines and the filesystem type doesn’t
allow it.

ENAMETOOLONG

The length of a path component exceeds
{NAME MAX} characters, or the length of path
exceeds {PATH MAX} characters.

ENOENT Either a component of the path prefix or the file
referred to by path doesn’t exist.

ENOLINK The path argument points to a remote machine and
the link to that machine is no longer active.

ENOTDIR A component of the path prefix of path isn’t a
directory.

EOVERFLOW One of the values to be returned can’t be
represented correctly in the structure pointed to by
buf .

Classification:
statvfs() is standard Unix; statvfs64() is for large-file support

May 31, 2004 Manifests 3003

statvfs(), statvfs64() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The values returned for f files, f ffree, and f favail might not be valid
for NFS-mounted filesystems.

See also:
chmod(), chown(), creat(), dup(), fcntl(), fstatvfs(), fstatvfs64(), link(),
mknod(), open(), pipe(), read(), time(), unlink(), utime(), write()

3004 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. stderr
The standard error stream

Synopsis:
#include <stdio.h>

FILE * stderr;

Description:
This global variable defines the standard error stream. It’s set to the
console by default, but you can redirect it by calling freopen().

STDERR FILENO, which is defined in <unistd.h>, defines the file
descriptor that corresponds to stderr.

Classification:
ANSI

See also:
assert(), err(), errx(), getopt(), herror(), perror(), stdin, stdout,
strerror(), verr(), verrx(), vwarn(), vwarnx(), warn(), warnx()

May 31, 2004 Manifests 3005

stdin 2004, QNX Software Systems Ltd.

The standard input stream

Synopsis:
#include <stdio.h>

FILE * stdin;

Description:
This global variable defines the standard input stream. It’s set to the
console by default, but you can redirect it by calling freopen().

STDIN FILENO, which is defined in <unistd.h>, defines the file
descriptor that corresponds to stdin.

Classification:
ANSI

See also:
fgetchar(), getchar(), getchar unlocked(), gets(), getwchar(), scanf(),
stderr, stdout, vscanf(), vwscanf()

3006 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. stdout
The standard output stream

Synopsis:
#include <stdio.h>

FILE * stdout;

Description:
This global variable defines the standard output stream. It’s set to the
console by default, but you can redirect it by calling freopen().

STDOUT FILENO, which is defined in <unistd.h>, defines the file
descriptor that corresponds to stdout.

Classification:
ANSI

See also:
fputchar(), printf(), putchar(), putchar unlocked(), puts(), putwchar(),
stderr, stdin, vprintf(), vwprintf(), wprintf()

May 31, 2004 Manifests 3007

straddstr() 2004, QNX Software Systems Ltd.

Concatenate one string on to the end of another

Synopsis:
#include <string.h>

int straddstr(const char * str,
int len,
char ** pbuf,
size t * pmaxbuf);

Arguments:
str The string that you want to add to the end of another.

len The number of characters from str that you want to add.
If zero, the function adds all of str.

pbuf The address of a pointer to the destination buffer.

pmaxbuf A pointer to the size of the destination buffer.

Library:
libc

Description:
The straddstr() function adds str to the buffer pointed to by pbuf ,
respecting the maximum length indicated by pmaxbuf . The values of
pbuf and pmaxlen are also updated.

Returns:
The value of len if it’s nonzero; otherwise, the length of str (i.e.
strlen(str)).

Classification:
QNX Neutrino

3008 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. straddstr()

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
strcat(), strcpy(), strncat(), strncpy()

May 31, 2004 Manifests 3009

strcasecmp() 2004, QNX Software Systems Ltd.

Compare two strings, ignoring case

Synopsis:
#include <strings.h>

int strcasecmp(const char* str1,
const char* str2);

Arguments:
str1, str2 The strings that you want to compare.

Library:
libc

Description:
The strcasecmp() function compares two strings, specified by str1 and
str2, ignoring the case of the characters.

Returns:
< 0 s1 is less than s2.

0 s1 is equal to s2.

> 0 s1 is greater than s2.

Examples:
#include <stdio.h>
#include <strings.h>
#include <stdlib.h>

void compare(const char* s1, const char* s2)
{

int retval;

retval = strcasecmp(s1, s2);
if(retval > 0) {

printf("%s > %s\n", s1, s2);
} else if(retval < 0) {

printf("%s < %s\n", s1, s2);

3010 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strcasecmp()

} else {
printf("%s == %s\n", s1, s2);

}
}

int main(void)
{

char* str1 = "abcdefg";
char* str2 = "HIJ";
char* str3 = "Abc";
char* str4 = "aBCDEfg";

compare(str1, str2);
compare(str1, str3);
compare(str1, str4);
compare(str1, str1);

compare(str2, str2);
compare(str2, str3);
compare(str2, str4);
compare(str2, str1);

return EXIT SUCCESS;
}

This code produces output that looks like:

abcdefg < HIJ
abcdefg > Abc
abcdefg == aBCDEfg
abcdefg == abcdefg
HIJ == HIJ
HIJ > Abc
HIJ > aBCDEfg
HIJ > abcdefg

Classification:
Standard Unix

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 3011

strcasecmp() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
strcmp(), strcmpi(), strcoll(), stricmp(), strncasecmp(), strncmp(),
strnicmp(), wcscmp(), wcscoll(), wcsncmp()

3012 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strcat()
Concatenate two strings

Synopsis:
#include <string.h>

char* strcat(char* dst,
const char* src);

Arguments:
dst, src The strings that you want to concatenate.

Library:
libc

Description:
The strcat() function appends a copy of the string pointed to by src
(including the terminating NUL character) to the end of the string
pointed to by dst. The first character of src overwrites the NUL
character at the end of dst.

Returns:
The same pointer as dst.

Examples:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{

char buffer[80];

strcpy(buffer, "Hello ");
strcat(buffer, "world");

printf("%s\n", buffer);

return EXIT SUCCESS;
}

May 31, 2004 Manifests 3013

strcat() 2004, QNX Software Systems Ltd.

produces the output:

Hello world

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
strncat(), strncpy(), strcpy()

3014 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strchr()
Find the first occurrence of a character in a string

Synopsis:
#include <string.h>

char* strchr(char* s,
int c);

Arguments:
s The string that you want to search.

c The character that you’re looking for.

Library:
libc

Description:
The strchr() function finds the first occurrence of c (converted to a
char) in the string pointed to by s. The terminating NUL character is
considered to be part of the string.

Returns:
A pointer to the located character, or NULL if c doesn’t occur in the
string.

Examples:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{

char buffer[80];
char* where;

strcpy(buffer, "video x-rays");

where = strchr(buffer, ’x’);

May 31, 2004 Manifests 3015

strchr() 2004, QNX Software Systems Ltd.

if(where == NULL) {
printf("’x’ not found\n");

} else {
printf("’x’ found: %s\n", where);

}

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memchr(), strcspn(), strpbrk(), strrchr(), strspn(), strstr(), strtok(),
strtok r(), wcschr(), wcscspn(), wcspbrk(), wcsrchr(), wcsspn(),
wcsstr(), wcstok()

3016 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strcmp()
Compare two strings

Synopsis:
#include <string.h>

int strcmp(const char* s1,
const char* s2);

Arguments:
s1, s2 The strings that you want to compare.

Library:
libc

Description:
The strcmp() function compares the string pointed to by s1 to the
string pointed to by s2.

Returns:
< 0 s1 is less than s2.

0 s1 is equal to s2.

> 0 s1 is greater than s2.

Examples:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{

printf("%d\n", strcmp("abcdef", "abcdef"));
printf("%d\n", strcmp("abcdef", "abc"));
printf("%d\n", strcmp("abc", "abcdef"));
printf("%d\n", strcmp("abcdef", "mnopqr"));
printf("%d\n", strcmp("mnopqr", "abcdef"));

return EXIT SUCCESS;
}

May 31, 2004 Manifests 3017

strcmp() 2004, QNX Software Systems Ltd.

produces the output:

0
1
-1
-1
1

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
strcasecmp(), strcmpi(), strcoll(), stricmp(), strncasecmp(), strncmp(),
strnicmp(), wcscmp(), wcscoll(), wcsncmp()

3018 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strcmpi()
Compare two strings, ignoring case

Synopsis:
#include <string.h>

int strcmpi(const char* s1,
const char* s2);

Arguments:
s1, s2 The strings that you want to compare.

Library:
libc

Description:
The strcmpi() function compares the string pointed to by s1 to the
string pointed to by s2, ignoring case.

All uppercase characters from s1 and s2 are mapped to lowercase for
the purposes of doing the comparison. The strcmpi() function is
identical to the stricmp() function.

Returns:
< 0 s1 is less than s2.

0 s1 is equal to s2.

> 0 s1 is greater than s2.

Examples:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{

printf("%d\n", strcmpi("AbCDEF", "abcdef"));
printf("%d\n", strcmpi("abcdef", "ABC"));
printf("%d\n", strcmpi("abc", "ABCdef"));

May 31, 2004 Manifests 3019

strcmpi() 2004, QNX Software Systems Ltd.

printf("%d\n", strcmpi("Abcdef", "mnopqr"));
printf("%d\n", strcmpi("Mnopqr", "abcdef"));

return EXIT SUCCESS;
}

produces the output:

0
100
-100
-12
12

Classification:
QNX 4

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
strcasecmp(), strcmp(), strcoll(), stricmp(), strncasecmp(), strncmp(),
strnicmp(), wcscmp(), wcscoll(), wcsncmp()

3020 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strcoll()
Compare two strings, using the locale’s collating sequence

Synopsis:
#include <string.h>

int strcoll(const char* s1,
const char* s2);

Arguments:
s1, s2 The strings that you want to compare.

Library:
libc

Description:
The strcoll() function compares the strings pointed to by s1 and s2,
using the collating sequence selected by the setlocale() function.

The strcoll() function is equivalent to strcmp() when the collating
sequence is selected from the "C" locale.

Returns:
< 0 s1 is less than s2.

0 s1 is equal to s2.

> 0 s1 is greater than s2.

Examples:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

char buffer[80] = "world";

int main(void)
{

if(strcoll(buffer, "Hello") < 0) {
printf("Less than\n");

May 31, 2004 Manifests 3021

strcoll() 2004, QNX Software Systems Ltd.

}

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
setlocale(), strcasecmp(), strcmp(), strcmpi(), stricmp(),
strncasecmp(), strncmp(), strnicmp(), wcscmp(), wcscoll(), wcsncmp()

3022 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strcpy()
Copy a string

Synopsis:
#include <string.h>

char* strcpy(char* dst,
const char* src);

Arguments:
dst A pointer to where you want to copy the string.

src The string that you want to copy.

Library:
libc

Description:
The strcpy() function copies the string pointed to by src (including the
terminating NUL character) into the array pointed to by dst.

Copying of overlapping objects isn’t guaranteed to work properly.
See the memmove() function for information on copying objects that
overlap.

�

Returns:
The same pointer as dst.

Examples:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{

char buffer[80];

strcpy(buffer, "Hello ");
strcat(buffer, "world");

May 31, 2004 Manifests 3023

strcpy() 2004, QNX Software Systems Ltd.

printf("%s\n", buffer);

return EXIT SUCCESS;
}

produces the output:

Hello world

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memmove(), strdup(), strncpy(), wcscpy(), wcsncpy(), wmemmove()

3024 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strcspn()
Count the characters at the beginning of a string that aren’t in a given character set

Synopsis:
#include <string.h>

size t strcspn(const char* str,
const char* charset);

Arguments:
str The string that you want to search.

charset The set of characters you want to look for.

Library:
libc

Description:
The strcspn() function finds the length of the initial segment of the
string pointed to by str that consists entirely of characters not from
the string pointed to by charset. The terminating NUL character isn’t
considered part of str.

Returns:
The length of the initial segment.

Examples:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{

printf("%d\n", strcspn("abcbcadef", "cba"));
printf("%d\n", strcspn("xxxbcadef", "cba"));
printf("%d\n", strcspn("123456789", "cba"));

return EXIT SUCCESS;
}

May 31, 2004 Manifests 3025

strcspn() 2004, QNX Software Systems Ltd.

produces the output:

0
3
9

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memchr(), strchr(), strpbrk(), strrchr(), strspn(), strstr(), strtok(),
strtok r(), wcschr(), wcscspn(), wcspbrk(), wcsrchr(), wcsspn(),
wcsstr(), wcstok()

3026 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strdup()
Create a duplicate of a string

Synopsis:
#include <string.h>

char* strdup(const char* src);

Arguments:
src The string that you want to copy.

Library:
libc

Description:
The strdup() function creates a duplicate of the string pointed to by
src, and returns a pointer to the new copy.

The strdup() function allocates the memory for the new string by
calling malloc(); it’s up to you to release the memory by calling free().

�

Returns:
A pointer to a copy of the string, or NULL if an error occurred.

Examples:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{

char *dup;

dup = strdup("Make a copy");
printf("%s\n", dup);

return EXIT SUCCESS;
}

May 31, 2004 Manifests 3027

strdup() 2004, QNX Software Systems Ltd.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
free(), malloc(), memmove(), strcpy(), strncpy(), wcscpy(), wcsncpy(),
wmemmove()

3028 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strerror()
Convert an error number into an error message

Synopsis:
#include <string.h>

char* strerror(int errnum);

Arguments:
errnum The error number that you want the message for. This

function works for any valid errno value.

Library:
libc

Description:
The strerror() function maps the error number contained in errnum to
an error message.

Returns:
A pointer to the error message.

Don’t modify the string that this function returns.�

Examples:
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>

int main(void)
{

FILE *fp;

fp = fopen("file.name", "r");
if(fp == NULL) {

printf("Unable to open file: %s\n",
strerror(errno));

}

May 31, 2004 Manifests 3029

strerror() 2004, QNX Software Systems Ltd.

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, perror(), stderr

3030 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strftime()
Format a time into a string

Synopsis:
#include <time.h>

size t strftime(char * s,
size t maxsize,
const char * format,
const struct tm * timeptr);

Arguments:
s A pointer to a buffer where the function can store the

formatted time.

maxsize The maximum size of the buffer.

format The format that you want to use for the time; see
“Formats,” below.

timeptr A pointer to a tm structure that contains the time that you
want to format.

Library:
libc

Description:
The strftime() function formats the time in the argument timeptr into
the array pointed to by the argument s, according to the format
argument.

Formats

The format string consists of zero or more directives and ordinary
characters. A directive consists of a % character followed by a
character that determines the substitution that’s to take place. All
ordinary characters are copied unchanged into the array. No more
than maxsize characters are placed in the array.

Local timezone information is used as if from a call to tzset().

May 31, 2004 Manifests 3031

strftime() 2004, QNX Software Systems Ltd.

%a Locale’s abbreviated weekday name.

%A Locale’s full weekday name.

%b Locale’s abbreviated month name.

%B Locale’s full month name.

%c Locale’s appropriate date and time representation.

%d Day of the month as a decimal number (01-31).

%D Date in the format mm/dd/yy.

%e Day of the month as a decimal number (1-31); single digits
are preceded by a space.

%F The ISO standard date format; equivalent to %Y-%m-%d.

%g The last two digits of the week-based year as a decimal
number (00-99).

%G The week-based year as a decimal number (e.g. 1998).

%h Locale’s abbreviated month name.

%H Hour (24-hour clock) as a decimal number (00-23).

%I Hour (12-hour clock) as a decimal number (01-12).

%j Day of the year as a decimal number (001-366).

%m Month as a decimal number (01-12).

%M Minute as a decimal number (00-59).

%n Newline character.

%p Locale’s equivalent of either AM or PM.

%r 12-hour clock time (01-12) using the AM/PM notation in the
format HH:MM:SS (AM|PM).

%R 24-hour notation; %H:%M.

3032 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strftime()

%S Second as a decimal number (00-59).

%t Tab character.

%T 24-hour clock time in the format HH:MM:SS.

%u Weekday as a decimal number (1-7), where Monday is 1.

%U Week number of the year as a decimal number (00-52), where
Sunday is the first day of the week.

%V Week number of the year as a decimal number (01-53), where
Monday is the first day of the week. The week containing
January 1 is in the new year if four or more days are in the
new year, otherwise it is the last week of the previous year.

%w Weekday as a decimal number (0-6), where 0 is Sunday.

%W Week number of the year as a decimal number (00-52), where
Monday is the first day of the week.

%x Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year without century, as a decimal number (00-99).

%Y Year with century, as a decimal number.

%z Offset from UTC -0430 (4 hrs, 30 minutes behind UTC, west
of Greenwich), or no characters if time zone isn’t specified.

%Z Time zone name, or no characters if time zone isn’t specified.

%% Character %.

Some of the above conversion specifiers can be modified with the
prefix E or O. If alternative formats don’t exist for the locale, they
behave as if the unmodified conversion specifiers were called:

%Ec Alternative date and time representation.

May 31, 2004 Manifests 3033

strftime() 2004, QNX Software Systems Ltd.

%EC Alternative name of the the base year (period).

%Ex Alternative date representation.

%EX Alternative time representation.

%Ey Offset from %EC of the alternative year (only) representation.

%EY Alternative year representation.

%Od Day of the month using alternative numeric symbols.
Leading zeros are added if an alternative symbol for zero
exists, otherwise leading spaces are used.

%Oe Day of the month using alternative numeric symbols.
Leading spaces are used.

%OH 24-hour clock using alternative numeric symbols.

%OI 12-hour clock using alternative numeric symbols.

%Om Month using alternative numeric symbols.

%OM Minutes using alternative numeric symbols.

%OS Seconds using alternative numeric symbols.

%Ou Alternative week day number representation (Monday=1).

%OU Alternative week day number representation (Rules
correspond with %U).

%OV Alternative week number representation. (Rules correspond
with %V).

%Ow Weekday as a number using alternative numeric symbols
(Sunday=0).

%OW Week number of the year using alternative numeric symbols
(Monday is the first day of the week).

%Oy Year offset from %C using alternative numeric symbols.

3034 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strftime()

Returns:
The number of characters placed into the array, not including the
terminating null character, or 0 if the number of characters exceeds
maxsize; the string contents are indeterminate.

If an error occurs, errno is set.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(void)
{

time t time of day;
char buffer[80];

time of day = time(NULL);
strftime(buffer, 80, "Today is %A %B %d, %Y",

localtime(&time of day));
printf("%s\n", buffer);

return EXIT SUCCESS;
}

This produces the output:

Today is Thursday February 25, 1999

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 3035

strftime() 2004, QNX Software Systems Ltd.

See also:
asctime(), asctime r(), ctime(), ctime r(), sprintf(), tm, tzset(),
wcsftime()

3036 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. stricmp()
Compare two strings, ignoring case

Synopsis:
#include <string.h>

int stricmp(const char* s1,
const char* s2);

Arguments:
s1, s2 The strings that you want to compare.

Library:
libc

Description:
The stricmp() function compares, with case insensitivity, the string
pointed to by s1 to the string pointed to by s2. All uppercase
characters from s1 and s2 are mapped to lowercase for the purposes of
doing the comparison.

Returns:
< 0 s1 is less than s2.

0 s1 is equal to s2.

> 0 s1 is greater than s2.

Examples:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{

printf("%d\n", stricmp("AbCDEF", "abcdef"));
printf("%d\n", stricmp("abcdef", "ABC"));
printf("%d\n", stricmp("abc", "ABCdef"));
printf("%d\n", stricmp("Abcdef", "mnopqr"));
printf("%d\n", stricmp("Mnopqr", "abcdef"));

May 31, 2004 Manifests 3037

stricmp() 2004, QNX Software Systems Ltd.

return EXIT SUCCESS;
}

produces the output:

0
100
-100
-12
12

Classification:
QNX 4

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
strcasecmp(), strcmp(), strcmpi(), strcoll(), strncasecmp(), strncmp(),
strnicmp(), wcscmp(), wcscoll(), wcsncmp()

3038 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strlen()
Compute the length of a string

Synopsis:
#include <string.h>

size t strlen(const char * s);

Arguments:
s The string whose length you want to calculate.

Library:
libc

Description:
The strlen() function computes the length of the string pointed to by s.

Returns:
The number of characters that precede the terminating null character.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{

printf("%d\n", strlen("Howdy"));
printf("%d\n", strlen("Hello world\n"));
printf("%d\n", strlen(""));

return EXIT SUCCESS;
}

produces the output:

5
12
0

May 31, 2004 Manifests 3039

strlen() 2004, QNX Software Systems Ltd.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
wcslen()

3040 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strlwr()
Convert a string to lowercase

Synopsis:
#include <string.h>

char* strlwr(char* s1);

Arguments:
s1 The string that you want to convert to lowercase.

Library:
libc

Description:
The strlwr() function replaces the string s1 with lowercase characters,
by invoking tolower() for each character in the string.

Returns:
The address of the string.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char source[] = { "A mixed-case STRING" };

int main(void)
{

printf("%s\n", source);
printf("%s\n", strlwr(source));
printf("%s\n", source);
return EXIT SUCCESS;

}

produces the output:

A mixed-case STRING
a mixed-case string
a mixed-case string

May 31, 2004 Manifests 3041

strlwr() 2004, QNX Software Systems Ltd.

Classification:
Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
strupr(), tolower()

3042 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strncasecmp()
Compare two strings, ignoring case, up to a given length

Synopsis:
#include <strings.h>

int strncasecmp(const char* str1,
const char* str2,
size t n);

Arguments:
str1, str2 The strings that you want to compare.

n The maximum number of characters that you want to
compare.

Library:
libc

Description:
The strncasecmp() function compares up to n characters in two
strings, specified by str1 and str2, ignoring the case of the characters.

Returns:
< 0 s1 is less than s2.

0 s1 is equal to s2.

> 0 s1 is greater than s2.

Examples:
The following code:

#include <stdio.h>
#include <strings.h>
#include <stdlib.h>

void compare(const char *s1, const char *s2)

May 31, 2004 Manifests 3043

strncasecmp() 2004, QNX Software Systems Ltd.

{
int retval;

retval = strncasecmp(s1, s2, 3);
if(retval > 0) {

printf("%s > %s\n", s1, s2);
} else if(retval < 0) {

printf("%s < %s\n", s1, s2);
} else {

printf("%s == %s\n", s1, s2);
}

}

int main(void)
{

char *str1 = "abcdefg";
char *str2 = "HIJ";
char *str3 = "Abc";
char *str4 = "aBCDEfg";

compare(str1, str2);
compare(str1, str3);
compare(str1, str4);
compare(str1, str1);

compare(str2, str2);
compare(str2, str3);
compare(str2, str4);
compare(str2, str1);

return EXIT SUCCESS;
}

produces output that looks like:

abcdefg < HIJ
abcdefg == Abc
abcdefg == aBCDEfg
abcdefg == abcdefg
HIJ == HIJ
HIJ > Abc
HIJ > aBCDEfg
HIJ > abcdefg

3044 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strncasecmp()

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
strcasecmp(), strcmp(), strcmpi(), strcoll(), stricmp(), strncmp(),
strnicmp(), wcscmp(), wcscoll(), wcsncmp()

May 31, 2004 Manifests 3045

strncat() 2004, QNX Software Systems Ltd.

Concatenate two strings, up to a maximum length

Synopsis:
#include <string.h>

char* strncat(char* dst,
const char* src,
size t n);

Arguments:
dst, src The strings that you want to concatenate.

n The maximum number of characters that you want to add
from the src string.

Library:
libc

Description:
The strncat() function appends no more than n characters of the string
pointed to by src to the end of the string pointed to by dst. The first
character of src overwrites the null character at the end of dst. This
function always adds a terminating null character to the result.

Returns:
The same pointer as dst.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char buffer[80];

int main(void)
{

strcpy(buffer, "Hello ");
strncat(buffer, "world", 8);
printf("%s\n", buffer);

3046 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strncat()

strncat(buffer, "*************", 4);
printf("%s\n", buffer);
return EXIT SUCCESS;

}

produces the output:

Hello world
Hello world****

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
strcat()

May 31, 2004 Manifests 3047

strncmp() 2004, QNX Software Systems Ltd.

Compare two strings, up to a given length

Synopsis:
#include <string.h>

int strncmp(const char* s1,
const char* s2,
size t n);

Arguments:
s1, s2 The strings that you want to compare.

n The maximum number of characters that you want to
compare.

Library:
libc

Description:
The strncmp() function compares up to n characters from the strings
pointed to by s1 and s2.

Returns:
< 0 s1 is less than s2.

0 s1 is equal to s2.

> 0 s1 is greater than s2.

Examples:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{

printf("%d\n", strncmp("abcdef", "abcDEF", 10));
printf("%d\n", strncmp("abcdef", "abcDEF", 6));

3048 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strncmp()

printf("%d\n", strncmp("abcdef", "abcDEF", 3));
printf("%d\n", strncmp("abcdef", "abcDEF", 0));
return EXIT SUCCESS;

}

produces the output:

1
1
0
0

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
strcasecmp(), strcmp(), strcmpi(), strcoll(), stricmp(), strncasecmp(),
strnicmp(), wcscmp(), wcscoll(), wcsncmp()

May 31, 2004 Manifests 3049

strncpy() 2004, QNX Software Systems Ltd.

Copy a string, to a maximum length

Synopsis:
#include <string.h>

char* strncpy(char* dst,
const char* src,
size t n);

Arguments:
dst A pointer to where you want to copy the string.

src The string that you want to copy.

n The maximum number of characters that you want to copy.

Library:
libc

Description:
The strncpy() function copies no more than n characters from the
string pointed to by src into the array pointed to by dst.

Copying of overlapping objects isn’t guaranteed to work properly.
See the memmove() function if you wish to copy objects that overlap.

�

If the string pointed to by src is shorter than n characters, null
characters are appended to the copy in the array pointed to by dst,
until n characters in all have been written. If the string pointed to by
src is longer than n characters, then the result isn’t terminated by a
null character.

Returns:
The same pointer as dst.

3050 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strncpy()

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{

char buffer[15];

printf("%s\n", strncpy(buffer, "abcdefg", 10));
printf("%s\n", strncpy(buffer, "1234567", 6));
printf("%s\n", strncpy(buffer, "abcdefg", 3));
printf("%s\n", strncpy(buffer, "*******", 0));
return EXIT SUCCESS;

}

produces the output:

abcdefg
123456g
abc456g
abc456g

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memmove(), strcpy(), strdup(), wcscpy(), wcsncpy(), wmemmove()

May 31, 2004 Manifests 3051

strnicmp() 2004, QNX Software Systems Ltd.

Compare two strings up to a given length, ignoring case

Synopsis:
#include <string.h>

int strnicmp(const char* s1,
const char* s2,
size t len);

Arguments:
s1, s2 The strings that you want to compare.

len The maximum number of characters that you want to
compare.

Library:
libc

Description:
The strnicmp() function compares up to len characters from the
strings pointed to by s1 and s2, ignoring case.

Returns:
< 0 s1 is less than s2.

0 s1 is equal to s2.

> 0 s1 is greater than s2.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{

printf("%d\n", strnicmp("abcdef", "ABCXXX", 10));
printf("%d\n", strnicmp("abcdef", "ABCXXX", 6));

3052 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strnicmp()

printf("%d\n", strnicmp("abcdef", "ABCXXX", 3));
printf("%d\n", strnicmp("abcdef", "ABCXXX", 0));
return EXIT SUCCESS;

}

produces the output:

-20
-20
0
0

Classification:
QNX 4

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
strcasecmp(), strcmp(), strcmpi(), strcoll(), stricmp(), strncasecmp(),
strncmp(), wcscmp(), wcscoll(), wcsncmp()

May 31, 2004 Manifests 3053

strnset() 2004, QNX Software Systems Ltd.

Fill a string with a given character, to a given length

Synopsis:
#include <string.h>

char * strnset(char * s1,
int fill,
size t len);

Arguments:
s1 The string that you want to fill.

fill The value that you want to fill the string with.

len The number of characters to fill.

Library:
libc

Description:
The strnset() function fills the string s1 with the value of the argument
fill, converted to be a character value. When the value of len is greater
than the length of the string, the entire string is filled. Otherwise, that
number of characters at the start of the string are set to the fill
character.

Returns:
The address of the string, s1.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char source[] = { "A sample STRING" };

int main(void)
{

printf("%s\n", source);

3054 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strnset()

printf("%s\n", strnset(source, ’=’, 100));
printf("%s\n", strnset(source, ’*’, 7));
return EXIT SUCCESS;

}

produces the output:

A sample STRING
===============
*******========

Classification:
QNX 4

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
strset()

May 31, 2004 Manifests 3055

strpbrk() 2004, QNX Software Systems Ltd.

Find the first character in a string that’s in a given character set

Synopsis:
#include <string.h>

char* strpbrk(char* str,
char* charset);

Arguments:
str The string that you want to search.

charset The set of characters you want to look for.

Library:
libc

Description:
The strpbrk() function locates the first occurrence in the string pointed
to by str of any character from the string pointed to by charset.

Returns:
A pointer to the located character, or NULL if no character from
charset occurs in str.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{

char* p = "Find all vowels";

while(p != NULL) {
printf("%s\n", p);
p = strpbrk(p+1, "aeiouAEIOU");

}
return EXIT SUCCESS;

}

3056 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strpbrk()

produces the output:

Find all vowels
ind all vowels
all vowels
owels
els

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memchr(), strchr(), strcspn(), strrchr(), strspn(), strstr(), strtok(),
strtok r(), wcschr(), wcscspn(), wcspbrk(), wcsrchr(), wcsspn(),
wcsstr(), wcstok()

May 31, 2004 Manifests 3057

strrchr() 2004, QNX Software Systems Ltd.

Find the last occurrence of a character in a string

Synopsis:
#include <string.h>

const char* strrchr(const char* s,
int c);

Arguments:
s The string that you want to search.

c The character that you’re looking for.

Library:
libc

Description:
The strrchr() function locates the last occurrence of c (converted to a
char) in the string pointed to by s. The terminating null character is
considered to be part of the string.

Returns:
A pointer to the located character, or a NULL pointer if the character
doesn’t occur in the string.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{

printf("%s\n", strrchr("abcdeabcde", ’a’));
if(strrchr("abcdeabcde", ’x’) == NULL)
printf("NULL\n");

return EXIT SUCCESS;
}

produces the output:

3058 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strrchr()

abcde
NULL

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memchr(), strchr(), strcspn(), strpbrk(), strspn(), strstr(), strtok(),
strtok r(), wcschr(), wcscspn(), wcspbrk(), wcsrchr(), wcsspn(),
wcsstr(), wcstok()

May 31, 2004 Manifests 3059

strrev() 2004, QNX Software Systems Ltd.

Reverse a string

Synopsis:
#include <string.h>

char* strrev(char* s1);

Arguments:
s1 The string that you want to reverse.

Library:
libc

Description:
The strrev() function replaces the string s1 with a string whose
characters are in the reverse order.

Returns:
The address of the string, s1.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char source[] = { "A sample STRING" };

int main(void)
{

printf("%s\n", source);
printf("%s\n", strrev(source));
printf("%s\n", strrev(source));
return EXIT SUCCESS;

}

produces the output:

A sample STRING
GNIRTS elpmas A
A sample STRING

3060 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strrev()

Classification:
QNX 4

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 3061

strsep() 2004, QNX Software Systems Ltd.

Separate a string into pieces marked by given delimiters

Synopsis:
#include <string.h>

char *strsep(char **stringp,
char *delim);

Arguments:
stringp The address of a pointer to the string that you want to

break into pieces; see below.

delim A set of characters that delimit the pieces in the string.

Library:
libc

Description:
The strsep() function looks in the null-terminated string pointed to by
stringp for the first occurrence of any character in delim and replaces
this with a \0, records the location of the next character in *stringp,
then returns the original value of *stringp. If no delimiter characters
are found, strsep() sets *stringp to NULL; if *stringp is initially
NULL, strsep() returns NULL.

Returns:
A pointer to the original value of *stringp.

Examples:
Parse strings containing runs of whitespace, making up an argument
vector:

char inputstring[100];
char **argv[51], **ap = argv, *p, *val;

/* set up inputstring */
for (p = inputstring; p != NULL;) {

3062 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strsep()

while ((val = strsep(&p, " \t")) != NULL && *val == ’\0’);
*ap++ = val;

}
*ap = 0;

Classification:
Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
strtok(), strtok r(), wcstok()

May 31, 2004 Manifests 3063

strset() 2004, QNX Software Systems Ltd.

Fill a string with a given character

Synopsis:
#include <string.h>

char* strset(char* s1,
int fill);

Arguments:
s1 The string that you want to fill.

fill The value that you want to fill the string with.

Library:
libc

Description:
The strset() function fills the string pointed to by s1 with the character
fill. The terminating null character in the original string remains
unchanged.

Returns:
The address of the string, s1.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char source[] = { "A sample STRING" };

int main(void)
{

printf("%s\n", source);
printf("%s\n", strset(source, ’=’));
printf("%s\n", strset(source, ’*’));
return EXIT SUCCESS;

}

produces the output:

3064 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strset()

A sample STRING
===============

Classification:
QNX 4

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
strnset()

May 31, 2004 Manifests 3065

strsignal() 2004, QNX Software Systems Ltd.

Return the description of a signal

Synopsis:
#include <string.h>

char *strsignal(int signo);

Arguments:
signo The signal number that you want the description of.

Library:
libc

Description:
The strsignal() function returns a pointer to the language-dependent
string describing a signal.

Returns:
A pointer to the description of the signal, or NULL if signo isn’t a
valid signal number. This array will be overwritten by subsequent
calls to strsignal().

Don’t modify the array returned by this function.�

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

3066 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strsignal()

See also:
setlocale()

May 31, 2004 Manifests 3067

strspn() 2004, QNX Software Systems Ltd.

Count the characters at the beginning of a string that are in a given character set

Synopsis:
#include <string.h>

size t strspn(const char* str,
const char* charset);

Arguments:
str The string that you want to search.

charset The set of characters you want to look for.

Library:
libc

Description:
The strspn() function computes the length of the initial segment of the
string pointed to by str that consists of characters from the string
pointed to by charset. The terminating null character isn’t considered
to be part of charset.

Returns:
The length of the segment.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{

printf("%d\n", strspn("out to lunch", "aeiou"));
printf("%d\n", strspn("out to lunch", "xyz"));
return EXIT SUCCESS;

}

produces the output:

3068 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strspn()

2
0

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memchr(), strchr(), strcspn(), strpbrk(), strrchr(), strstr(), strtok(),
strtok r(), wcschr(), wcscspn(), wcspbrk(), wcsrchr(), wcsspn(),
wcsstr(), wcstok()

May 31, 2004 Manifests 3069

strstr() 2004, QNX Software Systems Ltd.

Find one string inside another

Synopsis:
#include <string.h>

char* strstr(char* str,
char* substr);

Arguments:
str The string that you want to search.

substr The string that you’re looking for.

Library:
libc

Description:
The strstr() function locates the first occurrence in the string pointed
to by str of the sequence of characters (excluding the terminating null
character) in the string pointed to by substr.

Returns:
A pointer to the located string, or NULL if the string isn’t found.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{

printf("%s\n", strstr("This is an example", "is"));
return EXIT SUCCESS;

}

produces the output:

is is an example

3070 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strstr()

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memchr(), strchr(), strcspn(), strpbrk(), strrchr(), strspn(), strtok(),
strtok r(), wcschr(), wcscspn(), wcspbrk(), wcsrchr(), wcsspn(),
wcsstr(), wcstok()

May 31, 2004 Manifests 3071

strtod() 2004, QNX Software Systems Ltd.

Convert a string into a double

Synopsis:
#include <stdlib.h>

double strtod(const char *ptr,
char **endptr);

Arguments:
ptr A pointer to the string to parse.

endptr If this argument isn’t NULL, the function stores in it a
pointer to the first unrecognized character found in the
string.

Library:
libc

Description:
The strtod() function converts the string pointed to by ptr to double
representation. The function recognizes a string containing the
following:

� optional white space

� an optional plus or minus sign

� a sequence of digits containing an optional decimal point

� an optional e or E, followed by an optionally signed sequence of
digits.

The conversion ends at the first unrecognized character. If endptr isn’t
NULL, a pointer to the unrecognized character is stored in the object
endptr points to.

3072 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strtod()

Returns:
The converted value. If the correct value would cause overflow, plus
or minus HUGE VAL is returned according to the sign, and errno is
set to ERANGE. If the correct value would cause underflow, then zero
is returned, and errno is set to ERANGE.

This function returns zero when the input string can’t be converted. If
an error occurs, errno indicates the error detected.

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

double pi;

pi = strtod("3.141592653589793", NULL);
printf("pi=%17.15f\n",pi);
return EXIT SUCCESS;

}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 3073

strtod() 2004, QNX Software Systems Ltd.

See also:
atof(), errno

3074 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strtoimax(), strtoumax()
Convert a string into an integer

Synopsis:
#include <inttypes.h>

intmax t strtoimax (const char * nptr,
char ** endptr,
int base);

uintmax t strtoumax (const char * nptr,
char ** endptr,
int base);

Arguments:
nptr A pointer to the string to parse.

endptr If this argument isn’t NULL, the function stores in it a
pointer to the first unrecognized character found in the
string.

base The base of the number being parsed:

� If base is zero, the first characters after the optional
sign determine the base used for the conversion. If the
first characters are 0x or 0X the digits are treated as
hexadecimal. If the first character is 0, the digits are
treated as octal. Otherwise, the digits are treated as
decimal.

� If base isn’t zero, it must have a value between 2 and
36. The letters a-z and A-Z represent the values 10
through 35. Only those letters whose designated values
are less than base are permitted. If the value of base is
16, the characters 0x or 0X may optionally precede the
sequence of letters and digits.

May 31, 2004 Manifests 3075

strtoimax(), strtoumax() 2004, QNX Software Systems Ltd.

Library:
libc

Description:
The strtoimax() and strtoumax() functions are the same as the strtol(),
strtoll(), strtoul(), and strtoull() functions except that they return
objects of type intmax t and uintmax t.

Returns:
The converted value.

If the correct value causes an overflow,
INTMAX MAX|UINTMAX MAX or INTMAX MIN is returned
according to the sign and errno is set to ERANGE. If base is out of
range, zero is returned and errno is set to EINVAL.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
strtol(), strtoul()

3076 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strtok()
Break a string into tokens

Synopsis:
#include <string.h>

char* strtok(char* s1,
const char* s2);

Arguments:
s1 NULL, or the string that you want to break into tokens; see

below.

s2 A set of the characters that separate the tokens.

Library:
libc

Description:
The strtok() function breaks the string pointed to by s1 into a
sequence of tokens, each of which is delimited by a character from
the string pointed to by s2.

The first call to strtok() returns a pointer to the first token in the string
pointed to by s1. Subsequent calls to strtok() must pass a NULL
pointer as the first argument, in order to get the next token in the
string. The set of delimiters used in each of these calls to strtok() can
be different from one call to the next.

The first call in the sequence searches s1 for the first character that
isn’t contained in the current delimiter string s2. If no such character
is found, then there are no tokens in s1, and strtok() returns a NULL
pointer. If such a character is found, it’s the start of the first token.

The strtok() function then searches from there for a character that’s
contained in the current delimiter string. If no such character is found,
the current token extends to the end of the string pointed to by s1. If
such a character is found, it’s overwritten by a null character, which
terminates the current token. The strtok() function saves a pointer to

May 31, 2004 Manifests 3077

strtok() 2004, QNX Software Systems Ltd.

the following character, from which the next search for a token will
start when the first argument is a NULL pointer.

You might want to keep a copy of the original string because strtok()
is likely to modify it.

�

Returns:
A pointer to the token found, or NULL if no token was found.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{

char* p;
char* buffer;
char* delims = { " .," };

buffer = strdup("Find words, all of them.");
printf("%s\n", buffer);
p = strtok(buffer, delims);
while(p != NULL) {
printf("word: %s\n", p);
p = strtok(NULL, delims);

}
printf("%s\n", buffer);
return EXIT SUCCESS;

}

produces the output:

Find words, all of them.
word: Find
word: words
word: all
word: of
word: them
Find

3078 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strtok()

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

See also:
memchr(), strchr(), strcspn(), strpbrk(), strrchr(), strset(), strspn(),
strstr(), strtok r(), wcschr(), wcscspn(), wcspbrk(), wcsrchr(),
wcsspn(), wcsstr(), wcstok()

May 31, 2004 Manifests 3079

strtok r() 2004, QNX Software Systems Ltd.

Break a string into tokens (reentrant)

Synopsis:
#include <string.h>

char* strtok r(char* s,
const char* sep,
char** lasts);

Arguments:
s1 NULL, or the string that you want to break into tokens; see

below.

s2 A set of the characters that separate the tokens.

lasts The address of a pointer to a character, which the function
can use to store information necessary for it to continue
scanning the same string.

Library:
libc

Description:
The function strtok r() breaks the string s into a sequence of tokens,
each of which is delimited by a character from the string pointed to by
sep.

In the first call to strtok r(), s must point to a null-terminated string,
sep points to a null-terminated string of separator characters, and lasts
is ignored. The strtok r() function returns a pointer to the first
character of the first token, writes a NULL character into s
immediately following the returned token, and updates lasts.

In subsequent calls, s must be a NULL pointer and lasts must be
unchanged from the previous call so that subsequent calls will move
through the string s, returning successive tokens until no tokens
remain. The separator string sep may be different from call to call.
When no tokens remain in s, a NULL pointer is returned.

3080 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strtok r()

Returns:
A pointer to the token found, or NULL if no token was found.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memchr(), strchr(), strcspn(), strpbrk(), strrchr(), strset(), strspn(),
strstr(), strtok(), wcschr(), wcscspn(), wcspbrk(), wcsrchr(), wcsspn(),
wcsstr(), wcstok()

May 31, 2004 Manifests 3081

strtol(), strtoll() 2004, QNX Software Systems Ltd.

Convert a string into a long integer

Synopsis:
#include <stdlib.h>

long int strtol(const char * ptr,
char ** endptr,
int base);

int64 t strtoll(const char * ptr,
char ** endptr,
int base);

Arguments:
ptr A pointer to the string to parse.

endptr If this argument isn’t NULL, the function stores in it a
pointer to the first unrecognized character found in the
string.

base The base of the number being parsed:

� If base is zero, the first characters after the optional
sign determine the base used for the conversion. If the
first characters are 0x or 0X the digits are treated as
hexadecimal. If the first character is 0, the digits are
treated as octal. Otherwise, the digits are treated as
decimal.

� If base isn’t zero, it must have a value between 2 and
36. The letters a-z and A-Z represent the values 10
through 35. Only those letters whose designated values
are less than base are permitted. If the value of base is
16, the characters 0x or 0X may optionally precede the
sequence of letters and digits.

3082 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strtol(), strtoll()

Library:
libc

Description:
The strtol() function converts the string pointed to by ptr to an object
of type long int; strtoll() converts the string pointed to by ptr to an
object of type int64 t (long long).

These functions recognize strings that contain the following:

� optional white space

� an optional plus or minus sign

� a sequence of digits and letters.

The conversion ends at the first unrecognized character. If endptr isn’t
NULL, a pointer to the unrecognized character is stored in the object
endptr points to.

Returns:
The converted value.

If the correct value causes an overflow,
LONG MAX|LONGLONG MAX or LONG MIN|LONGLONG MIN is
returned according to the sign, and errno is set to ERANGE. If base is
out of range, zero is returned and errno is set to EDOM.

Examples:
#include <stdlib.h>

int main(void)
{

long int v;

v = strtol("12345678", NULL, 10);
return EXIT SUCCESS;

}

May 31, 2004 Manifests 3083

strtol(), strtoll() 2004, QNX Software Systems Ltd.

Classification:
strtol() is ANSI; strtoll() is Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
atoi(), atol(), errno, itoa(), ltoa(), sscanf(), strtoul(), ultoa(), utoa()

3084 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strtoul(), strtoull()
Convert a string into an unsigned long integer

Synopsis:
#include <stdlib.h>

unsigned long int strtoul(const char * ptr,
char ** endptr,
int base);

uint64 t strtoull(const char * ptr,
char ** endptr,
int base);

Arguments:
ptr A pointer to the string to parse.

endptr If this argument isn’t NULL, the function stores in it a
pointer to the first unrecognized character found in the
string.

base The base of the number being parsed:

� If base is zero, the first characters after the optional
sign determine the base used for the conversion. If the
first characters are 0x or 0X the digits are treated as
hexadecimal. If the first character is 0, the digits are
treated as octal. Otherwise, the digits are treated as
decimal.

� If base isn’t zero, it must have a value between 2 and
36. The letters a-z and A-Z represent the values 10
through 35. Only those letters whose designated values
are less than base are permitted. If the value of base is
16, the characters 0x or 0X may optionally precede the
sequence of letters and digits.

May 31, 2004 Manifests 3085

strtoul(), strtoull() 2004, QNX Software Systems Ltd.

Library:
libc

Description:
The strtoul() function converts the string pointed to by ptr to an
unsigned long; strtoull() converts the string pointed to by ptr to a
uint64 t (unsigned long long).

These functions recognize strings that contain the following:

� optional white space

� a sequence of digits and letters.

The conversion ends at the first unrecognized character. A pointer to
that character is stored in the object endptr points to, if endptr isn’t
NULL.

Returns:
The converted value.

If the correct value causes an overflow,
ULONG MAX|ULONGLONG MAX is returned and errno is set to
ERANGE. If base is out of range, zero is returned and errno is set to
EDOM.

Examples:
#include <stdlib.h>

int main(void)
{

unsigned long int v;

v = strtoul("12345678", NULL, 10);
return EXIT SUCCESS;

}

3086 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strtoul(), strtoull()

Classification:
strtoul() is ANSI; strtoull() is Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
atoi(), atol(), errno, itoa(), ltoa(), sscanf(), strtol(), ultoa(), utoa()

May 31, 2004 Manifests 3087

strupr() 2004, QNX Software Systems Ltd.

Convert a string to uppercase

Synopsis:
#include <string.h>

char* strupr(char* s1);

Arguments:
s1 The string that you want to convert to uppercase.

Library:
libc

Description:
The strupr() function replaces the string s1 with uppercase characters,
by invoking toupper() for each character in the string.

Returns:
The address of the string.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char source[] = { "A mixed-case STRING" };

int main(void)
{

printf("%s\n", source);
printf("%s\n", strupr(source));
printf("%s\n", source);
return EXIT SUCCESS;

}

produces the output:

A mixed-case STRING
A MIXED-CASE STRING
A MIXED-CASE STRING

3088 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strupr()

Classification:
Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
strlwr(), toupper()

May 31, 2004 Manifests 3089

strxfrm() 2004, QNX Software Systems Ltd.

Transform one string into another, to a given length

Synopsis:
#include <string.h>

size t strxfrm(char* dst,
const char* src,
size t n);

Arguments:
dst The string that you want to transform.

src The string that you want to place in dst.

n The maximum number of characters to transform.

Library:
libc

Description:
The strxfrm() function transforms, for no more than n characters, the
string pointed to by src to the buffer pointed to by dst. The
transformation uses the collating sequence selected by setlocale() so
that two transformed strings compare identically (using the strncmp()
function) to a comparison of the original two strings using strcoll().

If the collating sequence is selected from the "C" locale, strxfrm() is
equivalent to strncpy(), except that strxfrm() doesn’t pad the dst
argument with null characters when the argument src is shorter than n
characters.

Returns:
The length of the transformed string. If this length is more than n, the
contents of the array pointed to by dst are indeterminate.

3090 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. strxfrm()

If an error occurs, strxfrm() sets errno and returns 0. Since the
function could also return zero on success, the only way to tell that an
error has occurred is to set errno to 0 before calling strxfrm() and
check errno afterward.

�

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <locale.h>

char src[] = { "A sample STRING" };
char dst[20];

int main(void)
{

size t len;

setlocale(LC ALL, "C");
printf("%s\n", src);
len = strxfrm(dst, src, 20);
printf("%s (%u)\n", dst, len);
return EXIT SUCCESS;

}

produces the output:

A sample STRING
A sample STRING (15)

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

continued. . .

May 31, 2004 Manifests 3091

strxfrm() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

See also:
setlocale(), strcoll(), wcsxfrm()

3092 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. swab()
Endian-swap a given number of bytes

Synopsis:
#include <unistd.h>

void swab(const void * src,
void * dest,
ssize t nbytes);

Arguments:
src A pointer to the buffer that you want to copy the bytes

from.

dest A pointer to the buffer where you want the function to
copy the bytes.

nbytes The number of bytes that you want to copy and swap.

Library:
libc

Description:
The swab() function copies nbytes bytes, pointed to by src, to the
object pointed to by dest, exchanging adjacent bytes. The nbytes
argument should be even.

If nbytes is: Then:

Odd nbytes-1 bytes are copied and exchanged. The
disposition of the last byte is unspecified.

Negative swab() does nothing.

If copying takes place between objects that overlap, the behavior is
undefined.

May 31, 2004 Manifests 3093

swab() 2004, QNX Software Systems Ltd.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
ENDIAN SWAP32(), ENDIAN SWAP64()

3094 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. swprintf()
Print formatted wide-character output into a string

Synopsis:
#include <wchar.h>

int swprintf(wchar t * ws,
size t n,
const wchar t * format,

...);

Arguments:
ws A pointer to the buffer where you want to function to store

the formatted string.

n The maximum number of wide characters to store in the
buffer, including a terminating null character.

format A wide-character string that specifies the format of the
output. The formatting string determines what additional
arguments you need to provide. For more information, see
printf().

Library:
libc

Description:
The swprintf() function is similar to fwprintf() except that swprintf()
places the generated output into the wide-character array pointed to
by buf , instead of writing it to a file. A null character is placed at the
end of the generated character string.

The swprintf() function is the wide-character version of sprintf().

Returns:
The number of wide characters written, excluding the terminating
NUL, or a negative number if an error occurred (errno is set).

May 31, 2004 Manifests 3095

swprintf() 2004, QNX Software Systems Ltd.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, fprintf(), fwprintf(), printf(), snprintf(), sprintf(), vfprintf(),
vfwprintf(), vprintf(), vsnprintf(), vsprintf(), vswprintf(), vwprintf(),
wprintf()

3096 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. swscanf()
Scan input from a wide-character string

Synopsis:
#include <wchar.h>

int swscanf(const wchar t * ws,
const wchar t * format,
...);

Arguments:
ws The wide-character string that you want to read from.

format A wide-character string that specifies the format of the
input. For more information, see scanf(). The formatting
string determines what additional arguments you need to
provide.

Library:
libc

Description:
The swscanf() function scans input from the wide-character string ws,
under control of the argument format. Following the format string is
the list of addresses of items to receive values.

The swscanf() function is the wide-character version of sscanf().

Returns:
The number of input arguments for which values were successfully
scanned and stored, or EOF when the scanning is terminated by
reaching the end of the input string.

Classification:
ANSI

May 31, 2004 Manifests 3097

swscanf() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, fscanf(), fwscanf(), scanf(), sscanf(), vfscanf(), vfwscanf(),
vscanf(), vsscanf(), vswscanf(), vwscanf(), wscanf()

3098 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. symlink()
Create a symbolic link to a path

Synopsis:
#include <unistd.h>

int symlink(const char* pname,
const char* slink);

Arguments:
pname The path that you want to link to.

slink The symbolic link that you want to create.

Library:
libc

Description:
The symlink() function creates a symbolic link named slink that
contains the pathname specified by pname (slink is the name of the
symbolic link created, pname is the pathname contained in the
symbolic link).

File access checking isn’t performed on the file named by pname, and
the file need not exist.

If the symlink() function is unsuccessful, any file named by slink is
unaffected.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EACCES A component of the slink path prefix denies search

permission, or write permission is denied in the parent
directory of the symbolic link to be created.

May 31, 2004 Manifests 3099

symlink() 2004, QNX Software Systems Ltd.

EEXIST A file named by slink already exists.

ELOOP A loop exists in symbolic links encountered during
resolution of the slink argument, and it resolves to
more then SYMLOOP MAX levels.

ENAMETOOLONG

A component of the path specified by slink exceeds
NAME MAX bytes, or the length of the entire
pathname exceeded PATH MAX characters.

ENOSPC The new symbolic link can’t be created because
there’s no space left on the filesystem that will contain
the symbolic link.

ENOSYS The symlink() function isn’t implemented for the
filesystem specified in slink.

ENOTDIR A component of the path prefix of slink isn’t a
directory.

EROFS The file slink would reside on a read-only filesystem.

Examples:
/*
* create a symbolic link to "/usr/nto/include"
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(void)
{

if(symlink("/usr/nto/include", "slink") == -1) {
perror("slink -> /usr/nto/include");
exit(EXIT FAILURE);

}
exit(EXIT SUCCESS);

}

3100 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. symlink()

Classification:
POSIX 1003.1a

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, link(), lstat(), pathmgr symlink(), pathmgr unlink(), readlink(),
unlink()

May 31, 2004 Manifests 3101

sync() 2004, QNX Software Systems Ltd.

Synchronize filesystem updates

Synopsis:
#include <unistd.h>

void sync(void);

Library:
libc

Description:
The sync() function queues all the modified block buffers for writing,
and returns; it doesn’t wait for the actual I/O to take place. Use this
function — or fsync() for a single file — to ensure consistency of the
entire on-disk filesystem with the contents of the in-memory buffer
cache.

Returns:
-1 on error; any other value on success.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

3102 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sync()

See also:
fdatasync(), fsync()

May 31, 2004 Manifests 3103

SyncCondvarSignal(), SyncCondvarSignal r() 2004,

QNX Software Systems Ltd.

Wake up any threads that are blocked on a synchronization object

Synopsis:
#include <sys/neutrino.h>

int SyncCondvarSignal(sync t* sync,
int broadcast);

int SyncCondvarSignal r(sync t* sync,
int broadcast);

Arguments:
sync A pointer to a sync t for the synchronization object.

You must have initialized this argument by calling
SyncTypeCreate() or statically initialized it with the
manifest PTHREAD COND INITIALIZER.

broadcast Zero if you want to make ready to run the thread with
the highest priority that’s been waiting the longest, or
nonzero if you want to make all waiting threads ready.

Library:
libc

Description:
The SyncCondvarSignal() and SyncCondvarSignal r() kernel calls
wake up one or all threads that are blocked on the synchronization
object sync.

These functions are similar, except in the way they indicate errors.
See the Returns section for details.

In all cases, each awakened thread attempts to reacquire the
controlling mutex passed in SyncCondvarWait() before control is
returned to the thread. If the mutex is already locked when the kernel
attempts to lock it, the thread becomes blocked on the mutex until it’s
unlocked.

3104 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SyncCondvarSignal(),
SyncCondvarSignal r()

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

SyncCondvarSignal()

If an error occurs, the function returns -1 and sets errno. Any
other value returned indicates success.

SyncCondvarSignal r()

EOK is returned on success. This function does NOT set errno.
If an error occurs, any value in the Errors section may be
returned.

Errors:
EFAULT A fault occurred when the kernel tried to access sync.

EINVAL The synchronization ID specified in sync doesn’t exist.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 3105

SyncCondvarSignal(), SyncCondvarSignal r() 2004,

QNX Software Systems Ltd.

See also:
pthread cond broadcast(), pthread cond signal(),
pthread cond wait(), SyncCondvarWait()

3106 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SyncCondvarWait(),
SyncCondvarWait r()

Block a thread on a synchronization object

Synopsis:
#include <sys/neutrino.h>

int SyncCondvarWait(sync t * sync,
sync t * mutex);

int SyncCondvarWait r(sync t * sync,
sync t * mutex);

Arguments:
sync A pointer to a sync t for the synchronization object. You

must have initialized this argument by calling
SyncTypeCreate() or statically initialized it with the
manifest PTHREAD COND INITIALIZER.

mutex The mutex that’s associated with the condition variable.
You must lock this mutex by calling SyncMutexLock() (or
the POSIX pthread mutex lock() cover routine). The kernel
releases the mutex lock in the kernel when it blocks the
thread on sync.

Library:
libc

Description:
The SyncCondvarWait() and SyncCondvarWait r() kernel calls block
the calling thread on the synchronization object, sync. If more than
one thread is blocked on the object, they’re queued in priority order.

These functions are similar, except in the way they indicate errors.
See the Returns section for details.

The blocked thread can be unblocked by any one of the following
conditions:

May 31, 2004 Manifests 3107

SyncCondvarWait(), SyncCondvarWait r() 2004, QNX

Software Systems Ltd.

Condition variable signalled

The condition variable was signaled by a call to
SyncCondvarSignal(), that determined that this
thread should be awakened.

Before returning from SyncCondvarWait(), mutex
is reacquired. If mutex is locked, the thread enters
into the STATE MUTEX state waiting for mutex to
be unlocked. At this point it’s as though you had
called SyncMutexLock(mutex).

Timeout The wait was terminated by a timeout initiated by
a previous call to TimerTimeout().

Before returning from SyncCondvarWait(), mutex
is reacquired. If mutex is locked, the thread enters
into the STATE MUTEX state waiting for mutex to
be unlocked. At this point it’s as though you had
called SyncMutexLock(mutex).

POSIX signal The wait was terminated by an unmasked signal
initiated by a call to SignalKill(). If a signal
handler has been set up, the signal handler runs
with mutex unlocked. On return from the signal
handler, mutex is reacquired. If mutex is locked,
the thread enters into the STATE MUTEX state
waiting for mutex to be unlocked. At this point, it’s
as though you had called SyncMutexLock(mutex).

Thread cancellation

The wait was terminated by a thread cancellation
initiated by a call to ThreadCancel(). Before
calling the cancellation handler, mutex is
reacquired. If mutex is locked, the thread enters
into the STATE MUTEX state waiting for mutex to
be unlocked. At this point, it’s as though you had
called SyncMutexLock(mutex).

3108 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SyncCondvarWait(),
SyncCondvarWait r()

In all cases, mutex is reacquired before the call returns. If the thread
enters the STATE MUTEX state, the rules governing SyncMutexLock()
are in effect.

Condition variables are used to block a thread until a certain condition
is satisfied. Spurious wakeups may occur due to timeouts, signals, and
broadcast condition variable signals. Therefore, you should always
reevaluate the condition, even on a successful return. The easiest way
to do this is with a while loop. For example:

SyncMutexLock(&mutex);

while(some condition) {
SyncCondvarWait(&condvar, &mutex);

}

SyncMutexUnlock(&mutex);

Blocking states

STATE CONDVAR

The calling thread blocks waiting for the condition variable to
be signaled.

STATE MUTEX

The thread was unblocked from the STATE CONDVAR state and
while trying to reacquire the controlling mutex, found the
mutex was locked by another thread.

Returns:
The only difference between these functions is the way they indicate
errors:

SyncCondvarWait()

If an error occurs, the function returns -1 and sets errno. Any
other value returned indicates success.

May 31, 2004 Manifests 3109

SyncCondvarWait(), SyncCondvarWait r() 2004, QNX

Software Systems Ltd.

SyncCondvarWait r()

Returns EOK on success. This function does NOT set errno. If
an error occurs, the function returns any value in the Errors
section.

Errors:
EAGAIN On the first use of a statically initialized sync, all

kernel synchronization objects were in use.

EFAULT A fault occurred when the kernel tried to access
sync or mutex.

EINVAL The synchronization ID specified in sync doesn’t
exist.

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cond broadcast(), pthread cond signal(),
pthread cond wait(), pthread mutex lock(), SignalKill(),
SyncCondvarSignal(), SyncMutexLock(), SyncTypeCreate(),
ThreadCancel(), TimerTimeout()

3110 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SyncCtl(), SyncCtl r()
Perform an operation on a synchronization object

Synopsis:
#include <sys/neutrino.h>

int SyncCtl(int cmd,
sync t * sync,
void * data);

int SyncCtl r(int cmd,
sync t * sync,
void * data);

Arguments:
cmd The operation type; one of:

� NTO SCTL GETPRIOCEILING — get the ceiling priority
of the mutex pointed to by sync and put it in the variable
pointed to by data.

� NTO SCTL SETPRIOCEILING — return the original
ceiling priority. Set the ceiling priority of the mutex
pointed to by sync to the value pointed to by data.

� NTO SCTL SETEVENT — attach an event, pointed to by
data, to the mutex pointed to by sync.

You should use SyncMutexEvent() to do this.�
sync A pointer to the synchronization object that you want to

manipulate.

data A pointer to data associated with the command, or a place
where the function can store the requested information,
depending on the operation.

Library:
libc

May 31, 2004 Manifests 3111

SyncCtl(), SyncCtl r() 2004, QNX Software Systems Ltd.

Description:
The SyncCtl() and SyncCtl r() kernel calls let you:

� set or get a ceiling priority for a mutex

or

� attach an event to a mutex so you’ll be notified when the mutex
changes to the DEAD state.

These functions are similar, except for the way they indicate errors.
See the Returns section for details.

Returns:
The only difference between these functions is the way they indicate
errors:

SyncCtl() If an error occurs, the function returns -1 and sets
errno. Any other value returned indicates success.

SyncCtl r() Returns EOK on success. This function does NOT set
errno. If an error occurs, the function returns any
value listed in the Errors section.

Errors:
EAGAIN All kernel synchronization event objects are in use.

EFAULT A fault occurred when the kernel tried to access sync or
data.

EINVAL The synchronization object pointed to by sync doesn’t
exist, or the ceiling priority value pointed to by data is
out of range.

ENOSYS The SyncCtl() and SyncCtl r() functions aren’t currently
supported.

3112 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SyncCtl(), SyncCtl r()

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
SyncCondvarSignal(), SyncCondvarWait(), SyncDestroy(),
SyncMutexLock(), SyncMutexRevive(), SyncMutexUnlock(),
SyncTypeCreate()

May 31, 2004 Manifests 3113

SyncDestroy(), SyncDestroy r() 2004, QNX Software Systems Ltd.

Destroy a synchronization object

Synopsis:
#include <sys/neutrino.h>

int SyncDestroy(sync t* sync);

int SyncDestroy r (sync t* sync);

Arguments:
sync The synchronization object that you want to destroy.

Library:
libc

Description:
The SyncDestroy() and SyncDestroy r() kernel calls destroy a
synchronization object previously allocated by a call to
SyncTypeCreate(). If the object is a locked mutex, or a condition
variable with waiting threads, the call fails. Any attempt to use sync
after it is destroyed fails.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

Don’t call SyncDestroy() directly; instead, use the POSIX
synchronization objects (see pthread cond destroy(),
pthread mutex destroy(), pthread rwlock destroy(), and
sem destroy()).

�

Blocking states

These calls don’t block.

3114 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SyncDestroy(), SyncDestroy r()

Returns:
The only difference between these functions is the way they indicate
errors:

SyncDestroy()

If an error occurs, the function returns -1 and sets errno. Any
other value returned indicates success.

SyncDestroy r()

Returns EOK on success. This function does NOT set errno. If
an error occurs, the function can return any value listed in the
Errors section.

Errors:
EBUSY The synchronization object is locked by a thread.

EFAULT A fault occurred when the kernel tried to access sync.

EINVAL The synchronization ID specified in sync doesn’t exist.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 3115

SyncDestroy(), SyncDestroy r() 2004, QNX Software Systems Ltd.

See also:
SyncTypeCreate()

3116 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SyncMutexEvent(),
SyncMutexEvent r()

Attach an event to a mutex

Synopsis:
#include <sys/neutrino.h>

int SyncMutexEvent(sync t * sync,
struct sigevent * event);

int SyncMutexEvent r(sync t * sync,
struct sigevent * event);

Arguments:
sync A pointer to the synchronization object for the mutex that

you want to attach an event to.

event A pointer to the sigevent structure that describes the
event that you want to attach.

Library:
libc

Description:
The SyncMutexEvent() is a kernel call that attaches a specified event
to a mutex pointed to by sync. You use SyncMutexRevive() to revive a
DEAD mutex. Normally, a mutex will be placed in the DEAD state
when the memory that was used to lock the mutex gets unmapped.
One of the ways this may happen is when a process dies while
holding the mutex in a shared memory.

SyncMutexEvent() and SyncMutexEvent r() are similar, except for the
way they indicate errors. See the Returns section for details.

Returns:
The only difference between these functions is the way they indicate
errors:

May 31, 2004 Manifests 3117

SyncMutexEvent(), SyncMutexEvent r() 2004, QNX Software

Systems Ltd.

SyncMutexEvent()

If an error occurs, the function returns -1 and sets errno. Any
other value returned indicates success.

SyncMutexEvent r()

Returns EOK on success. This function does NOT set errno. If
an error occurs, the function returns any value listed in the
Errors section.

Errors:
EAGAIN All kernel synchronization event objects are in use.

EFAULT A fault occurred when the kernel tried to access sync.

EINVAL The synchronization object pointed to by sync doesn’t
exist.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
sigevent, SyncCondvarSignal(), SyncCondvarWait(),
SyncDestroy(), SyncMutexLock(), SyncMutexRevive(),
SyncMutexUnlock()

3118 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SyncMutexLock(),
SyncMutexLock r()

Lock a mutex synchronization object

Synopsis:
#include <sys/neutrino.h>

int SyncMutexLock(sync t * sync);

int SyncMutexLock r(sync t * sync);

Arguments:
sync A pointer to the synchronization object for the mutex that

you want to lock.

Library:
libc

Description:
The SyncMutexLock() and SyncMutexLock r() kernel calls try to lock
the mutex synchronization object sync. If the mutex isn’t currently
locked, the call returns immediately with the object locked. The
mutex is considered unlocked if the owner field of sync is zero.
Otherwise, the owner field of sync is treated as the thread ID of the
current owner of the mutex.

These functions are similar, except for the way they indicate errors.
See the Returns section for details.

If the mutex is already locked, the calling thread blocks on sync until
it’s unlocked by the owner. If more than one thread is blocked on sync
they’re queued in priority order.

If the priority of the blocking thread is higher than the thread that
owns the mutex, the owner’s priority is boosted to match that of the
caller. In other words, the owner inherits the caller’s priority if it’s
higher. If the owner’s priority is boosted, it returns to its previous
value before any boosts when the mutex is unlocked. Note that the
owner may be boosted more than once as higher priority threads
block on sync.

May 31, 2004 Manifests 3119

SyncMutexLock(), SyncMutexLock r() 2004, QNX Software

Systems Ltd.

If a thread is boosted via this mechanism and subsequently changes
its own priority, that priority takes immediate effect and also becomes
the value it’s returned to after it releases the mutex.

Waiting for a mutex isn’t a cancellation point. If a signal is delivered
to the thread while waiting for the mutex, the signal handler runs and,
upon return from the handler, the thread resumes waiting for the
mutex as if it wasn’t interrupted.

Avoid timeouts on mutexes. Mutexes should be locked for brief
periods of time, eliminating the need for a timeout.

�

The sync argument must have been initialized by a call to
SyncTypeCreate() or have been statically initialized by the manifest
PTHREAD MUTEX INITIALIZER.

The POSIX functions pthread mutex lock(), and
pthread mutex unlock(), are faster, since they can potentially avoid a
kernel call.

�

Blocking states

STATE MUTEX

The calling thread blocks waiting for the synchronization object
to be unlocked.

Returns:
The only difference between these functions is the way they indicate
errors:

SyncMutexLock()

If an error occurs, the function returns -1 and sets errno. Any
other value returned indicates success.

3120 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SyncMutexLock(),
SyncMutexLock r()

SyncMutexLock r()

Returns EOK on success. This function does NOT set errno. If
an error occurs, this function returns any value listed in the
Errors section.

Errors:
EAGAIN On the first use of a statically initialized sync, all

kernel synchronization objects were in use.

EFAULT A fault occurred when the kernel tried to access the
buffers you provided.

EINVAL The synchronization ID specified in sync doesn’t
exist.

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread mutex lock(), pthread mutex unlock(), SyncTypeCreate(),
SyncDestroy(), SyncMutexUnlock()

May 31, 2004 Manifests 3121

SyncMutexRevive(), SyncMutexRevive r() 2004, QNX

Software Systems Ltd.

Revive a mutex that’s in the DEAD state

Synopsis:
#include <sys/neutrino.h>

int SyncMutexRevive(sync t * sync);

int SyncMutexRevive r(sync t * sync);

Arguments:
sync A pointer to the synchronization object for the mutex that

you want to revive.

Library:
libc

Description:
The SyncMutexRevive() and SyncMutexRevive r() kernel calls revive a
mutex, pointed to by sync, that’s in the DEAD state. The mutex will
be put into the LOCK state and will be owned by the calling thread.
The mutex counter is set to one (for recursive mutexes).

These functions are similar, except for the way they indicate errors.
See the Returns section for details.

See SyncMutexEvent() for information on how to get notified when a
mutex enters the DEAD state.

Returns:
The only difference between these functions is the way they indicate
errors:

SyncMutexRevive()

If an error occurs, the function returns -1 and sets errno. Any
other value returned indicates success.

3122 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SyncMutexRevive(),
SyncMutexRevive r()

SyncMutexRevive r()

Returns EOK on success. This function does NOT set errno. If
an error occurs, the function returns any value listed in the
Errors section.

Errors:
EFAULT A fault occurred when the kernel tried to access the

buffers you provided.

EINVAL The synchronization object pointed to by sync
doesn’t exist or wasn’t in the DEAD state.

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread mutex lock(), pthread mutex unlock(), SyncTypeCreate(),
SyncDestroy(), SyncMutexEvent(), SyncMutexLock(),
SyncMutexUnlock()

May 31, 2004 Manifests 3123

SyncMutexUnlock(), SyncMutexUnlock r() 2004, QNX

Software Systems Ltd.

Unlock a mutex synchronization object

Synopsis:
#include <sys/neutrino.h>

int SyncMutexUnlock(sync t * sync);

int SyncMutexUnlock r(sync t * sync);

Arguments:
sync A pointer to the synchronization object for the mutex that

you want to unlock.

Library:
libc

Description:
The SyncMutexUnlock() and SyncMutexUnlock r() kernel calls unlock
the mutex passed as sync. If there are threads blocked on the mutex,
the owner member of sync is set to the thread ID of the thread with
the highest priority that has been waiting the longest and it’s made
ready to run. If no threads are waiting, it’s set to zero.

These functions are similar, except for the way they indicate errors.
See the Returns section for details.

If the calling thread had its priority boosted while it owned the mutex,
it returns to its normal priority.

The POSIX functions pthread mutex lock(), and
pthread mutex unlock(), are faster, since they can potentially avoid a
kernel call.

�

3124 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SyncMutexUnlock(),
SyncMutexUnlock r()

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

SyncMutexUnlock()

If an error occurs, The function returns -1 and sets errno. Any
other value returned indicates success.

SyncMutexUnlock r()

Returns EOK on success. This function does NOT set errno. If
an error occurs, the function returns any value listed in the
Errors section.

Errors:
EFAULT A fault occurred when the kernel tried to access the

buffers provided.

EINVAL The synchronization ID specified in sync doesn’t exist.
The calling thread doesn’t own the mutex.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 3125

SyncMutexUnlock(), SyncMutexUnlock r() 2004, QNX

Software Systems Ltd.

See also:
pthread mutex lock(), pthread mutex unlock(), SyncTypeCreate(),
SyncMutexLock()

3126 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SyncSemPost(), SyncSemPost r()
Increment a semaphore

Synopsis:
#include <sys/neutrino.h>

int SyncSemPost(sync t* sync);

int SyncSemPost r(sync t* sync);

Arguments:
sync A pointer to the synchronization object for the semaphore

that you want to increment.

Library:
libc

Description:
The SyncSemPost() and SyncSemPost r() kernel calls increment the
semaphore referenced by the sync argument. If any threads are
blocked on the semaphore, the one waiting the longest is unblocked
and allowed to run.

These functions are identical, except for the way they indicate errors.
See the Returns section for details.

You should use the POSIX sem post() function instead of calling
SyncSemPost() directly.

�

Returns:
The only difference between these functions is the way they indicate
errors:

SyncSemPost()

If an error occurs, the function returns -1 and sets errno. Any
other value returned indicates success.

May 31, 2004 Manifests 3127

SyncSemPost(), SyncSemPost r() 2004, QNX Software Systems Ltd.

SyncSemPost r()

Returns EOK on success. This function does NOT set errno. If
an error occurs, the function returns one of the values listed in
the Errors section.

Errors:
EAGAIN Not enough memory for the kernel to create the internal

sync object.

EFAULT Invalid pointer.

EINTR A signal interrupted this function.

EINVAL The sync argument doesn’t refer to a valid semaphore.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
sem destroy(), sem init(), sem post(), sem trywait(), sem wait(),
SyncDestroy(), SyncSemWait(), SyncTypeCreate()

3128 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SyncSemWait(), SyncSemWait r()
Wait on a semaphore

Synopsis:
#include <sys/neutrino.h>

int SyncSemWait(sync t* sync,
int try);

int SyncSemWait r(sync t* sync,
int try);

Arguments:
sync A pointer to the synchronization object for the semaphore

that you want to wait on.

try Nonzero if you want a conditional wait.

Library:
libc

Description:
The SyncSemWait() and SyncSemWait r() kernel calls decrement the
semaphore referred to by the sync argument. If the semaphore value
isn’t greater than zero and try is zero, then the calling process blocks
until it can decrement the counter or the call is interrupted by signal.

These functions are identical, except in the way they indicate errors.
See the Returns section for details.

If try is nonzero, the function acts as a conditional wait. If the call
would block, the semaphore is unmodified, and the call returns with
an error.

Returns:
The only difference between these functions is the way they indicate
errors:

May 31, 2004 Manifests 3129

SyncSemWait(), SyncSemWait r() 2004, QNX Software Systems Ltd.

SyncSemWait()

If an error occurs, the function returns -1 and sets errno. Any
other value returned indicates success (the semaphore was
successfully decremented).

SyncSemWait r()

Returns EOK on success (the semaphore was successfully
decremented). This function does NOT set errno. If an error
occurs, the function returns one of the values listed in the Errors
section.

Errors:
EAGAIN Call would have blocked and try was nonzero.

EDEADLK A deadlock condition was detected.

EINTR A signal interrupted this function.

EINVAL The sync argument doesn’t refer to a valid semaphore.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

3130 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SyncSemWait(), SyncSemWait r()

See also:
sem destroy(), sem init(), sem post(), sem trywait(), sem wait(),
SyncDestroy(), SyncSemPost(), SyncTypeCreate()

May 31, 2004 Manifests 3131

SyncTypeCreate(), SyncTypeCreate r() 2004, QNX Software

Systems Ltd.

Create a synchronization object

Synopsis:
#include <sys/neutrino.h>

int SyncTypeCreate(
unsigned type,
sync t * sync,
const struct sync attr t * attr);

int SyncTypeCreate r(
unsigned type,
sync t * sync,
const struct sync attr t * attr);

Arguments:
type One of the following:

� NTO SYNC MUTEX FREE — create a mutex.

� NTO SYNC SEM — create a semaphore.

� NTO SYNC COND — create a condition variable.

sync A pointer to a sync t that the kernel sets up for the
synchronization object; see below.

attr A pointer to a sync attr t structure that specifies
attributes for the object. This structure contains at least the
following members:

� int protocol — PTHREAD PRIO INHERIT or
PTHREAD PRIO PROTECT.

If attr is NULL, the default attributes
(PTHREAD PRIO INHERIT) are assumed.

Library:
libc

3132 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SyncTypeCreate(),
SyncTypeCreate r()

Description:
The SyncTypeCreate() and SyncTypeCreate r() kernel calls create a
synchronization object in the kernel and initializes sync for use in
other synchronization kernel calls. The synchronization object is local
to the process.

These functions are similar, except for the way they indicate errors.
See the Returns section for details.

Synchronization objects can be used for mutexes, semaphores, or
condition variables.

Don’t call SyncTypeCreate() directly; instead, use the POSIX
synchronization objects (see pthread cond init(),
pthread mutex init(), pthread rwlock init(), and sem init()).

�

The sync argument contains at least the following members:

int count The count for recursive mutexes and semaphores. The
kernel sets this member when it creates the
synchronization object.

int owner When a mutex is created, this member holds the
thread ID of the thread that acquired the mutex. When
unowned, the value is 0. It’s set to zero when the
synchronization object is created.

The current state of sync is summarized below:

Counter Owner Description

– -2 Destroyed mutex

0 -1 Statically initialized; auto-created when
used

continued. . .

May 31, 2004 Manifests 3133

SyncTypeCreate(), SyncTypeCreate r() 2004, QNX Software

Systems Ltd.

Counter Owner Description

0 0 Unlocked mutex

count >0 Recursive counter number of the mutex

count <-1 If the high bit of count is set, it’s a flag
meaning “others waiting”

– -256 Mutex is dead, waits for revival

The synchronization object is destroyed by a call to SyncDestroy().

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

SyncTypeCreate()

If an error occurs, the function returns -1 and sets errno. Any
other value returned indicates success.

SyncTypeCreate r()

Returns EOK on success. This function does NOT set errno. If
an error occurs, the function can return any value in the Errors
section.

Errors:
EAGAIN All kernel synchronization objects are in use.

EFAULT A fault occurred when the kernel tried to access sync or
attr.

EINVAL Either

3134 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SyncTypeCreate(),
SyncTypeCreate r()

� the type isn’t one of NTO SYNC COND,
NTO SYNC MUTEX FREE or NTO SYNC SEM

Or:

� if the type is correct, and the synchronization object
is:

- a mutex — the protocol isn’t one of
PTHREAD PRIO INHERIT or
PTHREAD PRIO PROTECT.

- a mutex and PTHREAD PRIO PROTECT is
specified — the ceiling priority isn’t within the
kernel priority range.

- a condvar — the clock type is invalid.

- a semaphore — the semaphore value exceeds
SEM VALUE MAX.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread cond init(), pthread mutex init(), pthread rwlock init(),
sem init(), SyncCondvarSignal(), SyncCondvarWait(), SyncDestroy(),
SyncMutexLock(), SyncMutexUnlock()

May 31, 2004 Manifests 3135

sysconf() 2004, QNX Software Systems Ltd.

Return the value of a configurable system limit

Synopsis:
#include <unistd.h>
#include <limits.h>

long sysconf(int name);

Arguments:
name The name of the limit that you want to get; see below.

Library:
libc

Description:
The sysconf() function returns the value of a configurable system limit
indicated by name.

Configurable limits are defined in <confname.h>, and contain at
least the following values:

SC ARG MAX

Maximum length of arguments for the exec*() functions, in
bytes, including environment data.

SC CHILD MAX

Maximum number of simultaneous processes per real user ID.

SC CLK TCK

The number of intervals per second used to express the value in
type clock t.

SC NGROUPS MAX

The maximum number of simultaneous supplementary group
IDs per process.

3136 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sysconf()

SC OPEN MAX

Maximum number of files that one process can have open at
any given time.

SC JOB CONTROL

If this variable is defined, then job control is supported.

SC SAVED IDS

If this variable is defined, then each process has a saved set-user
ID and a saved set-group ID.

SC VERSION

The current POSIX version that is currently supported. A value
of 198808L indicates the August (08) 1988 standard, as
approved by the IEEE Standards Board.

Returns:
The requested configurable system limit. If name isn’t defined for the
system, -1 is returned.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <unistd.h>

int main(void)
{
printf(" SC ARG MAX = %ld\n",

sysconf(SC ARG MAX));
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

May 31, 2004 Manifests 3137

sysconf() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
confstr(), errno, pathconf()

getconf in the Utilities Reference

Understanding System Limits chapter of the Neutrino User’s Guide

3138 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sysctl()
Get or set the system information

Synopsis:
#include <sys/param.h>
#include <sys/sysctl.h>

int sysctl(int * name,
u int namelen,
void * oldp,
size t * oldlenp,
void * newp,
size t newlen);

Arguments:
name An array of integers that specifies the Management

Information Base (MIB) stylename of the item that you
want to set or get; see below.

namelen The length of the name.

oldp NULL, or a pointer to a buffer where the function can
store the old value.

oldlenp NULL, or a pointer to a location that initially specifies
the size of the oldp buffer. The function changes the
value in this location to be the size of the old information
stored in the oldp buffer

newp NULL, or a pointer to a buffer that holds the new value.

newlen The size of the new value.

Library:
libsocket

May 31, 2004 Manifests 3139

sysctl() 2004, QNX Software Systems Ltd.

Description:
The sysctl() function retrieves system information and allows
processes with appropriate privileges to set system information. The
data available from sysctl() consists of integers and tables. You can
also get or set data using the sysctl utility at the command line.

The state is described using a Management Information Base (MIB)
stylename, specified in name, which is a namelen length array of
integers.

The information is copied into the buffer specified by oldp. The size
of the buffer is given by the location specified by oldlenp before the
call, and that location gives the amount of data copied after a
successful call. If the amount of data available is greater than the size
of the buffer supplied, the call delivers as much data as fits in the
buffer provided and returns with the error code ENOMEM. If you
don’t need the old value, you can set oldp and oldlenp to NULL.

You can determine the size of the available data by calling sysctl()
with a NULL parameter for oldp. The function stores the size of the
available data in the location pointed to by oldlenp. For some
operations, the amount of space may change often. For these
operations, the system attempts to round up, so that the returned size
is large enough for a call to return the data shortly thereafter.

To specify a new value, set newp to point to a buffer of length newlen
from which the requested value is to be taken. If you’re not setting a
new value, set newp to NULL and newlen to 0.

The top-level names are defined with a CTL prefix in
<sys/sysctl.h>. QNX 4 supports CTL NET only. The next and
subsequent levels down are found in the following header files:

This header file Contains definitions for

<sys/sysctl.h> Top-level identifiers

<sys/socket.h> Second-level network identifiers

continued. . .

3140 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sysctl()

This header file Contains definitions for

<netinet/in.h> Third-level Internet identifiers and
fourth-level IP identifiers

<netinet/icmp var.h> Fourth-level ICMP identifiers

<netinet/tcp var.h> Fourth-level TCP identifiers

<netinet/udp var.h> Fourth-level UDP identifiers

The following code fragment checks whether the UDP packets
checksum is enabled:

int mib[5], val;
size t len;

mib[0] = CTL NET;
mib[1] = AF INET;
mib[2] = IPPROTO UDP;
mib[3] = UDPCTL CHECKSUM;
len = sizeof(val);
sysctl(mib, 4, &val, &len, NULL, 0);

CTL NET

The table and integer information available for the CTL NET level is
detailed below. The changeable column shows whether a process with
appropriate privilege may change the value.

Second-level name Type Changeable

PF INET internet values yes

PF INET

PF INET gets or sets global information about internet protocols.

The third-level name is the protocol. The fourth-level name is the
variable name. Here are the currently defined protocols and names:

May 31, 2004 Manifests 3141

sysctl() 2004, QNX Software Systems Ltd.

Protocol name Variable name Type Changeable

ip forwarding integer yes

redirect integer yes

ttl integer yes

forwsrcrt integer yes

directed-broadcast integer yes

allowsrcrt integer yes

subnetsarelocal integer yes

mtudisc integer yes

maxfragpackets integer yes

sourcecheck integer yes

sourcecheck logint integer yes

icmp maskrepl integer yes

tcp rfc1323 integer yes

sendspace integer yes

recvspace integer yes

mssdflt integer yes

syn cache limit integer yes

syn bucket limit integer yes

syn cache interval integer yes

udp checksum integer yes

sendspace integer yes

recvspace integer yes

The variables are as follows:

3142 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sysctl()

ip.forwarding Returns 1 when IP forwarding is enabled for the
host, meaning that the host is acting as a router.

ip.redirect Returns 1 when ICMP redirects may be sent by the
host. This option is ignored unless the host is
routing IP packets. Normally, this option should
be enabled on all systems.

ip.ttl The maximum time-to-live (hop count) value for
an IP packet sourced by the system. This value
applies to normal transport protocols, not to ICMP.

ip.forwsrcrt Returns 1 when forwarding of source-routed
packets is enabled for the host. This value may be
changed only if the kernel security level is less
than 1.

ip.directed-broadcast

Returns 1 if directed-broadcast behavior is enabled
for the host.

ip.allowsrcrt Returns 1 if the host accepts source-routed
packets.

ip.subnetsarelocal

Returns 1 if subnets are to be considered local
addresses.

ip.mtudisc Returns 1 if path MTU discovery is enabled.

ip.maxfragpackets

Returns the maximum number of fragmented IP
packets in the IP reassembly queue.

ip.sourcecheck Returns 1 if source check for received packets is
enabled.

ip.sourcecheck logint

Returns the time interval when IP source address
verification messages are logged. A value of zero
disables the logging.

May 31, 2004 Manifests 3143

sysctl() 2004, QNX Software Systems Ltd.

icmp.maskrepl Returns 1 if ICMP network mask requests are to
be answered.

tcp.rfc1323 Returns 1 if RFC1323 extensions to TCP are
enabled.

tcp.sendspace Returns the default TCP send buffer size.

tcp.recvspace Returns the default TCP receive buffer size.

tcp.mssdflt Returns the default TCP maximum segment size.

tcp.syn cache limit

Returns the maximum number of entries allowed
in the TCP compressed state engine.

tcp.syn bucket limit

Returns the maximum number of entries allowed
per hash bucket in the TCP compressed state
engine.

tcp.syn cache interval

Returns the TCP compressed state engine’s timer
interval.

udp.checksum Returns 1 when UDP checksums are being
computed and checked.

Disabling UDP checksums is strongly discouraged.
�

udp.sendspace Returns the default UDP send buffer size.

udp.recvspace Returns the default UDP receive buffer size.

Returns:
0 Success.

-1 An error occurred (errno is set).

3144 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sysctl()

Errors:
EFAULT The buffers: name, oldp, newp, or the length pointer

oldlenp contains an invalid address.

EINVAL The name array is less than two or greater than
CTL MAXNAME; or a non-NULL newp is given and its
specified length in newlen is too large or too small.

ENOMEM The length pointed to by oldlenp is too short to hold
the requested value.

ENOTDIR The name array specifies an intermediate rather than
terminal name.

EOPNOTSUPP

The name array specifies an unknown value.

EPERM An attempt was made to set a read-only value; a
process, without appropriate privilege, attempts to set
or change a value protected by the current system
security level.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 3145

sysctl() 2004, QNX Software Systems Ltd.

See also:
ROUTE protocol

sysctl in the Utilities Reference

3146 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. syslog()
Write a message to the system log

Synopsis:
#include <syslog.h>

void syslog(int priority,
const char * message,
...)

Arguments:
priority The priority of the message; see “Message levels,”

below.

message The message that you want to write. This message is
identical to a printf()-format string, except that %m is
replaced by the current error message (as denoted by the
global variable errno). A trailing newline is added if
none is present.

The formatting characters that you use in the message determine any
additional arguments.

Library:
libc

Description:
The syslog() function writes message to the system message logger.
The message is then written to the system console, log files, and
logged-in users, or forwarded to other machines as appropriate. (See
the syslogd command.)

The vsyslog() function is an alternate form in which the arguments
have already been captured using the variable-length argument
facilities of <stdarg.h>.

May 31, 2004 Manifests 3147

syslog() 2004, QNX Software Systems Ltd.

Message levels

The message is tagged with priority. Priorities are encoded as a
facility and a level. The facility describes the part of the system
generating the message. The level is selected from the following list
(ordered from high to low):

LOG EMERG A panic condition. This is normally broadcast to
all users.

LOG ALERT A condition that should be corrected immediately,
such as a corrupted system database.

LOG CRIT Critical conditions (for example, hard device
errors).

LOG ERR General errors.

LOG WARNING Warning messages.

LOG NOTICE Conditions that aren’t error conditions, but should
possibly be specially handled.

LOG INFO Informational messages.

LOG DEBUG Messages that contain information normally of use
only when debugging a program.

Examples:
syslog(LOG ALERT, "who: internal error 23");

openlog("ftpd", LOG PID, LOG DAEMON);
setlogmask(LOG UPTO(LOG ERR));
syslog(LOG INFO, "Connection from host %d", CallingHost);

syslog(LOG INFO|LOG LOCAL2, "foobar error: %m");

3148 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. syslog()

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
closelog(), openlog(), setlogmask(), vsyslog()

logger, syslogd in the Utilities Reference

May 31, 2004 Manifests 3149

sysmgr reboot() 2004, QNX Software Systems Ltd.

Reboot the system

Synopsis:
#include <sys/sysmgr.h>

int sysmgr reboot(void);

Library:
libc

Description:
The sysmgr reboot() function reboots the calling computer. You need
to be root for this function to succeed.

Returns:
The sysmgr reboot() function doesn’t return if successful. If an error
occurs, it returns:

EPERM You need to be root to call this function.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

3150 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. sysmgr reboot()

See also:
procnto in the Utilities Reference

May 31, 2004 Manifests 3151

SYSPAGE CPU ENTRY() 2004, QNX Software Systems Ltd.

Return a CPU-specific entry from the system page

Synopsis:
#include <sys/syspage.h>

#define SYSPAGE CPU ENTRY(cpu, entry)...

Arguments:
cpu The CPU to get the entry for.

entry The entry to get; see below.

Library:
libc

Description:
The SYSPAGE CPU ENTRY() macro returns a pointer to the specified
entry from the part of the system page that’s specific to the given cpu.

The best way to reference the system page is via the kernel calls and
POSIX cover functions. If there isn’t a function to access the
information you need, use SYSPAGE CPU ENTRY() instead of
referencing the syspage ptr variable directly. For information in the
rest of the syspage entry structure, use SYSPAGE ENTRY().

The only entry you might currently need to use is:

ppc, kerinfo

This structure, defined in <ppc/syspage.h>, contains at least
the following members:

� unsigned long pretend cpu — we can pretend the chip is
this Processor Version Register.

� unsigned long init msr — the initial Machine Status
Register for thread creation.

3152 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SYSPAGE CPU ENTRY()

Returns:
A pointer to the structure for the given entry.

Examples:
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/syspage.h>

int main(void)
{
printf ("We’re pretending to be a type %ld PPC\n",

SYSPAGE CPU ENTRY(ppc,kerinfo)->pretend cpu);

return EXIT SUCCESS;
}

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
SYSPAGE CPU ENTRY() is a macro.

See also:
ClockCycles(), SYSPAGE ENTRY(), syspage ptr

Customizing Image Startup Programs chapter of the Building
Embedded Systems guide

May 31, 2004 Manifests 3153

SYSPAGE ENTRY() 2004, QNX Software Systems Ltd.

Return an entry from the system page

Synopsis:
#include <sys/syspage.h>

#define SYSPAGE ENTRY(entry)...

Arguments:
entry The entry to get; see below.

Library:
libc

Description:
The SYSPAGE ENTRY() macro returns a pointer to the specified entry
in the system page.

The best way to reference the system page is via the kernel calls and
POSIX cover functions. If there isn’t a function to access the
information you need, use SYSPAGE ENTRY() instead of referencing
the syspage ptr variable directly. For information in the CPU-specific
part of the syspage entry structure, use SYSPAGE CPU ENTRY().

Currently, the only entry you’re likely to access with
SYSPAGE ENTRY() is:

qtime QNX-specific time information. The qtime entry

structure contains at least the following members:

� unsigned long boot time — the time, in seconds,
since the Unix Epoch (00:00:00 January 1, 1970
Coordinated Universal Time (UTC)) when this system
was booted.

� uint64 t cycles per sec — the number of CPU
clock cycles per second for this system. For more
information, see ClockCycles().

3154 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. SYSPAGE ENTRY()

Returns:
A pointer to the structure for the given entry.

Examples:
#include <sys/neutrino.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/syspage.h>

int main(void)
{

uint64 t cps, cycle1, cycle2, ncycles;
float sec;

/* snap the time */
cycle1=ClockCycles();

/* do something */
printf("poo\n");

/* snap the time again */
cycle2=ClockCycles();
ncycles=cycle2-cycle1;
printf("%lld cycles elapsed \n", ncycles);

/* find out how many cycles per second */
cps = SYSPAGE ENTRY(qtime)->cycles per sec;
printf("This system has %lld cycles/sec.\n",cps);
sec=(float)ncycles/cps;
printf("The cycles in seconds is %f \n",sec);

return EXIT SUCCESS;
}

Classification:
QNX Neutrino

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 3155

SYSPAGE ENTRY() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
SYSPAGE ENTRY() is a macro.

See also:
ClockCycles(), SYSPAGE CPU ENTRY(), syspage ptr

Customizing Image Startup Programs chapter of the Building
Embedded Systems guide

3156 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. syspage ptr
A pointer to the system page

Synopsis:
#include <sys/syspage.h>

struct syspage entry * syspage ptr

Description:
This global variable holds a pointer to the system page, which
contains information about the system, including the processor type,
bus type, and the location and size of available system RAM. For
information about this structure, see the Customizing Image Startup
Programs chapter of Building Embedded Systems.

The best way to reference the system information page is via the
kernel calls and POSIX cover functions. If there isn’t a function to
access the information you need, you should use the
SYSPAGE ENTRY() and SYSPAGE CPU ENTRY() macros instead of
referencing the syspage ptr variable directly.

Classification:
QNX Neutrino

See also:
SYSPAGE CPU ENTRY(), SYSPAGE ENTRY()

May 31, 2004 Manifests 3157

system() 2004, QNX Software Systems Ltd.

Execute a system command

Synopsis:
#include <stdlib.h>

int system(const char *command);

Arguments:
command NULL, or the system command that you want to

execute; see below.

Library:
libc

Description:
The behavior of the system() function depends on the value of its
command argument:

� If command is NULL, system() determines whether or not a shell is
present.

� If command isn’t NULL, system() invokes a copy of the shell, and
passes the string command to it for processing. This function uses
spawnlp() to load a copy of the shell.

The shell used is always /bin/sh, regardless of the setting of the
SHELL environment variable, because applications may rely on
features of the standard shell, and may fail as a result of running a
different shell.

This means that any command that can be entered to the OS can be
executed, including programs, QNX Neutrino commands, and shell
scripts. The exec*() and spawn*() functions can only cause programs
to be executed.

�

3158 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. system()

Returns:
� If command is NULL, system() returns zero if the shell isn’t

present, or a nonzero value if the shell is present.

� If command isn’t NULL, system() returns the result of invoking a
copy of the shell. If the shell couldn’t be loaded, system() returns
-1; otherwise, it returns the status of the specified command. Use
the WEXITSTATUS() macro to determine the low-order 8 bits of
the termination status of the process.

For example, assume that status is the value returned by system().
If WEXITSTATUS(status) returns 255, either the specified
command returned a termination status of 255, or the shell didn’t
exit (i.e. it died from a signal or couldn’t be started at all) and the
return value was 255 due to implementation details. For example,
under QNX Neutrino and most Unix systems, the value is 255 if
status is -1, which indicates that the shell couldn’t be executed.
WEXITSTATUS() is defined in <sys/wait.h>.

For information about macros that extract information from the value
returned by system(), see “Status macros” in the description of wait().

When an error has occurred, errno contains a value that indicates the
type of error that has been detected.

Examples:
#include <stdlib.h>
#include <stdio.h>
#include <sys/wait.h>

int main(void)
{

int rc;

rc = system("ls");
if(rc == -1) {
printf("shell could not be run\n");

} else {
printf("result of running command is %d\n",

WEXITSTATUS(rc));
}
return EXIT SUCCESS;

}

May 31, 2004 Manifests 3159

system() 2004, QNX Software Systems Ltd.

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
abort(), atexit(), close(), errno, execl(), execle(), execlp(), execlpe(),
execv(), execve(), execvp(), execvpe(), exit(), exit(), getenv(), main(),
putenv(), sigaction(), signal(), spawn(), spawnl(), spawnle(),
spawnlp(), spawnlpe(), spawnp(), spawnv(), spawnve(), spawnvp(),
spawnvpe(), wait(), waitpid()

3160 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tan(), tanf()
Calculate the tangent of an angle

Synopsis:
#include <math.h>

double tan(double x);

float tanf(float x);

Arguments:
x The angle, in radians, for which you want to compute the

tangent.

Library:
libm

Description:
These functions compute the tangent (specified in radians) of x. A
large magnitude argument may yield a result with little or no
significance.

Returns:
The tangent value. If x is NAN or infinity, NAN is returned.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main(void)
{

printf("%f\n", tan(.5));

May 31, 2004 Manifests 3161

tan(), tanf() 2004, QNX Software Systems Ltd.

return EXIT SUCCESS;
}

produces the output:

0.546302

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
atan(), atan2(), cos(), sin()

3162 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tanh(), tanhf()
Calculate the hyperbolic tangent

Synopsis:
#include <math.h>

double tanh(double x);

float tanhf(float x);

Arguments:
x The angle, in radians, for which you want to compute the

hyperbolic tangent.

Library:
libm

Description:
These functions compute the hyperbolic tangent (specified in radians)
of x.

When the x argument is large, partial or total loss of significance may
occur.

Returns:
The hyperbolic tangent value.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main(void)

May 31, 2004 Manifests 3163

tanh(), tanhf() 2004, QNX Software Systems Ltd.

{
printf("%f\n", tanh(.5));
return EXIT SUCCESS;

}

produces the output:

0.462117

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
cosh(), errno, sinh()

3164 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tcdrain()
Wait until all output has been transmitted to a device

Synopsis:
#include <termios.h>

int tcdrain(int fildes);

Arguments:
fildes A file descriptor that’s associated with the device that you

want to wait for.

Library:
libc

Description:
The tcdrain() function waits until all output has been physically
transmitted to the device associated with fildes, or until a signal is
received.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF The argument fildes is invalid.

EINTR A signal interrupted the operation.

ENOSYS The resource manager associated with fildes doesn’t
support this call.

ENOTTY The argument fildes doesn’t refer to a terminal device.

May 31, 2004 Manifests 3165

tcdrain() 2004, QNX Software Systems Ltd.

Examples:
#include <termios.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{

int fildes;

fildes = open("/dev/ser1", O RDWR);
write(fildes, "ATH", 3);

/* Wait for data to transmit before returning */
tcdrain(fildes);
close(fildes);
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
write()

3166 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tcdropline()
Disconnect a communications line

Synopsis:
#include <termios.h>

int tcdropline(int fd,
int duration);

Arguments:
fd A file descriptor that’s associated with the line that you

want to disconnect.

duration The number of milliseconds that you want to drop the
line for.

Library:
libc

Description:
The tcdropline() function initiates a disconnect condition on the
communication line associated with the opened file descriptor
indicated by fd.

The disconnect condition lasts at least duration milliseconds, or
approximately 300 milliseconds if duration is zero. The system
rounds the effective value of duration up to the next highest supported
interval, which is typically a multiple of 100 milliseconds.

Returns:
0 Success.

-1 An error occurred (errno is set).

May 31, 2004 Manifests 3167

tcdropline() 2004, QNX Software Systems Ltd.

Errors:
EBADF Invalid fd argument.

ENOSYS The resource manager associated with fd doesn’t
support this call.

ENOTTY The argument fd doesn’t refer to a terminal device.

Examples:
#include <termios.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{

int fd;

fd = open("/dev/ser1", O RDWR);

/* Disconnect for 500 milliseconds */
tcdropline(fd, 500);

close(fd);
return EXIT SUCCESS;

}

Classification:
QNX 4

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

3168 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tcdropline()

See also:
tcdrain(), tcflow(), tcflush()

May 31, 2004 Manifests 3169

tcflow() 2004, QNX Software Systems Ltd.

Perform a flow-control operation on a data stream

Synopsis:
#include <termios.h>

int tcflow(int fildes,
int action);

Arguments:
fildes A file descriptor that’s associated with the data stream that

you want to perform the operation on.

action The action you want to perform; see below.

Library:
libc

Description:
The tcflow() function performs a flow-control operation on the data
stream associated with fildes, depending on the values in action.

At least the following actions are defined in <termios.h>:

TCOOFF Use software flow control to suspend output on the
device associated with fildes.

TCOOFFHW Use hardware flow control to suspend output on the
device associated with fildes.

TCOON Use software flow control to resume output on the
device associated with fildes.

TCOONHW Use hardware flow control to resume output on the
device associated with fildes.

TCIOFF Cause input to be flow-controlled by sending a
STOP character immediately across the
communication line associated with fildes, (that is,
software flow control).

3170 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tcflow()

TCIOFFHW Cause input to be flow-controlled by using hardware
control.

TCION Resume input by sending a START character
immediately across the communication line
associated with fildes (that is, software flow
control).

TCIONHW Cause input to be resumed by using hardware flow
control.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Invalid fildes argument.

EINVAL Invalid action argument.

ENOSYS The resource manager associated with fildes doesn’t
support this call.

ENOTTY The argument fildes doesn’t refer to a terminal device.

Examples:
#include <termios.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{

int fd;

fd = open("/dev/ser1", O RDWR);

/* Resume output on flow-controlled device */
tcflow(fd, TCOON);

May 31, 2004 Manifests 3171

tcflow() 2004, QNX Software Systems Ltd.

close(fd);
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
tcdrain(), tcflush(), tcsendbreak()

3172 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tcflush()
Flush the input and/or output stream

Synopsis:
#include <termios.h>

int tcflush(int fildes,
int queue selector);

Arguments:
fildes A file descriptor that’s associated with the data stream that

you want to perform the operation on.

queue selector

The stream or streams that you want to flush. At least the
following values for queue selector are defined in
<termios.h>:

� TCIFLUSH — discard all data that’s received, but not yet
read, on the device associated with fildes.

� TCOFLUSH — discard all data that’s written, but not yet
transmitted, on the device associated with fildes.

� TCIOFLUSH — discard all data that’s written, but not yet
transmitted, as well as all data that’s received, but not yet
read, on the device associated with fildes.

Library:
libc

Description:
The tcflush() function flushes the input stream, the output stream, or
both, depending on the value of the argument queue selector.

Returns:
0 Success.

-1 An error occurred (errno is set).

May 31, 2004 Manifests 3173

tcflush() 2004, QNX Software Systems Ltd.

Errors:
EBADF Invalid fildes argument.

EINVAL Invalid queue selector argument.

ENOSYS The resource manager associated with fildes doesn’t
support this call.

ENOTTY The argument fildes doesn’t refer to a terminal device.

Examples:
#include <termios.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{

int fildes;

fildes = open("/dev/ser1", O RDWR);

/* Throw away all input data */
tcflush(fildes, TCIFLUSH);

close(fildes);
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

3174 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tcflush()

See also:
tcdrain(), tcflow(), tcsendbreak()

May 31, 2004 Manifests 3175

tcgetattr() 2004, QNX Software Systems Ltd.

Get the current terminal control settings

Synopsis:
#include <termios.h>

int tcgetattr(int fildes,
struct termios *termios p);

Arguments:
fildes The file descriptor associated with the terminal device.

termios p A pointer to a termios structure in which tcgetattr()
can store the terminal’s control attributes.

Library:
libc

Description:
The tcgetattr() function gets the current terminal control settings for
the opened device indicated by fildes, and stores the results in the
structure pointed to by termios p.

Returns:
0 Success.

-1 An error occurred; errno is set.

Errors:
EBADF The fildes argument is invalid.

ENOSYS The resource manager associated with fildes doesn’t
support this call.

ENOTTY The fildes argument doesn’t refer to a terminal device.

3176 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tcgetattr()

Examples:
See tcsetattr().

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, fpathconf(), tcsetattr(), termios

Chapter 7 of POSIX 1003.1

May 31, 2004 Manifests 3177

tcgetpgrp() 2004, QNX Software Systems Ltd.

Get the process group ID associated with a device

Synopsis:
#include <sys/types.h>
#include <unistd.h>

pid t tcgetpgrp(int fildes);

Arguments:
fildes A file descriptor that’s associated with the device whose

process group ID you want to get.

Library:
libc

Description:
The tcgetpgrp() function returns the process group ID of the
foreground process that’s associated with the device indicated by
fildes.

Returns:
The ID of foreground process group. If an error occurs, -1 is returned,
and errno is set.

Errors:
EBADF The argument fildes is invalid.

ENOSYS The resource manager associated with fildes doesn’t
support this call.

ENOTTY The argument fildes isn’t associated with a terminal
device.

3178 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tcgetpgrp()

Examples:
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

printf("STDIN directs breaks to pgrp %d\n",
tcgetpgrp(0));

return EXIT SUCCESS;
}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
signal(), tcsetpgrp()

May 31, 2004 Manifests 3179

tcgetsid() 2004, QNX Software Systems Ltd.

Get the process group ID of the session leader for a controlling terminal

Synopsis:
#include <unistd.h>

int tcgetsid(int filedes);

Arguments:
fildes A file descriptor that’s associated with the device whose ID

you want to get.

Library:
libc

Description:
The tcgetsid() function returns the process group ID of the session for
which the terminal specified by filedes is the controlling terminal.

Returns:
The process group ID associated with the terminal, or -1 if an error
occurs (errno is set).

Errors:
EACCES The filedes argument isn’t associated with a controlling

terminal.

EBADF The filedes argument isn’t a valid file descriptor.

ENOTTY The file associated with filedes isn’t a terminal.

Classification:
Standard Unix

3180 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tcgetsid()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
tcsetsid()

May 31, 2004 Manifests 3181

tcgetsize() 2004, QNX Software Systems Ltd.

Get the size of a character device

Synopsis:
#include <termios.h>

int tcgetsize(int filedes,
int* prows,
int* pcols);

Arguments:
fildes A file descriptor that’s associated with the device

whose size you want to get.

prows, pcols NULL, or pointers to locations where the function
can store the number of rows and columns.

Library:
libc

Description:
The tcgetsize() function gets the size of the character device
associated with filedes and stores the number of rows and columns in
prows and pcols if they’re not NULL.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EACCES The filedes argument isn’t associated with a controlling

terminal.

EBADF The filedes argument isn’t a valid file descriptor.

ENOTTY The file associated with filedes isn’t a terminal.

3182 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tcgetsize()

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
tcsetsize()

May 31, 2004 Manifests 3183

tcinject() 2004, QNX Software Systems Ltd.

Inject characters into a device’s input buffer

Synopsis:
#include <termios.h>

int tcinject(int fd,
char *buf,
int n);

Arguments:
fildes A file descriptor that’s associated with the device whose

input buffer you want to add characters to.

buf A pointer to a buffer that contains the characters that you
want to insert.

n The number of characters to insert. If n is positive, the
characters are written to the canonical (edited) queue. If n is
negative, the characters are written to the raw queue.

Library:
libc

Description:
The tcinject() function injects n characters pointed to by buf into the
input buffer of the device given in fd.

Note that while injecting into the canonical queue, editing characters
in buf are acted upon as though the user entered them directly from
the device. If buf doesn’t contain a newline (‘\n’), carriage return
(‘\r’) or a data-forwarding character such as an EOF, data doesn’t
become available for reading. If buf does contain a data-forwarding
character, it should contain only one as the last character in buf .

This function is useful for implementing command-line recall
algorithms by injecting recalled lines into the canonical queue.

3184 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tcinject()

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF The fd argument is invalid or the file isn’t opened for

read.

ENOSYS This function isn’t supported for the device opened.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <termios.h>

int main(void)
{
char *p = "echo Hello world!\n";

/* Inject the line all at once */
tcinject(0, p, strlen(p));

/* Inject the line one character at a time */
while(*p)

tcinject(0, p++, 1);
return EXIT SUCCESS;

}

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

continued. . .

May 31, 2004 Manifests 3185

tcinject() 2004, QNX Software Systems Ltd.

Safety

Thread Yes

3186 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tcischars()
Determine the number of characters waiting to be read

Synopsis:
#include <termios.h>

int tcischars(int filedes);

Arguments:
fildes A file descriptor that’s associated with the device that you

want to check.

Library:
libc

Description:
The tcischars() function checks to see how many characters are
waiting to be read from the given file descriptor, filedes.

Returns:
The number of characters waiting to be read, or -1 if an error
occurred.

Errors:
ENOTTY The fd argument isn’t the file descriptor for a character

device.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

continued. . .

May 31, 2004 Manifests 3187

tcischars() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

3188 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. TCP
Internet Transmission Control Protocol

Synopsis:
#include <sys/socket.h>
#include <netinet/in.h>

int socket(AF INET,
SOCK STREAM,
0);

Description:
The TCP protocol provides reliable, flow-controlled, two-way
transmission of data. It’s a byte-stream protocol used to support the
SOCK STREAM abstraction.

TCP uses the standard Internet address format and also provides a
per-host collection of “port addresses.” Thus, each address is
composed of an Internet address specifying the host and network,
with a specific TCP port on the host identifying the peer entity.

Sockets using the TCP protocol are either active or passive. Active
sockets initiate connections to passive sockets. By default, TCP
sockets are created active.

To create a passive socket, you must bind the socket with the bind()
system call, and then use the listen() system call. Only passive sockets
may use the accept() call to accept incoming connections; only active
sockets may use the connect() call to initiate connections.

Passive sockets may “underspecify” their location to match incoming
connection requests from multiple networks. With this technique,
termed wildcard addressing, a single server can provide service to
clients on multiple networks. If you wish to create a socket that
listens on all networks, the Internet address INADDR ANY must be
bound. You can still specify the TCP port at this time. If the port isn’t
specified, the system assigns one.

Once a connection has been established, the socket’s address is fixed
by the peer entity’s location. The address assigned to the socket is the
address associated with the network interface through which packets

May 31, 2004 Manifests 3189

TCP 2004, QNX Software Systems Ltd.

are being transmitted and received. Normally this address
corresponds to the peer entity’s network.

TCP supports several socket options (defined in <netinet/tcp.h>)
that you can set with setsockopt() and retrieve with getsockopt(). The
option level for these calls is the protocol number for TCP, available
from getprotobyname().

TCP NODELAY

Under most circumstances, TCP sends data when it’s presented.
When outstanding data hasn’t yet been acknowledged, TCP
gathers small amounts of output to be sent in a single packet
once an acknowledgment is received.

For a few clients (such as windowing systems that send a stream
of mouse events that receive no replies), this packetization may
cause significant delays. Therefore, TCP provides a boolean
option, TCP NODELAY, to defeat this algorithm.

TCP MAXSEG

The Maximum Segment Size (MSS) for a TCP connection. The
value returned is the maximum amount of data that TCP sends
to the other end. If this value is fetched before the socket is
connected, the value returned is the default value that’s used if
an MSS option isn’t received from the other end.

TCP KEEPALIVE

Specifies the idle time in seconds for the connection before TCP
starts sending “keepalive” probes. The default value is 2 hours.
This option is effective only when the SO KEEPALIVE socket
option is enabled.

You can use options at the IP transport level with TCP (see the IP
protocol. Incoming connection requests that are source-routed are
noted, and the reverse source route is used in responding.

3190 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. TCP

Returns:
A descriptor referencing the socket, or -1 if an error occurs (errno is
set).

Errors:
EADDRINUSE You tried to create a socket with a port that’s

already been allocated.

EADDRNOTAVAIL

You tried to create a socket with a network address
for which no network interface exists.

ECONNREFUSED

The remote peer actively refused connection
establishment (usually because no process was
listening to the port).

ECONNRESET The remote peer forced the connection to be closed.

EISCONN You tried to establish a connection on a socket that
already has one.

ENOBUFS The system ran out of memory for an internal data
structure.

ETIMEDOUT A connection was dropped due to excessive
retransmissions.

See also:
IP protocol

accept(), bind(), connect(), getprotobyname(), getsockopt(), listen(),
setsockopt(), socket()

RFC 793

May 31, 2004 Manifests 3191

tcsendbreak() 2004, QNX Software Systems Ltd.

Assert a break condition over a communications line

Synopsis:
#include <termios.h>

int tcsendbreak(int fildes,
int duration);

Arguments:
fd A file descriptor that’s associated with the line that you

want to assert the break on.

duration The number of milliseconds that you want to break for.

Library:
libc

Description:
The tcsendbreak() function asserts a break condition over the
communication line associated with the opened file descriptor
indicated by fildes.

The break condition lasts for at least duration milliseconds, or
approximately 300 milliseconds if duration is zero. The system
rounds the effective value of duration up to the next highest supported
interval, which is typically a multiple of 100 milliseconds.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF The argument fildes is invalid.

ENOSYS The resource manager associated with fildes doesn’t
support this call.

3192 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tcsendbreak()

ENOTTY The argument fildes doesn’t refer to a terminal device.

Examples:
#include <termios.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{

int fd;

fd = open("/dev/ser1", O RDWR);

/* Send a 500 millisecond break */
tcsendbreak(fd, 500);

close(fd);
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
tcdrain(), tcflow(), tcflush()

May 31, 2004 Manifests 3193

tcsetattr() 2004, QNX Software Systems Ltd.

Change the terminal control settings for a device

Synopsis:
#include <termios.h>

int tcsetattr(int fildes,
int optional actions,
const struct termios *termios p);

Arguments:
fildes The file descriptor associated with the terminal device.

termios p A pointer to a termios structure that describes the
attributes that you want to set for the terminal device.

Library:
libc

Description:
The tcsetattr() function sets the current terminal control settings for
the opened device indicated by fildes to the values stored in the
structure pointed to by termios p.

The operation of tcsetattr() depends on the values in optional actions:

TCSANOW The change is made immediately.

TCSADRAIN No change is made until all currently written data
has been transmitted.

TCSAFLUSH No change is made until all currently written data
has been transmitted, at which point any received
but unread data is also discarded.

The termios control structure is defined in <termios.h>. For more
information, see tcgetattr().

3194 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tcsetattr()

Returns:
0 Success.

-1 An error occurred; errno is set.

Errors:
EBADF The argument fildes is invalid;

EINVAL The argument action is invalid, or one of the members
of termios p is invalid.

ENOSYS The resource manager associated with fildes doesn’t
support this call.

ENOTTY The argument fildes doesn’t refer to a terminal device.

Examples:
#include <stdlib.h>
#include <termios.h>

int main(void)
{

raw(0);
/*
* Stdin is now "raw"
*/

unraw (0);
return EXIT SUCCESS;

}

int raw(fd)
int fd;
{

struct termios termios p;

if(tcgetattr(fd, &termios p))
return(-1);

termios p.c cc[VMIN] = 1;
termios p.c cc[VTIME] = 0;
termios p.c lflag &= ˜(ECHO|ICANON|ISIG|

ECHOE|ECHOK|ECHONL);
termios p.c oflag &= ˜(OPOST);
return(tcsetattr(fd, TCSADRAIN, &termios p));

May 31, 2004 Manifests 3195

tcsetattr() 2004, QNX Software Systems Ltd.

}

int unraw(fd)
int fd;
{

struct termios termios p;

if(tcgetattr(fd, &termios p))
return(-1);

termios p.c lflag |= (ECHO|ICANON|ISIG|
ECHOE|ECHOK|ECHONL);

termios p.c oflag |= (OPOST);
return(tcsetattr(fd, TCSADRAIN, &termios p));

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, select(), tcgetattr(), termios

3196 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tcsetpgrp()
Set the process group ID for a device

Synopsis:
#include <sys/types.h>
#include <unistd.h>

int tcsetpgrp(int fildes,
pid t pgrp id);

Arguments:
fildes A file descriptor that’s associated with the device whose

process group ID you want to set.

pgrp id The process group ID that you want to assign to the
device.

Library:
libc

Description:
The tcsetpgrp() function sets the process group ID associated with the
device indicated by fildes to be pgrp id.

If successful, the tcsetpgrp() function causes subsequent breaks on the
indicated terminal device to generate a SIGINT on all process in the
given process group.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF The argument fildes is invalid.

EINVAL The argument pgrp id is invalid.

May 31, 2004 Manifests 3197

tcsetpgrp() 2004, QNX Software Systems Ltd.

ENOSYS The resource manager associated with fildes doesn’t
support this call.

ENOTTY The argument fildes isn’t associated with a terminal
device.

EPERM The argument pgrp id isn’t part of the same session as
the calling process.

Examples:
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{

/*
* Direct breaks on stdin to me
*/

tcsetpgrp(0, getpid());
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

3198 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tcsetpgrp()

See also:
signal(), tcgetpgrp()

May 31, 2004 Manifests 3199

tcsetsid() 2004, QNX Software Systems Ltd.

Make a terminal device a controlling device

Synopsis:
#include <termios.h>

int tcsetsid(int fd,
pid t pid);

Arguments:
fd A file descriptor that’s associated with the device that you

want to make a controlling device.

pid The ID of the process that you want to associate with the
controlling device.

Library:
libc

Description:
The tcsetsid() function makes the terminal device associated with the
file descriptor argument fd into a controlling terminal that’s associated
with the process pid. If successful, this call causes subsequent hangup
conditions on the terminal device fd to generate a SIGHUP signal on
the given process.

This call is equivalent to calling ioctl(fd, TIOCSCTTY) to set
the controlling terminal to the current process. You can clear the
controlling terminal by passing -1 as fd.

Returns:
0 Success.

-1 Failure; errno is set.

3200 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tcsetsid()

Errors:
EBADF Invalid file descriptor.

EINVAL The argument pid is invalid.

ENOSYS, ENOTTY

The argument fd isn’t associated with a terminal device.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ioctl(), tcgetsid()

May 31, 2004 Manifests 3201

tcsetsize() 2004, QNX Software Systems Ltd.

Set the size of a character device

Synopsis:
#include <termios.h>

int tcsetsize(int filedes,
int rows,
int cols);

Arguments:
fildes A file descriptor that’s associated with the device

whose size you want to set.

rows, cols The number of rows and columns that you want to use.

Library:
libc

Description:
The tcsetsize() function sets the size of the character device associated
with filedes to the given number of rows and columns.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EACCES The filedes argument isn’t associated with a controlling

terminal.

EBADF The filedes argument isn’t a valid file descriptor.

EINVAL The rows or cols argument is invalid.

ENOTTY The file associated with filedes isn’t a terminal.

3202 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tcsetsize()

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
tcgetsize()

May 31, 2004 Manifests 3203

tell(), tell64() 2004, QNX Software Systems Ltd.

Determine the current file position

Synopsis:
#include <unistd.h>

off t tell(int filedes);

off64 t tell(int filedes);

Arguments:
filedes The file descriptor of the file whose position you want to

get.

Library:
libc

Description:
The tell() function determines the current file position for any
subsequent read() or write() operation (that is, any subsequent
unbuffered file operation). The filedes value is the file descriptor
returned by a successful call to open().

You can use the returned value in conjunction with lseek() to reset the
current file position.

Returns:
The current file position, expressed as the number of bytes from the
start of the file, or -1 if an error occurs (errno is set). A value of 0
indicates the start of the file.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>

char buffer[]

3204 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tell(), tell64()

= { "A text record to be written" };

int main(void)
{

int filedes ;
int size written;

/* open a file for output */
/* replace existing file if it exists */
filedes = open("file",

O WRONLY | O CREAT | O TRUNC,
S IRUSR | S IWUSR | S IRGRP | S IWGRP);

if(filedes != -1) {

/* print file position */
printf("%ld\n", tell(filedes));

/* write the text */
size written = write(filedes , buffer,

sizeof(buffer));

/* print file position */
printf("%ld\n", tell(filedes));

/* close the file */
close(filedes);

}
return EXIT SUCCESS;

}

produces the output:

0
28

Classification:
tell() is QNX 4; tell64() is for large-file support

Safety

Cancellation point Yes

continued. . .

May 31, 2004 Manifests 3205

tell(), tell64() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
chsize(), close(), creat(), dup(), dup2(), eof(), errno, execl(), execle(),
execlp(), execlpe(), execv(), execve(), execvp(), execvpe(), fcntl(),
fileno(), fstat(), isatty(), lseek(), open(), read(), sopen(), stat(),
umask(), write()

3206 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. telldir()
Get the location associated with the directory stream

Synopsis:
#include <dirent.h>

long int telldir(DIR * dirp);

Arguments:
dirp The directory stream for which you want to get the current

location.

Library:
libc

Description:
The telldir() function obtains the current location associated with the
directory stream specified by dirp.

Returns:
The current position of the specified directory stream, or -1 if an error
occurs (errno is set).

Errors:
EBADF The dirp argument doesn’t refer to an open directory

stream.

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

continued. . .

May 31, 2004 Manifests 3207

telldir() 2004, QNX Software Systems Ltd.

Safety

Signal handler No

Thread No

See also:
closedir(), errno, lstat(), opendir(), readdir(), readdir r(), rewinddir(),
seekdir(), stat()

3208 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tempnam()
Create a name for a temporary file

Synopsis:
#include <stdio.h>

char* tempnam(const char* dir,
const char* pfx);

Arguments:
dir NULL, or the directory to use in the pathname.

pfx NULL, or a prefix to use in the pathname.

If pfx isn’t NULL, the string it points to must be no more than 5 bytes
long.

�

Library:
libc

Description:
The tempnam() function generates a pathname for use as a temporary
file. The pathname is in the directory specified by dir and has the
prefix specified in pfx.

If dir is NULL, the pathname is prefixed with the first accessible
directory contained in:

� the temporary file directory P tmpdir (defined in <stdio.h>)

� the TMPDIR environment variable

� the PATH TMP constant (defined in <paths.h>).

If all of these paths are inaccessible, tempnam() attempts to use /tmp
and then the current working directory.

The tempnam() function generates up to TMP MAX unique file names
before it starts to recycle them.

May 31, 2004 Manifests 3209

tempnam() 2004, QNX Software Systems Ltd.

Returns:
A pointer to the generated file name, which you should deallocate
with the free() function when the application no longer needs it, or
NULL if an error occurs.

Errors:
ENOMEM There’s insufficient memory available to create the

pathname.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

Caveats:
The tempnam() functions creates only pathnames; the application
must create and remove the files.

It’s possible for another thread or process to create a file with the same
name between the time the pathname is created and the file is opened.

See also:
free(), tmpfile(), tmpnam(), unlink()

3210 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. termios
Terminal control structure

Synopsis:
struct termios {

tcflag t c iflag;
tcflag t c oflag;
tcflag t c cflag;
tcflag t c lflag;
cc t c cc[NCCS];
uint32 t reserved[3];
speed t c ispeed;
speed t c ospeed;

};

Description:
The termios control structure is defined in <termios.h>, and
contains at least the members described below.

tcflag t c iflag

Input modes. This member contains at least the following bits:

BRKINT Signal interrupt on break.

ICRNL Map CR to NL on input.

IGNBRK Ignore break conditions.

IGNCR Ignore CR.

IGNPAR Ignore characters with parity errors.

INLCR Map NL to CR on input.

INPCK Enable input parity check.

ISTRIP Strip top bit from character.

IXOFF Enable software input flow control (via
START/STOP chars).

IXON Enable software output flow control (via
START/STOP chars).

PARMRK Mark parity errors in the input data stream.

May 31, 2004 Manifests 3211

termios 2004, QNX Software Systems Ltd.

tcflag t c oflag

Output modes. This member contains at least the following bits:

OPOST Perform output processing.

tcflag t c cflag

Control modes. This member contains at least the following
bits:

CLOCAL Ignore modem status lines.

CREAD Enable receiver.

CSIZE Number of data bits per character.

CS5 5 data bits.

CS6 6 data bits.

CS7 7 data bits.

CS8 8 data bits.

CSTOPB Two stop bits, else one.

HUPCL Hang up on last close.

IHFLOW Support input flow control using the hardware
handshaking lines.

OHFLOW Support output flow control using the hardware
handshaking lines.

PARENB Parity enable.

PARODD Odd parity, else even.

PARSTK Stick parity (mark parity if PARODD is set, else
space parity).

tcflag t c lflag

Local modes. This member contains at least the following bits:

ECHO Enable echo.

ECHOE Echo ERASE as destructive backspace.

ECHOK Echo KILL as a line erase.

3212 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. termios

ECHONL Echo ’nn’, even if ECHO is off.

ICANON Canonical input mode (line editing enabled).

IEXTEN QNX extensions to POSIX are enabled.

ISIG Enable signals.

NOFLSH Disable flush after interrupt, quit, or suspend.

TOSTOP Send SIGTTOU for background output.

cc t c cc[NCCS]

Control characters. The array c cc includes at least the
following control characters:

c cc[VEOF] EOF character.

c cc[VEOL] EOL character.

c cc[VERASE] ERASE character.

c cc[VINTR] INTR character.

c cc[VKILL] KILL character.

c cc[VMIN] MIN value.

c cc[VQUIT] QUIT character.

c cc[VSUSP] SUSP character.

c cc[VTIME] TIME value.

c cc[VSTART] START character.

c cc[VSTOP] STOP character.

The following control characters are also defined, but are only
acted on if they’re immediately preceded by the nonzero
characters in c cc[VPREFIX][4], and are immediately followed
by the nonzero characters in c cc[VSUFFIX][4] and the IEXTEN
bit of c lflag is set:

c cc[VLEFT] Left cursor motion.

c cc[VRIGHT] Right cursor motion.

c cc[VUP] Up cursor motion.

May 31, 2004 Manifests 3213

termios 2004, QNX Software Systems Ltd.

c cc[VDOWN] Down cursor motion.

c cc[VINS] Insert character.

c cc[VDEL] Delete character.

c cc[VRUB] Rubout character.

c cc[VCAN] Cancel character.

c cc[VHOME] Home character.

c cc[VEND] End character.

Any of the control characters in the c cc array can be disabled
by setting that character to the PC VDISABLE parameter which
is returned by fpathconf() (typically a zero).

speed t c ispeed

Input baud rate. This member should be queried and set with
the cfgetispeed() and cfsetispeed() functions.

speed t c ospeed

Output baud rate. This member should be queried and set with
the cfgetospeed() and cfsetospeed() functions.

Classification:
POSIX 1003.1

See also:
cfgetispeed(), cfgetospeed(), cfsetispeed(), cfsetospeed(),
cfmakeraw(), fpathconf(), forkpty(), openpty(), pathconf(),
readcond(), tcgetattr(), tcsetattr()

3214 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. thread pool control()
Control the thread pool behavior

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

thread pool control(thread pool t * pool,
thread pool attr t * attr,
uint16 t lower,
uint16 t upper,
unsigned flags)

Arguments:
pool A thread pool handle that was returned by

thread pool create().

attr A pointer to a thread pool attr t structure
that specifies the attributes that you want to use for
the thread pool. For more information, see
“Thread-pool attributes,” in the documentation for
thread pool create().

lower, upper This function blocks until the number of threads
created is between the range of upper and lower,
unless you set
THREAD POOL CONTROL NONBLOCK in flags.

flags Which attributes you want to change for the thread
pool; any combination of the following bits:

� THREAD POOL CONTROL HIWATER — adjust
the high-water value of the number of threads
allowed in the thread pool.

� THREAD POOL CONTROL INCREMENT —
adjust the increment value of the number of
threads.

� THREAD POOL CONTROL LOWATER — adjust
the low-water value of the number of threads
allowed in the thread pool.

May 31, 2004 Manifests 3215

thread pool control() 2004, QNX Software Systems Ltd.

� THREAD POOL CONTROL MAXIMUM —
adjust the maximum value of the number of
threads allowed in the thread pool.

� THREAD POOL CONTROL NONBLOCK —
don’t block while creating threads.

Library:
libc

Description:
Use thread pool control() to specify a thread pool’s behavior and
adjust its attributes.

Having several threads call this function with the same thread pool
handle isn’t recommended.

�

Returns:
-1 if an error occurs (errno is set).

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

3216 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. thread pool control()

See also:
thread pool destroy(), thread pool create(), thread pool limits(),
thread pool start()

May 31, 2004 Manifests 3217

thread pool create() 2004, QNX Software Systems Ltd.

Create a thread pool handle

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

thread pool t * thread pool create (
thread pool attr t * pool attr,
unsigned flags);

Arguments:
pool attr A pointer to a thread pool attr t structure that

specifies the attributes that you want to use for the
thread pool. For more information, see “Thread-pool
attributes,” below.

flags Flags (defined in <sys/dispatch.h>) that affect what
happens to the thread that’s creating the pool:

� POOL FLAG EXIT SELF — when the pool is started
using thread pool start(), exit the thread that called
this function.

� POOL FLAG USE SELF — when the pool is started,
use the calling thread as part of the pool.

Library:
libc

Description:
The thread pool create() function creates a thread pool handle. This
handle is then used to start a thread pool with thread pool start().
With the thread pool functions, you can create and manage a pool of
worker threads.

3218 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. thread pool create()

How it works

The worker threads work in the following way:

� When a new worker thread is created, a context is allocated, which
the thread uses to do its work.

� The thread then calls the blocking function. This function blocks
until the thread has work to do. For example, the blocking function
could call MsgReceive() to wait for a message.

� After the blocking function returns, the worker thread calls the
handler function, which performs the actual work.

� When the handler function returns, the thread calls the blocking
function again.

The thread continues to block and handle events until the thread pool
decides this worker thread is no longer needed. Finally, when the
worker thread exits, it releases the allocated context.

The thread pool manages these worker threads so that there’s a certain
number of them in the blocked state. Thus, as threads become busy in
the handler function, the thread pool creates new threads to keep a
minimum number of threads in a state where they can accept requests
from clients. By the same token, if the demand on the thread pool
goes down, the thread pool lets some of these blocked threads exit.

Thread-pool attributes

The pool attr argument sets the:

� functions that get called, when a new thread is started or one dies,
to allocate and free contexts used by threads

� blocking and handler functions

� parameters of the thread pool such as the number of worker
threads, etc.

The thread pool attr t structure that the pool attr argument points to
is defined as:

May 31, 2004 Manifests 3219

thread pool create() 2004, QNX Software Systems Ltd.

typedef struct thread pool attr {
THREAD POOL HANDLE T *handle;
THREAD POOL PARAM T *(*block func)

(THREAD POOL PARAM T *ctp);
THREAD POOL PARAM T *(*context alloc)

(THREAD POOL HANDLE T *handle);
void (*unblock func)

(THREAD POOL PARAM T *ctp);
int (*handler func)

(THREAD POOL PARAM T *ctp);
void (*context free)

(THREAD POOL PARAM T *ctp);
pthread attr t *attr;
unsigned short lo water;
unsigned short increment;
unsigned short hi water;
unsigned short maximum;
unsigned reserved[8];

} thread pool attr t;

The members include:

handle A handle that gets passed to the context alloc
function.

block func The function that’s called when the worker thread is
ready to block, waiting for work. It returns a pointer
that’s passed to handler func. If the function returns
NULL, it indicates to the thread pool that this thread
should exist.

context alloc The function that’s called when a new thread is
created by the thread pool. It is passed handle. The
function returns a pointer, which is then passed to
the blocking function block func.

unblock func The function that’s called to unblock threads. If you
use dispatch block() as the block func, use
dispatch unblock() as the unblock func.

handler func The function that’s called after block func returns to
do some work. The function is passed in the pointer
returned by block func.

3220 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. thread pool create()

context free The function that’s called when the worker thread
exits, to free the context allocated with
context alloc.

attr A pointer to a pthread attr *() function that’s
passed to pthread create(). The pthread attr *()
functions set the stack size, priority, etc. of the
worker threads. If NULL, default values are used.

lo water The minimum number of threads that the pool
should keep in the blocked state (i.e. threads that are
ready to do work).

increment The number of new threads created at one time.

hi water The maximum number of threads to keep in a
blocked state.

maximum The maximum number of threads that the pool can
create.

Returns:
A thread pool handle, or NULL if an error occurs (errno is set).

Errors:
ENOMEM Insufficient memory to allocate internal data structures.

Examples:
Here’s a simple multithreaded resource manager:

/* Define an appropriate interrupt number: */
#define INTNUM 0

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>
#include <sys/neutrino.h>

May 31, 2004 Manifests 3221

thread pool create() 2004, QNX Software Systems Ltd.

static resmgr connect funcs t connect funcs;
static resmgr io funcs t io funcs;
static iofunc attr t attr;

void *interrupt thread(void *data)
/* *data isn’t used */
{

struct sigevent event;
int id;

/* fill in "event" structure */
memset(&event, 0, sizeof(event));
event.sigev notify = SIGEV INTR;

/* INTNUM is the desired interrupt level */
id = InterruptAttachEvent(INTNUM, &event, 0);

...

while (1) {
InterruptWait(0, NULL);
/*
do something about the interrupt,
perhaps updating some shared
structures in the resource manager

unmask the interrupt when done
*/
InterruptUnmask(INTNUM, id);

}
}

int
main(int argc, char **argv) {

thread pool attr t pool attr;
thread pool t *tpp;
dispatch t *dpp;
resmgr attr t resmgr attr;
int id;

if((dpp = dispatch create()) == NULL) {
fprintf(stderr,

"%s: Unable to allocate dispatch handle.\n",
argv[0]);

return EXIT FAILURE;
}

3222 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. thread pool create()

memset(&pool attr, 0, sizeof pool attr);
pool attr.handle = dpp;
/* We are only doing resmgr-type attach */
pool attr.context alloc = resmgr context alloc;
pool attr.block func = resmgr block;
pool attr.handler func = resmgr handler;
pool attr.context free = resmgr context free;
pool attr.lo water = 2;
pool attr.hi water = 4;
pool attr.increment = 1;
pool attr.maximum = 50;

if((tpp = thread pool create(&pool attr,
POOL FLAG EXIT SELF)) == NULL) {

fprintf(stderr,
"%s: Unable to initialize thread pool.\n",
argv[0]);

return EXIT FAILURE;
}

iofunc func init(RESMGR CONNECT NFUNCS,
&connect funcs,
RESMGR IO NFUNCS, &io funcs);

iofunc attr init(&attr, S IFNAM | 0666, 0, 0);

memset(&resmgr attr, 0, sizeof resmgr attr);
resmgr attr.nparts max = 1;
resmgr attr.msg max size = 2048;

if((id = resmgr attach(dpp, &resmgr attr,
"/dev/mynull",
FTYPE ANY, 0, &connect funcs,
&io funcs,
&attr)) == -1) {

fprintf(stderr,
"%s: Unable to attach name.\n", argv[0]);

return EXIT FAILURE;
}

/* Start the thread which will handle interrupt events. */
pthread create (NULL, NULL, interrupt thread, NULL);

/* Never returns */
thread pool start(tpp);

}

For more examples using the dispatch interface, see dispatch create(),
message attach(), and resmgr attach(). For information on advanced
topics in designing and implementing a resource manager, see

May 31, 2004 Manifests 3223

thread pool create() 2004, QNX Software Systems Ltd.

“Combine messages” section of the Writing a Resource Manager
chapter in the Programmer’s Guide.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
dispatch block(), dispatch create(), dispatch unblock(),
pthread create(), resmgr attach(), select attach(),
thread pool destroy(), thread pool start()

3224 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. thread pool destroy()
Free the memory allocated to a thread pool

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int thread pool destroy(thread pool t * pool);

Arguments:
pool A thread pool handle that was returned by

thread pool create().

Library:
libc

Description:
The thread pool destroy() function frees the memory allocated to a
thread pool that’s identified by the handle pool. This is done only
after all the threads of the thread pool have exited.

Prior to QNX Neutrino 6.1.0, this function simply deallocated the
thread pool handle and returned. Although this was acceptable for
servers that never exited (and consequently never shut down their
thread pools), it’s unsuitable for closing down a thread pool.

�

The thread pool destroy() function calls the unblock handler provided
in the pool attribute structure. The unblock handler is called at least
once for every thread in the thread pool. Once the unblock handler is
called, the thread calling thread pool destroy() blocks until the
number of threads in the thread pool drops to zero. When there are no
more threads in the thread pool, the handle pool is freed and
thread pool destroy() returns.

May 31, 2004 Manifests 3225

thread pool destroy() 2004, QNX Software Systems Ltd.

A side effect of this behavior is that a thread that’s created by the
thread pool can’t call thread pool destroy() because the thread pool
count will never drop to zero, and subsequently the function will
never return.

�

Returns:
0 Success.

-1 An error occurred.

Examples:
#include <sys/dispatch.h>
#include <stdio.h>

int main(int argc, char **argv) {
thread pool t *tpp;

...

thread pool destroy (tpp);
}

For examples using the dispatch interface, see dispatch create(),
message attach(), resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

3226 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. thread pool destroy()

See also:
thread pool control(), thread pool create(), thread pool limits(),
thread pool start()

May 31, 2004 Manifests 3227

thread pool limits() 2004, QNX Software Systems Ltd.

Convenience wrapper function for thread pool control()

Synopsis:
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int thread pool limits(thread pool t * pool,
int lowater,
int hiwater,
int maximum,
int increment,
unsigned flags);

Arguments:
pool A thread pool handle that was returned by

thread pool create().

lowater The minimum number of threads that the pool should
keep in the blocked state (i.e. threads that are ready to
do work), or a negative number if you don’t want to
change the current value.

hiwater The maximum number of threads that the pool should
keep in the blocked state, or a negative number if you
don’t want to change the current value.

maximum The maximum number of threads that the pool can
create, or a negative number if you don’t want to
change the current value.

increment The number of new threads created at one time, or a
negative number if you don’t want to change the
current value.

flags The only flag that’s accepted is
THREAD POOL CONTROL NONBLOCK. For more
information, see the documentation for
thread pool control().

3228 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. thread pool limits()

Library:
libc

Description:
The thread pool limits() function is a wrapper function for
thread pool control(). If the value of lowater, hiwater, maximum or
increment is ≥0 then that value is adjusted in the thread pool
according to the handle pool.

If you don’t set THREAD POOL CONTROL NONBLOCK, the upper
and lower bounds for waiting are:

� lower = (lowater != -1) : lowater ? 0;

� upper = (maximum != -1) : maximum ? USHRT MAX;

Having several threads call this function with the same thread pool
handle isn’t recommended.

�

Returns:
-1 if an error occurs (errno is set).

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 3229

thread pool limits() 2004, QNX Software Systems Ltd.

See also:
thread pool control(), thread pool create(), thread pool destroy(),
thread pool start()

3230 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. thread pool start()
Start a thread pool

Synopsis:
#include <sys/dispatch.h>

int thread pool start(void *pool);

Arguments:
pool A thread pool handle that was returned by

thread pool create().

Library:
libc

Description:
The thread pool start() function starts the thread pool pool. The
function may or may not return, depending on the flags that you
passed to thread pool create().

Returns:
EOK Success.

-1 An error occurred.

Examples:
#include <sys/dispatch.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv) {
thread pool attr t pool attr;
thread pool t *tpp;
dispatch t *dpp;
resmgr attr t attr;
resmgr context t *ctp;

if((dpp = dispatch create()) == NULL) {
fprintf(stderr, "%s: Unable to allocate \

dispatch context.\n", argv[0]);

May 31, 2004 Manifests 3231

thread pool start() 2004, QNX Software Systems Ltd.

return EXIT FAILURE;
}

memset(&pool attr, 0, sizeof (pool attr));
pool attr.handle = dpp;
/* We are only doing resmgr-type attach */
pool attr.context alloc = resmgr context alloc;
pool attr.block func = resmgr block;
pool attr.handler func = resmgr handler;
pool attr.context free = resmgr context free;
pool attr.lo water = 2;
pool attr.hi water = 4;
pool attr.increment = 1;
pool attr.maximum = 50;

if((tpp = thread pool create(&pool attr,
POOL FLAG EXIT SELF)) == NULL) {

fprintf(stderr, "%s: Unable to initialize \
thread pool.\n", argv[0]);

return EXIT FAILURE;
}

...

/* Never returns */
thread pool start(tpp);

}

For examples using the dispatch interface, see dispatch create(),
message attach(), resmgr attach(), and thread pool create().

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

3232 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. thread pool start()

See also:
thread pool create(), thread pool destroy()

May 31, 2004 Manifests 3233

ThreadCancel(), ThreadCancel r() 2004, QNX Software Systems Ltd.

Cancel a thread

Synopsis:
#include <sys/neutrino.h>

int ThreadCancel(int tid,
void (*canstub)(void));

int ThreadCancel r(int tid,
void (*canstub)(void));

Arguments:
tid The ID of the thread that you want to destroy, as returned

by ThreadCreate().

canstub A pointer to the location that you want the thread to jump
to when the cancellation occurs; see below.

You must provide a canstub function.
�

Library:
libc

Description:
These kernel calls request that the thread specified by tid be canceled.
The target thread’s cancelability state and type determine when the
cancellation takes effect.

The ThreadCancel() and ThreadCancel r() functions are identical,
except in the way they indicate errors. See the Returns section for
details.

When the cancellation is acted upon, the thread jumps to the location
specified by canstub. This stub should call cancellation cleanup
handlers for the thread. When the last cancellation cleanup handler
returns, the stub must terminate the thread using:

ThreadDestroy(0, -1, PTHREAD CANCEL);

3234 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ThreadCancel(), ThreadCancel r()

Unlike ThreadDestroy(), which destroys a thread immediately,
ThreadCancel() requests that the target thread execute any cleanup
code and then terminate at its earliest convenience.

The cancellation processing in the target thread runs asynchronously
with respect to the calling thread, which doesn’t block.

The combinations of cancelability state and type are as follows:

State Type Description

Disabled Deferred Cancel requests are made pending

Disabled Async Cancel requests are made pending

Enabled Deferred Cancellation happens at the next
cancellation point. These are at explicitly
coded calls to pthread testcancel() or an
attempt to enter a blocking state in any of
the calls defined in the table below. All
kernel calls that block are cancellation
points, with the exception of MsgSendvnc()
and SyncMutexLock().

Enabled Async Cancellation happens immediately.

Use pthread setcancelstate(), and pthread setcanceltype() to set the
state and type.

POSIX defines a list of functions that are cancellation points; some
functions that aren’t listed there may also be cancellation points. For a
full list, see “Cancellation points” in the appendix, Summary of
Safety Information. Any function that calls a blocking kernel call
that’s a cancellation point will itself become a cancellation point
when the kernel call is made. The most common blocking kernel call
in library code is MsgSendv().

May 31, 2004 Manifests 3235

ThreadCancel(), ThreadCancel r() 2004, QNX Software Systems Ltd.

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

ThreadCancel()

If an error occurs, the function returns -1 and sets errno. Any
other value returned indicates success.

ThreadCancel r()

EOK is returned on success. This function does NOT set errno.
If an error occurs, any value in the Errors section may be
returned.

Errors:
ESRCH The thread indicated by tid doesn’t exist.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

3236 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ThreadCancel(), ThreadCancel r()

See also:
pthread setcancelstate(), pthread setcanceltype(),
pthread testcancel(), ThreadCreate(), ThreadDestroy()

May 31, 2004 Manifests 3237

ThreadCreate(), ThreadCreate r() 2004, QNX Software Systems Ltd.

Create a thread

Synopsis:
#include <sys/neutrino.h>

int ThreadCreate(
pid t pid,
void* (func)(void*),
void* arg,
const struct thread attr* attr);

int ThreadCreate r(
pid t pid,
void* (func)(void*),
void* arg,
const struct thread attr* attr);

Arguments:
pid The ID of the process that you want to create the thread in,

or 0 to create the thread in the current process.

func A pointer to the function that you want the thread to execute.
The arg argument that you pass to ThreadCreate() is passed
to func() as its sole argument. If func() returns, it returns to
the address defined in the exitfunc member of attr.

arg A pointer to any data that you want to pass to func.

attr A pointer to a thread attr structure that specifies the
attributes for the new thread, or NULL if you want to use the
default attributes.

If you modify the attributes after creating the thread, the thread isn’t
affected.

�

For more information, see “Thread attributes,” below.

3238 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ThreadCreate(), ThreadCreate r()

Library:
libc

Description:
These kernel calls create a new thread of execution, with attributes
specified by attr, within the process specified by pid. If pid is zero,
the current process is used.

Only the Process Manager can create threads in another process.�

The ThreadCreate() and ThreadCreate r() functions are identical,
except in the way they indicate errors. See the Returns section for
details.

The new thread shares all resources of the process in which it’s
created. This includes memory, timers, channels and connections.
The standard C library contains mutexes to make it thread-safe.

Thread attributes

The thread attr structure pointed to by attr contains at least the
following members:

int flags See below for a list of flags. The default flag is
always zero.

size t stacksize

The stack size of the thread stack defined in the
stackaddr member. If stackaddr is NULL, then
stacksize specifies the size of stack to dynamically
allocate. If stacksize is zero, then 4096 bytes are
assumed. The minimum allowed stacksize is defined
by PTHREAD STACK MIN.

void* stackaddr

NULL, or the address of a stack that you want the
thread to use. Set the stacksize member to the size of
the stack.

May 31, 2004 Manifests 3239

ThreadCreate(), ThreadCreate r() 2004, QNX Software Systems Ltd.

If you provide a non-NULL stackaddr, it’s your
responsibility to release the stack when the thread
dies. If stackaddr is NULL, then the kernel
dynamically allocates a stack on thread creation and
automatically releases it on the thread’s death.

void* (exitfunc)(void* status)

The address to return to if the thread function returns.

The thread returns to exitfunc. This means that the status variable
isn’t passed as a normal parameter. Instead, it appears in the
return-value position dictated by the CPU’s calling convention (e.g.
EAX on an x86, R3 on PPC, V0 on MIPS, and so on).

The exitfunc function normally has to have compiler- and
CPU-specific manipulation to access the status data (pulling it from
the return register location to a proper local variable). Alternatively,
you can write the exitfunc function in assembly language for each
CPU.

�

int policy The scheduling policy, as defined by the SchedSet()
kernel call. This member is used only if you set the
PTHREAD EXPLICIT SCHED flag. If you want the
thread to inherit the policy, but you want to specify
the scheduling parameters in the param member, set
the PTHREAD EXPLICIT SCHED flag and set the
policy member to SCHED NOCHANGE.

struct sched param param

A sched param structure that specifies the
scheduling parameters, as defined by the SchedSet()
kernel call. This member is used only if you set the
PTHREAD EXPLICIT SCHED flag.

You can set the attr argument’s flags member to a combination of the
following:

3240 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ThreadCreate(), ThreadCreate r()

PTHREAD CREATE JOINABLE (default)

Put the thread into a zombie state when it terminates. It stays in
this state until you retrieve its exit status or detach the thread.

PTHREAD CREATE DETACHED

Create the thread in the detached state; it doesn’t become a
zombie. You can’t call ThreadJoin() for a detached thread.

PTHREAD INHERIT SCHED (default)

Use the scheduling attributes of the creating thread for the new
thread.

PTHREAD EXPLICIT SCHED

Take the scheduling policy and parameters for the new thread
from the policy and param members of attr.

PTHREAD SCOPE SYSTEM (default)

Schedule the thread is against all threads in the system.

PTHREAD SCOPE PROCESS

Don’t set this flag; the QNX Neutrino OS implements true
microkernel threads that have only a system scope.

PTHREAD MULTISIG ALLOW (default)

If the thread dies because of an unblocked, uncaught signal,
terminate all threads, and hence, the process.

PTHREAD MULTISIG DISALLOW

Terminate only this thread; all other threads in the process are
unaffected.

PTHREAD CANCEL DEFERRED (default)

Cancellation occurs only at cancellation points as defined by
ThreadCancel().

PTHREAD CANCEL ASYNCHRONOUS

Every opcode executed by the thread is considered a
cancellation point. The POSIX and C library aren’t
asynchronous-cancel safe.

May 31, 2004 Manifests 3241

ThreadCreate(), ThreadCreate r() 2004, QNX Software Systems Ltd.

Signal state

The signal state of the new thread is initialized as follows:

� The signal mask is inherited from the creating thread.

� The set of pending signals is empty.

� The cancel state and type are PTHREAD CANCEL ENABLE and
PTHREAD CANCEL DEFERRED.

Local storage for private data

Each thread contains a thread local storage area for its private data.
This area can be accessed using the global variable TLS defined in
<sys/neutrino.h> as a pointer. The kernel ensures that TLS
always points to the thread local storage for the thread that’s running.

The thread local storage is defined by the structure
thread local storage, which contains at least the following

members:

void* (exitfunc)(void *)

The exit function to call if the thread returns.

void* arg The sole argument that was passed to the thread.

int* errptr A pointer to a thread unique errno value. For the
main thread, this points to the global variable errno.
For all other threads, this points to the member
errval in this structure.

int errval A thread-unique errno that the thread uses if it isn’t
the main thread.

int flags The thread flags used on thread creation in addition
to runtime flags used for implementing thread
cancellation.

pid t pid The ID of the process that contains the thread.

int tid The thread’s ID.

3242 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ThreadCreate(), ThreadCreate r()

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

ThreadCreate()

The thread ID of the newly created thread. If an error occurs,
the function returns -1 and sets errno.

ThreadCreate r()

The thread ID of the newly created thread. This function does
NOT set errno. If an error occurs, the function returns the
negative of a value from the Errors section.

Errors:
EAGAIN All kernel thread objects are in use.

EFAULT A fault occurred when the kernel tried to access the
buffers provided.

EINVAL Invalid scheduling policy or priority specified.

ENOTSUP PTHREAD SCOPE PROCESS was requested. All
kernel threads are PTHREAD SCOPE SYSTEM.

EPERM The calling thread doesn’t have sufficient permission
to create a thread in another process. Only a thread
with a process ID of 1 can create threads in other
processes.

ESRCH The process indicated by pid doesn’t exist.

May 31, 2004 Manifests 3243

ThreadCreate(), ThreadCreate r() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The QNX interpretation of PTHREAD STACK MIN is enough memory
to run a thread that does nothing:

void nothingthread(void)
{

return;
}

See also:
sched param, SchedSet(), ThreadCancel(), ThreadDestroy()

3244 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ThreadCtl(), ThreadCtl r()
Control a thread

Synopsis:
#include <sys/neutrino.h>

int ThreadCtl(int cmd,
void * data);

int ThreadCtl r(int cmd,
void * data);

Arguments:
cmd The command you want to execute; see below.

data A pointer to data associated with the specific command; see
below.

Library:
libc

Description:
These kernel calls allow you to make QNX-specific changes to a
thread.

The ThreadCtl() and ThreadCtl r() functions are identical except in
the way they indicate errors. See the Returns section for details.

The following calls are defined:

ThreadCtl(NTO TCTL ALIGN FAULT, data)

Control the misaligned access response. The data argument is a
pointer to an int whose value indicates how you want to
respond:

� Greater than 0 — make a misaligned access fault with a
SIGBUS, if the architecture permits it.

� Less than 0 — make the kernel attempt to emulate an
instruction with a misaligned access. If the attempt fails, it
also faults with a SIGBUS.

May 31, 2004 Manifests 3245

ThreadCtl(), ThreadCtl r() 2004, QNX Software Systems Ltd.

� 0 — don’t change the alignment-fault handling for the
thread.

The function sets data to a positive or negative number,
indicating the previous state of the the alignment-fault handling.

ThreadCtl(NTO TCTL IO, 0)

Request I/O privity; let the thread execute the I/O opcodes in,
ins, out, outs, cli, sti on architectures where it has
the appropriate privilege, and let it attach IRQ handlers. You
need root permissions to use this command. If a thread
attempts to use these opcodes without successfully executing
this call, the thread faults with a SIGSEGV when the opcode is
attempted.

Threads created by the calling thread inherit the NTO TCTL IO
status.

�

ThreadCtl(NTO TCTL RUNMASK, (int)runmask)

Set processor affinity for the calling thread in a multiprocessor
system. Each set bit in runmask represents a processor that the
thread can run on.

By default, a thread’s runmask is set to all ones, which allows it
to run on any available processor. A value of 0x01 would, for
example, force the thread to only run on the first processor.

You can use NTO TCTL RUNMASK to optimize the runtime
performance of your system by, for example, relegating
nonrealtime threads to a specific processor. In general, this
shouldn’t be necessary, since the QNX realtime scheduler
always preempts a lower-priority thread immediately when a
higher priority thread becomes ready.

The main effect of processor locking is the effectiveness of the
CPU cache, since threads can be prevented from migrating.

3246 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ThreadCtl(), ThreadCtl r()

Threads created by the calling thread don’t inherit the
NTO TCTL RUNMASK status.

�

ThreadCtl(NTO TCTL THREADS CONT, 0)

Unfreeze all threads in the current process that were frozen
using the NTO TCTL THREADS HOLD command.

ThreadCtl(NTO TCTL THREADS HOLD, 0)

Freeze all threads in the current process except the calling
thread.

Threads created by the calling thread aren’t frozen.
�

The data pointer is reserved for passing extra data for new commands
that may be introduced in the future.

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

ThreadCtl() If an error occurs, the function returns -1 and sets
errno. Any other value returned indicates success.

ThreadCtl r() EOK is returned on success. This function does
NOT set errno. If an error occurs, any value in the
Errors section may be returned.

Errors:
EPERM The process doesn’t have superuser capabilities.

May 31, 2004 Manifests 3247

ThreadCtl(), ThreadCtl r() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
InterruptDisable(), InterruptEnable(), InterruptMask(),
InterruptUnmask()

3248 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ThreadDestroy(),
ThreadDestroy r()
Destroy a thread immediately

Synopsis:
#include <sys/neutrino.h>

int ThreadDestroy(int tid,
int priority,
void* status);

int ThreadDestroy r(int tid,
int priority,
void* status);

Arguments:
tid The ID of the thread that you want to destroy, as returned

by ThreadCreate(), or 0 to destroy the current thread, or
-1 to destroy all the threads in the current process.

priority The priority at which you want to destroy multiple
threads, or -1 to use the priority of the current thread.

status The value to make available to a to a thread that joins a
nondetached thread that’s destroyed.

Library:
libc

Description:
These kernel calls terminate the thread specified by tid. If tid is 0, the
calling thread is assumed. If tid is -1, all of the threads in the process
are destroyed. When multiple threads are destroyed, the destruction is
scheduled one thread at a time at the priority specified by the priority
argument. If priority is -1, then the priority of the calling thread is
used.

The ThreadDestroy() and ThreadDestroy r() functions are identical,
except in the way they indicate errors. See the Returns section for
details.

May 31, 2004 Manifests 3249

ThreadDestroy(), ThreadDestroy r() 2004, QNX Software Systems

Ltd.

If a terminated thread isn’t detached, it makes the value specified by
the status argument available to any successful join on it. Until
another thread retrieves this value, the thread ID tid isn’t reused, and a
small kernel resource (a thread object) is held in the system. If the
thread is detached, then status is ignored, and all thread resources are
immediately released.

When the last thread in a process is destroyed, the process terminates,
and all thread resources are released, even if they’re not detached and
unjoined.

On return from ThreadDestroy() or ThreadDestroy r(), the target
thread is marked for death, but if it isn’t possible to kill it
immediately, it may not be terminated until it attempts to run.

�

Blocking states

If these calls return, they don’t block.

Returns:
If the calling thread is destroyed, ThreadDestroy() and
ThreadDestroy r() don’t return.

The only difference between these functions is the way they indicate
errors:

ThreadDestroy()

If this function returns and an error occurs, -1 is returned and
errno is set. Any other value returned indicates success.

ThreadDestroy r()

EOK is returned on success. This function does NOT set errno.
If this function returns and an error occurs, any value in the
Errors section may be returned.

3250 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ThreadDestroy(),
ThreadDestroy r()

Errors:
ESRCH The thread indicated by tid doesn’t exist.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ThreadCancel(), ThreadCreate()

May 31, 2004 Manifests 3251

ThreadDetach(), ThreadDetach r() 2004, QNX Software Systems Ltd.

Detach a thread from a process

Synopsis:
#include <sys/neutrino.h>

int ThreadDetach(int tid);

int ThreadDetach r(int tid);

Arguments:
tid The ID of the thread that you want to detach, as returned by

ThreadCreate(), or 0 to detach the current thread.

Library:
libc

Description:
These kernel calls detach the thread specified by tid. If tid is zero, the
calling thread is used. Once detached, attempts to call ThreadJoin()
on tid fail. When a detached thread terminates, its termination status
is discarded and all its resources are released.

The ThreadDetach() and ThreadDetach r() functions are identical,
except in the way they indicate errors. See the Returns section for
details.

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

ThreadDetach()

If an error occurs, the function returns -1 and sets errno. Any
other value returned indicates success.

3252 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ThreadDetach(), ThreadDetach r()

ThreadDetach r()

Returns EOK on success. This function does NOT set errno. If
an error occurs, the function can return any value listed in the
Errors section.

Errors:
EINVAL The thread is already detached.

ESRCH The thread indicated by tid doesn’t exist.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ThreadCreate(), ThreadJoin()

May 31, 2004 Manifests 3253

ThreadJoin(), ThreadJoin r() 2004, QNX Software Systems Ltd.

Block until a thread terminates

Synopsis:
#include <sys/neutrino.h>

int ThreadJoin(int tid,
void** status);

int ThreadJoin r(int tid,
void** status);

Arguments:
tid The ID of the thread that you want to detach, as returned by

ThreadCreate().

status The address of a pointer to a location where the function
can store the thread’s exit status.

Library:
libc

Description:
The ThreadJoin() and ThreadJoin r() kernel calls block until the
thread specified by tid terminates. If status isn’t NULL, the functions
save the thread’s exit status in the area pointed to by status. If the
thread tid has already terminated, the functions immediately return
with success and the status, if requested.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

When ThreadJoin() returns successfully, the target thread has been
successfully terminated. Until this occurs, the thread ID tid isn’t
reused and a small kernel resource (a thread object) is retained.

You can’t join a thread that’s detached (see ThreadCreate() and
ThreadDetach()).

3254 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ThreadJoin(), ThreadJoin r()

The target thread must be joinable. Multiple pthread join(),
pthread timedjoin(), ThreadJoin(), and ThreadJoin r() calls on the
same target thread aren’t allowed.

Blocking states

STATE JOIN The calling thread blocks waiting for the indicated
thread to exit.

Returns:
The only difference between these functions is the way they indicate
errors:

ThreadJoin() If an error occurs, the function returns -1 and sets
errno. Any other value returned indicates success.

ThreadJoin r() Returns EOK on success. This function does NOT
set errno. If an error occurs, the function may return
any value listed in the Errors section.

Errors:
EBUSY Attempt to join a thread which has been joined by

another thread.

EDEADLK Attempt to join to yourself.

EFAULT A fault occurred when the kernel tried to access
status.

EINTR The call was interrupted by a signal.

EINVAL Attempt to join a thread which is detached (see
ThreadDetach()).

ESRCH The thread indicated by tid doesn’t exist.

ETIMEDOUT A kernel timeout unblocked the call. See
TimerTimeout().

May 31, 2004 Manifests 3255

ThreadJoin(), ThreadJoin r() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
pthread join(), pthread timedjoin(), ThreadCreate(), ThreadDetach()

3256 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. time()
Determine the current calendar time

Synopsis:
#include <time.h>

time t time(time t * tloc);

Arguments:
tloc NULL, or a pointer to a time t object where the function

can store the current calendar time.

Library:
libc

Description:
The time() function takes a pointer to time t as an argument and
returns a value of time t on exit. The returned value is the current
calendar time, in seconds, since the Unix Epoch, 00:00:00 January 1,
1970 Coordinated Universal Time (UTC) (formerly known as
Greenwich Mean Time (GMT)).

You typically use the date command to set the computer’s internal
clock using Coordinated Universal Time (UTC). Use the TZ
environment variable or CS TIMEZONE configuration string to
establish the local time zone. For more information, see “Setting the
time zone” in the Configuring Your Environment chapter of the
Neutrino User’s Guide.

Returns:
The current calendar time, in seconds, since 00:00:00 January 1, 1970
Coordinated Universal Time (UTC). If tloc isn’t NULL, the current
calendar time is also stored in the object pointed to by tloc.

May 31, 2004 Manifests 3257

time() 2004, QNX Software Systems Ltd.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(void)
{

time t time of day;

time of day = time(NULL);
printf("It is now: %s", ctime(&time of day));
return EXIT SUCCESS;

}

produces the output:

It is now: Wed Jun 30 09:09:33 1999

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
asctime(), asctime r(), clock(), clock gettime(), ctime(), difftime(),
gmtime(), localtime(), localtime r(), mktime(), strftime(), tzset()

“Setting the time zone” in the Configuring Your Environment chapter
of the Neutrino User’s Guide

3258 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. timer create()
Create a timer

Synopsis:
#include <signal.h>
#include <time.h>

int timer create(clockid t clock id,
struct sigevent * evp,
timer t * timerid);

Arguments:
clock id The clock source that you want to use; one of:

� CLOCK REALTIME — the standard POSIX-defined
timer.

� CLOCK SOFTTIME — currently, the same as
CLOCK REALTIME.

evp NULL, or a pointer to a sigevent structure containing
the event that you want to deliver when the timer fires.

timerid A pointer to a timer t object where the function stores
the ID of the new timer.

Library:
libc

Description:
The timer create() function creates a per-process timer using the
specified clock source, clock id, as the timing base.

You can use the time ID that the function stores in timerid in
subsequent calls to timer gettime(), timer settime(), and
timer delete().

The timer is created in the disabled state, and isn’t enabled until you
call timer settime().

We recommend the following event types:

May 31, 2004 Manifests 3259

timer create() 2004, QNX Software Systems Ltd.

� SIGEV SIGNAL

� SIGEV SIGNAL CODE

� SIGEV SIGNAL THREAD

� SIGEV PULSE

If the evp argument is NULL, a SIGALRM signal is sent to your
process when the timer expires. To specify a handler for this signal,
call sigaction().

Returns:
0 Success. The timerid argument is set to the timer’s ID.

-1 An error occurred (errno is set).

Errors:
EAGAIN All timers are in use. You’ll have to wait for a process

to release one.

EINVAL The clock id isn’t one of the valid CLOCK * constants.

Examples:
/*
* Demonstrate how to set up a timer that, on expiry,
* sends us a pulse. This example sets the first
* expiry to 1.5 seconds and the repetition interval
* to 1.5 seconds.
*/

#include <stdio.h>
#include <time.h>
#include <sys/netmgr.h>
#include <sys/neutrino.h>

#define MY PULSE CODE PULSE CODE MINAVAIL

typedef union {
struct pulse pulse;
/* your other message structures would go

here too */

3260 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. timer create()

} my message t;

main()
{

struct sigevent event;
struct itimerspec itime;
timer t timer id;
int chid;
int rcvid;
my message t msg;

chid = ChannelCreate(0);

event.sigev notify = SIGEV PULSE;
event.sigev coid = ConnectAttach(ND LOCAL NODE, 0,

chid,
NTO SIDE CHANNEL, 0);

event.sigev priority = getprio(0);
event.sigev code = MY PULSE CODE;
timer create(CLOCK REALTIME, &event, &timer id);

itime.it value.tv sec = 1;
/* 500 million nsecs = .5 secs */
itime.it value.tv nsec = 500000000;
itime.it interval.tv sec = 1;
/* 500 million nsecs = .5 secs */
itime.it interval.tv nsec = 500000000;
timer settime(timer id, 0, &itime, NULL);

/*
* As of the timer settime(), we will receive our pulse
* in 1.5 seconds (the itime.it value) and every 1.5
* seconds thereafter (the itime.it interval)
*/

for (;;) {
rcvid = MsgReceive(chid, &msg, sizeof(msg), NULL);
if (rcvid == 0) { /* we got a pulse */

if (msg.pulse.code == MY PULSE CODE) {
printf("we got a pulse from our timer\n");

} /* else other pulses ... */
} /* else other messages ... */

}
}

May 31, 2004 Manifests 3261

timer create() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The QNX Neutrino version of timer create() is different from the
QNX 4 version, which was based on a draft standard.

See also:
clock getres(), clock gettime(), clock settime(), nanosleep(), pulse,
sigaction(), sigevent, sleep(), TimerCreate(), timer delete(),
timer getexpstatus(), timer getoverrun(), timer gettime(),
timer settime()

3262 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. timer delete()
Delete a timer

Synopsis:
#include <time.h>

int timer delete(timer t timerid);

Arguments:
timerid A timer t object that holds a timer ID, as set by

timer create().

Library:
libc

Description:
The timer delete() function removes a previously attached timer based
upon the timerid returned from the timer create() function. The timer
is removed from the active system timer list, and returned to the free
list of available timers.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EINVAL The timer timerid isn’t attached to the calling process.

Classification:
POSIX 1003.1 (Realtime Extensions)

May 31, 2004 Manifests 3263

timer delete() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
clock getres(), clock gettime(), clock settime(), nanosleep(), sleep(),
timer create(), timer getexpstatus(), timer getoverrun(),
timer gettime(), timer settime()

3264 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. timer getexpstatus()
Get the expiry status of a timer

Synopsis:
#include <time.h>

int timer getexpstatus(timer t timerid);

Arguments:
timerid A timer t object that holds a timer ID, as set by

timer create().

Library:
libc

Description:
The timer getexpstatus() function gets the expiry status of the time
with the ID given by timerid.

Returns:
0 The timer has expired.

-1 An error occurred (errno is set).

Errors:
EINVAL The timer specified by timerid doesn’t exist.

Classification:
POSIX 1003.1j (draft)

Safety

Cancellation point No

Interrupt handler No

continued. . .

May 31, 2004 Manifests 3265

timer getexpstatus() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

See also:
timer create(), timer delete(), timer getoverrun(), timer gettime(),
timer settime(), TimerInfo()

3266 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. timer getoverrun()
Return the number of timer overruns

Synopsis:
#include <signal.h>
#include <time.h>

int timer getoverrun(timer t timerid);

Arguments:
timerid A timer t object that holds a timer ID, as set by

timer create().

Library:
libc

Description:
When a timer expiration signal is received by a process, the
timer getoverrun() function returns the timer expiration overrun count
for the timer specified by timerid.

Only a single signal is queued to the process for a given timer at any
point in time. When a timer that has a signal pending expires, no
signal is queued and a timer overrun occurs.

The overrun count returned is the number of extra timer expirations
that occurred between the time the expiration signal was queued and
when it was delivered or accepted, up to but not including
DELAYTIMER MAX. If the number of overruns is greater than or
equal to DELAYTIMER MAX, the overrun count is set to
DELAYTIMER MAX.

The value returned by timer getoverrun() applies to the most recent
expiration signal for the specified timer. If no expiration signal has
been delivered, the overrun count is 0.

May 31, 2004 Manifests 3267

timer getoverrun() 2004, QNX Software Systems Ltd.

Returns:
The number of overruns, or -1 if an error occurs (errno is set).

Errors:
EINVAL Invalid timer timerid.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
timer create(), timer delete(), timer getexpstatus(), timer gettime(),
timer settime(), TimerInfo()

3268 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. timer gettime()
Get the amount of time left on a timer

Synopsis:
#include <time.h>

int timer gettime(timer t timerid,
struct itimerspec *value);

Arguments:
timerid A timer t object that holds a timer ID, as set by

timer create().

value A pointer to a itimerspec structure that the function
fills in with the timer’s time until expiry. The structure
contains at least the following members:

struct timespec it value

A timespec structure that contains the amount of
time left before the timer expires, or zero if the
timer is disarmed. This value is expressed as the
relative interval until expiration, even if the timer
was armed with an absolute time.

struct timespec it interval

A timespec structure that contains the timer’s
reload value. If nonzero, it indicates a repetitive
timer period.

Library:
libc

Description:
The timer gettime() function gets the amount of time left before the
specified timer is to expire, along with the timer’s reload value, and
stores it in the space provided by the value argument.

May 31, 2004 Manifests 3269

timer gettime() 2004, QNX Software Systems Ltd.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EINVAL The timer timerid isn’t attached to the calling process.

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
clock getres(), clock gettime(), clock settime(), nanosleep(), sleep(),
timer create(), timer delete(), timer getexpstatus(),
timer getoverrun(), timer settime(), timespec

3270 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. timer settime()
Set the expiration time for a timer

Synopsis:
#include <time.h>

int timer settime(timer t timerid,
int flags,
struct itimerspec * value,
struct itimerspec * ovalue);

Arguments:
timerid A timer t object that holds a timer ID, as set by

timer create().

flags The type of timer to arm if you aren’t disarming the timer.
The valid bits include:

� TIMER ABSTIME — the it value represents an
absolute expiration date in seconds and nanoseconds
from 1970. If the date specified has already passed, the
function succeeds and the expiration notice is made.

If you don’t set this bit, the it value represents a
relative expiration period that’s offset from the current
system time by the specified number of seconds and
nanoseconds.

value A pointer to a itimerspec structure that specifies the
value that you want to set for the timer’s time until expiry.
For more information, see timer gettime().

ovalue NULL, or a pointer to a itimerspec structure that the
function fills in with the timer’s former time until expiry.

Library:
libc

May 31, 2004 Manifests 3271

timer settime() 2004, QNX Software Systems Ltd.

Description:
The timer settime() function sets the expiration time of the timer
specified by timerid from the it value member of the value argument.
If the it value structure member of value is zero, then the timer is
disarmed.

If the it interval member of value is nonzero, then it specifies a repeat
rate that is added to the timer once the it value period has expired.
Subsequently, the timer is automatically rearmed, causing it to
become continuous with a period of it interval.

If the ovalue parameter isn’t NULL, then on return from this function
it contains a value representing the previous amount of time left
before the timer was to have expired, or zero if the timer was
disarmed. The previous interval timer period is also stored in the
it interval member.

The timerid is local to the calling process, and must have been created
using timer create().

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EFAULT A fault occurred trying to access the buffers provided.

EINVAL The timer timerid isn’t attached to the calling process or
the number of nanoseconds specified by the tv nsec
member of one of the timespec structures in the
itimerspec structure pointed to by value is less than
zero or greater than or equal to 1000 million.

3272 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. timer settime()

Examples:
See timer create().

Classification:
POSIX 1003.1 (Realtime Extensions)

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
clock getres(), clock gettime(), clock settime(), errno, nanosleep(),
sleep(), timer create(), timer delete(), timer getexpstatus(),
timer getoverrun(), timer gettime()

May 31, 2004 Manifests 3273

timer timeout(), timer timeout r() 2004, QNX Software Systems Ltd.

Set a timeout on a blocking state

Synopsis:
#include <time.h>

extern int timer timeout(
clockid t id,
int flags,
const struct sigevent* notify,
const struct timespec* ntime,
struct timespec* otime);

extern int timer timeout r(
clockid t id,
int flags,
const struct sigevent* notify,
const struct timespec* ntime,
struct timespec* otime);

Arguments:
id The type of timer used to implement the timeout. The

possible clock types of id are:

CLOCK MONOTONIC

A clock that always increases at a constant rate and
can’t be adjusted.

CLOCK SOFTTIME

Same as CLOCK REALTIME, but if the CPU is in
powerdown mode, the clock stops running.

CLOCK REALTIME

A clock that maintains the system time.

flags A bitmask that specifies which states you want the timeout
to apply to; see below.

notify A pointer to a sigevent structure that defines the event
that the kernel acts on if the timeout expires; see below.

3274 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. timer timeout(), timer timeout r()

ntime A pointer to a timespec structure that specifies the
timeout.

otime A pointer to a timespec structure where the function can
store the actual timeout.

Library:
libc

Description:
The timer timeout() and timer timeout r() functions are identical
except in the way they indicate errors. See the Returns section for
details.

The timer timeout() function sets the timeout ntime on any kernel
blocking state. The actual timeout that occurred is returned in otime.
The difference between the closely related timer timeout() and
TimerTimeout() functions is the unit of time. The time in
TimerTimeout()’s ntime and otime arguments is in nanoseconds.
When ntime is passed to TimerTimeout(), the time (in timespec) is
converted from seconds and nanoseconds into nanoseconds. When
otime is returned to timer timeout(), the time is converted from
nanoseconds into seconds and nanoseconds.

The kernel blocking states are entered as a result of the following
kernel calls:

Kernel function call Blocking state

InterruptWait() STATE INTR

MsgReceivev() STATE RECEIVE

MsgSendv() STATE SEND or STATE REPLY

SignalSuspend() STATE SIGSUSPEND

continued. . .

May 31, 2004 Manifests 3275

timer timeout(), timer timeout r() 2004, QNX Software Systems Ltd.

Kernel function call Blocking state

SignalWaitinfo() STATE SIGWAITINFO

SyncCondvarWait() STATE CONDVAR

SyncMutexLock() STATE MUTEX

SyncSemWait() STATE SEM

ThreadJoin() STATE JOIN

The user specifies which states the timeout should apply to via a
bitmask passed in the flags argument. The bits are defined by the
following constants:

Constant Meaning

NTO TIMEOUT CONDVAR Timeout on STATE CONDVAR.

NTO TIMEOUT JOIN Timeout on STATE JOIN.

NTO TIMEOUT INTR Timeout on STATE INTR.

NTO TIMEOUT MUTEX Timeout on STATE MUTEX.

NTO TIMEOUT RECEIVE Timeout on STATE RECEIVE.

NTO TIMEOUT REPLY Timeout on STATE REPLY.

NTO TIMEOUT SEM Timeout on STATE SEM.

NTO TIMEOUT SEND Timeout on STATE SEND.

NTO TIMEOUT SIGSUSPEND Timeout on
STATE SIGSUSPEND.

NTO TIMEOUT SIGWAITINFO Timeout on
STATE SIGWAITINFO.

For example, to set a timeout on MsgSendv(), specify:

NTO TIMEOUT SEND | NTO TIMEOUT REPLY

3276 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. timer timeout(), timer timeout r()

Once a timeout is specified using timer timeout(), it’s armed and
released under the following conditions:

Armed The kernel attempts to enter a blocking state specified
in flags.

Released One of the above kernel calls completed without
blocking, or the kernel call blocks but unblocks before
the timeout expires, or the timeout expires.

The timer timeout() function always operates on a one-shot basis.
When one of the above kernel calls returns (or is interrupted by a
signal), the timeout request is removed from the system. Only one
timeout per thread may be in effect at a time. A second call to
timer timeout(), without calling one of the above kernel functions,
replaces the existing timeout on that thread. A call with flags set to
zero ensures that a timeout won’t occur on any state. This is the
default when a thread is created.

Always call timer timeout() just before the function that you wish to
timeout. For example:

...
event.sigev notify = SIGEV UNBLOCK;

timeout.tv sec = 10;
timeout.tv nsec = 0;

timer timeout(CLOCK REALTIME,
NTO TIMEOUT SEND | NTO TIMEOUT REPLY,
&event, &timeout, NULL);

MsgSendv(coid, NULL, 0, NULL, 0);
...

If the signal handler is called between the calls to timer timeout() and
MsgSendv(), the timer timeout() values are saved during the signal
handler and then are restored when the signal handler exits.

If the timeout expires, the kernel acts upon the event specified by the
sigevent structure pointed to by the notify argument. We
recommend the following event types in this case:

May 31, 2004 Manifests 3277

timer timeout(), timer timeout r() 2004, QNX Software Systems Ltd.

� SIGEV SIGNAL

� SIGEV SIGNAL CODE

� SIGEV SIGNAL THREAD

� SIGEV PULSE

� SIGEV UNBLOCK

� SIGEV INTR

Only SIGEV UNBLOCK guarantees that the kernel call unblocks. A
signal may be ignored, blocked, or accepted by another thread and a
pulse can only unblock a MsgReceivev(). If a NULL is passed for
event then SIGEV UNBLOCK is assumed. In this case, a timed out
kernel call will return failure with an error of ETIMEDOUT.

MsgSendv() won’t unblock on SIGEV UNBLOCK if the server has
already received the message via MsgReceivev() and has specified
NTO CHF UNBLOCK in the flags argument to its ChannelCreate()

call. In this case, it’s up to the server to do a MsgReplyv() or
MsgError().

�

The timeout:

� Is specified by the ntime argument.

� Is relative to the current time (when timer timeout() is called),
unless flags includes TIMER ABSTIME, which makes the timeout
occur at the absolute time set in ntime.

� Occurs on a clock tick (see ClockPeriod()) so the actual wakeup
time is a minimum of:

(tv sec � 1000000000 + tv nsec) � (size of timer tick) nanoseconds

where tv sec and tv nsec are fields of the timespec structure
(defined in <time.h>).

If you specify a resolution that amounts to 1.7 timer ticks, you may
wakeup anywhere from 1 to 1.99999999... timer ticks.

3278 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. timer timeout(), timer timeout r()

If you don’t wish to block for any time, you can pass a NULL for
ntime in which case no timer is used, the event is assumed to be
SIGEV UNBLOCK and an attempt to enter a blocking state as set by
flags will immediately return with ETIMEDOUT. Although a
questionable practice, this can be used to poll potential blocking
kernel calls. For example, you can poll for messages using
MsgReceivev() with an immediate timeout. A much better approach is
to use multiple threads and have one block waiting for messages.

If flags is set to NTO TIMEOUT NANOSLEEP, then these calls block
in the STATE NANOSLEEP state until the timeout (or a signal which
unblocks the thread) occurs. This can be used to implement an
efficient kernel sleep as follows:

timer timeout(CLOCK REALTIME, NTO TIMEOUT NANOSLEEP,
NULL, &ntime, &otime);

If otime isn’t NULL and the sleep is unblocked by a signal then it
contains the time remaining in the sleep.

Blocking states

The kernel calls don’t block unless NTO TIMEOUT NANOSLEEP is
specified in flags. In this case, the calls block as follows:

STATE NANOSLEEP

The calling thread blocks for the requested time period.

Returns:
timer timeout()

The previous flags. If an error occurs, the function returns -1
and sets errno.

timer timeout r()

The previous flags. This function does NOT set errno. If an
error occurs, the negative of a value from the Errors section is
returned.

May 31, 2004 Manifests 3279

timer timeout(), timer timeout r() 2004, QNX Software Systems Ltd.

Errors:
EAGAIN All kernel timer entries are in use.

EFAULT A fault occurred when the kernel tried to access ntime,
otime, or notify.

EINTR The call was interrupted by a signal.

EINVAL The clock type id isn’t one of CLOCK MONOTONIC,
CLOCK SOFTTIME, or CLOCK REALTIME.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The timeout value starts timing out when timer timeout() is called,
not when the blocking state is entered. It might be possible to get
preempted after calling timer timeout() but before the blocking kernel
call.

See also:
sigevent, TimerCreate(), TimerInfo(), TimerTimeout()

3280 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. TimerAlarm(), TimerAlarm r()
Send an alarm signal

Synopsis:
#include <sys/neutrino.h>

int TimerAlarm(clockid t id,
const struct itimer * itime,
struct itimer * otime);

int TimerAlarm r(clockid t id,
const struct itimer * itime,
struct itimer * otime);

Arguments:
id The timer type to use to implement the alarm; one of:

� CLOCK REALTIME — This is the standard
POSIX-defined clock. Timers based on this clock should
will wake up the processor if it’s in a power-saving
mode.

� CLOCK SOFTTIME — This clock is only active when
the processor is not in a power-saving mode. For
example, an application using a CLOCK SOFTTIME
timer to sleep wouldn’t wake up the processor when the
application was due to wake up. This will allow the
processor to enter a power-saving mode.

While the processor isn’t in a power-saving mode,
CLOCK SOFTTIME behaves the same as
CLOCK REALTIME.

� CLOCK MONOTONIC — This clock always increases at
a constant rate and can’t be adjusted.

itime NULL, or a pointer to a itimer structure that specifies the
length of time to wait.

otime NULL, or a pointer to a itimer structure where the
function can store the old timer trigger time.

May 31, 2004 Manifests 3281

TimerAlarm(), TimerAlarm r() 2004, QNX Software Systems Ltd.

Library:
libc

Description:
These kernel calls set an alarm signal (SIGALRM) to be delivered to
the thread waiting on the timer at the time specified by itime. If otime
isn’t NULL, the old timer trigger time is returned.

The TimerAlarm() and TimerAlarm r() functions are identical except
in the way they indicate errors. See the Returns section for details.

Alarm requests aren’t stacked; only a single SIGALRM may be
outstanding on a timer at one time. If you call TimerAlarm() while an
alarm is outstanding, the alarm is reset to the new value passed in
itime.

If itime is NULL, any previous alarm request is canceled, and no new
alarm is set.

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

TimerAlarm() If an error occurs, -1 is returned and errno is set.
Any other value returned indicates success.

TimerAlarm r() EOK is returned on success. This function does
NOT set errno. If an error occurs, any value in the
Errors section may be returned.

Errors:
EAGAIN All kernel timer entries are in use.

EINVAL Invalid timer value id.

3282 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. TimerAlarm(), TimerAlarm r()

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The alarm(), TimerAlarm(), and ualarm() requests aren’t stacked;
only a single SIGALRM generator can be scheduled with these
functions. If the SIGALRM signal hasn’t been generated, the next call
to alarm(), TimerAlarm(), or ualarm() reschedules it.

See also:
alarm(), TimerCreate(), ualarm()

May 31, 2004 Manifests 3283

TimerCreate(), TimerCreate r() 2004, QNX Software Systems Ltd.

Create a timer for a process

Synopsis:
#include <sys/neutrino.h>

int TimerCreate(clockid t id,
const struct sigevent *event);

int TimerCreate r(clockid t id,
const struct sigevent *event);

Arguments:
id The timing base; supported types are:

� CLOCK REALTIME — This is the standard
POSIX-defined clock. Timers based on this clock should
will wake up the processor if it’s in a power-saving
mode.

� CLOCK SOFTTIME — This clock is only active when
the processor is not in a power-saving mode. For
example, an application using a CLOCK SOFTTIME
timer to sleep wouldn’t wake up the processor when the
application was due to wake up. This will allow the
processor to enter a power-saving mode.

While the processor isn’t in a power-saving mode,
CLOCK SOFTTIME behaves the same as
CLOCK REALTIME.

� CLOCK MONOTONIC — This clock always increases at
a constant rate and can’t be adjusted.

event NULL, or a pointer to a sigevent structure that contains
the event to deliver when the timer fires; see below.

Library:
libc

3284 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. TimerCreate(), TimerCreate r()

Description:
The TimerCreate() and TimerCreate r() kernel calls create a
per-process timer using the clock specified by id as the timing base.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

Use the returned timer ID in subsequent calls to the other timer
functions.

The timer is created in the disabled state, and isn’t enabled until you
call TimerSettime().

The sigevent structure pointed to by event contains the event to
deliver when the timer fires. We recommend the following event types
in this case:

� If your process executes in a loop using MsgReceivev(), then
SIGEV PULSE is a convenient way of receiving timer pulses.

� If you use signals for event notification, note that signals are
always delivered to the process and not directly to the thread that
created or armed the timer. You can change this by using a
sigev notify of SIGEV SIGNAL THREAD.

� The notify types of SIGEV UNBLOCK and SIGEV INTR, while
allowed, are of questionable use with timers. SIGEV UNBLOCK is
typically used by the TimerTimeout() kernel call, and SIGEV INTR
is typically used with the InterruptWait() kernel call.

If the event argument is NULL, a SIGALRM signal is sent to your
process when the timer expires. To specify a handler for this signal,
call sigaction().

Blocking states

These calls don’t block.

May 31, 2004 Manifests 3285

TimerCreate(), TimerCreate r() 2004, QNX Software Systems Ltd.

Returns:
The only difference between these functions is the way they indicate
errors:

TimerCreate() The timer ID of the newly created timer. If an error
occurs, -1 is returned and errno is set.

TimerCreate r() The timer ID of the newly created timer. This
function does NOT set errno. If an error occurs,
the negative of a value from the Errors section is
returned.

Errors:
EINVAL The clock ID isn’t valid.

EAGAIN All kernel timer objects are in use.

EFAULT A fault occurred when the kernel tried to access the
buffers provided.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

3286 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. TimerCreate(), TimerCreate r()

See also:
sigevent, TimerAlarm(), TimerDestroy(), TimerInfo(),
TimerSettime(), TimerTimeout()

May 31, 2004 Manifests 3287

TimerDestroy(), TimerDestroy r() 2004, QNX Software Systems Ltd.

Destroy a process timer

Synopsis:
#include <sys/neutrino.h>

int TimerDestroy(timer t id);

int TimerDestroy r(timer t id);

Arguments:
id The ID of the timer that you want to destroy, as returned by

TimerCreate().

Library:
libc

Description:
These kernel calls remove a previously created timer specified by id.
The timer is removed from the active system timer list and returned to
the list of available timers.

The TimerDestroy() and TimerDestroy r() functions are identical
except in the way they indicate errors. See the Returns section for
details.

If a timeout is pending when TimerDestroy() removes the timer, the
timer is removed without being activated.

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

3288 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. TimerDestroy(), TimerDestroy r()

TimerDestroy()

If an error occurs, -1 is returned and errno is set. Any other
value returned indicates success.

TimerDestroy r()

EOK is returned on success. This function does NOT set errno.
If an error occurs, any value in the Errors section may be
returned.

Errors:
EINVAL The timer specified by id doesn’t exist.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
TimerCreate()

May 31, 2004 Manifests 3289

TimerInfo(), TimerInfo r() 2004, QNX Software Systems Ltd.

Get information about a timer

Synopsis:
#include <sys/neutrino.h>

int TimerInfo(pid t pid,
timer t id,
int flags,
struct timer info* info);

int TimerInfo r(pid t pid,
timer t id,
int flags,
struct timer info* info);

Arguments:
pid The process ID that you’re requesting the timer information

for.

id The ID of the timer, as returned by TimerCreate().

flags Supported flags are:

� NTO TIMER SEARCH — if this flag is specified and the
timer ID doesn’t exist, return information on the next
timer ID. This provides a mechanism to discover all of
the timers in the process.

� NTO RESET OVERRUNS — reset the overrun count to
zero in the timer info structure.

info A pointer to a timer info structure where the function
can store the information about the specified timer. For more
details, see “struct timer info,” below.

Library:
libc

3290 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. TimerInfo(), TimerInfo r()

Description:
These kernel calls get information about a previously created timer
specified by id, and stores the information in the buffer pointed to by
info.

The TimerInfo() and TimerInfo r() functions are identical except in
the way they indicate errors. See the Returns section for details.

struct timer info

The timer info structure pointed to by info contains at least these
members:

uint32 t flags

One or more of these bit flags:

NTO TI ACTIVE

The timer is active.
NTO TI ABSOLUTE

The timer is waiting for an absolute time to
occur; otherwise, the timer is relative.

NTO TI EXPIRED

The timer has expired.

int32 t tid The thread to which the timer is directed (0 if it’s
directed to the process).

int32 t notify

The notify type.

clockid t clockid

The type of clock used.

uint32 t overruns

The number of overruns.

struct sigevent event

The event dispatched when the timer expires.

May 31, 2004 Manifests 3291

TimerInfo(), TimerInfo r() 2004, QNX Software Systems Ltd.

struct itimerspec itime

Time when the timer was started.

struct itimerspec otime

Time remaining before the timer expires.

For more information, see the description of TimerCreate().

Blocking states

These calls don’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

TimerInfo() The ID of the timer that the information is for. If an
error occurs, -1 is returned and errno is set.

TimerInfo r() The ID of the timer that the information is for. This
function does NOT set errno. If an error occurs, the
negative of a value from the Errors section is
returned.

Errors:
EINVAL The timer specified by id doesn’t exist.

ESRCH The process specified by pid doesn’t exist.

Classification:
QNX Neutrino

Safety

Cancellation point No

continued. . .

3292 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. TimerInfo(), TimerInfo r()

Safety

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
sigevent, TimerCreate()

May 31, 2004 Manifests 3293

TimerSettime(), TimerSettime r() 2004, QNX Software Systems Ltd.

Set the expiration time for a timer

Synopsis:
#include <sys/neutrino.h>

int TimerSettime(timer t id,
int flags,
const struct itimer * itime,
struct itimer * oitime);

int TimerSettime r(timer t id,
int flags,
const struct itimer * itime,
struct itimer * oitime);

Arguments:
id The ID of the timer whose an expiration date you want to

set, as returned by TimerCreate().

flags The only supported flag is TIMER ABSTIME. If specified,
then nsec represents an “absolute” expiration date in
nanoseconds from the Unix Epoch, 00:00:00 January 1,
1970 UTC. If the date specified has already passed, then
the expiration event is delivered immediately.

If the flag isn’t specified, nsec represents a “relative”
expiration period that’s offset from the given clock’s
current system time in nanoseconds.

itime A pointer to a itimer structure that specifies the
expiration date. For detailed information, see “Expiration
date, ” below.

oitime NULL, or a pointer to a itimer structure where the
function can store the interval timer period (i.e. previous
amount of time left before the timer was to have expired),
or zero if the timer was disarmed at the time of the call.
The previous interval timer period is also stored in the
interval nsec member.

3294 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. TimerSettime(), TimerSettime r()

Library:
libc

Description:
The TimerSettime() and TimerSettime r() kernel calls set the
expiration time of the timer specified by id.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

Expiration date

The expiration is specified by the itime argument. The itimer

structure contains at least the following members:

uint64 t nsec

The expiration time to set.

uint64 t interval nsec

The interval reload time.

If the nsec member of itime is zero, then the timer is disarmed.

If the interval nsec member of itime is nonzero, then it specifies a
repeat rate which is added to the timer once the nsec period has
expired. Subsequently, the timer is automatically rearmed, causing it
to become repetitive with a period of interval nsec.

If the timer is already armed when you call TimerSettime(), this call
discards the previous setting and sets a new setting.

If the event notification specified by TimerCreate() has a sigev code
of SI TIMER, then at most one event is queued. In this case, if an
event is pending from a previous timer when the timer fires again, a
timer overrun occurs. You can use the TimerInfo() kernel call to
obtain the number of overruns that have occurred on this timer.

May 31, 2004 Manifests 3295

TimerSettime(), TimerSettime r() 2004, QNX Software Systems Ltd.

Blocking states

This call doesn’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

TimerSettime()

If an error occurs, -1 is returned and errno is set. Any other
value returned indicates success.

TimerSettime r()

EOK is returned on success. This function does NOT set errno.
If an error occurs, any value in the Errors section may be
returned.

Errors:
EINVAL The timer specified by id doesn’t exist.

EFAULT A fault occurred when the kernel tried to access itime or
oitime.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

3296 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. TimerSettime(), TimerSettime r()

See also:
TimerCreate(), TimerInfo()

May 31, 2004 Manifests 3297

TimerTimeout(), TimerTimeout r() 2004, QNX Software Systems Ltd.

Set a timeout on a blocking state

Synopsis:
#include <sys/neutrino.h>

int TimerTimeout(clockid t id,
int flags,
const struct sigevent * notify,
const uint64 t * ntime,
uint64 t * otime);

int TimerTimeout r(clockid t id,
int flags,
const struct sigevent * notify,
const uint64 t * ntime,
uint64 t * otime);

Arguments:
id The type of timer to implement the timeout; one of:

� CLOCK REALTIME — This is the standard
POSIX-defined clock. Timers based on this clock
should will wake up the processor if it’s in a
power-saving mode.

� CLOCK SOFTTIME — This clock is only active when
the processor is not in a power-saving mode. For
example, an application using a CLOCK SOFTTIME
timer to sleep wouldn’t wake up the processor when the
application was due to wake up. This will allow the
processor to enter a power-saving mode.

While the processor isn’t in a power-saving mode,
CLOCK SOFTTIME behaves the same as
CLOCK REALTIME.

� CLOCK MONOTONIC — This clock always increases at
a constant rate and can’t be adjusted.

flags Flags that specify which states the timeout applies to. For
the list and description of applicable states, see the section
“Timeout states.”

3298 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. TimerTimeout(), TimerTimeout r()

notify A pointer to a sigevent structure that contains the event
to act on when the timeout expires. See “Event types” for
the list of recommended event types.

ntime The timeout (in nanoseconds).

otime A pointer to a location where the function can store the
time remaining in the sleep.

Library:
libc

Description:
The TimerTimeout() and TimerTimeout r() kernel calls set a timeout
on any kernel blocking state.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

These blocking states are entered as a result of the following kernel
calls:

Call Blocking state

InterruptWait() STATE INTR

MsgReceivev() STATE RECEIVE

MsgSendv() STATE SEND or STATE REPLY

SignalSuspend() STATE SIGSUSPEND

SignalWaitinfo() STATE SIGWAITINFO

SyncCondvarWait() STATE CONDVAR

SyncMutexLock() STATE MUTEX

SyncSemWait() STATE SEM

continued. . .

May 31, 2004 Manifests 3299

TimerTimeout(), TimerTimeout r() 2004, QNX Software Systems Ltd.

Call Blocking state

ThreadJoin() STATE JOIN

Timeout states

You can specify which states the timeout should apply to via a
bitmask passed in the flags argument. The bits are defined by the
following constants:

NTO TIMEOUT CONDVAR

Timeout on STATE CONDVAR.

NTO TIMEOUT JOIN

Timeout on STATE JOIN.

NTO TIMEOUT INTR

Timeout on STATE INTR.

NTO TIMEOUT MUTEX

Timeout on STATE MUTEX.

NTO TIMEOUT RECEIVE

Timeout on STATE RECEIVE.

NTO TIMEOUT REPLY

Timeout on STATE REPLY.

NTO TIMEOUT SEM

Timeout on STATE SEM.

NTO TIMEOUT SEND

Timeout on STATE SEND.

NTO TIMEOUT SIGSUSPEND

Timeout on STATE SIGSUSPEND.

NTO TIMEOUT SIGWAITINFO

Timeout on STATE SIGWAITINFO.

3300 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. TimerTimeout(), TimerTimeout r()

For example, to set a timeout on MsgSendv(), specify:

NTO TIMEOUT SEND | NTO TIMEOUT REPLY

Once a timeout is specified using TimerTimeout(), it’s armed and
released under the following conditions:

Armed The kernel attempts to enter a blocking state specified
in flags.

Released One of the above kernel calls completed without
blocking, or the kernel call blocks but unblocks before
the timeout expires, or the timeout expires.

TimerTimeout() always operates on a one-shot basis. When one of the
above kernel calls returns (or is interrupted by a signal), the timeout
request is removed from the system. Only one timeout per thread may
be in effect at a time. A second call to TimerTimeout(), without calling
one of the above kernel functions, replaces the existing timeout on
that thread. A call with flags set to zero ensures that a timeout won’t
occur on any state. This is the default when a thread is created.

Always call TimerTimeout() just before the function that you wish to
timeout. For example:

...
event.sigev notify = SIGEV UNBLOCK;

timeout = 10�1000000000;

TimerTimeout(CLOCK REALTIME,
NTO TIMEOUT SEND | NTO TIMEOUT REPLY,

&event, &timeout, NULL);
MsgSendv(coid, NULL, 0, NULL, 0);
...

If the signal handler is called between the calls to TimerTimeout() and
MsgSendv(), the TimerTimeout() values are saved during the signal
handler and then are restored when the signal handler exits.

May 31, 2004 Manifests 3301

TimerTimeout(), TimerTimeout r() 2004, QNX Software Systems Ltd.

EventTypes

If the timeout expires, the kernel acts upon the event specified in the
sigevent structure pointed to by the notify argument. We
recommend the following event types in this case:

� SIGEV SIGNAL

� SIGEV SIGNAL CODE

� SIGEV SIGNAL THREAD

� SIGEV PULSE

� SIGEV UNBLOCK

� SIGEV INTR

Only SIGEV UNBLOCK guarantees that the kernel call unblocks. A
signal may be ignored, blocked, or accepted by another thread, and a
pulse can only unblock a MsgReceivev(). If you pass NULL for event,
SIGEV UNBLOCK is assumed. In this case, a timed out kernel call
returns failure with an error of ETIMEDOUT.

MsgSendv() doesn’t unblock on SIGEV UNBLOCK if the server has
already received the message via MsgReceivev() and has specified
NTO CHF UNBLOCK in the flags argument to its ChannelCreate()

call. In this case, it’s up to the server to do a MsgReplyv().

�

The timeout

The type of timer used to implement the timeout is specified with the
id argument.

The timeout:

� Is specified by the ntime argument (the number of nanoseconds).

� Is relative to the current time (when TimerTimeout() is called),
unless flags includes TIMER ABSTIME, which makes the timeout
occur at the absolute time set in ntime.

3302 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. TimerTimeout(), TimerTimeout r()

� Occurs on a clock tick (see ClockPeriod()) so the actual wakeup
time is a minimum of:
(ntime) � (size of timer tick) nanoseconds

If you specify a resolution that amounts to 1.7 timer ticks, you’ll wake
up in at least 1.7 timer ticks.

If you don’t wish to block for any time, you can pass a NULL for
ntime, in which case no timer is used, the event is assumed to be
SIGEV UNBLOCK, and an attempt to enter a blocking state as set by
flags immediately returns with ETIMEDOUT. Although a questionable
practice, you can use it to poll potential blocking kernel calls. For
example, you can poll for messages using MsgReceivev() with an
immediate timeout. A much better approach is to use multiple threads
and have one block waiting for messages.

If you set flags to NTO TIMEOUT NANOSLEEP, then these calls
block in the STATE NANOSLEEP state until the timeout (or a signal
that unblocks the thread) occurs. You can use this to implement an
efficient kernel sleep as follows:

TimerTimeout(CLOCK REALTIME, NTO TIMEOUT NANOSLEEP,
NULL, ntime, otime);

If otime isn’t NULL and the sleep is unblocked by a signal, it contains
the time remaining in the sleep.

Blocking states

These calls don’t block unless you specify
NTO TIMEOUT NANOSLEEP in flags. In this case, the calls block as

follows:

STATE NANOSLEEP

The calling thread blocks for the requested time period.

May 31, 2004 Manifests 3303

TimerTimeout(), TimerTimeout r() 2004, QNX Software Systems Ltd.

Returns:
The only difference between these functions is the way they indicate
errors:

TimerTimeout()

The previous flags. If an error occurs, -1 is returned and errno
is set.

TimerTimeout r()

The previous flags. This function does NOT set errno. If an
error occurs, the negative of a value from the Errors section is
returned.

Errors:
EAGAIN All kernel timer entries are in use.

EFAULT A fault occurred when the kernel tried to access ntime,
otime, or notify.

EINTR The call was interrupted by a signal.

EINVAL Invalid timer value id.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

3304 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. TimerTimeout(), TimerTimeout r()

See also:
sigevent, TimerCreate(), TimerInfo()

May 31, 2004 Manifests 3305

times() 2004, QNX Software Systems Ltd.

Get time-accounting information

Synopsis:
#include <sys/times.h>

clock t times(struct tms* buffer);

Arguments:
buffer A pointer to a tms structure where the function can store

the time-accounting information. For information about the
tms structure, see below.

Library:
libc

Description:
The times() function stores time-accounting information in the
structure pointed to by buffer. The type clock t and the tms
structure are defined in the <sys/times.h> header file.

The tms structure contains at least the following members:

clock t tms utime

The CPU time charged for the execution of user instructions of
the calling process.

clock t tms stime

The CPU time charged for execution by the system on behalf of
the calling process.

clock t tms cutime

The sum of the tms utime and tms cutime values of the child
processes.

clock t tms cstime

The sum of the tms stime and tms cstime values of the child
processes.

3306 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. times()

All times are in CLK TCK’ths of a second. CLK TCK is defined in the
<time.h> header file. A CLK TCK is the equivalent of:

#define sysconf(SC CLK TCK)

The times of a terminated child process are included in the tms cutime
and tms cstime elements of the parent when a wait() or waitpid()
function returns the process ID of this terminated child. If a child
process hasn’t waited for its terminated children, their times aren’t
included in its times.

Returns:
The elapsed real time, in clock ticks, of kernel uptime.

The value returned may overflow the possible range of type clock t.�

Examples:
/*
* The following program executes the program
* specified by argv[1]. After the child program
* is finished, the cpu statistics of the child are
* printed.
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/times.h>

int main(int argc, char **argv)
{

struct tms childtim;

system(argv[1]);
times(&childtim);
printf("system time = %d\n", childtim.tms cstime);
printf("user time = %d\n", childtim.tms cutime);
return EXIT SUCCESS;

}

May 31, 2004 Manifests 3307

times() 2004, QNX Software Systems Ltd.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
clock gettime()

3308 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. timespec
Time-specification structure

Synopsis:
#include <time.h>

struct timespec {
time t tv sec;
long tv nsec;

}

Description:
The timespec structure specifies a time in seconds and nanoseconds.
The members include:

tv sec The number of seconds. If specifying an absolute time,
this member is the number of seconds since 1970.

tv nsec The number of nanoseconds.

Classification:
POSIX 1003.1 (Realtime Extensions)

See also:
nsec2timespec(), timespec2nsec()

May 31, 2004 Manifests 3309

timespec2nsec() 2004, QNX Software Systems Ltd.

Convert a timespec structure to nanoseconds

Synopsis:
#include <time.h>

uint64 timespec2nsec(const struct timespec* ts);

Arguments:
ts A pointer to the timespec that you want to convert to

nanoseconds.

Library:
libc

Description:
The timespec2nsec() function converts the number of seconds and
nanoseconds in the timespec structure pointed to by ts into
nanoseconds.

Returns:
The number of nanoseconds.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

3310 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. timespec2nsec()

See also:
nsec2timespec(), timespec

May 31, 2004 Manifests 3311

timezone 2004, QNX Software Systems Ltd.

The number of seconds by which the local time zone is earlier than UTC

Synopsis:
#include <time.h>

long int timezone;

Description:
This global variable holds the number of seconds by which the local
time zone is earlier than Coordinated Universal Time (UTC)
(formerly known as Greenwich Mean Time). Whenever you call a
time function, tzset() is called to set the variable, based on the current
time zone.

Classification:
QNX Neutrino

See also:
daylight, tzname, tzset()

“Setting the time zone” in the Configuring Your Environment chapter
of the Neutrino User’s Guide

3312 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tm
Structure that describes calendar time

Synopsis:
#include <time.h>
struct tm {

int tm sec;
int tm min;
int tm hour;
int tm mday;
int tm mon;
int tm year;
int tm wday;
int tm yday;
int tm isdst;
long int tm gmtoff;
const char * tm zone;

};

Description:
The tm structure describes the calendar time. The members of this
structure include:

tm sec Seconds after the minute, in the range [0,61], allowing
for leap seconds.

tm min Minutes after the hour, in the range [0,59].

tm hour Hours after midnight, in the range [0,23].

tm mday Day of the month, in the range [1,31].

tm mon Months since January, in the range [0,11].

tm year Years since 1900.

tm wday Days since Sunday, in the range [0,6].

tm yday Days since January 1, in the range [0,365], allowing
for leap years.

tm isdst Daylight saving time flag.

May 31, 2004 Manifests 3313

tm 2004, QNX Software Systems Ltd.

tm gmtoff Offset from UTC — see setlocale().

tm zone String for the time zone name.

Classification:
ANSI

See also:
asctime(), gmtime(), gmtime r(), localtime(), localtime r(), mktime(),
setlocale(), strftime(), wcsftime()

3314 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tmpfile(), tmpfile64()
Create a temporary file

Synopsis:
#include <stdio.h>

FILE* tmpfile(void);

FILE* tmpfile64(void);

Library:
libc

Description:
The tmpfile() and tmpfile64() functions create a temporary file and
opens a corresponding FILE stream. The file is automatically
removed when it’s closed or when the program terminates. The file is
opened in update mode (as in fopen()’s w+ mode).

If the process is killed between file creation and unlinking, a
permanent file may be left behind.

When a stream is opened in update mode, both reading and writing
may be performed. However, writing may not be followed by reading
without an intervening call to the fflush() function, or to a
file-positioning function (fseek(), fsetpos(), rewind()). Similarly,
reading may not be followed by writing without an intervening call to
a file-positioning function, unless the read resulted in end-of-file.

�

Returns:
A pointer to the stream of the temporary file, or NULL if an error
occurs (errno is set).

Errors:
EACCESS The calling process doesn’t have permission to create

the temporary file.

May 31, 2004 Manifests 3315

tmpfile(), tmpfile64() 2004, QNX Software Systems Ltd.

EMFILE The calling process already has already used
OPEN MAX file descriptors.

ENFILE The system already has the maximum number of files
open.

EROFS The filesystem for the temporary file is read-only.

Examples:
#include <stdio.h>
#include <stdlib.h>

static FILE *TempFile;

int main(void)
{

TempFile = tmpfile();
...

fclose(TempFile);

/* The temporary file will be removed when we exit. */
return EXIT SUCCESS;

}

Classification:
tmpfile() is ANSI, tmpfile64() is for large-file support

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

3316 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tmpfile(), tmpfile64()

See also:
fopen(), fopen64(), freopen(), freopen64(), tempnam(), tmpnam()

May 31, 2004 Manifests 3317

tmpnam() 2004, QNX Software Systems Ltd.

Generate a unique string for use as a filename

Synopsis:
#include <stdio.h>

char* tmpnam(char* buffer);

Arguments:
buffer NULL, or a pointer to a buffer where the function can store

the filename. If buffer isn’t NULL, the buffer must be at
least L tmpnam bytes long.

Library:
libc

Description:
The tmpnam() function generates a unique string that’s a valid
filename and that’s not the same as the name of an existing file.

The tmpnam() function generates up to TMP MAX unique file names
before it starts to recycle them.

The generated filename is prefixed with the first accessible directory
contained in:

� The TMPDIR environment variable

� The temporary file directory P tmpdir (defined in <stdio.h>)

� The PATH TMP constant (defined in <paths.h>)

If all of these paths are inaccessible, tmpnam() attempts to use /tmp
and then the current working directory.

The generated filename is stored in an internal buffer; if buffer is
NULL, the function returns a pointer to this buffer; otherwise,
tmpnam() copies the filename into buffer.

Subsequent calls to tmpnam() reuse the internal buffer. If buffer is
NULL, you might want to duplicate the resulting string. For example,

3318 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tmpnam()

char *name1, *name2;

name1 = strdup(tmpnam(NULL));
name2 = strdup(tmpnam(NULL));

Returns:
A pointer to the generated filename for success, or NULL if an error
occurs (errno is set).

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

char filename[L tmpnam];
FILE *fp;

tmpnam(filename);
fp = fopen(filename, "w+b");

...
fclose(fp);
remove(filename);

return EXIT SUCCESS;
}

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Read the Caveats

May 31, 2004 Manifests 3319

tmpnam() 2004, QNX Software Systems Ltd.

Caveats:
The tmpnam() function isn’t thread-safe if you pass it a NULL buffer.

This function only creates pathnames; the application must create and
remove the files.

It’s possible for another thread or process to create a file with the same
name between when the pathname is created and the file is opened.

See also:
tempnam(), tmpfile()

3320 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tolower()
Convert a character to lowercase

Synopsis:
#include <ctype.h>

int tolower(int c);

Arguments:
c The character that you want to convert.

Library:
libc

Description:
The tolower() function converts c to a lowercase letter, if c represents
an uppercase letter.

Returns:
The corresponding lowercase letter when the argument is an
uppercase letter; otherwise, the original character is returned.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

char chars[] = {
’A’,
’5’,
’$’,
’Z’

};

#define SIZE sizeof(chars) / sizeof(char)

int main(void)
{

int i;

for(i = 0; i < SIZE; i++) {

May 31, 2004 Manifests 3321

tolower() 2004, QNX Software Systems Ltd.

printf("%c ", tolower(chars[i]));
}
printf("\n");
return EXIT SUCCESS;

}

produces the output:

a 5 $ z

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), isxdigit(), strlwr(), strupr(), toupper()

3322 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. toupper()
Convert a character to uppercase

Synopsis:
#include <ctype.h>

int toupper(int c);

Arguments:
c The character that you want to convert.

Library:
libc

Description:
The toupper() function converts c to a uppercase letter, if c represents
a lowercase letter.

Returns:
The corresponding uppercase letter when the argument is a lowercase
letter; otherwise, the original character is returned.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

char chars[] = {
’a’,
’5’,
’$’,
’z’

};

#define SIZE sizeof(chars) / sizeof(char)

int main(void)
{

int i;

for(i = 0; i < SIZE; i++) {

May 31, 2004 Manifests 3323

toupper() 2004, QNX Software Systems Ltd.

printf("%c ", toupper(chars[i]));
}
printf("\n");
return EXIT SUCCESS;

}

produces the output:

A 5 $ Z

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), isxdigit(), strlwr(), strupr(), tolower()

3324 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. towctrans()
Convert a wide character in a specified manner

Synopsis:
#include <wctype.h>

wint t towctrans(wint t wc,
wctrans t category);

Arguments:
wc The wide character that you want to convert.

category How you want to convert the character; get this by
calling wctrans().

Library:
libc

Description:
The towctrans() function converts wc, using the mapping described
by category. The following functions are equivalent:

Function Equivalent wctrans() call

towlower(wc) towctrans(wc, wctrans("tolower"))

towupper(wc) towctrans(wc, wctrans("toupper"))

Returns:
The corresponding converted wide character when the argument is
valid; otherwise, the original wide character.

Errors:
EINVAL The conversion descriptor in category is invalid.

May 31, 2004 Manifests 3325

towctrans() 2004, QNX Software Systems Ltd.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
wctrans()

“Character manipulation functions” and “Wide-character functions”
in Library Reference Summary

3326 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. towlower()
Convert a wide character to lowercase

Synopsis:
#include <wctype.h>

wint t towlower(wint t wc);

Arguments:
wc The wide character that you want to convert.

Library:
libc

Description:
The towlower() function converts wc to a lowercase letter, if wc
represents an uppercase letter.

Returns:
The corresponding lowercase letter when the argument is an
uppercase letter; otherwise, the original wide character is returned.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 3327

towlower() 2004, QNX Software Systems Ltd.

See also:
“Character manipulation functions” and “Wide-character functions”
in Library Reference Summary

3328 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. towupper()
Convert a wide character to uppercase

Synopsis:
#include <wctype.h>

wint t towupper(wint t wc);

Arguments:
wc The wide character that you want to convert.

Library:
libc

Description:
The towupper() function converts wc to an uppercase letter if wc
represents a lowercase letter.

Returns:
The corresponding uppercase letter when the argument is a lowercase
letter; otherwise, the original wide character is returned.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 3329

towupper() 2004, QNX Software Systems Ltd.

See also:
“Character manipulation functions” and “Wide-character functions”
in Library Reference Summary

3330 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. TraceEvent()
Trace kernel events

Synopsis:
#include <sys/neutrino.h>

int TraceEvent(int mode,
...);

Arguments:
mode A command that indicates what you want to trace. Certain

modes require additional arguments.

Library:
libc

Description:
The TraceEvent() function controls all stages of the instrumentation
process such as initialization, starting, execution control and stopping.
These stages consist of the following activities:

� creating internal circular link list of trace buffers

� initializing filters

� turning on or off the event stream

� deallocating the internal circular link list of trace buffers

This function requires the instrumented kernel. For more information,
see the documentation for the System Analysis Toolkit (SAT).

�

Returns:
If mode is set to NTO TRACE QUERYEVENTS

Number of events in the buffer, or -1 if an error occurs (errno is
set).

May 31, 2004 Manifests 3331

TraceEvent() 2004, QNX Software Systems Ltd.

If mode isn’t set to NTO TRACE QUERYEVENTS

0 for success, or -1 if an error occurs (errno is set).

Errors:
ECANCELED The requested action has been canceled.

EFAULT The requested action has been specified out of
order.

ENOMEM Insufficient memory to allocate the trace buffers.

ENOSUP The requested action isn’t supported.

EPERM The application doesn’t have the appropriate
permission to perform the action.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Read the Caveats

Signal handler Yes

Thread Yes

Caveats:
You can call TraceEvent() from an interrupt/event handler. However,
not all trace modes are valid in this case. The valid trace modes are:

� NTO TRACE INSERTSUSEREVENT

� NTO TRACE INSERTCUSEREVENT

� NTO TRACE INSERTUSRSTREVENT

3332 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. TraceEvent()

� NTO TRACE INSERTEVENT

� NTO TRACE STOP

� NTO TRACE STARTNOSTATE

� NTO TRACE START

See also:
InterruptAttach(), InterruptHookTrace()

May 31, 2004 Manifests 3333

truncate() 2004, QNX Software Systems Ltd.

Truncate a file to a specified length

Synopsis:
#include <unistd.h>

int truncate(const char* path,
off t length);

Arguments:
path The path name of the file that you want to truncate.

length The new size of the file.

Library:
libc

Description:
The truncate() function causes the regular file named by path to have
a size of length bytes.

The effect of truncate() on other types of files is unspecified. If the
file previously was larger than length, the extra data is lost. If it was
previously shorter than length, bytes between the old and new lengths
are read as zeroes. The process must have write permission for the
file.

If the request would cause the file size to exceed the soft file size limit
for the process, the request fails and the implementation generates the
SIGXFSZ signal for the process.

This function doesn’t modify the file offset for any open file
descriptions associated with the file. On successful completion, if the
file size is changed, truncate() marks for update the st ctime and
st mtime fields of the file, and if the file is a regular file, the S ISUID
and S ISGID bits of the file mode may be cleared.

3334 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. truncate()

Returns:
0 Success.

-1 An error occurred; errno is set.

Errors:
EACCES A component of the path prefix denies search

permission, or write permission is denied on the file.

EFAULT The path argument points outside the process’s
allocated address space.

EFBIG The length argument was greater than the maximum
file size.

EINTR A signal was caught during execution.

EINVAL The length argument is invalid, or the path argument
isn’t an ordinary file.

EIO An I/O error occurred while reading from or writing
to a filesystem.

EISDIR The named file is a directory.

ELOOP Too many symbolic links were encountered in
resolving path.

EMFILE The maximum number of file descriptors available
to the process has been reached.

EMULTIHOP Components of path require hopping to multiple
remote machines and filesystem type doesn’t allow
it.

ENAMETOOLONG

The length of the specified pathname exceeds
PATH MAX bytes, or the length of a component of
the pathname exceeds NAME MAX bytes.

May 31, 2004 Manifests 3335

truncate() 2004, QNX Software Systems Ltd.

ENFILE Additional space couldn’t be allocated for the
system file table.

ENOENT A component of path doesn’t name an existing file
or path is an empty string.

ENOLINK The path argument points to a remote machine and
the link to that machine is no longer active.

ENOTDIR A component of the path prefix of path isn’t a
directory.

EROFS The named file resides on a read-only filesystem.

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
chmod(), fcntl(), ftruncate(), open()

3336 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ttyname()
Get a fully qualified pathname for a file

Synopsis:
#include <unistd.h>

char *ttyname(int fildes);

Arguments:
fildes A file descriptor that’s associated with the file whose name

you want to get.

Library:
libc

Description:
The ttyname() function returns a pointer to a static buffer that contains
a fully qualified pathname associated with the file associated with
fildes.

Returns:
A pointer to the pathname for fildes, or NULL if an error occurred
(errno is set).

Errors:
EBADF The fildes argument is invalid.

ENOSYS The ttyname() function isn’t implemented for the
filesystem specified by filedes.

ENOTTY Not a tty.

Examples:
/*
* The following program prints out the name
* of the terminal associated with stdin.
*/

May 31, 2004 Manifests 3337

ttyname() 2004, QNX Software Systems Ltd.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(void)
{

if(isatty(0)) {
printf("%s\n", ttyname(0));

} else {
printf("\n");

}
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread No

See also:
ctermid(), setsid(), ttyname r()

3338 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ttyname r()
Get a fully qualified pathname for a file

Synopsis:
#include <unistd.h>

int ttyname r(int fildes,
char* name,
size t namesize);

Arguments:
fildes A file descriptor that’s associated with the file whose

name you want to get.

name A pointer to a buffer where the function can store the
path name.

namesize The size of the buffer.

Library:
libc

Description:
The ttyname r() function stores the null-terminated pathname of the
terminal associated with the file descriptor fildes in the character array
referenced by name. The array is namesize characters long and should
have space for the name and the terminating NULL character.

Returns:
Zero for success, or an error number.

Errors:
EBADF The fildes argument isn’t a valid file descriptor.

ENOSYS The ttyname r() function isn’t implemented for the
filesystem specified by filedes.

ENOTTY The fildes argument doesn’t refer to a tty.

May 31, 2004 Manifests 3339

ttyname r() 2004, QNX Software Systems Ltd.

ERANGE The value of namesize is smaller than the length of the
string to be returned, including the terminating null
character.

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
ctermid(), errno, setsid(), ttyname()

3340 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tzname
The abbreviations for the time zone for standard and daylight savings time

Synopsis:
#include <time.h>

char *tzname[];

Description:
This global variable holds the standard abbreviations for the time
zone and the time zone when daylight saving time is in effect.
Whenever you call a time function, tzset() is called to set the values in
the array, based on the current time zone.

Classification:
QNX Neutrino

See also:
daylight, timezone, tzset()

“Setting the time zone” in the Configuring Your Environment chapter
of the Neutrino User’s Guide

May 31, 2004 Manifests 3341

tzset() 2004, QNX Software Systems Ltd.

Set the time according to the current time zone

Synopsis:
#include <time.h>

void tzset(void);

Library:
libc

Description:
The tzset() function sets the global variables daylight, timezone and
tzname according to the value of the TZ environment variable, or to
the value of the CS TIMEZONE configuration string if TZ isn’t set.

The global variables have the following values after tzset() is
executed:

daylight Zero indicates that daylight saving time isn’t supported
in the locale; a nonzero value indicates that daylight
saving time is supported in the locale. This variable is
cleared or set after a call to the tzset() function,
depending on whether or not a daylight saving time
abbreviation is specified in the TZenvironment variable.

timezone The number of seconds that the local time zone is
earlier than Coordinated Universal Time (UTC)
(formerly known as Greenwich Mean Time (GMT)).

tzname A two-element array pointing to strings giving the
abbreviations for the name of the time zone when
standard and daylight saving time are in effect.

The time that you set on the computer with the date command
reflects Coordinated Universal Time (UTC). The environment
variable TZ is used to establish the local time zone. For more
information, see “Setting the time zone” in the Configuring Your
Environment chapter of the Neutrino User’s Guide.

3342 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. tzset()

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void print zone()
{

char *tz;

printf("TZ: %s\n", (tz = getenv("TZ"))
? tz : "default EST5EDT");

printf(" daylight: %d\n", daylight);
printf(" timezone: %ld\n", timezone);
printf(" time zone names: %s %s\n",

tzname[0], tzname[1]);
}

int main(void)
{

print zone();
setenv("TZ", "PST8PDT", 1);
tzset();
print zone();
return EXIT SUCCESS;

}

produces the output:

TZ: default EST5EDT
daylight: 1
timezone: 18000
time zone names: EST EDT

TZ: PST8PDT
daylight: 1
timezone: 28800
time zone names: PST PDT

Classification:
POSIX 1003.1

May 31, 2004 Manifests 3343

tzset() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ctime(), daylight, localtime(), localtime r(), mktime(), strftime()
timezone, tzname

“Setting the time zone” in the Configuring Your Environment chapter
of the Neutrino User’s Guide

3344 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ualarm()
Schedule an alarm

Synopsis:
#include <unistd.h>

useconds t ualarm(useconds t usec,
useconds t interval);

Arguments:
usec The number of microseconds that you want to elapse

before the first alarm occurs, or 0 to cancel any previous
request for an alarm.

interval The number of microseconds that you want to elapse
before the subsequent alarms occur.

Library:
libc

Description:
The ualarm() function causes the system to send the calling process a
SIGALRM signal after usec microseconds of real-time have elapsed.
The alarm is then sent every interval microseconds after that.

Processor scheduling delays may cause a delay between when the
signal is sent and when the process actually handles it.

If usec is 0, any previous ualarm() request is canceled.

Returns:
0 There was no previous ualarm() request.

-1 An error occurred (errno is set).

Any other value

The number of microseconds until the next scheduled
SIGALRM.

May 31, 2004 Manifests 3345

ualarm() 2004, QNX Software Systems Ltd.

Errors:
EAGAIN All timers are in use; wait for a process to release one

and try again.

Examples:
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{

useconds t timeleft;

printf("Set the alarm and sleep\n");
ualarm((useconds t)(10 * 1000 * 1000), 0);
sleep(5); /* go to sleep for 5 seconds */

/*
To get the time left before the SIGALRM is
to arrive, one must cancel the initial timer,
which returns the amount of time it had
remaining.

*/
timeleft = ualarm(0, 0);
printf("Time left before cancel, and rearm: %ld\n",

timeleft);

/*
Start a new timer that kicks us when timeleft
seconds have passed.

*/
ualarm(timeleft, 0);

/*
Wait until we receive the SIGALRM signal; any
signal kills us, though, since we don’t have
a signal handler.

*/
printf("Hanging around, waiting to exit\n");
pause();

/* You’ll never get here. */
return EXIT SUCCESS;

}

3346 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ualarm()

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
alarm(), TimerAlarm(), and ualarm() requests aren’t “stacked”; only a
single SIGALRM generator can be scheduled with these functions. If
the SIGALRM signal hasn’t been generated, the next call to alarm(),
TimerAlarm(), or ualarm() reschedules it.

Don’t mix calls to ualarm() with nanosleep(), sleep(), timer create(),
timer delete(), timer getoverrun(), timer gettime(), timer settime(), or
usleep().

See also:
alarm(), nanosleep(), sigaction(), sleep(), timer create(),
timer delete(), timer getoverrun(), timer gettime(), timer settime(),
TimerAlarm(), usleep()

May 31, 2004 Manifests 3347

UDP 2004, QNX Software Systems Ltd.

Internet User Datagram Protocol

Synopsis:
#include <sys/socket.h>
#include <netinet/in.h>

int socket(AF INET,
SOCK DGRAM,
0);

Description:
UDP is a simple, unreliable datagram protocol that’s used to support
the SOCK DGRAM abstraction for the Internet protocol family. UDP
sockets are connectionless and are normally used with the sendto()
and recvfrom() calls, although you can also use the connect() call to
fix the destination for future packets (in which case you can use the
recv() or read() and send() or write() system calls).

UDP address formats are identical to those used by TCP. In particular,
UDP provides a port identifier in addition to the normal Internet
address format. Note that the UDP port space is separate from the
TCP port space; that is, a UDP port may not be “connected” to a TCP
port. In addition, broadcast packets may be sent — assuming the
underlying network supports this — by using a reserved broadcast
address; this address is network-interface dependent.

You can use options at the IP transport level with UDP (see the IP
protocol).

Returns:
A descriptor referencing the socket, or -1 if an error occurs (errno is
set).

Errors:
EADDRINUSE You tried to create a socket with a port that has

already been allocated.

3348 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. UDP

EADDRNOTAVAIL

You tried to create a socket with a network address
for which no network interface exists.

EISCONN You tried to establish a connection on a socket that
already has one, or to send a datagram with the
destination address specified and the socket is
already connected.

ENOBUFS The system ran out of memory for an internal data
structure.

ENOTCONN You tried to send a datagram, but no destination
address was specified and the socket hasn’t been
connected.

See also:
IP protocol

connect(), getsockopt(), read(), recv(), recvfrom(), send(), sendto(),
socket(), write()

RFC 768

May 31, 2004 Manifests 3349

ultoa(), ulltoa() 2004, QNX Software Systems Ltd.

Convert an unsigned long integer into a string, using a given base

Synopsis:
#include <stdlib.h>

char* ultoa(unsigned long int value,
char* buffer,
int radix);

char* ulltoa(uint64 t value
char* buffer,
int radix);

Arguments:
value The value to convert into a string.

buffer A buffer in which the function stores the string. The size of
the buffer must be at least 33 bytes when converting values
in base 2 (binary).

radix The base to use when converting the number. This value
must be in the range:

2 ≤ radix ≤ 36

Library:
libc

Description:
The ultoa() and ulltoa() functions convert the unsigned binary integer
value into the equivalent string in base radix notation, storing the
result in the character array pointed to by buffer. A NUL character is
appended to the result.

3350 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ultoa(), ulltoa()

Returns:
A pointer to the result.

Examples:
#include <stdio.h>
#include <stdlib.h>

void print value(unsigned long int value)
{

int base;
char buffer[33];

for(base = 2; base <= 16; base = base + 2)
printf("%2d %s\n", base,

ultoa(value, buffer, base));
}

int main(void)
{

print value((unsigned) 12765L);
return EXIT SUCCESS;

}

produces the output:

2 11000111011101
4 3013131
6 135033
8 30735

10 12765
12 7479
14 491b
16 31dd

Classification:
ultoa() is QNX 4; ulltoa() is Unix

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 3351

ultoa(), ulltoa() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
atoi(), atol(), itoa(), ltoa(), sscanf(), strtol(), strtoul(), utoa()

3352 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. umask()
Set the file-mode creation mask for the process

Synopsis:
#include <sys/types.h>
#include <sys/stat.h>

mode t umask(mode t cmask);

Arguments:
cmask The new file-mode creation mask; that is, the permissions

that you don’t want set when the process creates a file. The
mask is a combination of these bits:

Owner Group Others Permission

S IRUSR S IRGRP S IROTH Read

S IRWXU S IRWXG S IRWXO Read, write, execute/search. A bitwise inclusive OR
of the other three constants.
(S IRWXU is OR of IRUSR, S IWSUR and S IXUSR.)

S IWUSR S IWGRP S IWOTH Write

S IXUSR S IXGRP S IXOTH Execute/search

Library:
libc

Description:
The umask() function sets the process’s file-mode creation mask to
cmask, and returns the previous value of the mask. Only the file
permission bits (as defined in <sys/stat.h>) are used.

The file-mode creation mask for the process is used when you call
creat(), mkdir(), mkfifo(), and open(), to turn off permission bits in the
mode argument supplied. Bit positions set in cmask are cleared in the
mode of the created file.

May 31, 2004 Manifests 3353

umask() 2004, QNX Software Systems Ltd.

Returns:
The previous value of the file-mode creation mask.

Examples:
/*
* Set the umask to RW for owner,group; R for other
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>

int main(void)
{

mode t omask;
mode t nmask;

nmask = S IRUSR | S IWUSR | /* owner read write */
S IRGRP | S IWGRP | /* group read write */
S IROTH; /* other read */

omask = umask(nmask);
printf("Mask changed from %o to %o\n",

omask, nmask);
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

3354 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. umask()

See also:
chmod(), creat(), mkdir(), mkfifo(), open(), stat()

May 31, 2004 Manifests 3355

umount() 2004, QNX Software Systems Ltd.

Unmount a filesystem

Synopsis:
#include <sys/mount.h>

int umount(const char* dir,
int flags);

Arguments:
dir The filesystem that you want to unmount.

flags Flags that control the operation. Currently, the only valid
value for flags is:

� MOUNT FORCE — force an unmount to occur.

Library:
libc

Description:
The umount() function sends a request to the server to unmount the
path described by dir.

Returns:
-1 on failure.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

3356 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. umount()

See also:
mount()

Writing a Resource Manager in Programmer’s Guide

May 31, 2004 Manifests 3357

UNALIGNED PUT16() 2004, QNX Software Systems Ltd.

Write a misaligned 16-bit value safely

Synopsis:
#include <gulliver.h>

void UNALIGNED PUT16(uint16 t *loc,
uint16 t num);

Arguments:
loc The address where you want to write the value.

num The value that you want to write.

Library:
libc

Description:
The UNALIGNED PUT16() macro lets you write the value num at the
misaligned address loc without faulting.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

3358 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. UNALIGNED PUT16()

Caveats:
UNALIGNED PUT16() is implemented as a macro.

See also:
ENDIAN BE16(), ENDIAN BE32(), ENDIAN BE64(),
ENDIAN LE16(), ENDIAN LE32(), ENDIAN LE64(),
ENDIAN RET32(), ENDIAN RET64(), ENDIAN SWAP16(),
ENDIAN SWAP32(), ENDIAN SWAP64(), htonl(), htons(), ntohl(),
ntohs(), UNALIGNED PUT32(), UNALIGNED PUT64(),
UNALIGNED RET16(), UNALIGNED RET32(),
UNALIGNED RET64()

May 31, 2004 Manifests 3359

UNALIGNED PUT32() 2004, QNX Software Systems Ltd.

Write a misaligned 32-bit value safely

Synopsis:
#include <gulliver.h>

void UNALIGNED PUT32(uint32 t *loc,
uint32 t num);

Arguments:
loc The address where you want to write the value.

num The value that you want to write.

Library:
libc

Description:
The UNALIGNED PUT32() macro lets you write the value num at the
misaligned address loc without faulting.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

3360 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. UNALIGNED PUT32()

Caveats:
UNALIGNED PUT32() is implemented as a macro.

See also:
ENDIAN BE16(), ENDIAN BE32(), ENDIAN BE64(),
ENDIAN LE16(), ENDIAN LE32(), ENDIAN LE64(),
ENDIAN RET32(), ENDIAN RET64(), ENDIAN SWAP16(),
ENDIAN SWAP32(), ENDIAN SWAP64(), htonl(), htons(), ntohl(),
ntohs(), UNALIGNED PUT16(), UNALIGNED PUT64(),
UNALIGNED RET16(), UNALIGNED RET32(),
UNALIGNED RET64()

May 31, 2004 Manifests 3361

UNALIGNED PUT64() 2004, QNX Software Systems Ltd.

Write a misaligned 64-bit value safely

Synopsis:
#include <gulliver.h>

void UNALIGNED PUT64(uint64 t * loc,
uint64 t num);

Arguments:
loc The address where you want to write the value.

num The value that you want to write.

Library:
libc

Description:
The UNALIGNED PUT64() macro lets you write the value num at the
misaligned address loc without faulting.

This macro isn’t currently implemented.�

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

3362 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. UNALIGNED PUT64()

Caveats:
UNALIGNED PUT64() is implemented as a macro.

See also:
ENDIAN BE16(), ENDIAN BE32(), ENDIAN BE64(),
ENDIAN LE16(), ENDIAN LE32(), ENDIAN LE64(),
ENDIAN RET32(), ENDIAN RET64(), ENDIAN SWAP16(),
ENDIAN SWAP32(), ENDIAN SWAP64(), htonl(), htons(), ntohl(),
ntohs(), UNALIGNED PUT16(), UNALIGNED PUT32(),
UNALIGNED RET16(), UNALIGNED RET32(),
UNALIGNED RET64()

May 31, 2004 Manifests 3363

UNALIGNED RET16() 2004, QNX Software Systems Ltd.

Access a misaligned 16-bit value safely

Synopsis:
#include <gulliver.h>

uint16 t UNALIGNED RET16(const uint16 t *loc);

Arguments:
loc The address where you want to get the value from.

Library:
libc

Description:
The UNALIGNED RET16() macro lets you access the misaligned
16-bit value pointed to by loc without faulting.

Returns:
The 16-bit value pointed to by loc.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

3364 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. UNALIGNED RET16()

Caveats:
UNALIGNED RET16() is implemented as a macro.

See also:
ENDIAN BE16(), ENDIAN BE32(), ENDIAN BE64(),
ENDIAN LE16(), ENDIAN LE32(), ENDIAN LE64(),
ENDIAN RET32(), ENDIAN RET64(), ENDIAN SWAP16(),
ENDIAN SWAP32(), ENDIAN SWAP64(), htonl(), htons(), ntohl(),
ntohs(), UNALIGNED PUT16(), UNALIGNED PUT32(),
UNALIGNED PUT64(), UNALIGNED RET32(),
UNALIGNED RET64()

May 31, 2004 Manifests 3365

UNALIGNED RET32() 2004, QNX Software Systems Ltd.

Access a misaligned 32-bit value safely

Synopsis:
#include <gulliver.h>

uint32 t UNALIGNED RET32(const uint32 t *loc);

Arguments:
loc The address where you want to get the value from.

Library:
libc

Description:
The UNALIGNED RET32() macro lets you access the misaligned
32-bit value pointed to by loc without faulting.

Returns:
The 32-bit value pointed to by loc.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

3366 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. UNALIGNED RET32()

Caveats:
UNALIGNED RET32() is implemented as a macro.

See also:
ENDIAN BE16(), ENDIAN BE32(), ENDIAN BE64(),
ENDIAN LE16(), ENDIAN LE32(), ENDIAN LE64(),
ENDIAN RET32(), ENDIAN RET64(), ENDIAN SWAP16(),
ENDIAN SWAP32(), ENDIAN SWAP64(), htonl(), htons(), ntohl(),
ntohs(), UNALIGNED PUT16(), UNALIGNED PUT32(),
UNALIGNED PUT64(), UNALIGNED RET16(),
UNALIGNED RET64()

May 31, 2004 Manifests 3367

UNALIGNED RET64() 2004, QNX Software Systems Ltd.

Access a misaligned 64-bit value safely

Synopsis:
#include <gulliver.h>

uint64 t UNALIGNED RET64(const uint64 t * loc);

Arguments:
loc The address where you want to get the value from.

Library:
libc

Description:
The UNALIGNED RET64() macro lets you access the misaligned
64-bit value pointed to by loc without faulting.

This macro isn’t currently implemented.�

Returns:
The 64-bit value pointed to by loc.

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

3368 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. UNALIGNED RET64()

Caveats:
UNALIGNED RET64() is implemented as a macro.

See also:
ENDIAN BE16(), ENDIAN BE32(), ENDIAN BE64(),
ENDIAN LE16(), ENDIAN LE32(), ENDIAN LE64(),
ENDIAN RET32(), ENDIAN RET64(), ENDIAN SWAP16(),
ENDIAN SWAP32(), ENDIAN SWAP64(), htonl(), htons(), ntohl(),
ntohs(), UNALIGNED PUT16(), UNALIGNED PUT32(),
UNALIGNED PUT64(), UNALIGNED RET16(),
UNALIGNED RET32()

May 31, 2004 Manifests 3369

uname() 2004, QNX Software Systems Ltd.

Get information about the operating system

Synopsis:
#include <sys/utsname.h>

int uname(struct utsname * name);

Arguments:
name A pointer to a utsname where the function can store the

information; see below.

Library:
libc

Description:
The uname() function stores information about the current operating
system in the structure pointed to by the argument name.

The system name structure, utsname, is defined in
<sys/utsname.h>, and contains at least the following structure
members:

char* sysname The name of the OS.

char* nodename

The name of this node.

char* release The current release level.

char* version The current version level.

char* machine The hardware type.

Each of these items is a null-terminated character array.

3370 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. uname()

Returns:
0 Success.

-1 An error occurred (errno is set).

Examples:
/*
* The following program prints some information about the
* system it’s running on.
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/utsname.h>

int main(void)
{

struct utsname sysinfo;

if(uname(&sysinfo) == -1) {
perror("uname");
return EXIT FAILURE;

}
printf("system name : %s\n", sysinfo.sysname);
printf("node name : %s\n", sysinfo.nodename);
printf("release name : %s\n", sysinfo.release);
printf("version name : %s\n", sysinfo.version);
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 3371

uname() 2004, QNX Software Systems Ltd.

See also:
errno

uname in the Utilities Reference

3372 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ungetc()
Push a character back onto an input stream

Synopsis:
#include <stdio.h>

int ungetc(int c,
FILE *fp);

Arguments:
c The character that you want to push back.

fp The stream you want to push the character back on.

Library:
libc

Description:
The ungetc() function pushes the character specified by c back onto
the input stream pointed to by fp. This character will be returned the
next time that you read from the stream. The pushed-back character is
discarded if you call fflush() or a file-positioning function (fseek(),
fsetpos(), or rewind()) before performing the next read operation.

Only one character (the most recent one) of pushback is guaranteed.

The ungetc() function clears the end-of-file indicator, unless the value
of c is EOF.

Returns:
The character pushed back.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

int main(void)
{

FILE *fp;

May 31, 2004 Manifests 3373

ungetc() 2004, QNX Software Systems Ltd.

int c;
long value;

fp = fopen("file", "r");
value = 0;
c = fgetc(fp);
while(isdigit(c)) {
value = value*10 + c - ’0’;
c = fgetc(fp);

}
ungetc(c, fp); /* put last character back */
printf("Value=%ld\n", value);
fclose(fp);
return EXIT SUCCESS;

}

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
fopen(), getc(), getc unlocked(), ungetwc()

3374 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. ungetwc()
Push a wide character back onto an input stream

Synopsis:
#include <wchar.h>

wint t ungetwc(wint t wc,
FILE * fp);

Arguments:
c The wide character that you want to push back.

fp The stream you want to push the wide character back on.

Library:
libc

Description:
The ungetwc() function pushes the wide character specified by wc
back onto the input stream pointed to by fp.

The pushed-back character will be returned the next time that you
read from the stream but is discarded if you call fflush() or a
file-positioning function (fseek(), fsetpos(), or rewind()) before the
next read operation is performed.

Only one character (the most recent one) of pushback is guaranteed.

The ungetwc() function clears the end-of-file indicator, unless the
value of wc is WEOF.

Returns:
The character pushed back.

Errors:
EILSEQ Invalid character sequence or wide character.

May 31, 2004 Manifests 3375

ungetwc() 2004, QNX Software Systems Ltd.

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
fopen(), getwc(), ungetc()

3376 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. UNIX
UNIX-domain protocol family

Synopsis:
#include <sys/socket.h>
#include <sys/un.h>

socket(AF LOCAL,
SOCK STREAM,
0);

socket(AF LOCAL,
SOCK DGRAM,
0);

Description:
The UNIX-domain protocol family provides local (on-machine or
QNX-network) interprocess communication through the normal
socket() mechanisms. The UNIX-domain family supports the
SOCK STREAM and SOCK DGRAM socket types and uses filesystem
pathnames for addressing.

Addressing

UNIX-domain addresses are variable-length filesystem pathnames of
at most 104 characters. The <sys/un.h> include file defines this
address:

struct sockaddr un {
u char sun len;
u char sun family;
char sun path[104];

};

Binding a name to a UNIX-domain socket with bind() causes a socket
file to be created in the filesystem. This file isn’t removed when the
socket is closed; you must use unlink() to remove the file.

You can use the macro SUN LEN() (defined in <sys/un.h>) to
calculate the length of UNIX-domain address, required by bind() and
connect(). The sun path field must be terminated by a NUL character

May 31, 2004 Manifests 3377

UNIX 2004, QNX Software Systems Ltd.

to be used with SUN LEN(), but the terminating NUL isn’t part of the
address.

The UNIX-domain protocol family doesn’t support broadcast
addressing or any form of “wildcard” matching on incoming
messages. All addresses are absolute- or relative-pathnames of other
UNIX-domain sockets. Normal filesystem access-control
mechanisms are also applied when referencing pathnames (e.g. the
destination of a connect() or sendto() must be writable).

Protocols

The UNIX-domain protocol family consists of simple transport
protocols that support the SOCK STREAM and SOCK DGRAM
abstractions. UNIX-domain sockets also support the communication
of QNX file descriptors through the use of the msg control field in the
msg argument to sendmsg() and recvmsg().

Any valid descriptor may be sent in a message. The file descriptor to
be passed is described using a struct cmsghdr defined in the
include file <sys/socket.h>. The type of the message is
SCM RIGHTS, and the data portion of the messages is an array of
integers representing the file descriptors to be passed. The number of
descriptors being passed is defined by the length field of the message;
the length field is the sum of the size of the header plus the size of the
array of file descriptors.

The received descriptor is a duplicate of the sender’s descriptor, as if
it were created with a call to dup(). Descriptors awaiting delivery or
purposely not received are automatically closed by the system when
the destination socket is closed.

LOCAL CREDS

There is one socket-level option for setsockopt() and getsockopt()
available in the UNIX-domain. The LOCAL CREDS option may be
enabled on a SOCK DGRAM or a SOCK STREAM socket. This option
provides a mechanism for the receiver to receive the credentials of the
process as a recvmsg() message. The msg control field in the msghdr
structure points to a buffer that contains a cmsghdr structure

3378 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. UNIX

followed by a variable length sockcred structure defined in
<sys/socket.h> as follows:

struct sockcred {
uid t sc uid; /* real user id */
uid t sc euid; /* effective user id */
gid t sc gid; /* real group id */
gid t sc egid; /* effective group id */
int sc ngroups; /* number of supplemental groups */
gid t sc groups[1]; /* variable length */

};

The SOCKCREDSIZE() macro computes the size of the sockcred
structure for a specified number of groups. The cmsghdr fields have
the following values:

cmsg len = sizeof(struct cmsghdr) + SOCKCREDSIZE(ngroups)
cmsg level = SOL SOCKET
cmsg type = SCM CREDS

See also:
bind(), connect(), dup(), getsockopt(), recvmsg(), sendmsg(), sendto(),
setsockopt(), socket(), unlink()

May 31, 2004 Manifests 3379

unlink() 2004, QNX Software Systems Ltd.

Remove a link to a file

Synopsis:
#include <unistd.h>

int unlink(const char * path);

Arguments:
path The name of the file that you want to unlink.

Library:
libc

Description:
The unlink() function removes a link to a file:

� If the path names a symbolic link, unlink() removes the link, but
doesn’t affect the file or directory that the link goes to.

� If the path isn’t a symbolic link, unlink() removes the link and
decrements the link count of the file that the link refers to.

If the link count of the file becomes zero, and no process has the
file open, then the space that the file occupies is freed, and no one
can access the file anymore.

If one or more processes have the file open when the last link is
removed, the link is removed, but the removal of the file is delayed
until all references to it have been closed.

This function is equivalent to remove().

To remove a directory, call rmdir().�

3380 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. unlink()

Returns:
0 The operation was successful.

Nonzero The operation failed (errno is set).

Errors:
EACCES Search permission is denied for a component of path,

or write permission is denied on the directory
containing the link to be removed.

EBUSY The directory named by path cannot be unlinked
because it’s being used by the system or another
process, and the target filesystem or resource manager
considers this to be an error.

ENAMETOOLONG

The path argument exceeds PATH MAX in length, or a
pathname component is longer than NAME MAX.

ENOENT The named file doesn’t exist, or path is an empty
string.

ENOSYS The unlink() function isn’t implemented for the
filesystem specified by path.

ENOTDIR A component of path isn’t a directory.

EPERM The file named by path is a directory, and either the
calling process doesn’t have the appropriate privileges,
or the target filesystem or resource manager prohibits
using unlink() on directories.

EROFS The directory entry to be unlinked resides on a
read-only filesystem.

May 31, 2004 Manifests 3381

unlink() 2004, QNX Software Systems Ltd.

Examples:
#include <unistd.h>
#include <stdlib.h>

int main(void)
{

if(unlink("vm.tmp")) {
puts("Error removing vm.tmp!");
return EXIT FAILURE;

}

return EXIT SUCCESS;
}

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
chdir(), chmod(), close(), errno, getcwd(), link(), mkdir(), open(),
pathmgr symlink(), pathmgr unlink(), remove(), rename(), rmdir(),
stat(), symlink()

3382 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. unsetenv()
Remove an environment variable

Synopsis:
#include <stdlib.h>

void unsetenv(const char* name);

Arguments:
name The name of the environment variable that you want to

delete.

Library:
libc

Description:
The unsetenv() function removes the environment variable named
name from the process’s environment.

Classification:
POSIX 1003.1a

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
The unsetenv() function manipulates the environment pointed to by
the global environ variable.

May 31, 2004 Manifests 3383

unsetenv() 2004, QNX Software Systems Ltd.

See also:
clearenv(), getenv(), putenv(), setenv()

3384 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. usleep()
Suspend a thread for a given number of microseconds

Synopsis:
#include <unistd.h>

int usleep(useconds t useconds);

Arguments:
useconds The number of microseconds that you want to process

to sleep for. This must be less than 1,000,000.

Library:
libc

Description:
The usleep() function suspends the calling thread until useconds
microseconds of realtime have elapsed, or until a signal that isn’t
ignored is received. The time spent suspended could be longer than
the requested amount due to the scheduling of other, higher-priority
threads.

If useconds is 0, usleep() has no effect.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EAGAIN No timer resources are available to satisfy the request.

EINVAL The useconds argument is too large.

May 31, 2004 Manifests 3385

usleep() 2004, QNX Software Systems Ltd.

Examples:
/*
* The following program sleeps for the
* number of microseconds specified in argv[1].
*/

#include <stdlib.h>
#include <unistd.h>

int main(int argc, char **argv)
{

useconds t microseconds;

microseconds = (useconds t)strtol(argv[1], NULL, 0);
if(usleep(microseconds) == 0) {

return EXIT SUCCESS;
}

return EXIT FAILURE;
}

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
alarm(), nanosleep(), sigaction(), sleep(), timer create(),
timer delete(), timer getoverrun(), timer gettime(), timer settime(),
ualarm()

3386 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. utime()
Record the modification time for a file or directory

Synopsis:
#include <sys/types.h>
#include <utime.h>

struct utimbuf {
time t actime; /* access time */
time t modtime; /* modification time */

};

int utime(const char* path,
const struct utimbuf* times);

Arguments:
path The path name for the file whose modification time you

want to get or set.

times NULL, or a pointer to a utimbuf structure where the
function can store the modification time.

Library:
libc

Description:
The utime() function records the modification time for the file or
directory identified by path.

If the times argument is NULL, the access and modification times of
the file or directory are set to the current time. The effective user ID
of the process must match the owner of the file or directory, or the
process must have write permission to the file or directory, or
appropriate privileges in order to use the utime() function in this way.

If the times argument isn’t NULL, its interpreted as a pointer to a
utimbuf structure, and the access and modification times of the file
or directory are set to the values contained in the designated structure.
Only the owner of the file or directory, and processes with appropriate

May 31, 2004 Manifests 3387

utime() 2004, QNX Software Systems Ltd.

privileges are permitted to use the utime() function in this way. The
access and modification times are taken from the actime and modtime
fields in this structure.

Returns:
0 Success.

-1 An error occurred; errno is set.

Errors:
EACCES Search permission is denied for a component of path,

or the times argument is NULL, and the effective user
ID of the process doesn’t match the owner of the file,
and write access is denied.

ENAMETOOLONG

The argument path exceeds PATH MAX in length, or a
pathname component is longer than NAME MAX.

ENOENT The specified path doesn’t exist, or path is an empty
string.

ENOTDIR A component of path isn’t a directory.

EPERM The times argument isn’t NULL, and the calling
process’s effective user ID has write access to the file
but doesn’t match the owner of the file, and the calling
process doesn’t have the appropriate privileges.

EROFS The named file resides on a read-only filesystem.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <utime.h>

int main(int argc, char *argv[])
{

if((utime(argv[1], NULL) != 0) && (argc > 1)) {

3388 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. utime()

printf("Unable to set time for %s\n", argv[1]);
}
return EXIT SUCCESS;

}

Classification:
POSIX 1003.1

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, futime()

May 31, 2004 Manifests 3389

utimes() 2004, QNX Software Systems Ltd.

Set a file’s access and modification times

Synopsis:
#include <sys/time.h>

int utimes(const char * path,
const struct timeval * times);

Arguments:
path The name of the files whose times you want to set.

times NULL, or an array of timeval structures:

� The first array member represents the date and time of
last access.

� The second member represents the date and time of
last modification.

Library:
libc

Description:
The utimes() function sets the access and modification times of the
file pointed to by the path argument to the value of the times
argument. This function allows time specifications accurate to the
microsecond.

The times in the timeval structure are measured in seconds and
microseconds since the Unix Epoch (00:00:00 January 1, 1970
Coordinated Universal Time (UTC)), although rounding toward the
nearest second may occur.

If the times argument is NULL, the access and modification times of
the file are set to the current time. The effective user ID of the process
must be the same as the owner of the file, or must have write access to
the file or superuser privileges to use this call in this manner. On
completion, utimes() marks the time of the last file status change,
st ctime, for update.

3390 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. utimes()

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EACCES Search permission is denied by a component of the

path prefix; or the times argument is NULL and
the effective user ID of the process doesn’t match
the owner of the file and write access is denied.

EFAULT The path or times argument points to an illegal
address.

EINTR A signal was caught during the utimes() function.

EINVAL The number of microseconds specified in one or
both of the timeval structures pointed to by

times was greater than or equal to 1,000,000 or
less than 0.

EIO An I/O error occurred while reading from or
writing to the filesystem.

ELOOP Too many symbolic links were encountered in
resolving path.

EMULTIHOP Components of path require hopping to multiple
remote machines and the filesystem doesn’t allow
it.

ENAMETOOLONG

The length of the path argument exceeds
PATH MAX or a pathname component is longer
than NAME MAX.

ENOLINK The path argument points to a remote machine
and the link to that machine is no longer active.

May 31, 2004 Manifests 3391

utimes() 2004, QNX Software Systems Ltd.

ENOENT A component of path doesn’t name an existing
file or path is an empty string.

ENOTDIR A component of the path prefix isn’t a directory.

EPERM The times argument isn’t NULL and the calling
process’s effective user ID has write access to the
file but doesn’t match the owner of the file, and the
calling process doesn’t have the appropriate
privileges.

EROFS The filesystem containing the file is read-only.

ENAMETOOLONG

Path name resolution of a symbolic link produced
an intermediate result whose length exceeds
PATH MAX.

Classification:
Legacy Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
stat()

3392 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. utmp
Entry in a user-information file

Synopsis:
struct utmp {

char ut user[UT NAMESIZE];
#define ut name ut user

char ut id[4];
char ut line[UT LINESIZE];
pid t ut pid;
short ut type;
struct exit status {

short e termination;
short e exit;

} ut exit;
short ut spare;
time t ut time;

};

Description:
The utmp structure describes an entry in a user-information file. The
members include:

ut user The user’s login name.

ut id The line number.

ut line The device name (console).

ut pid The process ID.

ut type The type of entry. The possible values are:

� EMPTY

� RUN LVL

� BOOT TIME

� OLD TIME

� NEW TIME

� INIT PROCESS

� LOGIN PROCESS

May 31, 2004 Manifests 3393

utmp 2004, QNX Software Systems Ltd.

� USER PROCESS

� DEAD PROCESS

� ACCOUNTING

ut exit The exit status of a process marked as DEAD PROCESS.
The structure exit status includes at least the
following members:

� e termination — the termination status.

� e exit — the exit status.

ut time The time that this entry was made.

Classification:
Unix

See also:
endutent(), getutent(), getutid(), getutline(), pututline(), setutent(),
utmpname()

login in the Utilities Reference

3394 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. utmpname()
Change the name of the user-information file

Synopsis:
#include <utmp.h>

void utmpname(char * filename);

Arguments:
filename The new filename that you want to use.

Library:
libc

Description:
The utmpname() function lets you change the name of the file
examined from the default file (PATH UTMP) to any other file. If the
file doesn’t exist, this won’t be apparent until the first attempt to
reference the file is made. This function doesn’t open the file. It just
closes the old file if it’s currently open and saves the new file name.

Files:
PATH UTMP

Specifies the user information file.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 3395

utmpname() 2004, QNX Software Systems Ltd.

See also:
endutent(), getutent(), getutid(), getutline(), pututline(), setutent(),
utmp

login in the Utilities Reference

3396 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. utoa()
Convert an unsigned integer into a string, using a given base

Synopsis:
#include <stdlib.h>

char* utoa(unsigned int value,
char* buffer,
int radix);

Arguments:
value The value to convert into a string.

buffer A buffer in which the function stores the string. The size of
the buffer must be at least:

8 � sizeof(int) + 1

bytes when converting values in base 2 (binary).

radix The base to use when converting the number.

Library:
libc

Description:
The utoa() function converts the unsigned binary integer value into
the equivalent string in base radix notation, storing the result in the
character array pointed to by buffer. A null character is appended to
the result.

Returns:
A pointer to the result.

May 31, 2004 Manifests 3397

utoa() 2004, QNX Software Systems Ltd.

Examples:
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int base;
char buffer[18];

for(base = 2; base <= 16; base = base + 2)
printf("%2d %s\n", base,

utoa((unsigned) 12765, buffer, base));
return EXIT SUCCESS;

}

produces the output:

2 11000111011101
4 3013131
6 135033
8 30735

10 12765
12 7479
14 491b
16 31dd

Classification:
QNX 4

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

3398 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. utoa()

See also:
atoi(), atol(), itoa(), ltoa(), sscanf(), strtol(), strtoul(), ultoa()

May 31, 2004 Manifests 3399

va arg() 2004, QNX Software Systems Ltd.

Get the next item in a list of variable arguments

Synopsis:
#include <stdarg.h>

type va arg(va list param,
type);

Arguments:
param The va list object that you initialized with the va start()

macro.

type The type of the next argument.

Library:
libc

Description:
You can use the va arg() macro to get the next argument in a list of
variable arguments.

CAUTION: Take special care when using varargs on some platforms;
see “Varargs and coercion,” below.!
You must use va arg() with the associated macros va copy(),
va start() and va end(). A sequence such as:

void example(char *dst, ...)
{

va list curr arg;
int next arg;

va start(curr arg, dst);
next arg = va arg(curr arg, int);
...

3400 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. va arg()

causes next arg to be assigned the value of the next variable
argument. The argument type (which is int in the example) is the
type of the argument originally passed to the function.

The last argument before the ellipsis (...) has to be an int or a type
that doesn’t change in size if cast to an int. If the argument is
promoted, the ANSI/ISO standard says the behavior is undefined, and
so depends on the compiler and the library.

�

You must execute the macro va start() first, in order to initialize the
variable curr arg properly, and execute the macro va end() after
getting all the arguments.

The data item curr arg is of type va list that contains the
information to permit successive acquisitions of the arguments.

The following functions use a “varargs” list:

verr()
verrx()
vfprintf()
vfscanf()
vfwprintf()
vfwscanf()
vprintf()

vscanf()
vslogf()
vsnprintf()
vsprintf()
vsscanf()
vswprintf()
vswscanf()

vsyslog()
vwarn()
vwarnx()
vwprintf()
vwscanf()

Varargs and coercion

On some platforms, such as PowerPC, the va list type is an array;
on other platforms, such as x86, it isn’t. This can lead to problems.

Consider the following example. It seems correct, but on PowerPC
platforms, it doesn’t print 2:

#include <stdio.h>
#include <stdarg.h>

void handle foo(char *fmt, va list *pva) {
printf("%d\n", va arg(*pva, int));

}

void vfoo(char *fmt, va list va) {

May 31, 2004 Manifests 3401

va arg() 2004, QNX Software Systems Ltd.

handle foo(fmt, &va);
}

void foo(char *fmt, ...) {
va list va;

va start(va, fmt);
vfoo(fmt, va);
va end(va);

}

int main() {
foo("", 2);
return 0;

}

The C standard says that prototypes such as vfoo() have the array type
silently coerced to be a pointer to a base type. This makes things work
when you pass an array object to the function. An array-typed
expression is converted to a pointer to the first element when used in
an rvalue context, so the coercion in the function makes everybody
happy.

The problem occurs when you then pass the address of the va list

parameter to another function. The function expects a pointer to the
array, but what it really gets is a pointer to a pointer (because of the
original conversion). If you use the va list type in the second
function, you won’t get the right data.

Here’s the example modified so that it works in all cases:

#include <stdio.h>
#include <stdarg.h>

void handle foo(char *fmt, va list *pva) {
printf("%d\n", va arg(*pva, int));

}

void vfoo(char *fmt, va list va) {
va list temp;

va copy(temp, va);
handle foo(fmt, &temp);
va end(temp);

}

3402 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. va arg()

void foo(char *fmt, ...) {
va list va;

va start(va, fmt);
vfoo(fmt, va);
va end(va);

}

int main() {
foo("", 2);
return 0;

}

Using va copy() “undoes” the coercion that happens in the parameter
list, so that handle foo() gets the proper data.

Returns:
The value of the next variable argument, according to type passed as
the second parameter.

Examples:
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>

static void test fn(const char *msg,
const char *types,
...);

int main(void)
{

printf("VA...TEST\n");
test fn("PARAMETERS: 1, \"abc\", 546",

"isi", 1, "abc", 546);
test fn("PARAMETERS: \"def\", 789",

"si", "def", 789);
return EXIT SUCCESS;

}

static void test fn(
const char *msg, /* message to be printed */
const char *types, /* parameter types (i,s) */
...) /* variable arguments */
{

va list argument;
int arg int;

May 31, 2004 Manifests 3403

va arg() 2004, QNX Software Systems Ltd.

char *arg string;
const char *types ptr;

types ptr = types;
printf("\n%s -- %s\n", msg, types);
va start(argument, types);
while(*types ptr != ’\0’) {
if (*types ptr == ’i’) {

arg int = va arg(argument, int);
printf("integer: %d\n", arg int);

} else if (*types ptr == ’s’) {
arg string = va arg(argument, char *);
printf("string: %s\n", arg string);

}
++types ptr;

}
va end(argument);

}

produces the output:

VA...TEST

PARAMETERS: 1, "abc", 546 -- isi
integer: 1
string: abc
integer: 546

PARAMETERS: "def", 789 -- si
string: def
integer: 789

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

3404 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. va arg()

Caveats:
va arg() is a macro.

See also:
va copy(), va end(), va start()

May 31, 2004 Manifests 3405

va copy() 2004, QNX Software Systems Ltd.

Make a copy of a variable argument list

Synopsis:
#include <stdarg.h>

void va copy(va list d,
va list s);

Arguments:
d A va list object into which you want to copy the list.

s The va list object that you initialized with the va start()
macro and that you want to copy.

Library:
libc

Description:
The va copy() macro creates a copy of a list of variable arguments.

You can use the va copy() macro with the associated macros va arg(),
va start(), and va end(), especially to avoid problems on some
platforms. For more information, see “Varargs and coercion” in the
documentation for va arg().

Examples:
See va arg().

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

continued. . .

3406 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. va copy()

Safety

Signal handler Yes

Thread Yes

Caveats:
va copy() is a macro.

See also:
va arg(), va end(), va start()

May 31, 2004 Manifests 3407

va end() 2004, QNX Software Systems Ltd.

Finish getting items from a variable argument list

Synopsis:
#include <stdarg.h>

void va end(va list param);

Arguments:
param The va list object that you initialized with the va start()

macro.

Library:
libc

Description:
Use the va end() macro to complete the acquisition of arguments
from a list of variable arguments. You must use it with the associated
macros va copy(), va start(), and va arg(). For more information, see
va arg().

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

3408 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. va end()

Caveats:
va end() is a macro.

See also:
va arg(), va copy(), va start()

May 31, 2004 Manifests 3409

va start() 2004, QNX Software Systems Ltd.

Start getting items from a variable argument list

Synopsis:
#include <stdarg.h>

void va start(va list param,
previous);

Arguments:
param A va list object that the “varargs” macros can use to

locate the arguments.

previous The argument that immediately precedes the "..."
notation in the original function definition.

Library:
libc

Description:
Use the va start() macro to start the acquisition of arguments from a
list of variable arguments.

You must use the va start() macro with the associated macros
va arg(), va copy(), and va end(). For each call to va start(), you
must have a matching call to va end(). For more information, see
va arg().

Examples:
See va arg().

Classification:
ANSI

3410 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. va start()

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
va start() is a macro.

See also:
va arg(), va copy(), va end()

May 31, 2004 Manifests 3411

valloc() 2004, QNX Software Systems Ltd.

Allocate a heap block aligned on a page boundary

Synopsis:
#include <stdarg.h>

void * valloc(size t size);

Arguments:
size The size of the block to allocate, in bytes.

Library:
libc

Description:
The valloc() function allocates a heap block that’s aligned on a page
boundary. It’s equivalent to:

memalign(sysconf(SC PAGESIZE), size);

Returns:
See memalign().

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

3412 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. valloc()

See also:
memalign(), sysconf()

May 31, 2004 Manifests 3413

verr(), verrx() 2004, QNX Software Systems Ltd.

Display a formatted error message, and then exit (varargs)

Synopsis:
#include <err.h>

void verr(int eval,
const char *fmt,
va list args);

void verrx(int eval,
const char *fmt,
va list args);

Arguments:
eval The value to use as the exit code of the process.

fmt NULL, or a printf()-style string used to format the message.

args A variable-argument list of the additional arguments, which
you must have initialized with the va start() macro.

Library:
libc

Description:
The err() and warn() family of functions display a formatted error
message on stderr. For a comparison of the members of this family,
see err().

The verr() function produces a message that consists of:

� the last component of the program name, followed by a colon and
a space

� the formatted message, followed by a colon and a space, if the fmt
argument isn’t NULL

� the string associated with the current value of errno

� a newline character.

3414 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. verr(), verrx()

The verrx() function produces a similar message, except that it doesn’t
include the string associated with errno. The message consists of:

� the last component of the program name, followed by a colon and
a space

� the formatted message, if the fmt argument isn’t NULL

� a newline character.

The verr() and verrx() functions don’t return, but exit with the value
of the argument eval.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
err(), errx(), stderr, strerror(), vwarn(), vwarnx(), warn(), warnx()

May 31, 2004 Manifests 3415

vfork() 2004, QNX Software Systems Ltd.

Spawn a new process and block the parent

Synopsis:
#include <process.h>

pid t vfork(void);

Library:
libc

Description:
This function spawns a new process and blocks the parent until the
child process calls execve() or exits (by calling exit() or abnormally).

Returns:
A value of zero to the child process, and (later) the child’s process ID
in the parent. If an error occurs, no child process is created, and the
function returns -1 and sets errno.

Errors:
EAGAIN The system-imposed limit on the total number of

processes under execution would be exceeded. This
limit is determined when the system is generated.

ENOMEM There isn’t enough memory for the new process.

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

continued. . .

3416 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vfork()

Safety

Signal handler No

Thread No

Caveats:
To avoid a possible deadlock situation, processes that are children in
the middle of a vfork() are never sent SIGTTOU or SIGTTIN signals;
rather, output or ioctls are allowed and input attempts result in an EOF
indication.

See also:
execve(), exit(), fork(), ioctl(), sigaction(), wait()

May 31, 2004 Manifests 3417

vfprintf() 2004, QNX Software Systems Ltd.

Write formatted output to a file (varargs)

Synopsis:
#include <stdio.h>
#include <stdarg.h>

int vfprintf(FILE* fp,
const char* format,
va list arg);

Arguments:
fp The stream to which you want to send the output.

format A string that specifies the format of the output. The
formatting string determines what additional arguments
you need to provide. For more information, see printf().

arg A variable-argument list of the additional arguments,
which you must have initialized with the va start() macro.

Library:
libc

Description:
The vfprintf() function writes output to the file pointed to by fp, under
control of the argument format.

The vfprintf() function is a “varargs” version of fprintf().

Returns:
The number of characters written, or a negative value if an output
error occurred (errno is set).

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>

3418 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vfprintf()

FILE *LogFile;

/* a general error routine */

void errmsg(char *format, ...)
{

va list arglist;

fprintf(stderr, "Error: ");
va start(arglist, format);
vfprintf(stderr, format, arglist);
va end(arglist);
if(LogFile != NULL) {
fprintf(LogFile, "Error: ");
va start(arglist, format);
vfprintf(LogFile, format, arglist);
va end(arglist);

}
}

int main(void)
{

LogFile = fopen("error.log", "w");
errmsg("%s %d %s", "Failed", 100, "times");
return EXIT SUCCESS;

}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 3419

vfprintf() 2004, QNX Software Systems Ltd.

See also:
errno, fprintf(), fwprintf(), printf(), snprintf(), sprintf(), swprintf(),
va start(), vfwprintf(), vprintf(), vsnprintf(), vsprintf(), vswprintf(),
vwprintf(), wprintf()

3420 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vfscanf()
Scan input from a file (varargs)

Synopsis:
#include <stdio.h>
#include <stdarg.h>

int vfscanf(FILE *fp,
const char *format,
va list arg);

Arguments:
fp The stream that you want to read from.

format A string that specifies the format of the input. For more
information, see scanf(). The formatting string determines
what additional arguments you need to provide.

arg A variable-argument list of the additional arguments,
which you must have initialized with the va start() macro.

Library:
libc

Description:
The vfscanf() function scans input from the file designated by fp,
under control of the argument format.

The vfscanf() function is a “varargs” version of fscanf().

Returns:
The number of input arguments for which values were successfully
scanned and stored, or EOF when the scanning is stopped by reaching
the end of the input stream before storing any values.

May 31, 2004 Manifests 3421

vfscanf() 2004, QNX Software Systems Ltd.

Errors:
If an error occurs, errno indicates the type of error.

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>

void ffind(FILE *fp, char *format, ...)
{

va list arglist;

va start(arglist, format);
vfscanf(fp, format, arglist);
va end(arglist);

}

int main(void)
{

int day, year;
char weekday[10], month[12];

ffind(stdin,
"%s %s %d %d",
weekday, month, &day, &year);

printf("\n%s, %s %d, %d\n",
weekday, month, day, year);

return EXIT SUCCESS;
}

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

3422 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vfscanf()

See also:
errno, fscanf(), fwscanf(), scanf(), sscanf(), swscanf(), va start(),
vfwscanf(), vscanf(), vsscanf(), vswscanf(), vwscanf(), wscanf()

May 31, 2004 Manifests 3423

vfwprintf() 2004, QNX Software Systems Ltd.

Write formatted wide-character output to a file (varargs)

Synopsis:
#include <wchar.h>
#include <stdarg.h>

int vfwprintf(FILE * fp,
const wchar t * format,
va list arg);

Arguments:
fp The stream to which you want to send the output.

format A wide-character string that specifies the format of the
output. The formatting string determines what additional
arguments you need to provide. For more information, see
printf().

arg A variable-argument list of the additional arguments,
which you must have initialized with the va start() macro.

Library:
libc

Description:
The vfwprintf() function writes output to the file pointed to by fp,
under control of the argument format.

The vfwprint() function is the wide-character version of vfprintf(), and
is a “varargs” version of fwprintf().

Returns:
The number of wide characters written, excluding the terminating
NUL, or a negative number if an error occurred (errno is set).

3424 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vfwprintf()

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fprintf(), fwprintf(), printf(), snprintf(), sprintf(), swprintf(),
va start(), vfprintf(), vprintf(), vsnprintf(), vsprintf(), vswprintf(),
vwprintf(), wprintf()

May 31, 2004 Manifests 3425

vfwscanf() 2004, QNX Software Systems Ltd.

Scan input from a file (varargs)

Synopsis:
#include <wchar.h>
#include <stdarg.h>

int vfwscanf(FILE * fp,
const wchar t *format,
va list arg);

Arguments:
fp The stream that you want to read from.

format A wide-character string that specifies the format of the
input. For more information, see scanf(). The formatting
string determines what additional arguments you need to
provide.

arg A variable-argument list of the additional arguments,
which you must have initialized with the va start() macro.

Library:
libc

Description:
The vfwscanf() function scans input from the file designated by fp,
under control of the argument format.

The vfwscanf() function is the wide-character version of vfscanf(), and
is a “varargs” version of fwscanf().

Returns:
The number of input arguments for which values were successfully
scanned and stored, or EOF if the scanning reached the end of the
input stream before storing any values.

3426 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vfwscanf()

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fscanf(), fwscanf(), scanf(), sscanf(), swscanf(), va start(),
vfscanf(), vscanf(), vsscanf(), vswscanf(), vwscanf(), wscanf()

May 31, 2004 Manifests 3427

vprintf() 2004, QNX Software Systems Ltd.

Write formatted output to standard output (varargs)

Synopsis:
#include <stdio.h>
#include <stdarg.h>

int vprintf(const char* format,
va list arg);

Arguments:
format A string that specifies the format of the output. The

formatting string determines what additional arguments
you need to provide. For more information, see printf().

arg A variable-argument list of the additional arguments,
which you must have initialized with the va start() macro.

Library:
libc

Description:
The vprintf() function writes output to the file stdout, under control of
the argument format.

The vprintf() function is a “varargs” version of printf().

Returns:
The number of characters written, or a negative value if an output
error occurred (errno is set).

Examples:
Use vprintf() in a general error message routine:

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>

3428 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vprintf()

void errmsg(char* format, ...)
{

va list arglist;

printf("Error: ");
va start(arglist, format);
vprintf(format, arglist);
va end(arglist);

}

int main(void)
{

errmsg("%s %d %s", "Failed", 100, "times");
return EXIT SUCCESS;

}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fprintf(), fwprintf(), printf(), snprintf(), sprintf(), swprintf(),
va start() vfprintf(), vfwprintf(), vsnprintf(), vsprintf(), vswprintf(),
vwprintf(), wprintf() vsprintf()

May 31, 2004 Manifests 3429

vscanf() 2004, QNX Software Systems Ltd.

Scan input from standard input (varargs)

Synopsis:
#include <stdio.h>
#include <stdarg.h>

int vscanf(const char * format,
va list args);

Arguments:
format A string that specifies the format of the input. For more

information, see scanf(). The formatting string determines
what additional arguments you need to provide.

args A variable-argument list of the additional arguments,
which you must have initialized with the va start() macro.

Library:
libc

Description:
The vscanf() function scans input from stdin, under control of the
argument format. For information about the format string, see the
description of scanf().

The vscanf() function is a “varargs” version of scanf().

Returns:
The number of input arguments for which values were successfully
scanned and stored, or EOF when the scanning is stopped by reaching
the end of the input stream before storing any values.

Errors:
If an error occurs, errno indicates the type of error.

3430 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vscanf()

Examples:
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>

void find(char *format, ...)
{

va list arglist;

va start(arglist, format);
vscanf(format, arglist);
va end(arglist);

}

int main(void)
{

int day, year;
char weekday[10], month[12];

ffind("%s %s %d %d",
weekday, month, &day, &year);

printf("\n%s, %s %d, %d\n",
weekday, month, day, year);

return EXIT SUCCESS;
}

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

May 31, 2004 Manifests 3431

vscanf() 2004, QNX Software Systems Ltd.

See also:
errno, fscanf(), fwscanf(), scanf(), sscanf(), swscanf(), va start(),
vfscanf(), vfwscanf(), vsscanf(), vswscanf(), vwscanf(), wscanf()

3432 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vslogf()
Send a message to the system logger (varargs)

Synopsis:
#include <stdio.h>
#include <sys/slog.h>

int vslogf(int opcode,
int severity,
const char * fmt,
va list arg);

Arguments:
opcode A combination of a major and minor code. Create the

opcode using the SLOG SETCODE(major, minor)
macro that’s defined in <sys/slog.h>.

The major and minor codes are defined in
<sys/slogcodes.h>.

severity The severity of the log message; see “Severity levels,” in
the documentation for slogf().

fmt A standard printf() string.

arg A variable-argument list of the additional arguments,
which you must have initialized with the va start()
macro.

Library:
libc

Description:
The slog*() functions send log messages to the system logger,
slogger. To send formatted messages, use vslogf(). If you have
programs that scan log files for specified codes, you can use slogb() or
slogi() to send a block of structures or int’s, respectively.

This function is a “varargs” version of slogf().

May 31, 2004 Manifests 3433

vslogf() 2004, QNX Software Systems Ltd.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
slogb(), slogi(), slogf()

slogger, sloginfo in the Utilities Reference

3434 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vsnprintf()
Write formatted output to a character array, up to a given maximum number of characters (varargs)

Synopsis:
#include <stdarg.h>
#include <stdio.h>

int vsnprintf(char* buf,
size t count,
const char* format,
va list arg);

Arguments:
buf A pointer to the buffer where you want to function to store

the formatted string.

count The maximum number of characters to store in the buffer,
including a terminating null character.

format A string that specifies the format of the output. The
formatting string determines what additional arguments
you need to provide. For more information, see printf().

arg A variable-argument list of the additional arguments,
which you must have initialized with the va start() macro.

Library:
libc

Description:
The vsnprintf() function formats data under control of the format
control string and stores the result in buf . The maximum number of
characters to store, including a terminating null character, is specified
by count.

The vsnprintf() function is a “varargs” version of snprintf().

May 31, 2004 Manifests 3435

vsnprintf() 2004, QNX Software Systems Ltd.

Returns:
The number of characters that would have been written into the array,
not counting the terminating null character, had count been large
enough. It does this even if count is zero; in this case buf can be
NULL.

If an error occurred, vsnprintf() returns a negative value and sets
errno.

Examples:
Use vsnprintf() in a general error message routine:

#include <stdio.h>
#include <stdarg.h>
#include <string.h>

char msgbuf[80];

char *fmtmsg(char *format, ...)
{

va list arglist;

va start(arglist, format);
strcpy(msgbuf, "Error: ");
vsnprintf(&msgbuf[7], 80-7, format, arglist);
va end(arglist);
return(msgbuf);

}

int main(void)
{

char *msg;

msg = fmtmsg("%s %d %s", "Failed", 100, "times");
printf("%s\n", msg);

return 0;
}

3436 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vsnprintf()

Classification:
Standard Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Read the Caveats

Thread Yes

Caveats:
It’s safe to call vsnprintf() in a signal handler if the data isn’t floating
point.

See also:
errno, fprintf(), fwprintf(), printf(), snprintf(), sprintf(), swprintf(),
va start(), vfprintf(), vfwprintf(), vprintf(), vsprintf(), vswprintf(),
vwprintf(), wprintf()

May 31, 2004 Manifests 3437

vsprintf() 2004, QNX Software Systems Ltd.

Write formatted output to a buffer (varargs)

Synopsis:
#include <stdio.h>
#include <stdarg.h>

int vsprintf(char* buf,
const char* format,
va list arg);

Arguments:
buf A pointer to the buffer where you want to function to store

the formatted string.

format A string that specifies the format of the output. The
formatting string determines what additional arguments
you need to provide. For more information, see printf().

arg A variable-argument list of the additional arguments,
which you must have initialized with the va start() macro.

Library:
libc

Description:
The vsprintf() function formats data under control of the format
control string, and writes the result to buf .

The vsprintf() function is a “varargs” version of sprintf().

Returns:
The number of characters written, or a negative value if an output
error occurred (errno is set).

3438 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vsprintf()

Examples:
Use vsprintf() in a general error message routine:

#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>

char msgbuf[80];

char *fmtmsg(char *format, ...)
{

va list arglist;

va start(arglist, format);
strcpy(msgbuf, "Error: ");
vsprintf(&msgbuf[7], format, arglist);
va end(arglist);
return(msgbuf);

}

int main(void)
{

char *msg;

msg = fmtmsg("%s %d %s", "Failed", 100, "times");
printf("%s\n", msg);
return EXIT SUCCESS;

}

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Read the Caveats

Thread Yes

May 31, 2004 Manifests 3439

vsprintf() 2004, QNX Software Systems Ltd.

Caveats:
It’s safe to call vsprintf() in a signal handler if the data isn’t floating
point.

See also:
fprintf(), fwprintf(), printf(), snprintf(), sprintf(), swprintf(), va start(),
vfprintf(), vfwprintf(), vprintf(), vsnprintf(), vswprintf(), vwprintf(),
wprintf()

3440 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vsscanf()
Scan input from a string (varargs)

Synopsis:
#include <stdio.h>
#include <stdarg.h>

int vsscanf(const char* in string,
const char* format,
va list arg);

Arguments:
in string The string that you want to read from.

format A string that specifies the format of the input. For more
information, see scanf(). The formatting string
determines what additional arguments you need to
provide.

arg A variable-argument list of the additional arguments,
which you must have initialized with the va start()
macro.

Library:
libc

Description:
The vsscanf() function scans input from the string designated by
in string, under control of the argument format.

The vsscanf() function is a “varargs” version of sscanf().

Returns:
The number of input arguments for which values were successfully
scanned and stored is returned, or EOF when the scanning is
terminated by reaching the end of the input string.

May 31, 2004 Manifests 3441

vsscanf() 2004, QNX Software Systems Ltd.

Examples:
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>

void sfind(char* string, char* format, ...)
{

va list arglist;

va start(arglist, format);
vsscanf(string, format, arglist);
va end(arglist);

}

int main(void)
{

int day, year;
char weekday[10], month[12];

sfind("Monday June 28 1999",
"%s %s %d %d",
weekday, month, &day, &year);

printf("\n%s, %s %d, %d\n",
weekday, month, day, year);

return EXIT SUCCESS;
}

Classification:
Unix

Safety

Cancellation point No

Interrupt handler No

Signal handler Read the Caveats

Thread Yes

3442 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vsscanf()

Caveats:
It’s safe to call vsscanf() in a signal handler if the data isn’t floating
point.

See also:
fscanf(), fwscanf(), scanf(), sscanf(), swscanf(), va start(), vfscanf(),
vfwscanf(), vscanf(), vswscanf(), vwscanf(), wscanf()

May 31, 2004 Manifests 3443

vswprintf() 2004, QNX Software Systems Ltd.

Write wide-character formatted output to a buffer (varargs)

Synopsis:
#include <wchar.h>
#include <stdarg.h>

int vswprintf(wchar t * buf,
size t n,
const wchar t * format,
va list arg);

Arguments:
buf A pointer to the buffer where you want to function to store

the formatted string.

n The maximum number of wide characters to store in the
buffer, including a terminating null character.

format A wide-character string that specifies the format of the
output. The formatting string determines what additional
arguments you need to provide. For more information, see
printf().

arg A variable-argument list of the additional arguments,
which you must have initialized with the va start() macro.

Library:
libc

Description:
The vswprintf() function formats data under control of the format
control string, and writes the result to buf .

The vswprint() function is the wide-character version of vsprintf(),
and is a “varargs” version of swprintf().

3444 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vswprintf()

Returns:
The number of wide characters written, excluding the terminating
NUL, or a negative number if an error occurred (errno is set).

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Read the Caveats

Thread Yes

Caveats:
It’s safe to call vswprintf() in a signal handler if the data isn’t floating
point.

See also:
fprintf(), fwprintf(), printf(), snprintf(), sprintf(), swprintf(), va start(),
vfprintf(), vfwprintf(), vprintf(), vsnprintf(), vsprintf(), vwprintf(),
wprintf()

May 31, 2004 Manifests 3445

vswscanf() 2004, QNX Software Systems Ltd.

Scan input from a wide-character string (varargs)

Synopsis:
#include <wchar.h>
#include <stdarg.h>

int vswscanf(const wchar t * ws,
const wchar t * format,
va list arg);

Arguments:
ws The wide-character string that you want to read from.

format A wide-character string that specifies the format of the
input. For more information, see scanf(). The formatting
string determines what additional arguments you need to
provide.

arg A variable-argument list of the additional arguments,
which you must have initialized with the va start() macro.

Library:
libc

Description:
The vswscanf() function scans input from the string designated by ws,
under control of the argument format.

The vswscanf() function is the wide-character version of vsscanf(),
and is a “varargs” version of swscanf().

Returns:
The number of input arguments for which values were successfully
scanned and stored is returned, or EOF when the scanning is
terminated by reaching the end of the input string.

3446 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vswscanf()

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Read the Caveats

Thread Yes

Caveats:
It’s safe to call vswscanf() in a signal handler if the data isn’t floating
point.

See also:
fscanf(), fwscanf(), scanf(), sscanf(), swscanf(), va start(), vfscanf(),
vfwscanf(), vscanf(), vsscanf(), vwscanf(), wscanf()

May 31, 2004 Manifests 3447

vsyslog() 2004, QNX Software Systems Ltd.

Control system log (varargs)

Synopsis:
#include <syslog.h>
#include <stdarg.h>

void vsyslog(int priority,
const char *message,
va list args);

Arguments:
priority The priority of the message; see “Message levels,” in the

documentation for syslog().

message The message that you want to write. This message is
identical to a printf()-format string, except that %m is
replaced by the current error message (as denoted by the
global variable errno). A trailing newline is added if
none is present.

args A variable-argument list of the additional arguments,
which you must have initialized with the va start()
macro.

Library:
libc

Description:
The vsyslog() function writes message to the system message logger.
The message is then written to the system console, log files, and
logged-in users, or forwarded to other machines as appropriate. (See
the syslogd command.)

This function is a “varargs” version of syslog().

3448 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vsyslog()

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread No

See also:
closelog(), openlog(), setlogmask(), syslog()

logger, syslogd in the Utilities Reference

May 31, 2004 Manifests 3449

vwarn(), vwarnx() 2004, QNX Software Systems Ltd.

Formatted error message (varargs)

Synopsis:
#include <err.h>

void vwarn(const char *fmt,
va list args);

void vwarnx(const char *fmt,
va list args);

Arguments:
fmt NULL, or a printf()-style string used to format the message.

args A variable-argument list of the additional arguments, which
you must have initialized with the va start() macro.

Library:
libc

Description:
The err() and warn() family of functions display a formatted error
message on stderr. For a comparison of the members of this family,
see err().

The vwarn() function produces a message that consists of:

� the last component of the program name, followed by a colon and
a space

� the formatted message, followed by a colon and a space, if the fmt
argument isn’t NULL

� the string associated with the current value of errno

� a newline character.

The vwarnx() function produces a similar message, except that it
doesn’t include the string associated with errno. The message
consists of:

3450 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vwarn(), vwarnx()

� the last component of the program name, followed by a colon and
a space

� the formatted message, if the fmt argument isn’t NULL

� a newline character.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
err(), errx(), stderr, strerror(), verr(), verrx(), warn(), warnx()

May 31, 2004 Manifests 3451

vwprintf() 2004, QNX Software Systems Ltd.

Write formatted output to standard output (varargs)

Synopsis:
#include <wchar.h>
#include <stdarg.h>

int vwprintf(const wchar t * format,
va list arg);

Arguments:
format A wide-character string that specifies the format of the

output. The formatting string determines what additional
arguments you need to provide. For more information, see
printf().

arg A variable-argument list of the additional arguments,
which you must have initialized with the va start() macro.

Library:
libc

Description:
The vwprintf() function writes output to the file stdout, under control
of the argument format.

The vwprint() function is the wide-character version of vprintf(), and
is a “varargs” version of wprintf().

Returns:
The number of characters written, or a negative value if an output
error occurred (errno is set).

Classification:
ANSI

3452 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vwprintf()

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, fprintf(), fwprintf(), printf(), snprintf(), sprintf(), swprintf(),
va start(), vfprintf(), vfwprintf(), vprintf(), vsnprintf(), vsprintf(),
vswprintf(), wprintf()

May 31, 2004 Manifests 3453

vwscanf() 2004, QNX Software Systems Ltd.

Scan wide-character input from standard input (varargs)

Synopsis:
#include <wchar.h>
#include <stdarg.h>

int vwscanf(const wchar t * format,
va list arg);

Arguments:
format A wide-character string that specifies the format of the

input. For more information, see scanf(). The formatting
string determines what additional arguments you need to
provide.

arg A variable-argument list of the additional arguments,
which you must have initialized with the va start() macro.

Library:
libc

Description:
The vwscanf() function scans input from the file designated by stdin,
under control of the argument format.

The vwscanf() function is the wide-character version of vscanf(), and
is a “varargs” version of wscanf().

Returns:
The number of input arguments for which values were successfully
scanned and stored, or EOF if the scanning reached the end of the
input stream before storing any values.

3454 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. vwscanf()

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

Signal handler No

Thread Yes

See also:
fscanf(), fwscanf(), scanf(), sscanf(), swscanf(), va start(), vfscanf(),
vfwscanf(), vscanf(), vsscanf(), vswscanf(), wscanf()

May 31, 2004 Manifests 3455

wait() 2004, QNX Software Systems Ltd.

Wait for the status of a terminated child process

Synopsis:
#include <sys/types.h>
#include <sys/wait.h>

pid t wait(int * stat loc);

Arguments:
stat loc NULL, or a pointer to a location where the function can

store the terminating status of the child. For more
information, see “Status macros,” below.

Library:
libc

Description:
The wait() function suspends execution of the calling process until
status information from one of its terminated child processes is
available, or until the delivery of a signal whose action is either to
terminate the process or execute a signal handler. If status information
is available prior to the call to wait(), the return is immediate.

Status macros

If the stat loc variable is non-NULL, the terminating status of the
child process is in the location that it points to. The macros listed
below, defined in <sys/wait.h>, extract information from stat loc.
The stat val argument to these macros is the integer value pointed to
by stat loc.

POSIX defines the following macros:

WEXITSTATUS(stat val)

Evaluates to the low-order 8 bits of the termination status of the
child process if the value of WIFEXITED(stat val) is nonzero.

3456 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wait()

WIFCONTINUED(stat val)

Evaluates to a nonzero value if the status returned was from a
child process that has continued from a job control stop.

WIFEXITED(stat val)

Evaluates to a nonzero value if the status returned was from a
normally terminated child process.

WIFSIGNALED(stat val)

Evaluates to nonzero value if the child process terminated from
reception of a signal that wasn’t caught.

WIFSTOPPED(stat val)

Evaluates to a nonzero value if the status returned is for a child
process that’s stopped.

WSTOPSIG(stat val)

Evaluates to the number of the signal that caused the child
process to stop if the value of WIFSTOPPED(stat val) is
nonzero.

WTERMSIG(stat val)

Evaluates to the number of the signal that terminated the child
process if the value of WIFSIGNALED(stat val) is nonzero.

This macro isn’t part of a POSIX standard:

WCOREDUMP(stat val)

Evaluates to a nonzero value if the child process left a core
dump.

One of the macros WIFEXITED(*stat loc) and
WIFSIGNALED(*stat loc) evaluates to a nonzero value.

The non-POSIX waitid() function gives even more status information
than the above macros.

May 31, 2004 Manifests 3457

wait() 2004, QNX Software Systems Ltd.

Returns:
The process ID of the terminating child process, or -1 if an error
occurred or on delivery of a signal (errno is set to EINTR).

Errors:
ECHILD The calling process has no existing unwaited-for child

processes.

EINTR The function was interrupted by a signal. The value of
the location pointed to by stat loc is undefined.

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno, spawn(), wait4(), waitid(), waitpid()

3458 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wait3()
Wait for any child process to change its state

Synopsis:
#include <sys/wait.h>

pid t wait3(int * stat loc
int options,
struct rusage * resource usage);

Arguments:
stat loc NULL, or a pointer a location where the function can

store the terminating status of the child process. For
information about macros that extract information from
this status, see “Status macros” in the documentation for
wait().

options A combination of zero or more of the following flags:

� WCONTINUED — return the status for any child that
was stopped and has been continued.

� WEXITED — wait for the process(es) to exit.

� WNOHANG — return immediately if there are no
children to wait for.

� WNOWAIT — keep the process in a waitable state.
This doesn’t affect the state of the process; the process
may be waited for again after this call completion.

� WSTOPPED — wait for and return the process status
of any child that has stopped because it received a
signal.

� WUNTRACED — report the status of a stopped child
process.

resource usage

NULL, or a pointer to a rusage structure where the
function can store information about resource usage. For
information about this structure, see getrusage().

May 31, 2004 Manifests 3459

wait3() 2004, QNX Software Systems Ltd.

Library:
libc

Description:
The wait3() function allows the calling thread to obtain status
information for specified child processes.

The following call:

wait3(stat loc, options, resource usage);

is equivalent to the call:

waitpid((pid t)-1, stat loc, options);

except that on successful completion, if the resource usage argument
to wait3() isn’t a null pointer, the rusage structure that the third
argument points to is filled in for the child process identified by the
return value.

It’s also equivalent to:

wait4((pid t)-1, stat loc, options, resource usage);

Returns:
If the status of a child process is available, a value equal to the process
ID of the child process for which status is reported.

If a signal is delivered to the calling process, -1 and errno is set to
EINTR.

Zero if wait3() is invoked with WNOHANG set in options and at least
one child process is specified by pid for which status isn’t available,
and status isn’t available for any process specified by pid.

Otherwise, (pid t)-1 and errno is set.

3460 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wait3()

Errors:
ECHILD The calling process has no existing unwaited-for child

processes, or the set of processes specified by the
argument pid can never be in the states specified by the
argument options.

Classification:
Standard unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

Caveats:
New applications should use waitpid().

See also:
exit(), fork(), pause(), wait4(), waitid(), waitpid()

May 31, 2004 Manifests 3461

wait4() 2004, QNX Software Systems Ltd.

Wait for one or more child process to change its state

Synopsis:
#include <sys/types.h>
#include <sys/wait.h>

pid t wait4(pid t pid,
int * stat loc,
int options,
struct rusage * resource usage);

Arguments:
pid The set of child processes that you want to get status

information for:

� less than -1 — any child process whose process group
ID is equal to the absolute value of pid.

� -1 — any child process

� 0 — any child process whose process group ID is
equal to that of the calling process.

� greater than 0 — the single child process with this ID.

stat loc NULL, or a pointer a location where the function can
store the terminating status of the child process. For
information about macros that extract information from
this status, see “Status macros” in the documentation for
wait().

options A combination of zero or more of the following flags:

� WCONTINUED — return the status for any child that
was stopped and has been continued.

� WEXITED — wait for the process(es) to exit.

� WNOHANG — return immediately if there are no
children to wait for.

� WNOWAIT — keep the process in a waitable state.
This doesn’t affect the state of the process; the process
may be waited for again after this call completion.

3462 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wait4()

� WSTOPPED — wait for and return the process status
of any child that has stopped because it received a
signal.

� WUNTRACED — report the status of a stopped child
process.

resource usage

NULL, or a pointer to a rusage structure where the
function can store information about resource usage. For
information about this structure, see getrusage().

Library:
libc

Description:
The wait4() function suspends execution of the calling process until
status information from one of its terminated child processes is
available, or until the delivery of a signal whose action is either to
terminate the process or execute a signal handler. If status information
is available prior to the call to wait4(), the return is immediate.

The wait4() function behaves the same as the wait() function when
passed a pid argument of -1, and the options argument has a value of
zero.

Only one of the WIFEXITED(stat val) and WIFSIGNALED(stat val)
macros can evaluate to a nonzero value.

The following call:

wait3(stat loc, options, resource usage);

is equivalent to the call:

waitpid((pid t)-1, stat loc, options);

except that on successful completion, if the resource usage argument
to wait3() isn’t a NULL pointer, the rusage structure that the third

May 31, 2004 Manifests 3463

wait4() 2004, QNX Software Systems Ltd.

argument points to is filled in for the child process identified by the
return value.

It’s also equivalent to:

wait4((pid t)-1, stat loc, options, resource usage);

Returns:
If successful, wait4() returns the process id of the terminating child
process. If wait4() was invoked with WNOHANG set in options, it has
at least one child process specified by pid for which status is not
available, and status is not available for any process specified by pid,
a value of zero is returned. On delivery of a signal waitpid() returns
-1, and errno is set to EINTR.

Errors:
ECHILD The calling process has no existing unwaited-for child

processes that meet the criteria set by pid.

EINTR The function was interrupted by a signal. The value of
the location pointed to by stat loc is undefined.

EINVAL The value of the options argument isn’t valid.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

3464 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wait4()

See also:
exit(), fork(), pause(), wait(), wait3(), waitid(), waitpid()

May 31, 2004 Manifests 3465

waitid() 2004, QNX Software Systems Ltd.

Wait for a child process to change state

Synopsis:
#include <sys/wait.h>

int waitid(idtype t idtype,
id t id,
siginfo t * infop,
int options);

Arguments:
idtype Which children you want to wait for:

� P PID — the child with a process ID of (pid t)id.

� P PGID — any child with a process group ID equal to
(pid t)id.

� P ALL — any child; id is ignored.

id The process or process group ID that you want to wait for,
depending on the value of idtype.

infop A pointer to a siginfo t structure, as defined in
<sys/siginfo.h>, where the function can store the
current state of the child; see below.

options A combination of zero or more of the following flags:

� WCONTINUED — return the status for any child that
was stopped and has been continued.

� WEXITED — wait for the process(es) to exit.

� WNOHANG — return immediately if there are no
children to wait for.

� WNOWAIT — keep the process in a waitable state.
This doesn’t affect the state of the process; the process
may be waited for again after this call completion.

� WSTOPPED — wait for and return the process status of
any child that has stopped because it received a signal.

� WUNTRACED — report the status of a stopped child
process.

3466 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. waitid()

Library:
libc

Description:
The waitid() function suspends the calling process until one of its
children changes state. It records the current state of a child in the
structure pointed to by infop. If a child process changed state prior to
the call to waitid(), waitid() returns immediately.

If waitid() returns because a child process was found that satisfied the
conditions indicated by the arguments idtype and options, then the
structure pointed to by infop is filled in by the system with the status
of the process. The si signo member is always SIGCHLD.

If idtype is P ALL and options is WEXITED|WTRAPPED, waitid() is
equivalent to wait().

Returns:
0 One of the children changed its state. If WNOHANG was used,

0 can be returned (indicating no error); however, no children
may have changed state if info->si pid is 0.

-1 An error occurred (errno is set).

Errors:
ECHILD The set of processes specified by idtype and id doesn’t

contain any unwaited-for processes.

EFAULT The infop argument points to an illegal address.

EINTR The waitid() function was interrupted by a signal.

EINVAL An invalid value was specified for options, or idtype and
id specify an invalid set of processes.

May 31, 2004 Manifests 3467

waitid() 2004, QNX Software Systems Ltd.

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
execl(), execle(), execlp(), execlpe(), execv(), execve(), execvp(),
execvpe(), exit(), fork(), pause(), sigaction(), signal(), wait(), wait3(),
wait4(), waitpid()

3468 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. waitpid()
Suspend the calling process

Synopsis:
#include <sys/types.h>
#include <sys/wait.h>

pid t waitpid(pid t pid,
int * stat loc,
int options);

Arguments:
pid The set of child processes that you want to get status

information for:

� less than -1 — any child process whose process group
ID is equal to the absolute value of pid.

� -1 — any child process

� 0 — any child process whose process group ID is
equal to that of the calling process.

� greater than 0 — the single child process with this ID.

stat loc NULL, or a pointer a location where the function can
store the terminating status of the child process. For
information about macros that extract information from
this status, see “Status macros” in the documentation for
wait().

options A combination of zero or more of the following flags:

� WCONTINUED — return the status for any child that
was stopped and has been continued.

� WEXITED — wait for the process(es) to exit.

� WNOHANG — return immediately if there are no
children to wait for.

� WNOWAIT — keep the process in a waitable state.
This doesn’t affect the state of the process; the process
may be waited for again after this call completion.

May 31, 2004 Manifests 3469

waitpid() 2004, QNX Software Systems Ltd.

� WSTOPPED — wait for and return the process status
of any child that has stopped because it received a
signal.

� WUNTRACED — report the status of a stopped child
process.

Library:
libc

Description:
The waitpid() function suspends execution of the calling process until
status information from one of its terminated child processes is
available, or until the delivery of a signal whose action is either to
terminate the process or execute a signal handler. If status information
is available prior to the call to waitpid(), the return is immediate.

The waitpid() function behaves the same as wait() when passed a pid
argument of -1, and the options argument has a value of zero.

Only one of the WIFEXITED(stat val) and WIFSIGNALED(stat val)
macros can evaluate to a nonzero value.

Returns:
The process ID of the terminating child process on success. If
waitpid() is invoked with WNOHANG set in options, it has at least one
child process specified by pid for which status isn’t available, and
status isn’t available for any process specified by pid, a value of zero
is returned. On delivery of a signal, waitpid() returns -1, and errno is
set to EINTR.

Errors:
ECHILD The calling process has no existing unwaited-for child

processes that meet the criteria set by pid.

EINTR The function was interrupted by a signal. The value of
the location pointed to by stat loc is undefined.

3470 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. waitpid()

EINVAL The value of the options argument isn’t valid.

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
spawn(), wait(), wait3(), wait4(), waitid()

May 31, 2004 Manifests 3471

warn(), warnx() 2004, QNX Software Systems Ltd.

Formatted error message

Synopsis:
#include <err.h>

void warn(const char* fmt, ...);

void warnx(const char* fmt, ...);

Arguments:
fmt NULL, or a printf()-style string used to format the message.

Additional arguments

As required by the format string.

Library:
libc

Description:
The err() and warn() family of functions display a formatted error
message on stderr. For a comparison of the members of this family,
see err().

The warn() function produces a message that consists of:

� the last component of the program name, followed by a colon and
a space

� the formatted message, followed by a colon and a space, if the fmt
argument isn’t NULL

� the string associated with the current value of errno

� a newline character.

The warnx() function produces a similar message, except that it
doesn’t include the string associated with errno. The message
consists of:

3472 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. warn(), warnx()

� the last component of the program name, followed by a colon and
a space

� the formatted message, if the fmt argument isn’t NULL

� a newline character.

Examples:
Warn of an error:

if ((fd = open(raw device, O RDONLY, 0)) == -1)
warnx("%s: %s: trying the block device",

raw device, strerror(errno));
if ((fd = open(block device, O RDONLY, 0)) == -1)

warn("%s", block device);

Classification:
Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
err(), errx(), stderr, strerror(), verr(), verrx(), vwarn(), vwarnx()

May 31, 2004 Manifests 3473

wcrtomb() 2004, QNX Software Systems Ltd.

Convert a wide-character code to a character

Synopsis:
#include <wchar.h>

size t wcrtomb(char * s,
wchar t wc,
mbstate t * ps);

Arguments:
s NULL, or a pointer to a location where the function can store

the multibyte character.

wc The wide character that you want to convert.

ps An internal pointer that lets wcrtomb() be a restartable version
of wctomb(); if ps is NULL, wcrtomb() uses its own internal
variable.

You can call mbsinit() to determine the status of this variable.

Library:
libc

Description:
The wcrtomb() function determines the number of bytes needed to
represent the wide character wc as a multibyte character and stores the
multibyte character in the location pointed to by s, to a maximum of
MB CUR MAX bytes.

This function is affected by LC CTYPE.

Returns:
The number of bytes stored, or (size t)-1 if the variable wc is an
invalid wide-character code.

3474 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcrtomb()

Errors:
EILSEQ Invalid wide-character code.

EINVAL The variable ps points to an invalid conversion state.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
“String manipulation functions” and “Wide-character functions” in
the summary of functions chapter.

May 31, 2004 Manifests 3475

wcscat() 2004, QNX Software Systems Ltd.

Concatenate two wide-character strings

Synopsis:
#include <wchar.h>

wchar t * wcscat(wchar t * ws1,
const wchar t * ws2);

Arguments:
ws1, ws2 The wide-character strings that you want to concatenate.

Library:
libc

Description:
The wcscat() function appends a copy of the string pointed to by ws2,
including the terminating NUL wide character, to the end of the string
pointed to by ws1. The first wide character of ws2 overwrites the NUL
wide character at the end of ws1.

Returns:
The same pointer as ws1.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

3476 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcscat()

See also:
“String manipulation functions” and “Wide-character functions” in
the summary of functions chapter.

May 31, 2004 Manifests 3477

wcschr() 2004, QNX Software Systems Ltd.

Find the first occurrence of a wide character in a string

Synopsis:
#include <wchar.h>

wchar t * wcschr(const wchar t * ws,
wchar t wc);

Arguments:
ws The wide-character string that you want to search.

wc The wide character that you’re looking for.

Library:
libc

Description:
The wcschr() function finds the first occurrence of wc in the string
pointed to by ws. The terminating NUL character is considered to be
part of the string.

Returns:
A pointer to the located wide character, or NULL if wc doesn’t occur
in the string.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

3478 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcschr()

See also:
memchr(), strchr(), strcspn(), strpbrk(), strrchr(), strspn(), strstr(),
strtok(), strtok r(), wcscspn(), wcspbrk(), wcsrchr(), wcsspn(),
wcsstr(), wcstok()

May 31, 2004 Manifests 3479

wcscmp() 2004, QNX Software Systems Ltd.

Compare two wide-character strings

Synopsis:
#include <wchar.h>

int wcscmp(const wchar t * ws1,
const wchar t * ws2);

Arguments:
ws1, ws2 The wide-character strings that you want to compare.

Library:
libc

Description:
The wcscmp() function compares the wide-characters strings pointed
to by ws1 and ws2.

Returns:
< 0 ws1 is less than ws2.

0 ws1 is equal to ws2.

> 0 ws1 is greater than ws2.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

3480 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcscmp()

See also:
strcasecmp(), strcmp(), strcmpi(), strcoll(), stricmp(), strncasecmp(),
strncmp(), strnicmp(), wcscoll(), wcsncmp()

May 31, 2004 Manifests 3481

wcscoll() 2004, QNX Software Systems Ltd.

Compare two wide-character strings, using the locale’s collating sequence

Synopsis:
#include <wchar.h>

int wcscoll(const wchar t * ws1,
const wchar t * ws2);

Arguments:
ws1, ws2 The wide-character strings that you want to compare.

Library:
libc

Description:
The wcscoll() function compares the wide-character strings pointed to
by ws1 and ws2, using the LC COLLATE collating sequence selected
by the setlocale() function.

Returns:
< 0 ws1 is less than ws2.

0 ws1 is equal to ws2.

> 0 ws1 is greater than ws2.

Classification:
ANSI

wcscoll()

Safety

Cancellation point No

Interrupt handler No

continued. . .

3482 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcscoll()

Safety

Signal handler Yes

Thread No

See also:
setlocale(), strcasecmp(), strcmp(), strcmpi(), strcoll(), stricmp(),
strncasecmp(), strncmp(), strnicmp(), wcscmp(), wcsncmp()

May 31, 2004 Manifests 3483

wcscpy() 2004, QNX Software Systems Ltd.

Copy a wide-character string

Synopsis:
#include <wchar.h>

wchar t * wcscpy(wchar t * ws1,
const char * ws2);

Arguments:
ws1 A pointer to where you want to copy the string.

ws2 The wide-character string that you want to copy.

Library:
libc

Description:
The wcscpy() function copies the string pointed to by ws2, including
the terminating NUL wide character, into the array pointed to by ws1.

This function isn’t guaranteed to work properly for copying
overlapping strings; use wmemmove() instead.

�

Returns:
The same pointer as ws1.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

continued. . .

3484 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcscpy()

Safety

Signal handler Yes

Thread Yes

See also:
memmove(), strcpy(), strdup(), strncpy(), wcsncpy(), wmemmove()

May 31, 2004 Manifests 3485

wcscspn() 2004, QNX Software Systems Ltd.

Count the wide characters at the beginning of a string that aren’t in a given character set

Synopsis:
#include <wchar.h>

size t wcscspn(const wchar t * ws1,
const wchar t * ws2);

Arguments:
ws1 The wide-character string that you want to search.

ws2 The set of wide characters you want to look for.

Library:
libc

Description:
The strspn() function returns the length of the initial segment of the
string pointed to by ws1 consisting entirely of wide characters not
from the string pointed to by ws2. The terminating NUL isn’t
considered to be part of ws2.

Returns:
The length of the segment.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

3486 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcscspn()

See also:
memchr(), strchr(), strcspn(), strpbrk(), strrchr(), strspn(), strstr(),
strtok(), strtok r(), wcschr(), wcspbrk(), wcsrchr(), wcsspn(), wcsstr(),
wcstok()

May 31, 2004 Manifests 3487

wcsftime() 2004, QNX Software Systems Ltd.

Format the time into a wide-character string

Synopsis:
#include <wchar.h>

size t wcsftime(wchar t * wcs,
size t maxsize,
const wchar t * format,
const struct tm * timeptr);

Arguments:
wcs A pointer to a buffer where the function can store the

formatted time.

maxsize The maximum size of the buffer.

format The format that you want to use for the time; see
“Formats,” in the description of strftime().

timeptr A pointer to a tm structure that contains the time that you
want to format.

Library:
libc

Description:
The wcsftime() function is similar to strftime(), except that wcsftime()
works with wide characters.

Returns:
The number of wide characters placed into the array, not including the
terminating null character, or 0 if the number of wide characters
exceeds maxsize (in this case, the string contents are indeterminate).

If an error occurs, errno is set.

3488 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcsftime()

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
asctime(), asctime r(), ctime(), ctime r(), sprintf(), strftime(), tm,
tzset()

May 31, 2004 Manifests 3489

wcslen() 2004, QNX Software Systems Ltd.

Compute the length of a wide-character string

Synopsis:
#include <wchar.h>

size t wcslen(const wchar t * ws);

Arguments:
ws The wide-character string whose length you want to calculate.

Library:
libc

Description:
The wcslen() function counts the wide characters in the string pointed
to by ws.

Returns:
The number of wide characters, not counting the terminating NUL.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

3490 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcslen()

See also:
strlen()

May 31, 2004 Manifests 3491

wcsncat() 2004, QNX Software Systems Ltd.

Concatenate two wide-character strings, up to a maximum length

Synopsis:
#include <wchar.h>

wchar t * wcsncat(wchar t * ws1,
const wchar t * ws2
size t n);

Arguments:
ws1, ws2 The wide-character strings that you want to concatenate.

n The maximum number of wide characters that you want
to add from the ws2 string.

Library:
libc

Description:
The wcsncat() function appends a copy of the string pointed to by
ws2, including the terminating NUL wide character, to the end of the
string pointed to by ws1. The first character of ws2 overwrites the
NUL wide character at the end of ws1. The function writes no more
than n wide characters from ws2 and appends a NUL wide character to
the result.

Returns:
The same pointer as ws1.

Classification:
ANSI

3492 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcsncat()

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
“String manipulation functions” and “Wide-character functions” in
the summary of functions chapter.

May 31, 2004 Manifests 3493

wcsncmp() 2004, QNX Software Systems Ltd.

Compare two wide-character strings, up to a given length

Synopsis:
#include <wchar.h>

int wcsncmp(const wchar t * ws1,
const wchar t * ws2,
size t n);

Arguments:
ws1, ws2 The wide-character strings that you want to compare.

n The maximum number of wide characters that you want
to compare.

Library:
libc

Description:
The wcsncmp() function compares up n wide characters from the
strings pointed to by ws1 and ws2.

Returns:
< 0 ws1 is less than ws2.

0 ws1 is equal to ws2.

> 0 ws1 is greater than ws2.

Classification:
ANSI

Safety

Cancellation point No

continued. . .

3494 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcsncmp()

Safety

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
strcasecmp(), strcmp(), strcmpi(), strcoll(), stricmp(), strncasecmp(),
strncmp(), strnicmp(), wcscmp(), wcscoll()

May 31, 2004 Manifests 3495

wcsncpy() 2004, QNX Software Systems Ltd.

Copy a wide-character string, to a maximum length

Synopsis:
#include <wchar.h>

wchar t * wcsncpy(wchar t * ws1,
const char * ws2,
size t n);

Arguments:
ws1 A pointer to where you want to copy the wide-character

string.

ws2 The wide-character string that you want to copy.

n The maximum number of wide characters that you want to
copy.

Library:
libc

Description:
The wcsncpy() function copies the string pointed to by ws2, including
the terminating NUL wide character, into the array pointed to by ws1,
to a maximum of n wide characters. It adds NUL characters if ws2 has
fewer than n characters but doesn’t add a NUL if ws2 has more.

This function isn’t guaranteed to work properly for copying
overlapping strings; use wmemmove() instead.

�

Returns:
The same pointer as ws1.

3496 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcsncpy()

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memmove(), strcpy(), strdup(), strncpy(), wcscpy(), wmemmove()

May 31, 2004 Manifests 3497

wcspbrk() 2004, QNX Software Systems Ltd.

Find the first wide character in a string that’s in a given character set

Synopsis:
#include <wchar.h>

wchar t * wcspbrk(const wchar t * ws1,
const wchar t * ws2);

Arguments:
ws1 The wide-character string that you want to search.

ws2 The set of wide characters you want to look for.

Library:
libc

Description:
The wcspbrk() function locates the first occurrence in the string
pointed to by ws1 of any wide character from the string pointed to by
ws2.

Returns:
A pointer to the located character, or NULL if no character from ws2
occurs in ws1.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

3498 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcspbrk()

See also:
memchr(), strchr(), strcspn(), strpbrk(), strrchr(), strspn(), strstr(),
strtok(), strtok r(), wcschr(), wcscspn(), wcsrchr(), wcsspn(), wcsstr(),
wcstok()

May 31, 2004 Manifests 3499

wcsrchr() 2004, QNX Software Systems Ltd.

Find the last occurrence of a wide character in a string

Synopsis:
#include <wchar.h>

wchar t * wcsrchr(const wchar t * ws,
wchar t wc);

Arguments:
ws The wide-character string that you want to search.

wc The wide character that you’re looking for.

Library:
libc

Description:
The wcsrchr() function finds the last occurrence of wc in the string
pointed to by ws. The terminating NUL character is considered to be
part of the string.

Returns:
A pointer to the located wide character, or NULL if wc doesn’t occur
in the string.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

3500 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcsrchr()

See also:
memchr(), strchr(), strcspn(), strpbrk(), strrchr(), strspn(), strstr(),
strtok(), strtok r(), wcschr(), wcscspn(), wcspbrk(), wcsspn(),
wcsstr(), wcstok()

May 31, 2004 Manifests 3501

wcsrtombs() 2004, QNX Software Systems Ltd.

Convert a wide-character string into a multibyte character string (restartable)

Synopsis:
#include <wchar.h>

size t wcsrtombs(char * dst,
const wchar t ** src,
size t len,
mbstate t * ps);

Arguments:
dst A pointer to a buffer where the function can store the

multibyte-character string.

src A pointer to the wide-character string that you want to
convert.

len The maximum number of multibyte characters to store.

ps An internal pointer that lets wcsrtombs() be a restartable
version of wcstombs(); if ps is NULL, wcsrtombs() uses its
own internal variable.

You can call mbsinit() to determine the status of this variable.

Library:
libc

Description:
The wcsrtombs() function converts a string of wide-characters pointed
to by src into the corresponding multi-byte characters pointed to by
dst. No more than len bytes are stored, including the terminating
NULL character.

The function converts each character as if by a call to wctomb() and
stops early if:

� A sequence of bytes doesn’t conform to a valid character.

3502 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcsrtombs()

� Converting the next character would exceed the limit of len total
bytes.

The wcsrtombs() function uses ps to make it thread safe; if ps is a
NULL pointer, wcsrtombs() uses its own internal pointer.

Returns:
The number of total bytes successfully converted, not including the
terminating NULL byte, or (size t)-1 if an invalid wide-character
code was found.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
“String manipulation functions” and “Wide-character functions” in
the summary of functions chapter.

May 31, 2004 Manifests 3503

wcsspn() 2004, QNX Software Systems Ltd.

Count the wide characters at the beginning of a string that are in a given character set

Synopsis:
#include <wchar.h>

size t wcsspn(const wchar t * ws1,
const wchar t * ws2);

Arguments:
ws1 The wide-character string that you want to search.

ws2 The set of wide characters you want to look for.

Library:
libc

Description:
The wcsspn() function returns the length of the initial segment of the
string pointed to by ws1 consisting entirely of wide characters from
the string pointed to by ws2. The terminating NUL isn’t considered to
be part of ws2.

Returns:
The length of the segment.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

3504 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcsspn()

See also:
memchr(), strchr(), strcspn(), strpbrk(), strrchr(), strspn(), strstr(),
strtok(), strtok r(), wcschr(), wcscspn(), wcspbrk(), wcsrchr(),
wcsstr(), wcstok()

May 31, 2004 Manifests 3505

wcsstr() 2004, QNX Software Systems Ltd.

Find one wide-character string inside another

Synopsis:
#include <wchar.h>

wchar t * wcsstr(const wchar t * ws1,
const wchar t * ws2);

Arguments:
ws1 The wide-character string that you want to search.

ws2 The wide-character string that you’re looking for.

Library:
libc

Description:
The wcsstr() function locates the first occurrence in the string pointed
to by ws1 of the sequence of wide characters, excluding the
terminating NUL, in the string pointed to by ws2.

Returns:
A pointer to the located string, NULL if the string wasn’t found, or the
same pointer as ws1 if ws2 points to a zero-length string.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

3506 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcsstr()

See also:
memchr(), strchr(), strcspn(), strpbrk(), strrchr(), strspn(), strstr(),
strtok(), strtok r(), wcschr(), wcscspn(), wcspbrk(), wcsrchr(),
wcsspn(), wcstok()

May 31, 2004 Manifests 3507

wcstod(), wcstof(), wcstold() 2004, QNX Software Systems Ltd.

Convert a wide-character string into a double, float, or long double

Synopsis:
#include <wchar.h>

double wcstod(const wchar t * ptr,
wchar t ** endptr);

float wcstof(const wchar t * ptr,
wchar ** endptr);

long double wcstold(const wchar t * ptr,
wchar ** endptr);

Arguments:
nptr A pointer to the string to parse.

endptr If this argument isn’t NULL, the function stores in it a
pointer to the first unrecognized character found in the
string.

Library:
libc

Description:
These functions convert a wide-character string to a number:

� wcstod() function converts it to a double

� wcstof() converts it to a float

� wcstold() to a long double.

These functions recognize strings containing the following:

� optional white space

� an optional plus or minus sign

� a sequence of digits containing an optional decimal point

3508 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcstod(), wcstof(), wcstold()

� an optional e or E, followed by an optionally signed sequence of
digits.

The functions expect the string to have a plus or minus sign, followed
by one of these forms:

� A sequence of decimal digits, optionally followed by a radix
character, optionally followed by an exponent part.

� A 0x or 0X followed by a sequence of hexadecimal digits,
optionally followed by a radix character, optionally followed by a
binary exponent part.

� The case-insensitive string INF or INFINITY.

� The case-insensitive string NAN or NAN(n-wchar-sequence) where
n-wchar-sequence may be a digit, a nondigit, a n-wchar-sequence
digit or a n-wchar-sequence nondigit.

The value is correctly rounded if the subject is hexadecimal and
FLT RADIX is 2.

The radix character is locale specific, depending upon LC NUMERIC.

The conversion ends at the first unrecognized character. If endptr isn’t
NULL, a pointer to the unrecognized wide character is stored in the
object endptr points to.

Because 0 is a valid return that is also used for an error, you should
set errno to 0 before calling these functions, and check errno again
afterward. These functions don’t change errno on success.

�

Returns:
The converted value. If the correct value would cause overflow, plus
or minus HUGE VAL is returned according to the sign, and errno is
set to ERANGE. If the correct value would cause underflow, then zero
is returned, and errno is set to ERANGE.

Zero is returned when the input string can’t be converted. When an
error occurs, errno indicates the error detected.

May 31, 2004 Manifests 3509

wcstod(), wcstof(), wcstold() 2004, QNX Software Systems Ltd.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
errno

“String manipulation functions” and “Wide-character functions” in
the summary of functions chapter.

3510 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcstoimax(), wcstoumax()
Convert a wide-character string into an integer

Synopsis:
#include <inttypes.h>

intmax t wcstoimax (const wchar t * nptr,
wchar t ** endptr,
int base);

uintmax t wcstoumax (const wchar t * nptr,
wchar t ** endptr,
int base);

Arguments:
nptr A pointer to the string to parse.

endptr If this argument isn’t NULL, the function stores in it a
pointer to the first unrecognized character found in the
string.

base The base of the number being parsed:

� If base is zero, the first characters after the optional
sign determine the base used for the conversion. If the
first characters are 0x or 0X the digits are treated as
hexadecimal. If the first character is 0, the digits are
treated as octal. Otherwise, the digits are treated as
decimal.

� If base isn’t zero, it must have a value between 2 and
36. The letters a-z and A-Z represent the values 10
through 35. Only those letters whose designated values
are less than base are permitted. If the value of base is
16, the characters 0x or 0X may optionally precede the
sequence of letters and digits.

May 31, 2004 Manifests 3511

wcstoimax(), wcstoumax() 2004, QNX Software Systems Ltd.

Library:
libc

Description:
The wcstoimax() and wcstoumax() functions are the same as the
wcstol(), wcstoll(), wcstoul(), and wcstoull() functions except that
they return objects of type intmax t and uintmax t.

Returns:
The converted value.

If the correct value causes an overflow,
(INTMAX MAX|UINTMAX MAX or INTMAX MIN) is returned
according to the sign and errno is set to ERANGE. If base is out of
range, zero is returned and errno is set to EINVAL.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
strtol(), wcstol(), wcstoul()

“String manipulation functions” and “Wide-character functions” in
the summary of functions chapter.

3512 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcstok()
Break a wide-character string into tokens

Synopsis:
#include <wchar.h>

wchar t * wcstok(wchar t * ws1,
const wchar t * ws2,
wchar t ** ptr);

Arguments:
ws1 NULL, or the wide-character string that you want to break

into tokens; see below.

ws2 A set of the wide characters that separate the tokens.

ptr The address of a pointer to a wchar t object, which the
function can use to store information necessary for it to
continue scanning the same string.

Library:
libc

Description:
The function wcstok() breaks the wide-character string pointed to by
ws1 into a sequence of tokens, each of which is delimited by a wide
character from the string pointed to by ws2.

In the first call to wcstok(), ws1 must point to a null-terminated string,
ws2 must point to a null-terminated string of separator wide
characters, and ptr is ignored. The wcstok() function returns a pointer
to the first wide character of the first token, writes a NUL wide
character into ws1 immediately following the returned token, and
updates ptr.

In subsequent calls, ws1 must be NULL, and ptr must be unchanged
from the previous call so that subsequent calls will move through the
string ws1, returning successive tokens until no tokens remain. The
separator string ws2 may differ from call to call. When no tokens
remain in ws1, a NULL pointer is returned.

May 31, 2004 Manifests 3513

wcstok() 2004, QNX Software Systems Ltd.

Returns:
A pointer to the token found, or NULL if no token was found.

Classification:
POSIX 1003.1

wcstok()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
memchr(), strchr(), strcspn(), strpbrk(), strrchr(), strset(), strspn(),
strstr(), strtok(), strtok r(), wcschr(), wcscspn(), wcspbrk(), wcsrchr(),
wcsspn(), wcsstr()

3514 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcstol(), wcstoll()
Convert a wide-character string into a long integer

Synopsis:
#include <stdlib.h>

long wcstol(const wchar t * ptr,
wchar t ** endptr,
int base);

long long wcstoll(const wchar t * ptr,
wchar t ** endptr,
int base);

Arguments:
ptr A pointer to the string to parse.

endptr If this argument isn’t NULL, the function stores in it a
pointer to the first unrecognized character found in the
string.

base The base of the number being parsed:

� If base is zero, the first characters after the optional
sign determine the base used for the conversion. If the
first characters are 0x or 0X the digits are treated as
hexadecimal. If the first character is 0, the digits are
treated as octal. Otherwise, the digits are treated as
decimal.

� If base isn’t zero, it must have a value between 2 and
36. The letters a-z and A-Z represent the values 10
through 35. Only those letters whose designated values
are less than base are permitted. If the value of base is
16, the characters 0x or 0X may optionally precede the
sequence of letters and digits.

May 31, 2004 Manifests 3515

wcstol(), wcstoll() 2004, QNX Software Systems Ltd.

Library:
libc

Description:
The wcstol() function converts the string pointed to by ptr into a
long; wcstoll() converts the string into a long long.

These functions recognize strings that contain the following:

� optional white space

� an optional plus or minus sign

� a sequence of digits and letters.

The conversion ends at the first unrecognized wide character. If
endptr isn’t NULL, a pointer to the unrecognized wide character is
stored in the object endptr points to.

Returns:
The converted value.

If the correct value causes an overflow,
LONG MAX|LONGLONG MAX or LONG MIN|LONGLONG MIN is
returned according to the sign, and errno is set to ERANGE. If base is
out of range, zero is returned and errno is set to EDOM.

Errors:
ERANGE The value is not representable

EINVAL The value for base is not supported or no conversion
could be performed.

Classification:
ANSI

3516 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcstol(), wcstoll()

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
errno

“String manipulation functions” and “Wide-character functions” in
the summary of functions chapter.

May 31, 2004 Manifests 3517

wcstombs() 2004, QNX Software Systems Ltd.

Convert a wide-character string into a multibyte character string

Synopsis:
#include <stdlib.h>

size t wcstombs(char* s,
const wchar t* pwcs,
size t n);

Arguments:
s A pointer to a buffer where the function can store the

multibyte-character string.

pwcs The wide-character string that you want to convert.

n The maximum number of bytes to store.

Library:
libc

Description:
The wcstombs() function converts a sequence of wide character codes
from the array pointed to by pwcs into a sequence of multibyte
characters, and stores them in the array pointed to by s. It stops if a
multibyte character exceeds the limit of n total bytes, or if the NUL
character is stored. At most n bytes of the array pointed to by s are
modified.

The wcsrtombs() function is a restartable version of wcstombs().

Returns:
The number of array elements modified, not including the terminating
zero code, if present, or (size t)-1 if an invalid multibyte
character is encountered.

3518 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcstombs()

Examples:
#include <stdio.h>
#include <stdlib.h>

wchar t wbuffer[] = {
0x0073,
0x0074,
0x0072,
0x0069,
0x006e,
0x0067,
0x0000

};

int main(void)
{

char mbsbuffer[50];
int i, len;

len = wcstombs(mbsbuffer, wbuffer, 50);
if(len != -1) {
for(i = 0; i < len; i++)

printf("/%4.4x", wbuffer[i]);
printf("\n");
mbsbuffer[len] = ’\0’;
printf("%s(%d)\n", mbsbuffer, len);

}
return EXIT SUCCESS;

}

produces the output:

/0073/0074/0072/0069/006e/0067
string(6)

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

continued. . .

May 31, 2004 Manifests 3519

wcstombs() 2004, QNX Software Systems Ltd.

Safety

Signal handler Yes

Thread Yes

See also:
mblen(), mbtowc(), mbstowcs(), wcsrtombs(), wctomb()

3520 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcstoul(), wcstoull()
Convert a wide-character string into an unsigned long integer

Synopsis:
#include <stdlib.h>

long wcstoul(const wchar t * ptr,
wchar t ** endptr,
int base);

long long wcstoull(const wchar t * ptr,
char** endptr,
int base);

Arguments:
ptr A pointer to the string to parse.

endptr If this argument isn’t NULL, the function stores in it a
pointer to the first unrecognized character found in the
string.

base The base of the number being parsed:

� If base is zero, the first characters after the optional
sign determine the base used for the conversion. If the
first characters are 0x or 0X the digits are treated as
hexadecimal. If the first character is 0, the digits are
treated as octal. Otherwise, the digits are treated as
decimal.

� If base isn’t zero, it must have a value between 2 and
36. The letters a-z and A-Z represent the values 10
through 35. Only those letters whose designated values
are less than base are permitted. If the value of base is
16, the characters 0x or 0X may optionally precede the
sequence of letters and digits.

May 31, 2004 Manifests 3521

wcstoul(), wcstoull() 2004, QNX Software Systems Ltd.

Library:
libc

Description:
These functions convert a wide-character string into a number:

� wcstoul() converts the string into an unsigned long

� wcstoull() converts it into a unsigned long long.

These functions recognize a string containing optional white space,
followed by a sequence of digits and letters. The conversion ends at
the first unrecognized character. A pointer to that character is stored
in the object endptr points to, if endptr isn’t NULL.

If base is zero, the first characters determine the base used for the
conversion. If the first characters are 0x or 0X the digits are treated as
hexadecimal. If the first character is 0, the digits are treated as octal.
Otherwise, the digits are treated as decimal.

If base isn’t zero, it must have a value of between 2 and 36. The
letters a-z and A-Z represent the values 10 through 35. Only those
letters whose designated values are less than base are permitted. If the
value of base is 16, the characters 0x or 0X may optionally precede
the sequence of letters and digits.

Returns:
The converted value.

If the correct value causes an overflow,
ULONG MAX|ULONGLONG MAX is returned and errno is set to
ERANGE. If base is out of range, zero is returned and errno is set to
EDOM.

Errors:
ERANGE The value is not representable

EINVAL The value for base is not supported or no conversion
could be performed.

3522 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcstoul(), wcstoull()

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
errno

“String manipulation functions” and “Wide-character functions” in
the summary of functions chapter.

May 31, 2004 Manifests 3523

wcscxfrm() 2004, QNX Software Systems Ltd.

Transform one wide-character string into another, to a given length

Synopsis:
#include <wchar.h>

int wcscfrm(wchar t * ws1,
const wchar t * ws2,
size t n);

Arguments:
ws1 The string that you want to transform.

ws2 The string that you want to place in dst.

n The maximum number of characters to transform.

Library:
libc

Description:
The wcsxfrm() function transforms the string pointed to by ws2 to the
buffer pointed to by ws1, to a maximum of n wide-characters,
including the terminating null. The two strings shouldn’t overlap.

A call to wcscmp() returns the same result for two strings transformed
by wcsxfrm() as wcscoll() would return for the original versions of the
strings.

This function doesn’t report errors in its returns; set errno to 0, call
wcsxfrm(), and then check errno again.

�

Returns:
The length of the transformed wide-character string. If this value is
greater than n, the contents of ws1 are indeterminate.

3524 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wcscxfrm()

Classification:
ANSI

wcscxfrm()

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
setlocale(), strxfrm()

May 31, 2004 Manifests 3525

wctob() 2004, QNX Software Systems Ltd.

Convert a wide character to a single-byte code

Synopsis:
#include <wchar.h>

int wctob(wint t c);

Arguments:
c The wide character that you want to convert.

Library:
libc

Description:
The wctob() function returns the single-byte representation of a wide
character.

This function is affected by LC CTYPE.

Returns:
The single-byte representation, or EOF if c isn’t a valid single-byte
character.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

3526 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wctob()

See also:
“String manipulation functions” and “Wide-character functions” in
the summary of functions chapter.

May 31, 2004 Manifests 3527

wctomb() 2004, QNX Software Systems Ltd.

Convert a wide character into a multibyte character

Synopsis:
#include <stdlib.h>
int wctomb(char * s,

wchar t wc);

Arguments:
s NULL, or a pointer to a location where the function can store

the multibyte character.

wc The wide character that you want to convert.

Library:
libc

Description:
The wctomb() function determines the number of bytes required to
represent the multibyte character corresponding to the code contained
in wc. If s isn’t NULL, the multibyte character representation is stored
in the array it points to. At most MB CUR MAX characters are stored.

Returns:
� If s is NULL:

0 The wctomb() function uses locale specific multibyte
character encoding that’s not state-dependent.

>0 The function is state-dependent.

� If s isn’t NULL:

-1 If the value of wchar doesn’t correspond to a valid multibyte
character.

x The number of bytes that comprise the multibyte character
corresponding to the value of wchar.

3528 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wctomb()

Examples:
#include <stdio.h>
#include <stdlib.h>

wchar t wchar = { 0x0073 };
char mbbuffer[MB CUR MAX];

int main(void)
{

int len;

printf("Character encodings do %shave "
"state-dependent \nencoding.\n",
(wctomb(NULL, 0))
? "" : "not ");

len = wctomb(mbbuffer, wchar);
mbbuffer[len] = ’\0’;
printf("%s(%d)\n", mbbuffer, len);
return EXIT SUCCESS;

}

This produces the output:

Character encodings do not have state-dependent
encoding.
s(1)

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 3529

wctomb() 2004, QNX Software Systems Ltd.

See also:
“String manipulation functions” and “Wide-character functions” in
the summary of functions chapter.

3530 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wctrans()
Define a wide-character mapping

Synopsis:
#include <wctype.h>

wctrans t wctrans(const char *property);

Arguments:
property The type of mapping; see below.

Library:
libc

Description:
The wctrans() function determines a mapping rule for wide-character
codes according to the category LC CTYPE, particularly for use with
towctrans().

The following mappings are defined in all locales, although additional
classes may be defined for LC CTYPE:

� tolower

� toupper

Use setlocale() to modify the category LC CTYPE.

Returns:
An object that you can use in a call to towctrans(), or 0 if the specified
character mapping isn’t valid for the current locale.

Classification:
ANSI

May 31, 2004 Manifests 3531

wctrans() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
towctrans()

String manipulation functions

Wide-character functions

3532 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wctype()
Define a wide-character class

Synopsis:
#include <wctype.h>

wctype t wctype(const char * property);

Arguments:
property A string that defines the property of the class; see below.

Library:
libc

Description:
The wctype() function determines a classification rule for
wide-character codes according to the category LC CTYPE,
particularly for use with iswctype().

Some classes are defined in all locales, although additional classes
may be defined for LC CTYPE. Use setlocale() to modify the category
LC CTYPE.

Defined Classes:

alnum
alpha
blank
cntrl

digit
graph
lower
print

punct
space
upper
xdigit

Returns:
A wctype t object that you can use in a call to iswctype(), or 0 if the
character class name isn’t valid for the current locale.

May 31, 2004 Manifests 3533

wctype() 2004, QNX Software Systems Ltd.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
setlocale()

“Character manipulation functions” and “Wide-character functions”
in the summary of functions chapter.

3534 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wmemchr()
Locate the first occurrence of a wide character in a buffer

Synopsis:
#include <wchar.h>

wchar t * wmemchr(const wchar t * ws,
wchar t wc,
size t n);

Arguments:
ws The buffer that you want to search.

wc The character that you’re looking for.

n The number of wide characters to search in the buffer.

Library:
libc

Description:
The wmemchr() function locates the first occurrence of wc in the first
n wide characters of the buffer pointed to by ws.

The wmemchr() function is locale-independent and treats all wchar t

values identically, even if they’re null or invalid characters.

Returns:
A pointer to the located character, or NULL if wc couldn’t be found.

Classification:
ANSI

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 3535

wmemchr() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memccpy(), memcmp(), memcpy(), memicmp(), memmove(), memset()
wcschr(), wcsrchr(), wmemcmp(), wmemcpy(), wmemmove(),
wmemset()

3536 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wmemcmp()
Compare the wide characters in two buffers

Synopsis:
#include <wchar.h>

int wmemcmp(const wchar t * ws1,
const wchar t * ws2,
size t n);

Arguments:
ws1, ws2 The wide-character strings that you want to compare.

n The number of wide characters to compare.

Library:
libc

Description:
The wmemcmp() function compares n wide characters of the buffer
pointed to by ws1 to those in the buffer pointed to by ws2.

Returns:
<0 ws1 is less than ws2.

0 ws1 is equal to ws2.

>0 ws1 is greater than ws2.

Classification:
ANSI

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 3537

wmemcmp() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memccpy(), memcmp(), memcpy(), memicmp(), memmove(), memset()
wcscmp(), wcsncmp(), wmemchr(), wmemcpy(), wmemmove(),
wmemset()

3538 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wmemcpy()
Copy wide characters from one buffer to another

Synopsis:
#include <wchar.h>

wchar t * wmemcpy(wchar t * ws1,
const wchar t * ws2,
size t n);

Arguments:
ws1 A pointer to the buffer that you want to copy the wide

characters into.

ws2 A pointer to the buffer that you want to copy the wide
characters from.

n The number of wide characters to copy.

Library:
libc

Description:
The wmemcpy() function copies n wide characters from the buffer
pointed to by ws2 into the buffer pointed to by ws1.

The wmemcpy() function is locale-independent and treats all
wchar t values identically, even if they’re null or invalid characters.

Copying overlapping buffers isn’t guaranteed to work; use
wmemmove() to copy buffers that overlap.

�

Returns:
A pointer to the destination buffer (i.e the same pointer as ws1).

May 31, 2004 Manifests 3539

wmemcpy() 2004, QNX Software Systems Ltd.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memccpy(), memcmp(), memcpy(), memicmp(), memmove(), memset()
wcscpy(), wcsncpy(), wmemchr(), wmemcmp(), wmemmove(),
wmemset()

3540 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wmemmove()
Copy wide characters from one buffer to another

Synopsis:
#include <wchar.h>

wchar t * wmemmove(wchar t * ws1,
const wchar t * ws2,
size t n);

Arguments:
ws1 A pointer to where you want the function to copy the data.

ws2 A pointer to the buffer that you want to copy data from.

n The number of wide characters to copy.

Library:
libc

Description:
The memmove() function copies n wide characters from the buffer
pointed to by ws2 to the buffer pointed to by ws1. This function
copies overlapping regions safely.

The wmemmove() function is locale-independent and treats all
wchar t values identically, even if they’re null or invalid characters.

Use wmemcpy() for greater speed when copying buffers that don’t
overlap.

�

Returns:
A pointer to the destination buffer (i.e. the same pointed as ws1).

May 31, 2004 Manifests 3541

wmemmove() 2004, QNX Software Systems Ltd.

Classification:
ANSI

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memccpy(), memcmp(), memcpy(), memicmp(), memmove(), memset()
wmemchr(), wmemcmp(), wmemcpy(), wmemset()

3542 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wmemset()
Set wide characters in memory

Synopsis:
#include <wchar.h>

wchar t * wmemset(wchar t * ws,
wchar t wc,
size t n

Arguments:
ws A pointer to the memory that you want to set.

wc The value that you want to store in each wide character.

length The number of wide characters to set.

Library:
libc

Description:
The memset() function fills n wide characters starting at ws with the
value wc.

The wmemset() function is locale-independent and treats all wchar t

values identically, even if they’re null or invalid wide characters.

Returns:
A pointer to the destination buffer (i.e. the same pointer as ws).

Classification:
ANSI

Safety

Cancellation point No

continued. . .

May 31, 2004 Manifests 3543

wmemset() 2004, QNX Software Systems Ltd.

Safety

Interrupt handler Yes

Signal handler Yes

Thread Yes

See also:
memccpy(), memcmp(), memcpy(), memicmp(), memmove(), memset()
wmemchr(), wmemcmp(), wmemcpy(), wmemmove()

3544 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wordexp()
Perform word expansions

Synopsis:
#include <wordexp.h>

int wordexp(const char * words,
wordexp t * pwordexp,
int flags);

Library:
libc

Description:
The C bindings for performing word expansions aren’t currently
supported.

Returns:
-1 to indicate an error (errno is set).

Errors:
WRDE NOSYS

The wordexp() function isn’t currently supported.

Classification:
POSIX 1003.1a

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

May 31, 2004 Manifests 3545

wordexp() 2004, QNX Software Systems Ltd.

See also:
glob(), globfree(), wordfree()

3546 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wordfree()
Free a word expansion buffer

Synopsis:
#include <wordexp.h>

void wordfree(wordexp t * pwordexp);

Library:
libc

Description:
The C bindings for performing word expansions aren’t currently
supported.

Classification:
POSIX 1003.1a

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
glob(), globfree(), wordexp()

May 31, 2004 Manifests 3547

wprintf() 2004, QNX Software Systems Ltd.

Write formatted output to stdout

Synopsis:
#include <wchar.h>

int wprintf(const char* format,
...);

Arguments:
format A wide-character string that specifies the format of the

output. The formatting string determines what additional
arguments you need to provide. For more information, see
printf().

Library:
libc

Description:
The wprintf() function writes output to the stdout stream, under
control of the argument format. It’s the wide-character version of
printf().

Returns:
The number of characters written, or a negative value if an output
error occurred (errno is set).

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

continued. . .

3548 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wprintf()

Safety

Signal handler No

Thread Yes

See also:
errno, fprintf(), fwprintf(), printf(), snprintf(), sprintf(), swprintf(),
vfprintf(), vfwprintf(), vprintf(), vsnprintf(), vsprintf(), vswprintf(),
vwprintf()

May 31, 2004 Manifests 3549

write() 2004, QNX Software Systems Ltd.

Write bytes to a file

Synopsis:
#include <unistd.h>

ssize t write(int fildes,
const void* buf,
size t nbyte);

Arguments:
fildes The file descriptor for the file you want to write in.

buf A pointer to a buffer that contains the data you want to
write.

nbyte The number of bytes to write.

Library:
libc

Description:
The write() function attempts to write nbyte bytes to the file associated
with the open file descriptor, fildes, from the buffer pointed to by buf .

If nbyte is zero, write() returns zero, and has no other effect.

On a regular file or other file capable of seeking, and if O APPEND
isn’t set, write() starts at a position in the file given by the file offset
associated with fildes. If O APPEND is set, the file offset is set to the
end of file before each write operation. Before successfully returning
from write(), the file offset is incremented by the number of bytes
actually written. On a regular file, if this incremented file offset is
greater than the length of the file, the length of the file is set to this file
offset.

3550 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. write()

Note that the write() call ignores advisory locks that may have been
set by the fcntl() function.

�

On a file not capable of seeking, write() starts at the current position.

If write() requests that more bytes be written than there’s room for
(for example, all blocks on a disk are already allocated), only as many
bytes as there’s room for are written. For example, if there’s only
room for 80 more bytes in a file, a write of 512 bytes would return 80.
The next write of a nonzero number of bytes would give a failure
return (except as noted below).

When write() returns successfully, its return value is the number of
bytes actually written to the file. This number is never greater then
nbyte, although it may be less than nbyte under certain circumstances
detailed below.

If write() is interrupted by a signal before it has written any data, it
returns a value of -1, and errno is set to EINTR. However, if write() is
interrupted by a signal after it has successfully written some data, it
returns the number of bytes written.

If the value of nbyte is greater than INT MAX, write() returns -1 and
sets errno to EINVAL. See <limits.h>.

Write requests to a pipe (or FIFO) are handled the same as a regular
file, with the following exceptions:

� There’s no file offset associated with a pipe, therefore each write
request appends to the end of the pipe.

� Write requests of PIPE BUF bytes or less aren’t interleaved with
data from other processes doing writes on the same pipe. Writes of
greater than PIPE BUF bytes may have data interleaved, on
arbitrary boundaries, with writes by other processes, whether or
not the O NONBLOCK flag is set.

� If the O NONBLOCK flag is clear, a write request may cause the
process to block, but on normal completion it returns nbyte.

May 31, 2004 Manifests 3551

write() 2004, QNX Software Systems Ltd.

� If the O NONBLOCK flag is set, write requests are handled
differently, in the following ways:

- The write() function doesn’t block the process.

- Write requests for PIPE BUF bytes or less either succeed
completely and return nbyte, or return -1 and errno is set to
EAGAIN.

If you call write() with nbyte greater than PIPE BUF bytes, it either
transfers what it can and returns the number of bytes written, or
transfers no data, returning -1 and setting errno to EAGAIN. Also,
if nbyte is greater than PIPE BUF bytes and all data previously
written to the pipe has been read (that is, the pipe is empty), write()
transfers at least PIPE BUF bytes.

When attempting to write to a file (other than a pipe or FIFO) that
supports nonblocking writes and can’t accept the data immediately:

� If the O NONBLOCK flag is clear, write() blocks until the data can
be accepted.

� If the O NONBLOCK flag is set, write() doesn’t block the process.
If some data can be written without blocking the process, write()
transfers what it can and returns the number of bytes written.
Otherwise, it returns -1 and sets errno to EAGAIN.

If write() is called with the file offset beyond the end-of-file, the file is
extended to the current file offset with the intervening bytes filled
with zeroes. This is a useful technique for pregrowing a file.

If write() succeeds, the st ctime and st mtime fields of the file are
marked for update.

Returns:
The number of bytes written, or -1 if an error occurred (errno is set).

3552 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. write()

Errors:
EAGAIN The O NONBLOCK flag is set for the file descriptor, and

the process would be delayed in the write operation.

EBADF The file descriptor, fildes, isn’t a valid file descriptor
open for writing.

EFBIG The file is a regular file, where nbytes is greater than 0,
and the starting position is greater than or equal to the
offset maximum associated with the file.

EINTR The write operation was interrupted by a signal, and
either no data was transferred, or the resource manager
responsible for that file doesn’t report partial transfers.

EIO A physical I/O error occurred (for example, a bad block
on a disk). The precise meaning is device-dependent.

ENOSPC There’s no free space remaining on the device
containing the file.

ENOSYS The write() function isn’t implemented for the
filesystem specified by filedes.

EPIPE An attempt was made to write to a pipe (or FIFO) that
isn’t open for reading by any process. A SIGPIPE signal
is also sent to the process.

Examples:
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdlib.h>

char buffer[] = { "A text record to be written" };

int main(void)
{

int fd;
int size written;

May 31, 2004 Manifests 3553

write() 2004, QNX Software Systems Ltd.

/* open a file for output */
/* replace existing file if it exists */
fd = creat("myfile.dat", S IRUSR | S IWUSR);

/* write the text */
size written = write(fd, buffer,

sizeof(buffer));

/* test for error */
if(size written != sizeof(buffer)) {

perror("Error writing myfile.dat");
return EXIT FAILURE;

}

/* close the file */
close(fd);

return EXIT SUCCESS;
}

Classification:
POSIX 1003.1

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
close(), creat(), dup(), dup2(), errno, fcntl(), lseek(), open(), pipe(),
read(), readv(), select(), writev()

3554 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. writeblock()
Write blocks of data to a file

Synopsis:
#include <unistd.h>

int writeblock(int fd,
size t blksize,
unsigned block,
int numblks,
const void *buff);

Arguments:
fd The file descriptor for the file you want to write in.

blksize The number of bytes in each block of data.

block The block number from which to start writing. Blocks
are numbered starting at 0.

numblks The number of blocks to write.

buff A pointer to a buffer that contains the blocks of data that
you want to write.

Library:
libc

Description:
The writeblock() function writes numblks blocks of data to the file
associated with the open file descriptor, fd, from the buffer pointed to
by buff , starting at block number block.

This function is useful for direct updating of raw blocks on a block
special device (for example, raw disk blocks), but you can also use it
for high-speed updating (for example, of database files). The speed
gain is through the combined seek/write implicit in this call.

If numblks is zero, writeblock() returns zero, and has no other results.

May 31, 2004 Manifests 3555

writeblock() 2004, QNX Software Systems Ltd.

If successful, writeblock() returns the number of blocks actually
written to the disk associated with fd. This number is never greater
than numblks, but could be less than numblks if one of the following
occurs:

� The process attempts to write more blocks than implementation
limits allow to be written in a single atomic operation.

� A write error occurred after writing at least one block, and you set
one of the sync flags (O SYNC or O DSYNC — see open()) when
you opened the file.

If a write error occurs on the first block and one of the sync flags is
set, writeblock() returns -1 and sets errno to EIO.

If one of the sync flags is set, writeblock() doesn’t return until the
blocks are actually transferred to the disk. If neither of the flags is set,
writeblock() places the blocks in the cache and schedules them for
writing as soon as possible, but returns before the writing takes place.

In the latter instance, it’s impossible for the application to know if the
write succeeded or not (due to system failures or bad disk blocks).
Using the sync flags significantly impacts the performance of
writeblock(), but guarantees that the data can be recovered.

�

Returns:
The number of blocks actually written. If an error occurred,
writeblock() returns -1, sets errno to indicate the error, and doesn’t
change the contents of the buffer pointed to by buff .

Errors:
EBADF The fd argument isn’t a valid file descriptor that’s open

for writing a block-oriented device.

EIO A physical write error occurred on the first block, and
either O DSYNC or O SYNC is set.

3556 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. writeblock()

EINVAL The starting position is invalid (0 or negative), or beyond
the end of the file.

Classification:
QNX Neutrino

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
open(), readblock(), write()

May 31, 2004 Manifests 3557

writev() 2004, QNX Software Systems Ltd.

Write bytes to a file

Synopsis:
#include <sys/uio.h>

ssize t writev(int fildes,
const iov t* iov,
int iovcnt);

Arguments:
fildes The file descriptor for the file you want to write in.

iov An array of iov t objects that contain the data that you
want to write.

iovcnt The number of elements in the array.

Library:
libc

Description:
The writev() function performs the same action as write(), but gathers
the output data from the iovcnt buffers specified by the members of
the iov array: iov[0], iov[1], . . . , iov[iovcnt-1].

For writev(), the iov t structure contains the following members:

iov base Base address of a memory area from which data should
be written.

iov len The length of the memory area.

The writev() function always writes a complete area before
proceeding to the next.

The maximum number of entries in the iov array is UIO MAXIOV.

3558 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. writev()

Note that writev() ignores advisory locks that may have been set by
the fcntl() function.

�

If writev() is interrupted by a signal before it has written any data, it
returns a value of -1, and errno is set to EINTR. However, if writev() is
interrupted by a signal after it has successfully written some data, it
will return the number of bytes written.

For more details, see the write() function.

Returns:
The number of bytes written, or -1 if an error occurs (errno is set).

Errors:
EAGAIN The O NONBLOCK flag is set for the file descriptor, and

the process would be delayed in the write operation.

EBADF The file descriptor, fildes, isn’t a valid file descriptor
open for writing.

EFBIG The file is a regular file, where nbytes is greater than 0,
and the starting position is greater than or equal to the
offset maximum associated with the file.

EINTR The write operation was interrupted by a signal, and
either no data was transferred, or the resource manager
responsible for that file doesn’t report partial transfers.

EINVAL The iovcnt argument is less than or equal to 0, or
greater than UIO MAXIOV.

EIO A physical I/O error occurred (for example, a bad block
on a disk). The precise meaning is device-dependent.

ENOSPC There is no free space remaining on the device
containing the file.

ENOSYS The write() function isn’t implemented for the
filesystem specified by filedes.

May 31, 2004 Manifests 3559

writev() 2004, QNX Software Systems Ltd.

EPIPE An attempt was made to write to a pipe (or FIFO) that
isn’t open for reading by any process. A SIGPIPE signal
is also sent to the process.

Classification:
Standard Unix

Safety

Cancellation point Yes

Interrupt handler No

Signal handler Yes

Thread Yes

See also:
close(), creat(), dup(), dup2(), errno, fcntl(), lseek(), open(), pipe(),
read(), readv(), select(), write()

3560 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. wscanf()
Scan formatted wide-character input from stdin

Synopsis:
#include <wchar.h>

int wscanf(const char * format,
...);

Arguments:
format A wide-character string that specifies the format of the

input. For more information, see scanf(). The formatting
string determines what additional arguments you need to
provide.

Library:
libc

Description:
The wscanf() function scans input from stdin under control of the
format argument, assigning values to the remaining arguments. It is
the wide-character version of scanf() and uses the same conversions.

Returns:
The number of input arguments for which values were successfully
scanned and stored, or EOF if the scanning reached the end of the
input stream before storing any values.

Classification:
ANSI

Safety

Cancellation point Yes

Interrupt handler No

continued. . .

May 31, 2004 Manifests 3561

wscanf() 2004, QNX Software Systems Ltd.

Safety

Signal handler No

Thread Yes

See also:
fscanf(), fwscanf(), scanf(), sscanf(), swscanf(), vfscanf(), vfwscanf(),
vscanf(), vsscanf(), vswscanf(), vwscanf()

3562 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. y0(), y0f()
Compute a Bessel function of the second kind

Synopsis:
#include <math.h>

double y0(double x);

float y0f(float x);

Arguments:
x The number that you want to compute the Bessel function for.

Library:
libbessel

Description:
Compute the Bessel function of the second kind for x.

Returns:
The result of the Bessel function of x.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Classification:
y0() is standard Unix; y0f() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

continued. . .

May 31, 2004 Manifests 3563

y0(), y0f() 2004, QNX Software Systems Ltd.

Safety

Signal handler No

Thread Yes

See also:
errno, j0(), j1(), jn(), y1(), yn()

3564 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. y1(), y1f()
Compute a Bessel function of the second kind

Synopsis:
#include <math.h>

double y1(double x);

float y1f(float x);

Arguments:
x The number that you want to compute the Bessel function for.

Library:
libbessel

Description:
Compute the Bessel function of the second kind for x.

Returns:
The result of the Bessel function of x.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Examples:
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

int main(void)
{

double x, y, z;

x = j0(2.4);
y = y1(1.58);
z = jn(3, 2.4);

May 31, 2004 Manifests 3565

y1(), y1f() 2004, QNX Software Systems Ltd.

printf("j0(2.4) = %f, y1(1.58) = %f\n", x, y);
printf("jn(3,2.4) = %f\n", z);

return EXIT SUCCESS;
}

Classification:
y1() is standard Unix; y1f() is ANSI (draft)

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, j0(), j1(), jn(), y0(), yn()

3566 Manifests May 31, 2004

 2004, QNX Software Systems Ltd. yn(), ynf()
Compute a Bessel function of the second kind

Synopsis:
#include <math.h>

double yn(int n,
double x);

float ynf(int n,
float x);

Arguments:
n, x The numbers that you want to compute the Bessel function

for.

Library:
libbessel

Description:
Compute the Bessel function of the second kind for n and x.

Returns:
The result of the Bessel function of n and x.

If an error occurs, these functions return 0, but this is also a valid
mathematical result. If you want to check for errors, set errno to 0,
call the function, and then check errno again. These functions don’t
change errno if no errors occurred.

�

Classification:
yn() is standard Unix; ynf() is ANSI (draft)

May 31, 2004 Manifests 3567

yn(), ynf() 2004, QNX Software Systems Ltd.

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
errno, j0(), j1(), jn(), y0(), y1()

3568 Manifests May 31, 2004

Appendix A

SOCKS — A Basic Firewall

In this appendix. . .
About SOCKS 3571
How to SOCKSify a client 3571
What SOCKS expects 3572

May 31, 2004 Appendix: A � SOCKS — A Basic Firewall 3569

 2004, QNX Software Systems Ltd. About SOCKS

About SOCKS
SOCKS is a package consisting of a proxy server, client programs
(rftp and rtelnet), and a library (libsocks) for adapting other
applications into new client programs.

The original SOCKS was written by David Koblas
(koblas@netcom.com). The SOCKS protocol has changed over
time. The client library shipped as of printing corresponds to SOCKS
v4.2. Since the server and the clients must use the same SOCKS
protocol, this library doesn’t work with servers of previous releases;
clients compiled with these libraries won’t work with older servers.

How to SOCKSify a client
If your client is using UDP to transfer data, you can’t use SOCKS. To
see if your client uses UDP, search for the string “SOCK DGRAM” in
your source.

�

1 At or near the beginning of main(), you can add a call to
SOCKSinit().

You can omit this step; the only reason for calling SOCKSinit()
directly is to associate a name with your SOCKS client (rather
than the generic “SOCKSclient” default string).

2 Add the following options to your compile commands:
-Dconnect=Rconnect -Dgetsockname=Rgetsockname \
-Dbind=Rbind -Daccept=Raccept -Dlisten=Rlisten \
-Drcmd=Rrcmd -Dselect=Rselect

If you’re using a Makefile, add these options to the definition
of macro CFLAGS.

These options replace calls to certain functions with versions
that use the SOCKS server:

May 31, 2004 Appendix: A � SOCKS — A Basic Firewall 3571

What SOCKS expects 2004, QNX Software Systems Ltd.

Non-SOCKS function: SOCKS function:

accept() Raccept()

bind() Rbind()

connect() Rconnect()

getsockname() Rgetsockname()

listen() Rlisten()

rcmd() Rrcmd()

select() Rselect()

3 Link against the SOCKS library by adding -l socks to your
link line.

If you’re using a Makefile, simply add this information to the
definition of the macro LDFLAGS.

For most programs, the above steps should be sufficient to SOCKSify
the package. If the above doesn’t work, you may need to look at
things a little more closely. The next section describes how the
SOCKS library expects to be used.

What SOCKS expects
The SOCKS library covers only some of the socket functions, which
must be called in a particular order:

You must use TCP; SOCKS doesn’t support UDP.�

1 The first socket function invoked must be either connect() or
rcmd().

2 If you call connect() on a nonblocking socket, no I/O can occur
on that socket until another connect(), with the same arguments,
returns -1 and sets errno to EISCONN. This is required even if
you use select() on write to check the readiness of that socket.

3572 Appendix: A � SOCKS — A Basic Firewall May 31, 2004

 2004, QNX Software Systems Ltd. What SOCKS expects

While a connection is still pending, don’t try to start another
connection via connect(), or start a sequence of bind(), getsockname(),
listen(), and accept().

�

3 You must call bind() after a successful connect() call to a host
for a specific service.

4 You must follow the call to bind() by calls to getsockname(),
listen(), and accept(), in that order.

Most client programs fit these assumptions very well and can be
SOCKSified without changing the code at all using the steps
described in “How to SOCKSify a client.”

Some client programs use a bind() before each connect(). If the bind()
is used to claim a specific port or a specific network interface, the
current SOCKS library can’t accommodate such use. Very often
though, such a bind() call is there for no specific reason and may
simply be deleted.

May 31, 2004 Appendix: A � SOCKS — A Basic Firewall 3573

Appendix B

Third-Party Copyright Notices

May 31, 2004 Appendix: B � Third-Party Copyright Notices 3575

 2004, QNX Software Systems Ltd.

BSD Stack
Copyright 1997 Christopher G. Demetriou.
All rights reserved.
Copyright 1982, 1986, 1989, 1991, 1993 The Regents of the
University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

1 Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2 Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

3 Neither the name of the University nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

May 31, 2004 Appendix: B � Third-Party Copyright Notices 3577

 2004, QNX Software Systems Ltd.

OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

BSD Stack and Various Utilities
Copyright 1998 The NetBSD Foundation, Inc.
All rights reserved.
This code is derived from software contributed to The NetBSD
Foundation by Public Access Networks Corporation ("Panix"). It
was developed under contract to Panix by Eric Haszlakiewicz and
Thor Lancelot Simon.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

1 Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2 Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

3 All advertising materials mentioning features or use of this
software must display the following acknowledgement: This
product includes software developed by the NetBSD
Foundation, Inc. and its contributors.

4 Neither the name of The NetBSD Foundation nor the names of
its contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE NETBSD
FOUNDATION, INC. AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

3578 Appendix: B � Third-Party Copyright Notices May 31, 2004

 2004, QNX Software Systems Ltd.

FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright 1995 The NetBSD Foundation, Inc. All rights
reserved.

This code is derived from software contributed to The NetBSD
Foundation by Christos Zoulas. Redistribution and use in source and
binary forms, with or without modification, are permitted provided
that the following conditions are met:

1 Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2 Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

3 All advertising materials mentioning features or use of this
software must display the following acknowledgement: This
product includes software developed by the NetBSD
Foundation, Inc. and its contributors.

4 Neither the name of The NetBSD Foundation nor the names of
its contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE NETBSD
FOUNDATION, INC. AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

May 31, 2004 Appendix: B � Third-Party Copyright Notices 3579

 2004, QNX Software Systems Ltd.

LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright 1996, 1997 The NetBSD Foundation, Inc. All rights
reserved.

This code is derived from software contributed to The NetBSD
Foundation by Jason R. Thorpe of the Numerical Aerospace
Simulation Facility, NASA Ames Research Center.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

1 Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2 Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

3 All advertising materials mentioning features or use of this
software must display the following acknowledgement: This
product includes software developed by the NetBSD
Foundation, Inc. and its contributors.

4 Neither the name of The NetBSD Foundation nor the names of
its contributors may be used to endorse or promote products

3580 Appendix: B � Third-Party Copyright Notices May 31, 2004

 2004, QNX Software Systems Ltd.

derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE NETBSD
FOUNDATION, INC. AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright 1996 Matt Thomas matt@3am-software.com.
All rights reserved.
Copyright 1982, 1986, 1988, 1993 The Regents of the University
of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

1 Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2 Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

3 Neither the name of the University nor the names of its
contributors may be used to endorse or promote products

May 31, 2004 Appendix: B � Third-Party Copyright Notices 3581

 2004, QNX Software Systems Ltd.

derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Portions Copyright 1993 by Digital Equipment Corporation.

Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies, and
that the name of Digital Equipment Corporation not be used in
advertising or publicity pertaining to distribution of the document or
software without specific, written prior permission.

THE SOFTWARE IS PROVIDED “AS IS”AND DIGITAL
EQUIPMENT CORP. DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
EVENT SHALL DIGITAL EQUIPMENT CORPORATION BE
LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT

3582 Appendix: B � Third-Party Copyright Notices May 31, 2004

 2004, QNX Software Systems Ltd.

OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

Portions Copyright 1995 by International Business Machines,
Inc.

International Business Machines, Inc. (hereinafter called IBM) grants
permission under its copyrights to use, copy, modify, and distribute
this Software with or without fee, provided that the above copyright
notice and all paragraphs of this notice appear in all copies, and that
the name of IBM not be used in connection with the marketing of any
product incorporating the Software or modifications thereof, without
specific, written prior permission.

To the extent it has a right to do so, IBM grants an immunity from suit
under its patents, if any, for the use, sale or manufacture of products
to the extent that such products are used for performing Domain
Name System dynamic updates in TCP/IP networks by means of the
Software. No immunity is granted for any product per se or for any
other function of any product.

THE SOFTWARE IS PROVIDED “AS IS”, AND IBM DISCLAIMS
ALL WARRANTIES, INCLUDING ALL IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY
SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE, EVEN IF IBM IS APPRISED OF THE
POSSIBILITY OF SUCH DAMAGES.

Copyright 1996 by Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED “AS IS” AND INTERNET
SOFTWARE CONSORTIUM DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND

May 31, 2004 Appendix: B � Third-Party Copyright Notices 3583

 2004, QNX Software Systems Ltd.

FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE
CONSORTIUM BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

All of the documentation and software included in the third BSD
Networking Software Release is copyrighted by The Regents of
the University of California.

Copyright 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1993
The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

1 Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2 Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

3 Neither the name of the University nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE

3584 Appendix: B � Third-Party Copyright Notices May 31, 2004

 2004, QNX Software Systems Ltd.

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

MINIX Operating System
Copyright 1987,1997
Prentice Hall
All rights reserved.

Redistribution and use of the MINIX operating system in source and
binary forms, with or without modification, are permitted provided
that the following conditions are met:

1 Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2 Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

3 Neither the name of Prentice Hall nor the names of the software
authors or contributors may be used to endorse or promote
products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
HOLDERS, AUTHORS, AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

May 31, 2004 Appendix: B � Third-Party Copyright Notices 3585

 2004, QNX Software Systems Ltd.

PRENTICE HALL OR ANY AUTHORS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Regular Expression Handling
Copyright 1992, 1993, 1994, 1997
Henry Spencer.
All rights reserved.

This software is not subject to any license of the American Telephone
and Telegraph Company or of the Regents of the University of
California.

Permission is granted to anyone to use this software for any purpose
on any computer system, and to alter it and redistribute it, subject to
the following restrictions:

1 The author is not responsible for the consequences of use of
this software, no matter how awful, even if they arise from
flaws in it.

2 The origin of this software must not be misrepresented, either
by explicit claim or by omission. Since few users ever read
sources, credits must appear in the documentation.

3 Altered versions must be plainly marked as such, and must not
be misrepresented as being the original software. Since few
users ever read sources, credits must appear in the
documentation.

4 This notice may not be removed or altered.

3586 Appendix: B � Third-Party Copyright Notices May 31, 2004

 2004, QNX Software Systems Ltd.

Remote Procedure Call (RPC)
Copyright 1984, 1985, 1986, 1987
Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, California 94043

Sun RPC is a product of Sun Microsystems, Inc. and is provided for
unrestricted use provided that this legend is included on all tape media
and as a part of the software program in whole or part. Users may
copy or modify Sun RPC without charge, but are not authorized to
license or distribute it to anyone else except as part of a product or
program developed by the user.

SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF
ANY KIND INCLUDING THE WARRANTIES OF DESIGN,
MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE, OR ARISING FROM A COURSE OF DEALING,
USAGE OR TRADE PRACTICE.

Sun RPC is provided with no support and without any obligation on
the part of Sun Microsystems, Inc. to assist in its use, correction,
modification or enhancement.

SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY
WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS,
TRADE SECRETS OR ANY PATENTS BY SUN RPC OR ANY
PART THEREOF.

In no event will Sun Microsystems, Inc. be liable for any lost revenue
or profits or other special, indirect and consequential damages, even if
Sun has been advised of the possibility of such damages.

SNMPv2
Copyright 1988, 1989, 1991
Carnegie Mellon University
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,

May 31, 2004 Appendix: B � Third-Party Copyright Notices 3587

 2004, QNX Software Systems Ltd.

provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Carnegie Mellon
University not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
CMU BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

SOCKS
Copyright 1989
The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

1 Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2 Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

3 Neither the name of the University nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.

3588 Appendix: B � Third-Party Copyright Notices May 31, 2004

 2004, QNX Software Systems Ltd.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Portions Copyright 1993, 1994
by NEC Systems Laboratory.

Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies, and
that the name of NEC Systems Laboratory not be used in advertising
or publicity pertaining to distribution of the document or software
without specific, written prior permission.

THE SOFTWARE IS PROVIDED “AS IS” AND NEC SYSTEMS
LABORATORY DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
EVENT SHALL NEC SYSTEMS LABORATORY BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE
USE OR PERFORMANCE OF THIS SOFTWARE.

May 31, 2004 Appendix: B � Third-Party Copyright Notices 3589

Appendix C

Summary of Safety Information

In this appendix. . .
Cancellation points 3593
Interrupt handlers 3598
Signal handlers 3601
Multithreaded programs 3614

May 31, 2004 Appendix: C � Summary of Safety Information 3591

 2004, QNX Software Systems Ltd. Cancellation points

Cancellation points
The following functions are cancellation points:

ConnectAttach()
ConnectAttach r()
ConnectDetach()
ConnectDetach r()
ConnectServerInfo()
ConnectServerInfo r()
InterruptWait()
InterruptWait r()
MsgSend()
MsgSend r()
MsgSendsv()
MsgSendsv r()
MsgSendv()
MsgSendv r()
MsgSendvs()
MsgSendvs r()
SignalSuspend()
SignalSuspend r()
SignalWaitinfo()
SignalWaitinfo r()
SyncCondvarSignal()
SyncCondvarSignal r()
SyncCondvarWait()
SyncCondvarWait r()
ThreadJoin()
ThreadJoin r()
accept()
aio suspend()
cfgopen()
chsize()
clock nanosleep()
close()
closedir()

closelog()
connect()
creat()
creat64()
delay()
devctl()
dispatch block()
dispatch unblock()
dlclose()
dlopen()
ds clear()
ds create()
ds deregister()
ds flags()
ds get()
ds register()
ds set()
endgrent()
endhostent()
endnetent()
endprotoent()
endpwent()
endservent()
endspent()
endutent()
eof()
err()
errx()
fcfgopen()
fchown()
fclose()
fcloseall()
fdopen()

May 31, 2004 Appendix: C � Summary of Safety Information 3593

Cancellation points 2004, QNX Software Systems Ltd.

fflush()
fgetc()
fgetchar()
fgets()
fgetspent()
fgetwc()
fgetws()
flushall()
fopen()
fopen64()
forkpty()
fprintf()
fputc()
fputchar()
fputs()
fputwc()
fputws()
fread()
freopen()
freopen64()
fscanf()
fsync()
ftell()
ftello()
ftw()
ftw64()
fwide()
fwprintf()
fwrite()
fwscanf()
getaddrinfo()
getc()
getc unlocked()
getchar()
getchar unlocked()
getcwd()
getgrent()

getgrgid()
getgrgid r()
getgrnam()
getgrnam r()
getgrouplist()
gethostbyaddr()
gethostbyaddr r()
gethostbyname()
gethostbyname2()
gethostbyname r()
gethostent()
gethostent r()
gethostname()
getifaddrs()
getlogin()
getlogin r()
getnameinfo()
getnetbyaddr()
getnetbyname()
getnetent()
getopt()
getpass()
getpeername()
getprotobyname()
getprotobynumber()
getprotoent()
getpwent()
getpwnam()
getpwnam r()
getpwuid()
getpwuid r()
gets()
getservbyname()
getservbyport()
getservent()
getsockname()
getsockopt()

3594 Appendix: C � Summary of Safety Information May 31, 2004

 2004, QNX Software Systems Ltd. Cancellation points

getspent()
getspent r()
getspnam()
getspnam r()
getutent()
getutid()
getutline()
getw()
getwc()
getwchar()
getwd()
glob()
herror()
if indextoname()
if nameindex()
if nametoindex()
initstate()
input line()
iofunc attr lock()
iofunc attr trylock()
isfdtype()
listen()
login tty()
ltrunc()
message attach()
message connect()
message detach()
mknod()
mkstemp()
mktemp()
modem open()
modem read()
modem script()
modem write()
mount()
mq receive()
mq send()

mq timedreceive()
mq timedsend()
msync()
name attach()
name close()
name detach()
name open()
nanosleep()
nap()
napms()
nbaconnect()
nbaconnect result()
netmgr ndtostr()
netmgr strtond()
nftw()
nftw64()
open()
open64()
opendir()
openfd()
openlog()
openpty()
pathfind()
pathfind r()
pathmgr symlink()
pathmgr unlink()
pause()
pccard arm()
pccard attach()
pccard detach()
pccard info()
pccard lock()
pccard raw read()
pccard unlock()
pci attach()
pci attach device()
pci detach()

May 31, 2004 Appendix: C � Summary of Safety Information 3595

Cancellation points 2004, QNX Software Systems Ltd.

pci detach device()
pci find class()
pci find device()
pci irq routing options()
pci map irq()
pci present()
pci read config()
pci read config16()
pci read config32()
pci read config8()
pci rescan bus()
pci write config()
pci write config16()
pci write config32()
pci write config8()
pclose()
perror()
poll()
popen()
pread()
pread64()
printf()
pthread cond timedwait()
pthread cond wait()
pthread join()
pthread rwlock rdlock()
pthread rwlock timedrdlock()
pthread rwlock timedwrlock()
pthread rwlock tryrdlock()
pthread rwlock trywrlock()
pthread rwlock wrlock()
pthread sleepon lock()
pthread sleepon timedwait()
pthread sleepon wait()
pthread testcancel()
pulse attach()
putc()

putc unlocked()
putchar()
putchar unlocked()
puts()
putspent()
pututline()
putw()
putwc()
putwchar()
pwrite()
pwrite64()
rcmd()
read()
read main config file()
readblock()
readcond()
readdir()
readv()
realpath()
recv()
recvfrom()
recvmsg()
remove()
rename()
res init()
res mkquery()
res query()
res querydomain()
res search()
res send()
resmgr attach()
resmgr block()
resmgr context alloc()
resmgr context free()
resmgr detach()
resmgr devino()
resmgr handler()

3596 Appendix: C � Summary of Safety Information May 31, 2004

 2004, QNX Software Systems Ltd. Cancellation points

rewind()
rewinddir()
rresvport()
rsrcdbmgr attach()
rsrcdbmgr create()
rsrcdbmgr destroy()
rsrcdbmgr detach()
rsrcdbmgr devno attach()
rsrcdbmgr devno detach()
rsrcdbmgr query()
ruserok()
scandir()
scanf()
sctp bindx()
sctp connectx()
sctp getladdrs()
sctp getpaddrs()
sctp peeloff()
sctp recvmsg()
sctp sendmsg()
seekdir()
select attach()
select detach()
sem timedwait()
sem wait()
send()
sendmsg()
sendto()
setgrent()
setgroups()
sethostname()
setnetent()
setprotoent()
setpwent()
setservent()
setsockopt()
setutent()

shm ctl()
shutdown()
sigpause()
sigsuspend()
sigtimedwait()
sigwait()
sigwaitinfo()
sleep()
slogb()
slogf()
slogi()
snmp close()
snmp open()
snmp read()
snmp send()
snmp timeout()
sockatmark()
socket()
socketpair()
sopen()
sopenfd()
sysctl()
syslog()
system()
tcdrain()
tell()
tell64()
telldir()
thread pool control()
thread pool destroy()
thread pool limits()
thread pool start()
tmpfile()
tmpfile64()
tmpnam()
truncate()
umount()

May 31, 2004 Appendix: C � Summary of Safety Information 3597

Interrupt handlers 2004, QNX Software Systems Ltd.

ungetc()
ungetwc()
unlink()
usleep()
utmpname()
verr()
verrx()
vfscanf()
vfwscanf()
vscanf()
vslogf()
vsyslog()
vwarn()
vwarnx()

vwscanf()
wait()
wait3()
wait4()
waitid()
waitpid()
warn()
warnx()
wordexp()
wprintf()
write()
writeblock()
writev()
wscanf()

See the “Caveats” section for the following functions for more
information:

dispatch handler()
fcntl()
spawnl()
spawnle()
spawnlp()

spawnlpe()
spawnv()
spawnve()
spawnvp()
spawnvpe()

Interrupt handlers
It’s safe to call the following functions from an interrupt handler:

ENDIAN BE16()
ENDIAN BE32()
ENDIAN BE64()
ENDIAN LE16()
ENDIAN LE32()
ENDIAN LE64()
ENDIAN RET16()
ENDIAN RET32()
ENDIAN RET64()

ENDIAN SWAP16()
ENDIAN SWAP32()
ENDIAN SWAP64()
GETIOVBASE()
GETIOVLEN()
InterruptDisable()
InterruptEnable()
InterruptLock()
InterruptMask()

3598 Appendix: C � Summary of Safety Information May 31, 2004

 2004, QNX Software Systems Ltd. Interrupt handlers

InterruptUnlock()
InterruptUnmask()
ND NODE CMP()
SETIOV()
SYSPAGE CPU ENTRY()
SYSPAGE ENTRY()
UNALIGNED PUT16()
UNALIGNED PUT32()
UNALIGNED PUT64()
UNALIGNED RET16()
UNALIGNED RET32()
UNALIGNED RET64()
RESMGR NPARTS()
RESMGR PTR()
RESMGR STATUS()

abs()
alphasort()
atoh()
atoi()
atol()
atoll()
atomic add()
atomic add value()
atomic clr()
atomic clr value()
atomic set()
atomic set value()
atomic sub()
atomic sub value()
atomic toggle()
atomic toggle value()
basename()
bcmp()
bcopy()
bsearch()
bzero()
div()

gai strerror()
htonl()
htons()
hwi find item()
hwi find tag()
hwi off2tag()
hwi tag2off()
in16()
in16s()
in32()
in32s()
in8()
in8s()
inbe16()
inbe32()
inle16()
inle32()
ipsec get policylen()
ipsec strerror()
isalnum()
isalpha()
isascii()
iscntrl()
isdigit()
isgraph()
islower()
isprint()
ispunct()
isspace()
isupper()
iswalnum()
iswalpha()
iswcntrl()
iswdigit()
iswgraph()
iswlower()
iswprint()

May 31, 2004 Appendix: C � Summary of Safety Information 3599

Interrupt handlers 2004, QNX Software Systems Ltd.

iswpunct()
iswspace()
iswupper()
iswxdigit()
isxdigit()
itoa()
lltoa()
lsearch()
ltoa()
max()
memccpy()
memchr()
memcmp()
memcpy()
memcpyv()
memicmp()
memmove()
memset()
min()
nanospin count()
nsec2timespec()
ntohl()
ntohs()
offsetof()
out16()
out16s()
out32()
out32s()
out8()
out8s()
outbe16()
outbe32()
outle16()
outle32()
rindex()
setdomainname()
sigaddset()

sigdelset()
sigemptyset()
sigfillset()
sigismember()
sigmask()
straddstr()
strcasecmp()
strcat()
strchr()
strcmp()
strcmpi()
strcoll()
strcpy()
strcspn()
stricmp()
strlen()
strlwr()
strncasecmp()
strncat()
strncmp()
strncpy()
strnicmp()
strnset()
strpbrk()
strrchr()
strrev()
strsep()
strset()
strspn()
strstr()
strtoimax()
strtok r()
strtol()
strtoll()
strtoul()
strtoull()
strtoumax()

3600 Appendix: C � Summary of Safety Information May 31, 2004

 2004, QNX Software Systems Ltd. Signal handlers

strupr()
strxfrm()
swab()
timespec2nsec()
tolower()
toupper()
towctrans()
towlower()
towupper()
ulltoa()
ultoa()
utoa()
va arg()
va copy()
va end()
va start()
wcscat()
wcschr()
wcscmp()
wcscpy()
wcscspn()

wcslen()
wcsncat()
wcsncmp()
wcsncpy()
wcspbrk()
wcsrchr()
wcsspn()
wcsstr()
wcstoimax()
wcstol()
wcstoll()
wcstoul()
wcstoull()
wcstoumax()
wctrans()
wctype()
wmemchr()
wmemcmp()
wmemcpy()
wmemmove()
wmemset()

See the “Caveats” section for the following functions for more
information:

TraceEvent()
nanospin()

nanospin ns()
nanospin ns to count()

Signal handlers
It’s safe to call the following functions from a signal handler:

ChannelCreate()
ChannelCreate r()
ChannelDestroy()
ChannelDestroy r()
ClockAdjust()

ClockAdjust r()
ClockCycles()
ClockId()
ClockId r()
ClockPeriod()

May 31, 2004 Appendix: C � Summary of Safety Information 3601

Signal handlers 2004, QNX Software Systems Ltd.

ClockPeriod r()
ClockTime()
ClockTime r()
ConnectAttach()
ConnectAttach r()
ConnectClientInfo()
ConnectClientInfo r()
ConnectDetach()
ConnectDetach r()
ConnectFlags()
ConnectFlags r()
ConnectServerInfo()
ConnectServerInfo r()
DebugBreak()
DebugKDBreak()
DebugKDOutput()
ENDIAN BE16()
ENDIAN BE32()
ENDIAN BE64()
ENDIAN LE16()
ENDIAN LE32()
ENDIAN LE64()
ENDIAN RET16()
ENDIAN RET32()
ENDIAN RET64()
ENDIAN SWAP16()
ENDIAN SWAP32()
ENDIAN SWAP64()
GETIOVBASE()
GETIOVLEN()
InterruptAttach()
InterruptAttachEvent()
InterruptAttachEvent r()
InterruptAttach r()
InterruptDetach()
InterruptDetach r()
InterruptDisable()

InterruptEnable()
InterruptHookIdle()
InterruptHookTrace()
InterruptLock()
InterruptMask()
InterruptUnlock()
InterruptUnmask()
InterruptWait()
InterruptWait r()
MsgDeliverEvent()
MsgDeliverEvent r()
MsgError()
MsgError r()
MsgInfo()
MsgInfo r()
MsgKeyData()
MsgKeyData r()
MsgRead()
MsgRead r()
MsgReadv()
MsgReadv r()
MsgReceive()
MsgReceivePulse()
MsgReceivePulse r()
MsgReceivePulsev()
MsgReceivePulsev r()
MsgReceive r()
MsgReceivev()
MsgReceivev r()
MsgReply()
MsgReply r()
MsgReplyv()
MsgReplyv r()
MsgSend()
MsgSendPulse()
MsgSendPulse r()
MsgSend r()

3602 Appendix: C � Summary of Safety Information May 31, 2004

 2004, QNX Software Systems Ltd. Signal handlers

MsgSendnc()
MsgSendnc r()
MsgSendsv()
MsgSendsv r()
MsgSendsvnc()
MsgSendsvnc r()
MsgSendv()
MsgSendv r()
MsgSendvnc()
MsgSendvnc r()
MsgSendvs()
MsgSendvs r()
MsgSendvsnc()
MsgSendvsnc r()
MsgVerifyEvent()
MsgVerifyEvent r()
MsgWrite()
MsgWrite r()
MsgWritev()
MsgWritev r()
ND NODE CMP()
SETIOV()
SYSPAGE CPU ENTRY()
SYSPAGE ENTRY()
SchedGet()
SchedGet r()
SchedInfo()
SchedInfo r()
SchedSet()
SchedSet r()
SchedYield()
SchedYield r()
SignalAction()
SignalAction r()
SignalKill()
SignalKill r()
SignalProcmask()

SignalProcmask r()
SignalSuspend()
SignalSuspend r()
SignalWaitinfo()
SignalWaitinfo r()
SyncCondvarSignal()
SyncCondvarSignal r()
SyncCondvarWait()
SyncCondvarWait r()
SyncCtl()
SyncCtl r()
SyncDestroy()
SyncDestroy r()
SyncMutexEvent()
SyncMutexEvent r()
SyncMutexLock()
SyncMutexLock r()
SyncMutexRevive()
SyncMutexRevive r()
SyncMutexUnlock()
SyncMutexUnlock r()
SyncSemPost()
SyncSemPost r()
SyncSemWait()
SyncSemWait r()
SyncTypeCreate()
SyncTypeCreate r()
ThreadCancel()
ThreadCancel r()
ThreadCreate()
ThreadCreate r()
ThreadCtl()
ThreadCtl r()
ThreadDestroy()
ThreadDestroy r()
ThreadDetach()
ThreadDetach r()

May 31, 2004 Appendix: C � Summary of Safety Information 3603

Signal handlers 2004, QNX Software Systems Ltd.

ThreadJoin()
ThreadJoin r()
TimerAlarm()
TimerAlarm r()
TimerCreate()
TimerCreate r()
TimerDestroy()
TimerDestroy r()
TimerInfo()
TimerInfo r()
TimerSettime()
TimerSettime r()
TimerTimeout()
TimerTimeout r()
TraceEvent()
UNALIGNED PUT16()
UNALIGNED PUT32()
UNALIGNED PUT64()
UNALIGNED RET16()
UNALIGNED RET32()
UNALIGNED RET64()
RESMGR NPARTS()
RESMGR PTR()
RESMGR STATUS()
exit()
intr v86()
sfree()

abs()
access()
aio cancel()
aio error()
aio fsync()
aio read()
aio return()
aio suspend()
aio write()
alarm()

alloca()
alphasort()
asctime()
asctime r()
atoh()
atoi()
atol()
atoll()
atomic add()
atomic add value()
atomic clr()
atomic clr value()
atomic set()
atomic set value()
atomic sub()
atomic sub value()
atomic toggle()
atomic toggle value()
basename()
bcmp()
bcopy()
bsearch()
btowc()
bzero()
cfgetispeed()
cfgetospeed()
cfgopen()
cfmakeraw()
cfsetispeed()
cfsetospeed()
chdir()
chmod()
chown()
chsize()
clock()
clock getcpuclockid()
clock getres()

3604 Appendix: C � Summary of Safety Information May 31, 2004

 2004, QNX Software Systems Ltd. Signal handlers

clock gettime()
clock nanosleep()
clock settime()
close()
confstr()
creat()
creat64()
ctime()
ctime r()
daemon()
delay()
devctl()
dirname()
dispatch block()
dispatch unblock()
div()
dn comp()
dn expand()
ds clear()
ds create()
ds deregister()
ds flags()
ds get()
ds register()
ds set()
dup()
dup2()
eaccess()
encrypt()
eof()
err()
errx()
execle()
execve()
execvpe()
fcfgopen()
fchmod()

fchown()
fcntl()
fdatasync()
ffs()
fileno()
flink()
flock()
fnmatch()
fork()
forkpty()
fpathconf()
fseek()
fseeko()
fsetpos()
fstat()
fstat64()
fstatvfs()
fstatvfs64()
fsync()
ftime()
ftruncate()
ftruncate64()
ftrylockfile()
ftw()
ftw64()
futime()
fwide()
gai strerror()
getdomainname()
getdtablesize()
getegid()
geteuid()
getgid()
getgrouplist()
getgroups()
gethostname()
getitimer()

May 31, 2004 Appendix: C � Summary of Safety Information 3605

Signal handlers 2004, QNX Software Systems Ltd.

getpgid()
getpgrp()
getpid()
getppid()
getprio()
getrlimit()
getrlimit64()
getrusage()
getsubopt()
gettimeofday()
getuid()
getw()
getwd()
glob()
globfree()
gmtime r()
hsearch()
hstrerror()
htonl()
htons()
hwi find item()
hwi find tag()
hwi off2tag()
hwi tag2off()
in16()
in16s()
in32()
in32s()
in8()
in8s()
inbe16()
inbe32()
index()
inet6 option *()
inet6 rthdr *()
inet addr()
inet aton()

inet lnaof()
inet makeaddr()
inet netof()
inet network()
inet ntop()
inet pton()
inle16()
inle32()
iofdinfo()
iofunc attr init()
iofunc attr lock()
iofunc attr trylock()
iofunc attr unlock()
iofunc check access()
iofunc chmod()
iofunc chmod default()
iofunc chown()
iofunc chown default()
iofunc client info()
iofunc close dup()
iofunc close dup default()
iofunc close ocb()
iofunc close ocb default()
iofunc devctl()
iofunc devctl default()
iofunc fdinfo()
iofunc fdinfo default()
iofunc func init()
iofunc link()
iofunc lock()
iofunc lock calloc()
iofunc lock default()
iofunc lock free()
iofunc lock ocb default()
iofunc lseek()
iofunc lseek default()
iofunc mknod()

3606 Appendix: C � Summary of Safety Information May 31, 2004

 2004, QNX Software Systems Ltd. Signal handlers

iofunc mmap()
iofunc mmap default()
iofunc notify()
iofunc notify remove()
iofunc notify trigger()
iofunc ocb attach()
iofunc ocb calloc()
iofunc ocb detach()
iofunc ocb free()
iofunc open()
iofunc open default()
iofunc openfd()
iofunc openfd default()
iofunc pathconf()
iofunc pathconf default()
iofunc read default()
iofunc read verify()
iofunc readlink()
iofunc rename()
iofunc space verify()
iofunc stat()
iofunc stat default()
iofunc sync()
iofunc sync default()
iofunc sync verify()
iofunc time update()
iofunc unblock()
iofunc unblock default()
iofunc unlink()
iofunc unlock ocb default()
iofunc utime()
iofunc utime default()
iofunc write default()
ionotify()
ipsec get policylen()
ipsec strerror()
isalnum()

isalpha()
isascii()
iscntrl()
isdigit()
isfdtype()
isgraph()
islower()
isprint()
ispunct()
isspace()
isupper()
iswalnum()
iswalpha()
iswcntrl()
iswctype()
iswdigit()
iswgraph()
iswlower()
iswprint()
iswpunct()
iswspace()
iswupper()
iswxdigit()
isxdigit()
itoa()
kill()
killpg()
labs()
lchown()
ldiv()
lfind()
link()
lio listio()
lltoa()
localtime r()
lockf()
login tty()

May 31, 2004 Appendix: C � Summary of Safety Information 3607

Signal handlers 2004, QNX Software Systems Ltd.

longjmp()
lsearch()
lseek()
lseek64()
lstat()
lstat64()
ltoa()
max()
mblen()
mbrlen()
mbrtowc()
mbsinit()
mbsrtowcs()
mbstowcs()
mbtowc()
mem offset()
mem offset64()
memalign()
memccpy()
memchr()
memcmp()
memcpy()
memcpyv()
memicmp()
memmove()
memset()
min()
mkdir()
mkfifo()
mknod()
mkstemp()
mktemp()
mktime()
mmap()
mmap64()
mmap device io()
mmap device memory()

modem open()
modem write()
mount()
mprotect()
mq timedreceive()
mq timedsend()
msync()
munmap()
munmap device io()
munmap device memory()
name close()
name open()
nanospin()
nanospin calibrate()
nanospin count()
nanospin ns()
nanospin ns to count()
nap()
napms()
nbaconnect result()
netmgr ndtostr()
netmgr remote nd()
netmgr strtond()
nftw()
nftw64()
nice()
nsec2timespec()
ntohl()
ntohs()
offsetof()
open()
open64()
openfd()
openpty()
out16()
out16s()
out32()

3608 Appendix: C � Summary of Safety Information May 31, 2004

 2004, QNX Software Systems Ltd. Signal handlers

out32s()
out8()
out8s()
outbe16()
outbe32()
outle16()
outle32()
pathconf()
pathfind()
pathfind r()
pathmgr symlink()
pathmgr unlink()
pause()
pccard arm()
pccard attach()
pccard detach()
pccard info()
pccard lock()
pccard raw read()
pccard unlock()
pci attach()
pci attach device()
pci detach()
pci detach device()
pci find class()
pci find device()
pci irq routing options()
pci map irq()
pci present()
pci read config()
pci read config16()
pci read config32()
pci read config8()
pci rescan bus()
pci write config()
pci write config16()
pci write config32()

pci write config8()
pipe()
posix mem offset()
posix mem offset64()
posix memalign()
pread()
pread64()
procmgr daemon()
procmgr event notify()
procmgr event trigger()
procmgr guardian()
pthread abort()
pthread atfork()
pthread attr destroy()
pthread attr getdetachstate()
pthread attr getguardsize()
pthread attr getinheritsched()
pthread attr getschedparam()
pthread attr getschedpolicy()
pthread attr getscope()
pthread attr getstackaddr()
pthread attr getstacklazy()
pthread attr getstacksize()
pthread attr init()
pthread attr setdetachstate()
pthread attr setguardsize()
pthread attr setinheritsched()
pthread attr setschedparam()
pthread attr setschedpolicy()
pthread attr setscope()
pthread attr setstackaddr()
pthread attr setstacklazy()
pthread attr setstacksize()
pthread barrier destroy()
pthread barrier init()
pthread barrier wait()
pthread barrierattr destroy()

May 31, 2004 Appendix: C � Summary of Safety Information 3609

Signal handlers 2004, QNX Software Systems Ltd.

pthread barrierattr getpshared()
pthread barrierattr init()
pthread barrierattr setpshared()
pthread cancel()
pthread cleanup pop()
pthread cleanup push()
pthread cond broadcast()
pthread cond destroy()
pthread cond init()
pthread cond signal()
pthread cond timedwait()
pthread cond wait()
pthread condattr destroy()
pthread condattr getclock()
pthread condattr getpshared()
pthread condattr init()
pthread condattr setclock()
pthread condattr setpshared()
pthread create()
pthread detach()
pthread equal()
pthread exit()
pthread getconcurrency()
pthread getcpuclockid()
pthread getschedparam()
pthread getspecific()
pthread join()
pthread key delete()
pthread kill()
pthread mutex destroy()
pthread mutex getprioceiling()
pthread mutex init()
pthread mutex lock()
pthread mutex setprioceiling()
pthread mutex timedlock()
pthread mutex trylock()
pthread mutex unlock()

pthread mutexattr destroy()
pthread mutexattr getprioceiling()
pthread mutexattr getprotocol()
pthread mutexattr getpshared()
pthread mutexattr getrecursive()
pthread mutexattr gettype()
pthread mutexattr init()
pthread mutexattr setprioceiling()
pthread mutexattr setprotocol()
pthread mutexattr setpshared()
pthread mutexattr setrecursive()
pthread mutexattr settype()
pthread once()
pthread rwlock destroy()
pthread rwlock init()
pthread rwlock rdlock()
pthread rwlock timedrdlock()
pthread rwlock timedwrlock()
pthread rwlock tryrdlock()
pthread rwlock trywrlock()
pthread rwlock unlock()
pthread rwlock wrlock()
pthread rwlockattr destroy()
pthread rwlockattr getpshared()
pthread rwlockattr init()
pthread rwlockattr setpshared()
pthread self()
pthread setcancelstate()
pthread setcanceltype()
pthread setconcurrency()
pthread setschedparam()
pthread sigmask()
pthread sleepon broadcast()
pthread sleepon lock()
pthread sleepon signal()
pthread sleepon timedwait()
pthread sleepon unlock()

3610 Appendix: C � Summary of Safety Information May 31, 2004

 2004, QNX Software Systems Ltd. Signal handlers

pthread sleepon wait()
pthread spin destroy()
pthread spin init()
pthread spin lock()
pthread spin trylock()
pthread spin unlock()
pthread testcancel()
pthread timedjoin()
putw()
pwrite()
pwrite64()
qnx crypt()
raise()
rand()
rand r()
random()
rdchk()
re comp()
re exec()
read()
readblock()
readcond()
readdir r()
readlink()
readv()
realpath()
regerror()
rename()
resmgr msgread()
resmgr msgreadv()
resmgr msgwrite()
resmgr msgwritev()
resmgr pathname()
rewinddir()
rindex()
rmdir()
rsrcdbmgr attach()

rsrcdbmgr create()
rsrcdbmgr destroy()
rsrcdbmgr detach()
rsrcdbmgr devno attach()
rsrcdbmgr devno detach()
rsrcdbmgr query()
scandir()
sched get priority adjust()
sched get priority max()
sched get priority min()
sched getparam()
sched getscheduler()
sched rr get interval()
sched setparam()
sched setscheduler()
sched yield()
sem close()
sem destroy()
sem getvalue()
sem open()
sem post()
sem timedwait()
sem trywait()
sem unlink()
sem wait()
setdomainname()
setegid()
seteuid()
setgid()
sethostname()
setitimer()
setjmp()
setpgid()
setpgrp()
setprio()
setregid()
setreuid()

May 31, 2004 Appendix: C � Summary of Safety Information 3611

Signal handlers 2004, QNX Software Systems Ltd.

setrlimit()
setrlimit64()
setsid()
settimeofday()
setuid()
setutent()
shm ctl()
shm open()
shm unlink()
sigaction()
sigaddset()
sigblock()
sigdelset()
sigemptyset()
sigfillset()
sigismember()
siglongjmp()
sigmask()
signal()
sigpause()
sigpending()
sigprocmask()
sigqueue()
sigsetjmp()
sigsetmask()
sigsuspend()
sigtimedwait()
sigunblock()
sigwait()
sigwaitinfo()
sleep()
slogb()
slogf()
slogi()
snprintf()
sopenfd()
spawn()

sprintf()
srand()
srand48()
sscanf()
stat()
stat64()
statvfs()
statvfs64()
straddstr()
strcasecmp()
strcat()
strchr()
strcmp()
strcmpi()
strcoll()
strcpy()
strcspn()
strerror()
strftime()
stricmp()
strlen()
strlwr()
strncasecmp()
strncat()
strncmp()
strncpy()
strnicmp()
strnset()
strpbrk()
strrchr()
strrev()
strsep()
strset()
strsignal()
strspn()
strstr()
strtod()

3612 Appendix: C � Summary of Safety Information May 31, 2004

 2004, QNX Software Systems Ltd. Signal handlers

strtoimax()
strtok r()
strtol()
strtoll()
strtoul()
strtoull()
strtoumax()
strupr()
strxfrm()
swab()
swprintf()
swscanf()
symlink()
sync()
sysconf()
sysmgr reboot()
tcdrain()
tcdropline()
tcflow()
tcflush()
tcgetattr()
tcgetpgrp()
tcgetsid()
tcgetsize()
tcinject()
tcischars()
tcsendbreak()
tcsetattr()
tcsetpgrp()
tcsetsize()
tell()
tell64()
time()
timer create()
timer delete()
timer getexpstatus()
timer getoverrun()

timer gettime()
timer settime()
timer timeout()
timer timeout r()
times()
timespec2nsec()
tolower()
toupper()
towctrans()
towlower()
towupper()
truncate()
ttyname r()
ualarm()
ulltoa()
ultoa()
umask()
uname()
unlink()
unsetenv()
usleep()
utime()
utimes()
utmpname()
utoa()
va arg()
va copy()
va end()
va start()
valloc()
verr()
verrx()
vslogf()
vwarn()
vwarnx()
wait()
wait3()

May 31, 2004 Appendix: C � Summary of Safety Information 3613

Multithreaded programs 2004, QNX Software Systems Ltd.

wait4()
waitid()
waitpid()
warn()
warnx()
wcrtomb()
wcscat()
wcschr()
wcscmp()
wcscoll()
wcscpy()
wcscspn()
wcscxfrm()
wcsftime()
wcslen()
wcsncat()
wcsncmp()
wcsncpy()
wcspbrk()
wcsrchr()
wcsrtombs()
wcsspn()
wcsstr()
wcstod()

wcstof()
wcstoimax()
wcstok()
wcstol()
wcstold()
wcstoll()
wcstombs()
wcstoul()
wcstoull()
wcstoumax()
wctob()
wctomb()
wctrans()
wctype()
wmemchr()
wmemcmp()
wmemcpy()
wmemmove()
wmemset()
wordexp()
wordfree()
write()
writeblock()
writev()

See the “Caveats” section for the following functions for more
information:

abort()
modem read()
modem script()
vsnprintf()

vsprintf()
vsscanf()
vswprintf()
vswscanf()

Multithreaded programs

3614 Appendix: C � Summary of Safety Information May 31, 2004

 2004, QNX Software Systems Ltd. Multithreaded programs

CAUTION: It isn’t safe to call these functions from a multithreaded
program.!

Raccept()
Rbind()
Rconnect()
Rgetsockname()
Rlisten()
Rrcmd()
Rselect()
SOCKSinit()
bindresvport()
crypt()
daemon()
drand48()
endgrent()
endhostent()
endnetent()
endprotoent()
endpwent()
endservent()
endspent()
endutent()
fgetspent()
getaddrinfo()
getc unlocked()
getchar unlocked()
getenv()
getgrent()
getgrgid()
getgrnam()
gethostbyaddr()
gethostbyname()
gethostbyname2()
gethostent()
getlogin()

getnameinfo()
getnetbyaddr()
getnetbyname()
getnetent()
getopt()
getpass()
getprotobyname()
getprotobynumber()
getprotoent()
getpwent()
getpwnam()
getpwuid()
getservbyname()
getservbyport()
getservent()
gmtime()
herror()
inet ntoa()
initgroups()
initstate()
input line()
ioctl()
lcong48()
localtime()
lrand48()
lstat()
lstat64()
mrand48()
pclose()
popen()
putc unlocked()
putchar unlocked()
putenv()

May 31, 2004 Appendix: C � Summary of Safety Information 3615

Multithreaded programs 2004, QNX Software Systems Ltd.

putspent()
rand()
random()
rcmd()
read main config file()
readdir()
res init()
res mkquery()
res query()
res querydomain()
res search()
res send()
ruserok()
seekdir()
select()
setenv()
setgrent()
setgroups()
sethostent()
setkey()
setlogmask()
setnetent()
setprotoent()

setpwent()
setservent()
setspent()
setstate()
sigblock()
snmp close()
snmp free pdu()
snmp open()
snmp pdu create()
snmp read()
snmp select info()
snmp send()
snmp timeout()
sockatmark()
srandom()
strtok()
syslog()
telldir()
tempnam()
ttyname()
vfork()
vsyslog()
wcscoll()

See the “Caveats” section for the following functions for more
information:

ctermid()
modem read()

modem script()
tmpnam()

3616 Appendix: C � Summary of Safety Information May 31, 2004

Glossary

May 31, 2004 Glossary 3617

 2004, QNX Software Systems Ltd.

A20 gate

On x86-based systems, a hardware component that forces the A20
address line on the bus to zero, regardless of the actual setting of the
A20 address line on the processor. This component is in place to
support legacy systems, but the QNX Neutrino OS doesn’t require
any such hardware. Note that some processors, such as the 386EX,
have the A20 gate hardware built right into the processor itself — our
IPL will disable the A20 gate as soon as possible after startup.

adaptive

Scheduling algorithm whereby a thread’s priority is decayed by 1. See
also FIFO, round robin, and sporadic.

atomic

Of or relating to atoms. :-)

In operating systems, this refers to the requirement that an operation,
or sequence of operations, be considered indivisible. For example, a
thread may need to move a file position to a given location and read
data. These operations must be performed in an atomic manner;
otherwise, another thread could preempt the original thread and move
the file position to a different location, thus causing the original thread
to read data from the second thread’s position.

attributes structure

Structure containing information used on a per-resource basis (as
opposed to the OCB, which is used on a per-open basis).

This structure is also known as a handle. The structure definition is
fixed (iofunc attr t), but may be extended. See also mount
structure.

bank-switched

A term indicating that a certain memory component (usually the
device holding an image) isn’t entirely addressable by the processor.
In this case, a hardware component manifests a small portion (or
“window”) of the device onto the processor’s address bus. Special

May 31, 2004 Glossary 3619

 2004, QNX Software Systems Ltd.

commands have to be issued to the hardware to move the window to
different locations in the device. See also linearly mapped.

base layer calls

Convenient set of library calls for writing resource managers. These
calls all start with resmgr *(). Note that while some base layer calls
are unavoidable (e.g. resmgr pathname attach()), we recommend that
you use the POSIX layer calls where possible.

BIOS/ROM Monitor extension signature

A certain sequence of bytes indicating to the BIOS or ROM Monitor
that the device is to be considered an “extension” to the BIOS or
ROM Monitor — control is to be transferred to the device by the
BIOS or ROM Monitor, with the expectation that the device will
perform additional initializations.

On the x86 architecture, the two bytes 0x55 and 0xAA must be present
(in that order) as the first two bytes in the device, with control being
transferred to offset 0x0003.

block-integral

The requirement that data be transferred such that individual structure
components are transferred in their entirety — no partial structure
component transfers are allowed.

In a resource manager, directory data must be returned to a client as
block-integral data. This means that only complete struct dirent

structures can be returned — it’s inappropriate to return partial
structures, assuming that the next IO READ request will “pick up”
where the previous one left off.

bootable

An image can be either bootable or nonbootable. A bootable image is
one that contains the startup code that the IPL can transfer control to.

3620 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

bootfile

The part of an OS image that runs the startup code and the Neutrino
microkernel.

budget

In sporadic scheduling, the amount of time a thread is permitted to
execute at its normal priority before being dropped to its low priority.

buildfile

A text file containing instructions for mkifs specifying the contents
and other details of an image, or for mkefs specifying the contents
and other details of an embedded filesystem image.

canonical mode

Also called edited mode or “cooked” mode. In this mode the
character device library performs line-editing operations on each
received character. Only when a line is “completely entered” —
typically when a carriage return (CR) is received — will the line of
data be made available to application processes. Contrast raw mode.

channel

A kernel object used with message passing.

In QNX Neutrino, message passing is directed towards a connection
(made to a channel); threads can receive messages from channels. A
thread that wishes to receive messages creates a channel (using
ChannelCreate()), and then receives messages from that channel
(using MsgReceive()). Another thread that wishes to send a message
to the first thread must make a connection to that channel by
“attaching” to the channel (using ConnectAttach()) and then sending
data (using MsgSend()).

CIFS

Common Internet File System (aka SMB) — a protocol that allows a
client workstation to perform transparent file access over a network to
a Windows 95/98/NT server. Client file access calls are converted to

May 31, 2004 Glossary 3621

 2004, QNX Software Systems Ltd.

CIFS protocol requests and are sent to the server over the network.
The server receives the request, performs the actual filesystem
operation, and sends a response back to the client.

CIS

Card Information Structure — a data block that maintains information
about flash configuration. The CIS description includes the types of
memory devices in the regions, the physical geometry of these
devices, and the partitions located on the flash.

combine message

A resource manager message that consists of two or more messages.
The messages are constructed as combine messages by the client’s C
library (e.g. stat(), readblock()), and then handled as individual
messages by the resource manager.

The purpose of combine messages is to conserve network bandwidth
and/or to provide support for atomic operations. See also connect
message and I/O message.

connect message

In a resource manager, a message issued by the client to perform an
operation based on a pathname (e.g. an io open message).
Depending on the type of connect message sent, a context block (see
OCB) may be associated with the request and will be passed to
subsequent I/O messages. See also combine message and I/O
message.

connection

A kernel object used with message passing.

Connections are created by client threads to “connect” to the channels
made available by servers. Once connections are established, clients
can MsgSendv() messages over them. If a number of threads in a
process all attach to the same channel, then the one connection is
shared among all the threads. Channels and connections are identified
within a process by a small integer.

3622 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

The key thing to note is that connections and file descriptors (FD) are
one and the same object. See also channel and FD.

context

Information retained between invocations of functionality.

When using a resource manager, the client sets up an association or
context within the resource manager by issuing an open() call and
getting back a file descriptor. The resource manager is responsible for
storing the information required by the context (see OCB). When the
client issues further file-descriptor based messages, the resource
manager uses the OCB to determine the context for interpretation of
the client’s messages.

cooked mode

See canonical mode.

core dump

A file describing the state of a process that terminated abnormally.

critical section

A code passage that must be executed “serially” (i.e. by only one
thread at a time). The simplest from of critical section enforcement is
via a mutex.

deadlock

A condition in which one or more threads are unable to continue due
to resource contention. A common form of deadlock can occur when
one thread sends a message to another, while the other thread sends a
message to the first. Both threads are now waiting for each other to
reply to the message. Deadlock can be avoided by good design
practices or massive kludges — we recommend the good design
approach.

May 31, 2004 Glossary 3623

 2004, QNX Software Systems Ltd.

device driver

A process that allows the OS and application programs to make use of
the underlying hardware in a generic way (e.g. a disk drive, a network
interface). Unlike OSs that require device drivers to be tightly bound
into the OS itself, device drivers for QNX Neutrino are standard
processes that can be started and stopped dynamically. As a result,
adding device drivers doesn’t affect any other part of the OS —
drivers can be developed and debugged like any other application.
Also, device drivers are in their own protected address space, so a bug
in a device driver won’t cause the entire OS to shut down.

DNS

Domain Name Service — an Internet protocol used to convert ASCII
domain names into IP addresses. In QNX native networking, dns is
one of Qnet’s builtin resolvers.

dynamic bootfile

An OS image built on the fly. Contrast static bootfile.

dynamic linking

The process whereby you link your modules in such a way that the
Process Manager will link them to the library modules before your
program runs. The word “dynamic” here means that the association
between your program and the library modules that it uses is done at
load time, not at linktime. Contrast static linking. See also runtime
loading.

edge-sensitive

One of two ways in which a PIC (Programmable Interrupt Controller)
can be programmed to respond to interrupts. In edge-sensitive mode,
the interrupt is “noticed” upon a transition to/from the rising/falling
edge of a pulse. Contrast level-sensitive.

3624 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

edited mode

See canonical mode.

EOI

End Of Interrupt — a command that the OS sends to the PIC after
processing all Interrupt Service Routines (ISR) for that particular
interrupt source so that the PIC can reset the processor’s In Service
Register. See also PIC and ISR.

EPROM

Erasable Programmable Read-Only Memory — a memory
technology that allows the device to be programmed (typically with
higher-than-operating voltages, e.g. 12V), with the characteristic that
any bit (or bits) may be individually programmed from a 1 state to a 0
state. To change a bit from a 0 state into a 1 state can only be
accomplished by erasing the entire device, setting all of the bits to a 1
state. Erasing is accomplished by shining an ultraviolet light through
the erase window of the device for a fixed period of time (typically
10-20 minutes). The device is further characterized by having a
limited number of erase cycles (typically 10e5 - 10e6). Contrast flash
and RAM.

event

A notification scheme used to inform a thread that a particular
condition has occurred. Events can be signals or pulses in the general
case; they can also be unblocking events or interrupt events in the
case of kernel timeouts and interrupt service routines. An event is
delivered by a thread, a timer, the kernel, or an interrupt service
routine when appropriate to the requestor of the event.

FD

File Descriptor — a client must open a file descriptor to a resource
manager via the open() function call. The file descriptor then serves
as a handle for the client to use in subsequent messages. Note that a
file descriptor is the exact same object as a connection ID (coid,
returned by ConnectAttach()).

May 31, 2004 Glossary 3625

 2004, QNX Software Systems Ltd.

FIFO

First In First Out — a scheduling algorithm whereby a thread is able
to consume CPU at its priority level without bounds. See also
adaptive, round robin, and sporadic.

flash memory

A memory technology similar in characteristics to EPROM memory,
with the exception that erasing is performed electrically instead of via
ultraviolet light, and, depending upon the organization of the flash
memory device, erasing may be accomplished in blocks (typically
64k bytes at a time) instead of the entire device. Contrast EPROM
and RAM.

FQNN

Fully Qualified NodeName — a unique name that identifies a QNX
Neutrino node on a network. The FQNN consists of the nodename
plus the node domain tacked together.

garbage collection

Aka space reclamation, the process whereby a filesystem manager
recovers the space occupied by deleted files and directories.

HA

High Availability — in telecommunications and other industries, HA
describes a system’s ability to remain up and running without
interruption for extended periods of time.

handle

A pointer that the resource manager base library binds to the
pathname registered via resmgr attach(). This handle is typically used
to associate some kind of per-device information. Note that if you use
the iofunc *() POSIX layer calls, you must use a particular type of
handle — in this case called an attributes structure.

3626 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

image

In the context of embedded QNX Neutrino systems, an “image” can
mean either a structure that contains files (i.e. an OS image) or a
structure that can be used in a read-only, read/write, or
read/write/reclaim FFS-2-compatible filesystem (i.e. a flash
filesystem image).

interrupt

An event (usually caused by hardware) that interrupts whatever the
processor was doing and asks it do something else. The hardware will
generate an interrupt whenever it has reached some state where
software intervention is required.

interrupt handler

See ISR.

interrupt latency

The amount of elapsed time between the generation of a hardware
interrupt and the first instruction executed by the relevant interrupt
service routine. Also designated as “Til”. Contrast scheduling
latency.

interrupt service routine

See ISR.

interrupt service thread

A thread that is responsible for performing thread-level servicing of
an interrupt.

Since an ISR can call only a very limited number of functions, and
since the amount of time spent in an ISR should be kept to a
minimum, generally the bulk of the interrupt servicing work should
be done by a thread. The thread attaches the interrupt (via
InterruptAttach() or InterruptAttachEvent()) and then blocks (via
InterruptWait()), waiting for the ISR to tell it to do something (by
returning an event of type SIGEV INTR). To aid in minimizing

May 31, 2004 Glossary 3627

 2004, QNX Software Systems Ltd.

scheduling latency, the interrupt service thread should raise its
priority appropriately.

I/O message

A message that relies on an existing binding between the client and
the resource manager. For example, an IO READ message depends
on the client’s having previously established an association (or
context) with the resource manager by issuing an open() and getting
back a file descriptor. See also connect message, context, combine
message, and message.

I/O privity

A particular privilege, that, if enabled for a given thread, allows the
thread to perform I/O instructions (such as the x86 assembler in and
out instructions). By default, I/O privity is disabled, because a
program with it enabled can wreak havoc on a system. To enable I/O
privity, the thread must be running as root, and call ThreadCtl().

IPC

Interprocess Communication — the ability for two processes (or
threads) to communicate. QNX Neutrino offers several forms of IPC,
most notably native messaging (synchronous, client/server
relationship), POSIX message queues and pipes (asynchronous), as
well as signals.

IPL

Initial Program Loader — the software component that either takes
control at the processor’s reset vector (e.g. location 0xFFFFFFF0 on
the x86), or is a BIOS extension. This component is responsible for
setting up the machine into a usable state, such that the startup
program can then perform further initializations. The IPL is written in
assembler and C. See also BIOS extension signature and startup
code.

3628 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

IRQ

Interrupt Request — a hardware request line asserted by a peripheral
to indicate that it requires servicing by software. The IRQ is handled
by the PIC, which then interrupts the processor, usually causing the
processor to execute an Interrupt Service Routine (ISR).

ISR

Interrupt Service Routine — a routine responsible for servicing
hardware (e.g. reading and/or writing some device ports), for
updating some data structures shared between the ISR and the
thread(s) running in the application, and for signalling the thread that
some kind of event has occurred.

kernel

See microkernel.

level-sensitive

One of two ways in which a PIC (Programmable Interrupt Controller)
can be programmed to respond to interrupts. If the PIC is operating in
level-sensitive mode, the IRQ is considered active whenever the
corresponding hardware line is active. Contrast edge-sensitive.

linearly mapped

A term indicating that a certain memory component is entirely
addressable by the processor. Contrast bank-switched.

message

A parcel of bytes passed from one process to another. The OS
attaches no special meaning to the content of a message — the data in
a message has meaning for the sender of the message and for its
receiver, but for no one else.

Message passing not only allows processes to pass data to each other,
but also provides a means of synchronizing the execution of several
processes. As they send, receive, and reply to messages, processes

May 31, 2004 Glossary 3629

 2004, QNX Software Systems Ltd.

undergo various “changes of state” that affect when, and for how
long, they may run.

microkernel

A part of the operating system that provides the minimal services
used by a team of optional cooperating processes, which in turn
provide the higher-level OS functionality. The microkernel itself lacks
filesystems and many other services normally expected of an OS;
those services are provided by optional processes.

mount structure

An optional, well-defined data structure (of type iofunc mount t)
within an iofunc *() structure, which contains information used on a
per-mountpoint basis (generally used only for filesystem resource
managers). See also attributes structure and OCB.

mountpoint

The location in the pathname space where a resource manager has
“registered” itself. For example, the serial port resource manager
registers mountpoints for each serial device (/dev/ser1,
/dev/ser2, etc.), and a CD-ROM filesystem may register a single
mountpoint of /cdrom.

mutex

Mutual exclusion lock, a simple synchronization service used to
ensure exclusive access to data shared between threads. It is typically
acquired (pthread mutex lock()) and released
(pthread mutex unlock()) around the code that accesses the shared
data (usually a critical section). See also critical section.

name resolution

In a QNX Neutrino network, the process by which the Qnet network
manager converts an FQNN to a list of destination addresses that the
transport layer knows how to get to.

3630 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

name resolver

Program code that attempts to convert an FQNN to a destination
address.

NDP

Node Discovery Protocol — proprietary QNX Software Systems
protocol for broadcasting name resolution requests on a QNX
Neutrino LAN.

network directory

A directory in the pathname space that’s implemented by the Qnet
network manager.

Neutrino

Name of an OS developed by QNX Software Systems.

NFS

Network FileSystem — a TCP/IP application that lets you graft
remote filesystems (or portions of them) onto your local namespace.
Directories on the remote systems appear as part of your local
filesystem and all the utilities you use for listing and managing files
(e.g. ls, cp, mv) operate on the remote files exactly as they do on
your local files.

NMI

Nonmaskable Interrupt — an interrupt that can’t be masked by the
processor. We don’t recommend using an NMI!

Node Discovery Protocol

See NDP.

node domain

A character string that the Qnet network manager tacks onto the
nodename to form an FQNN.

May 31, 2004 Glossary 3631

 2004, QNX Software Systems Ltd.

nodename

A unique name consisting of a character string that identifies a node
on a network.

nonbootable

A nonbootable OS image is usually provided for larger embedded
systems or for small embedded systems where a separate,
configuration-dependent setup may be required. Think of it as a
second “filesystem” that has some additional files on it. Since it’s
nonbootable, it typically won’t contain the OS, startup file, etc.
Contrast bootable.

OCB

Open Control Block (or Open Context Block) — a block of data
established by a resource manager during its handling of the client’s
open() function. This context block is bound by the resource manager
to this particular request, and is then automatically passed to all
subsequent I/O functions generated by the client on the file descriptor
returned by the client’s open().

package filesystem

A virtual filesystem manager that presents a customized view of a set
of files and directories to a client. The “real” files are present on some
medium; the package filesystem presents a virtual view of selected
files to the client.

pathname prefix

See mountpoint.

pathname space mapping

The process whereby the Process Manager maintains an association
between resource managers and entries in the pathname space.

3632 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

persistent

When applied to storage media, the ability for the medium to retain
information across a power-cycle. For example, a hard disk is a
persistent storage medium, whereas a ramdisk is not, because the data
is lost when power is lost.

Photon microGUI

The proprietary graphical user interface built by QNX Software
Systems.

PIC

Programmable Interrupt Controller — hardware component that
handles IRQs. See also edge-sensitive, level-sensitive, and ISR.

PID

Process ID. Also often pid (e.g. as an argument in a function call).

POSIX

An IEEE/ISO standard. The term is an acronym (of sorts) for Portable
Operating System Interface — the “X” alludes to “UNIX”, on which
the interface is based.

POSIX layer calls

Convenient set of library calls for writing resource managers. The
POSIX layer calls can handle even more of the common-case
messages and functions than the base layer calls. These calls are
identified by the iofunc *() prefix. In order to use these (and we
strongly recommend that you do), you must also use the well-defined
POSIX-layer attributes (iofunc attr t), OCB (iofunc ocb t),
and (optionally) mount (iofunc mount t) structures.

preemption

The act of suspending the execution of one thread and starting (or
resuming) another. The suspended thread is said to have been
“preempted” by the new thread. Whenever a lower-priority thread is

May 31, 2004 Glossary 3633

 2004, QNX Software Systems Ltd.

actively consuming the CPU, and a higher-priority thread becomes
READY, the lower-priority thread is immediately preempted by the
higher-priority thread.

prefix tree

The internal representation used by the Process Manager to store the
pathname table.

priority inheritance

The characteristic of a thread that causes its priority to be raised or
lowered to that of the thread that sent it a message. Also used with
mutexes. Priority inheritance is a method used to prevent priority
inversion.

priority inversion

A condition that can occur when a low-priority thread consumes CPU
at a higher priority than it should. This can be caused by not
supporting priority inheritance, such that when the lower-priority
thread sends a message to a higher-priority thread, the higher-priority
thread consumes CPU on behalf of the lower-priority thread. This is
solved by having the higher-priority thread inherit the priority of the
thread on whose behalf it’s working.

process

A nonschedulable entity, which defines the address space and a few
data areas. A process must have at least one thread running in it —
this thread is then called the first thread.

process group

A collection of processes that permits the signalling of related
processes. Each process in the system is a member of a process group
identified by a process group ID. A newly created process joins the
process group of its creator.

3634 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

process group ID

The unique identifier representing a process group during its lifetime.
A process group ID is a positive integer. The system may reuse a
process group ID after the process group dies.

process group leader

A process whose ID is the same as its process group ID.

process ID (PID)

The unique identifier representing a process. A PID is a positive
integer. The system may reuse a process ID after the process dies,
provided no existing process group has the same ID. Only the Process
Manager can have a process ID of 1.

pty

Pseudo-TTY — a character-based device that has two “ends”: a
master end and a slave end. Data written to the master end shows up
on the slave end, and vice versa. These devices are typically used to
interface between a program that expects a character device and
another program that wishes to use that device (e.g. the shell and the
telnet daemon process, used for logging in to a system over the
Internet).

pulses

In addition to the synchronous Send/Receive/Reply services, QNX
Neutrino also supports fixed-size, nonblocking messages known as
pulses. These carry a small payload (four bytes of data plus a single
byte code). A pulse is also one form of event that can be returned
from an ISR or a timer. See MsgDeliverEvent() for more information.

Qnet

The native network manager in QNX Neutrino.

May 31, 2004 Glossary 3635

 2004, QNX Software Systems Ltd.

QoS

Quality of Service — a policy (e.g. loadbalance) used to connect
nodes in a network in order to ensure highly dependable transmission.
QoS is an issue that often arises in high-availability (HA) networks as
well as realtime control systems.

RAM

Random Access Memory — a memory technology characterized by
the ability to read and write any location in the device without
limitation. Contrast flash and EPROM.

raw mode

In raw input mode, the character device library performs no editing on
received characters. This reduces the processing done on each
character to a minimum and provides the highest performance
interface for reading data. Also, raw mode is used with devices that
typically generate binary data — you don’t want any translations of
the raw binary stream between the device and the application.
Contrast canonical mode.

replenishment

In sporadic scheduling, the period of time during which a thread is
allowed to consume its execution budget.

reset vector

The address at which the processor begins executing instructions after
the processor’s reset line has been activated. On the x86, for example,
this is the address 0xFFFFFFF0.

resource manager

A user-level server program that accepts messages from other
programs and, optionally, communicates with hardware. QNX
Neutrino resource managers are responsible for presenting an
interface to various types of devices, whether actual (e.g. serial ports,
parallel ports, network cards, disk drives) or virtual (e.g. /dev/null,
a network filesystem, and pseudo-ttys).

3636 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

In other operating systems, this functionality is traditionally
associated with device drivers. But unlike device drivers, QNX
Neutrino resource managers don’t require any special arrangements
with the kernel. In fact, a resource manager looks just like any other
user-level program. See also device driver.

RMA

Rate Monotonic Analysis — a set of methods used to specify,
analyze, and predict the timing behavior of realtime systems.

round robin

Scheduling algorithm whereby a thread is given a certain period of
time to run. Should the thread consume CPU for the entire period of
its timeslice, the thread will be placed at the end of the ready queue
for its priority, and the next available thread will be made READY. If
a thread is the only thread READY at its priority level, it will be able
to consume CPU again immediately. See also adaptive, FIFO, and
sporadic.

runtime loading

The process whereby a program decides while it’s actually running
that it wishes to load a particular function from a library. Contrast
static linking.

scheduling latency

The amount of time that elapses between the point when one thread
makes another thread READY and when the other thread actually gets
some CPU time. Note that this latency is almost always at the control
of the system designer.

Also designated as “Tsl”. Contrast interrupt latency.

session

A collection of process groups established for job control purposes.
Each process group is a member of a session. A process belongs to
the session that its process group belongs to. A newly created process

May 31, 2004 Glossary 3637

 2004, QNX Software Systems Ltd.

joins the session of its creator. A process can alter its session
membership via setsid(). A session can contain multiple process
groups.

session leader

A process whose death causes all processes within its process group
to receive a SIGHUP signal.

software interrupts

Similar to a hardware interrupt (see interrupt), except that the source
of the interrupt is software.

sporadic

Scheduling algorithm whereby a thread’s priority can oscillate
dynamically between a “foreground” or normal priority and a
“background” or low priority. A thread is given an execution budget
of time to be consumed within a certain replenishment period. See
also adaptive, FIFO, and round robin.

startup code

The software component that gains control after the IPL code has
performed the minimum necessary amount of initialization. After
gathering information about the system, the startup code transfers
control to the OS.

static bootfile

An image created at one time and then transmitted whenever a node
boots. Contrast dynamic bootfile.

static linking

The process whereby you combine your modules with the modules
from the library to form a single executable that’s entirely
self-contained. The word “static” implies that it’s not going to change
— all the required modules are already combined into one.

3638 Glossary May 31, 2004

 2004, QNX Software Systems Ltd.

system page area

An area in the kernel that is filled by the startup code and contains
information about the system (number of bytes of memory, location
of serial ports, etc.) This is also called the SYSPAGE area.

thread

The schedulable entity under QNX Neutrino. A thread is a flow of
execution; it exists within the context of a process.

timer

A kernel object used in conjunction with time-based functions. A
timer is created via timer create() and armed via timer settime(). A
timer can then deliver an event, either periodically or on a one-shot
basis.

timeslice

A period of time assigned to a round-robin or adaptive scheduled
thread. This period of time is small (on the order of tens of
milliseconds); the actual value shouldn’t be relied upon by any
program (it’s considered bad design).

May 31, 2004 Glossary 3639

Index

!

(MQ PRIO MAX-1) 1651
.rhosts 2518
/dev/name/global 1768
/dev/name/local 1768
/dev/zero 1586
/etc/autoconnect 1798
/etc/hosts 464, 800, 801,

804–807, 811, 812, 816,
961

/etc/hosts.equiv 2518
/etc/networks 836, 838, 840,

1805, 2703
/etc/protocols 490, 862, 864,

866, 1994, 2711
/etc/resolv.conf 2376, 2378,

2381, 2384, 2387, 2390
/etc/services 492, 891, 893,

895, 2659, 2725
cabsargs, cabsfargs 222
res state 2374
client info 332
clockadjust 281
clockperiod 303
cred info 332

CS HOSTNAME 817, 2684
CS TIMEZONE 3342
fdinfo 1172, 1177
intrspin t 1083, 1095, 1100
io connect 1111
io connect ftype reply

1118
io connect link reply

1120
itimer 3295
msg info 1658, 1672
NTO SIDE CHANNEL 327
pccard info 1888
pulse 2238
sched info 2574
server info 341
thread attr 3239
thread local storage 3242
timer info 3291

1

8-bit characters, reading 1601
8086 mode, virtual 1107

May 31, 2004 Index 3641

Index 2004, QNX Software Systems Ltd.

A

abort() 113
abs() 115
absolute values

complex number 222
floating point 574
integer 115
long integer 1421

accept() 117, 3189, 3573
access() 120
ACCOUNTING 3394
acos(), acosf() 123
acosh(), acoshf() 125
ACTION 963
addresses

hosts
strings, converting

to/from 1036, 1039
IP

strings, converting
to/from 1015, 1017, 1032,
1034, 1036, 1039

IPv6 1051
link-local 1052
local network

IP addresses, converting
to/from 1021

IP addresses, extracting
from 1019

scoped 1052
site-local 1052
sockets 127, 693, 748, 753

addrinfo 127
errors 748
freeing 693
getting 753

advisory locks See files, locking
AF INET 800, 803, 806, 836, 961,

983, 1036, 1039, 1313,
1805, 3189, 3348

AF INET6 806, 985, 1036, 1039,
1338

AF LOCAL 3377
AF UNSPEC 2481
AH (Authentication Header) 1320
AIMS (Auto Incrementing Mass

Storage) 1880
aio cancel() 129
aiocb 1443
aio error() 131
aio fsync() 133
aio read() 135
aio return() 136
aio suspend() 138
aio write() 140
alarm() 141
alarms, scheduling 141, 3345
aligned memory, allocating 1530,

1961
alloca() 144
alphabetic, testing a character

for 1350, 1381
alphanumeric, testing a character

for 1348, 1379
alphasort() 147
amblksiz 149, 1500, 2520, 2875

ANSI classification 103
arccosines 123
architecture, instruction set 318
arcsines 154
arctangents 161, 163
argc 150

3642 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

argument lists,
variable-length 3400,
3406, 3408, 3410

coercion 3401
arguments to main() 150, 151, 198

parsing 842
argv 151

arrays
allocating 224, 2529
quick-sorting 2277

ASCII, testing a character for 1352
asctime(), asctime r() 152
asin(), asinf() 154
asinh(), asinhf() 156
assert() 158
asynchronous I/O

canceling 129
error status, getting 131
file, synchronizing 133
reading 135
return status, getting 136
waiting for completion 138
writing 140

asynchronous SNMP
transactions 2892

atan(), atanf() 161
atan2(), atan2f() 163
atanh(), atanhf() 165
atexit() 167
atof() 170
atoh() 172
atoi() 174
atol(), atoll() 176
atomic operations

addition 178, 180
bits

clearing 182, 184

setting 186, 188
toggling 194, 196

subtraction 190, 192
atomic add() 178
atomic add value() 180
atomic clr() 182
atomic clr value() 184
atomic set() 186
atomic set value() 188
atomic sub() 190
atomic sub value() 192
atomic toggle() 194
atomic toggle value() 196
Authentication Header (AH) 1320
authenticator() 2898
Auto Incrementing Mass Storage

(AIMS) 1880
auxv 198

B

background processes 360, 1978
termination, notification

of 1980
barriers

attributes 2043
destroying 2047
initializing 2051
process-shared 2049, 2053

destroying 2041
initializing 2043

BARRIER SERIAL THREAD 2045
basename() 199
bcmp() 202
bcopy() 204

May 31, 2004 Index 3643

Index 2004, QNX Software Systems Ltd.

BEGIN DECLS 111
Bessel functions

first kind 1408, 1410, 1412
second kind 3563, 3565, 3567

big endian
BIGENDIAN manifest 111

little endian, converting
to/from 477, 479, 481,
483, 485, 487, 3093

messages 1550
native format, converting

to/from 465, 467, 469
ports

reading from 1005, 1009
writing to 1858, 1862

unaligned values
accessing safely 3364, 3366,

3368
writing safely 3358, 3360,

3362
BIGENDIAN 111

binary search 215
bind() 206, 3189, 3573
bindresvport() 209
BIOS (PCI), determining if

present 1922
bits

atomic operations
clearing 182, 184
setting 186, 188
toggling 194, 196

set, finding first 608
block buffering, setting for stream

I/O 2662
block special devices

reading 2315
writing 3555

blocks
allocating 2875
reading from a file 2315
system message log, writing

to 2867
writing to a file 3555

blocksize, filesystem 714, 3001
booting 3150

time since 3154
BOOT TIME 929, 3393
break condition, asserting 3192
break pointer

advancing 2520
increment 149

brk() 211
BRKINT 3211
bsearch() 215
BSS data 459, 462
btext 217

btowc() 218
buffers

canonical input 673, 1866
locking 1580, 1758
raw input 673, 1866
stream I/O 2660, 2742

block 2662
flushing 3173
line 2696

BUFSIZ 2660
BULK REQ MSG 2887
busy-waiting 1784, 1786, 1789,

1791, 1793
bytes

comparing 202
copying 204, 1532, 1538

overlapping objects 1544

3644 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

multibyte character, number of
bytes in 1506, 1509

reading 1965, 2306
reordering 969, 971, 1829,

1831
setting 1546
writing 2272, 3550
zeroing 220

bzero() 220

C

C++ programs
end of C code 111
start of C code 111

cabs(), cabsf() 222
calendar times

current 3257
local times, converting

to/from 1454, 1456, 1577
tm 3313

callback() 2899
calloc() 224
cancellation

cleanup handlers 2057, 2059
points 3241

creating 2234
state 2196, 3235
type 2198, 3235

canonical input buffer 673, 1866
C ANY 2377, 2380, 2383, 2386
Card Information Structure (CIS),

reading 1894
CardBus cards 1932
cbrt(), cbrtf() 226

C CHAOS 2377, 2380, 2383, 2386
ceil(), ceilf() 228
cfgetispeed() 232
cfgetospeed() 234
CFGFILE APPEND 237
CFGFILE CREAT 237
CFGFILE EXCL 237
CFGFILE RDONLY 237
CFGFILE RDWR 237
CFGFILE TRUNC 238
CFGFILE WRONLY 237
cfgopen() 236
cfmakeraw() 230
cfree() 240
cfsetispeed() 242
cfsetospeed() 245
ChannelCreate(),

ChannelCreate r() 248
ChannelDestroy(),

ChannelDestroy r() 255
channels

creating 248, 1768
destroying 255, 1777
events, delivering 1661
flags 250
ID 249
messages

receiving 1689, 1700
replying 1704, 1707
sending 1710, 1714, 1722,

1726, 1730, 1734, 1738,
1742

pulses
receiving 1694, 1697
sending 1719

side channels 327

May 31, 2004 Index 3645

Index 2004, QNX Software Systems Ltd.

character device terminal drivers,
providing session support
to 1991

characters See also strings; wide
characters

8-bit, reading 1601
control

disabling 674, 1867
discarding on input 1601

default (signed or
unsigned) 111

devices
input stream, injecting 3184
size 3182, 3202

escape 1612
handling 2699
international See wide

characters
lowercase, converting to 1601,

3321
multibyte

bytes, counting 1506, 1509
wide characters, conversion

object 1514
wide characters, converting

to/from 1511, 1516,
1518, 1521, 3474, 3502,
3518, 3528

number waiting to be
read 3187

searching for 1534, 3015, 3058
sets, searching for 3025, 3056,

3068
special 1612
stdin, reading from 611, 764,

766

stdout, writing to 680, 2251,
2253

streams
pushing back 3373
reading from 609, 615, 760,

762
writing to 678, 2247, 2249

testing for
alphabetic 1350
alphanumeric 1348
ASCII 1352
control character 1356
decimal digit 1358
hexadecimal digit 1403
lowercase 1366
printable 1362, 1370
punctuation 1372
uppercase 1377
whitespace 1374

uppercase, converting to 3323,
3329

wide characters, converting
to/from 218, 3526

CHAR MAX 1451
CHAR SIGNED 111
CHAR UNSIGNED 111

chdir() 258
chmod() 261, 1135

resource managers,
implementing in 1145,
1148

chown() 265, 1135
resource managers,

implementing in 1150,
1153

restricting use of 674, 1867
chroot() 268

3646 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

C HS 2377, 2380, 2383, 2386
chsize() 271
CIDR (Classless Internet Domain

Routing) 1023, 1028
C IN 2377, 2380, 2383, 2386
CIS (Card Information Structure),

reading 1894
classes

IP addresses 1024
PCI 1912
wide-character 3533

Classless Internet Domain Routing
(CIDR) 1023, 1028

clearenv() 274
clearerr() 277
cli 1085
CLK TCK 3307
CLOCAL 3212
clock

adjusting 282
CPU time, getting ID of for a

thread 2102
cycles 284
getting 306
ID, getting 286
period, getting and setting 304
resolution, getting 288
setting 297, 306
ticks 3136

per seconds 3154
time, getting 290

clock t 3136, 3306
clock() 279
ClockAdjust(), ClockAdjust r() 282
ClockCycles() 284
clock getcpuclockid() 286
clock getres() 288

clock gettime() 290
ClockId(), ClockId r() 300
CLOCK MONOTONIC 293, 3274,

3281, 3284, 3298
clock nanosleep() 294
ClockPeriod(), ClockPeriod r()

304
CLOCK REALTIME 281, 293, 303,

306, 2130, 2173, 2176,
2641, 3259, 3274, 3281,
3284, 3298

clock settime() 297
CLOCK SOFTTIME 293, 3259,

3274, 3281, 3284, 3298
CLOCKS PER SEC 279
ClockTime(), ClockTime r() 306
close() 309

resource managers,
implementing in 1157,
1160

closedir() 311, 1843
closelog() 314
cmdfd() 315
cmdname() 316
cmsghdr 3378
code, portability 103
collating sequence, setting 2699
COLUMNS 274
commands

executing 3158
on a remote host 2295, 2488

options, parsing 842, 918
communications line

break condition,
asserting 3192

disconnecting 3167
comparison

May 31, 2004 Index 3647

Index 2004, QNX Software Systems Ltd.

bytes 202, 1536, 1542
strings

case-insensitive 1542, 3010,
3019, 3037

case-sensitive 1536, 3017
locale’s collating sequence,

using 3021
wide-character 3480, 3482,

3494, 3537
substrings

case-insensitive 3043, 3052
case-sensitive 3048

compiling with optimization 111
complementary error function 502
complex numbers, absolute value

of 222
computer, rebooting 3150
condition variables

attributes
clock 2079, 2085
destroying 2077
initializing 2083
process-shared 2081, 2087

blocking on 2070, 2074
destroying 2064, 3114
initializing 2066, 3133
synchronization objects 3104,

3107
unblocking

all threads 2062
highest priority thread 2068

waiting on 2074
timed 2070

configuration files, opening 236,
577

configuration strings
CS HOSTNAME 817, 2684

CS TIMEZONE 3342
getting and setting 318

configuration values, getting 673,
1249, 1866, 3136

confstr() 318
connect functions (resource

managers)
default values, setting 1179
open, default 1241

connect() 323, 3189, 3572
ConnectAttach(), ConnectAttach r()

327
ConnectClientInfo(),

ConnectClientInfo r()
331

ConnectDetach(),
ConnectDetach r() 251,
335

ConnectFlags(), ConnectFlags r()
337

connections
client, information about 331
detaching 251, 335
dispatch interface,

creating 1555
flags, modifying 337
ID 327
server, information about 340
shutting down

full-duplex 2762
sockets

accepting on 117, 2281
initiating on 323, 1798,

2298
listening on 1447, 2475

3648 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

ConnectServerInfo(),
ConnectServerInfo r()
340

console I/O
stderr 69, 3005
stdin 69, 3006
stdout 69, 3007

const 102
contention scope 2011, 2033
control characters 3213

disabling 674, 1867
discarding on input 1601
testing a character for 1356,

1383
controlling terminals

making 3200
path name 355

copysign(), copysignf() 343
core files, maximum size 2720
cos(), cosf() 345
cosh(), coshf() 347
cosines 345

hyperbolic 347
inverse hyperbolic 125

CREAD 3212
creat(), creat64() 349, 3353
crypt() 353
CS5,. . . ,CS8 3212
CS ARCHITECTURE 318
CS DOMAIN 318
CS HOSTNAME 319
CS HW PROVIDER 319
CS HW SERIAL 319

CSIZE 3212
CS LIBPATH 319
CS MACHINE 319
CS PATH 319

CS RELEASE 319
CS RESOLVE 319
CS SRPC DOMAIN 319
CS SYSNAME 319
CS TIMEZONE 319

CSTOPB 3212
CS VERSION 319

ctermid() 355
ctime(), ctime r() 357
CTL MAXNAME 3145
CTL NET 3140, 3141
cube roots 226
current working directory 258, 768,

940

D

daemon() 360
daemons

SNMP (Simple Network
Management Protocol),
configuration file for
2311

system 360, 1978
termination, notification

of 1980
data segment

changing space allocated
for 211

end of 459, 462
maximum size 2720

data server
applications

deregistering 440
registering 446

May 31, 2004 Index 3649

Index 2004, QNX Software Systems Ltd.

variables
creating 438
deleting 435
flags, setting 442
getting 444
setting 448

data streams, flow control 3170
databases

blocks
reading 2315
writing 3555

groups
closing 463
ID, getting information

about 786, 788
membership 1061
name, getting information

about 791, 793
next entry, getting 783
rewinding 2678

hosts
closing 464
entries, getting 800, 804,

806, 810, 812, 815
errors 953, 958, 967
opening 2682
structure 961

network
closing 489
entries, getting 836, 838,

840
opening 2703
structure 1805

passwords
closing 491
encrypting 353, 2275

entry, getting for a user 871,
873, 876, 878

entry, getting next 868
rewinding 2713

protocols
closing 490
entries, getting 862, 864,

866
opening 2711
protoent 1994

services
closing 492
entries, getting 891, 893,

895
entry structure 2659
opening 2725

shadow passwords
closing 493
entry, reading 618, 911, 915
entry, structure 2260
entry, writing 2260
rewinding 2732

system packet forwarding See
ROUTE

datagrams 2908, 2909, 3348
date 3342
daylight 362, 3342
daylight saving time 362, 3342
DCMD ALL 371

DCMD ALL GETFLAGS 1166
DCMD ALL GETMOUNTFLAGS 1166
DCMD ALL SETFLAGS 1166
DCMD BLK 372
DCMD CAM 372
DCMD CHR 372
DCMD FSYS 372
DCMD INPUT 372

3650 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

DCMD IP 372
DCMD MEM 372
DCMD MISC 372
DCMD MIXER 372
DCMD NET 372
DCMD PHOTON 372
DCMD PROC 372

DEAD PROCESS 929, 3394
DebugBreak() 363
debugging

kernel 365, 366
printing debugging messages

(resolver routines) 2374
processes 363
shared objects 422
sockets 904

DebugKDBreak() 365
DebugKDOutput() 366
decimal digit, testing a character

for 1358, 1387
decimal-point character,

setting 2699
delay() 368
DELAYTIMER MAX 3267
dev t 2511
devctl() 371

resource managers,
implementing in 1166,
1170

DEVCTL DATA() 1168
DEVDIR FROM 372
DEVDIR NONE 372
DEVDIR TO 372
DEVDIR TOFROM 372
devices

block special
reading 2315

writing 3555
character

characters, injecting 3184
size 3182, 3202

classes of 2509
controlling 371, 1123
controlling device,

making 3200
I/O memory, mapping 1591,

1764
mounts, autodetecting 1618
numbers

attaching 2510
detaching 2513
getting 2417
manipulating 2997

opening 1597
output, waiting for

completion 3165
PCI

attaching 1899
configuration, reading 1924,

1926, 1928, 1930
configuration, writing 1934,

1937, 1939, 1941
detaching 1910
finding 1912, 1914
rescanning for 1932

reading 1602, 2318
script, running on 1605
writing 1612

devp-pccard server
arming 1881
attaching 1884
card insertion/removal,

notification of 1881

May 31, 2004 Index 3651

Index 2004, QNX Software Systems Ltd.

CIS (Card Information
Structure), reading 1894

detaching 1886
locking 1891
socket setup information 1888
unlocking 1895

DEXTRA FIRST() 2325
DEXTRA NEXT() 2325
DEXTRA VALID() 2325

D FLAG FILTER 382
D FLAG STAT 382
difftime() 380
digit, testing a character for

decimal 1358, 1387
hexadecimal 1401, 1403

DIOF() 371
DION() 371
DIOT() 371
DIOTF() 371

DIR 2324
dircntl() 382
direct memory access (DMA)

channels, managing 2494
directories

access, checking 120, 456
base name 199
closing 311
controlling 382
creating 1563, 1569
current working 258, 768, 940

for daemons 1978
deleting 2477
entries

duplicate, filtering 382
sorting 147

files, searching for 1871
hierarchy, walking 731, 1820

information, requesting 382
name 385
opening 1843
position

getting 3207
setting 2607

reading 2324, 2328
rewinding 2465
root 268
scanning 2531

dirent 2324, 2328
dirname() 385
dispatch t 396
dispatch interface See also

resource managers
blocking 388
connections, creating 1555
context

allocating 391
freeing 394

endian, converting 1550
events

handling 401
last selected 2623

file descriptors
handle, attaching 2616
handle, detaching 2619

handles
creating 396
destroying 399

message handlers
attaching 1549
detaching 1558

names
attaching 1768
detaching 1777

3652 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

server connections,
closing 1775

server connections,
opening 1779

path
attaching to 2394
detaching from 2413

pulse handlers
attaching 2241
detaching 2244

thread pool
attributes, changing 3216,

3229
creating 3218
destroying 3225
starting 3231

timeout, setting 404
unblocking 406

dispatch block() 388
dispatch context alloc() 391
dispatch context free() 394
dispatch create() 396
dispatch destroy() 399
dispatch handler() 401
dispatch timeout() 404
dispatch unblock() 406
div t 408
div() 408
division

integer 408
long integer 1430

Dl info 410
dladdr() 411
dlclose() 413
DL DEBUG 422
dlerror() 415
dlopen() 417

dlsym() 424
DMA channels, managing 2494
dn comp() 427
dn expand() 429
domains

errors 953, 958, 967
names

compressing 427
expanding 429
getting 318, 771
resolving 2374, 2378, 2381,

2384, 2387, 2389
setting 2664

secure RPC 319
UNIX 3377

dot notation (IP addresses) 1024
dotted quad (IP addresses) 1024
double-precision numbers

absolute value 222, 574
arccosines 123
arcsines 154
arctangents 161, 163
Bessel functions 1408, 1410,

1412, 3563, 3565, 3567
complementary error

function 502
cosines 345
cube roots 226
error function 500
exceptions, signal for 2797
exponentials 569, 571
exponents,

radix-independent 2523,
2526

finite, determining if 629

May 31, 2004 Index 3653

Index 2004, QNX Software Systems Ltd.

fractional part of a
double-precision number
1615

gamma functions 750, 1435
hyperbolic cosines 347
hyperbolic sines 2849
hyperbolic tangents 3163
hypotenuse, length of 981
infinite, determining if 1364
input, formatted 2533
integral logarithms 999
integral part of a

double-precision number
1615

integral power of 2 701, 1428
inverse hyperbolic cosines 125
inverse hyperbolic sines 156
inverse hyperbolic

tangents 165
logarithms 1462, 1464, 1466
modular arithmetic 643
next representable 1816
normalized fractions 701
not a number, determining

if 1368
powers 1963
precision 667
printing 1968
pseudo-random numbers 431,

498
radix-independent

exponents 1468, 2523,
2526

remainders 433, 2366
residue 643
rounding 228, 639, 2472
sign, copying 343

significant bits 2819
sines 2847
square roots 2980
strings, converting

to/from 170, 3072
tangents 3161
times, difference between 380
wide-character strings,

converting to/from 3508
drand48() 431
drem(), dremf() 433
ds clear() 435
ds create() 438
ds deregister() 440
ds flags() 442
ds get() 444
DS PERM 437, 440, 442
ds register() 446
ds set() 448
DTYPE LSTAT 1258, 1305, 2325
DTYPE NONE 2325
DTYPE STAT 2325

dup() 450
dup2() 453
duplex connection, shutting

down 2762
dynamically linked libraries

addresses, translating 411
closing 413
debugging 422
errors 415
opening 417
symbol, getting address of 424

3654 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

E

E2BIG 508
EACCES 508
eaccess() 456
EADDRINUSE 508
EADDRNOTAVAIL 508
EADV 508
EAFNOSUPPORT 508, 2913
EAGAIN 508
EALREADY 508
EBADE 508
EBADF 508, 1881, 1892, 1896
EBADFD 508
EBADFSYS 508
EBADMSG 508
EBADR 508
EBADRPC 508
EBADRQC 508
EBADSLT 508
EBFONT 508
EBUSY 508, 1892
ECANCELED 508
ECHILD 508
ECHO 3212
ECHOE 3212
ECHOK 3212
ECHONL 3213
ECHRNG 508
ECOMM 508
ECONNABORTED 508
ECONNREFUSED 508, 1447
ECONNRESET 508
ECTRLTERM 508
edata 459

EDEADLK 508
EDEADLOCK 508

EDESTADDRREQ 508
EDOM 508
EDQUOT 508
EEXIST 508
EFAULT 508
EFBIG 508
EHOSTDOWN 508
EHOSTUNREACH 508
EIDRM 508
EILSEQ 508
EINPROGRESS 508
EINTR 508
EINVAL 508
EIO 508
EISCONN 508, 3572
EISDIR 508
EL2HLT 508
EL2NSYNC 508
EL3HLT 508
EL3RST 508
ELIBACC 508
ELIBBAD 508
ELIBEXEC 508
ELIBMAX 508
ELIBSCN 508
ELNRNG 508
ELOOP 508
EMFILE 508
EMLINK 508
EMORE 508
EMPTY 3393
EMSGSIZE 508
EMULTIHOP 508
ENAMETOOLONG 508
Encapsulated Security Payload

(ESP) 1320
encrypt() 460

May 31, 2004 Index 3655

Index 2004, QNX Software Systems Ltd.

encryption
key, setting 2694
passwords 353, 2275
strings 460

end 462
end-of-file

files 496
streams 602

clearing 277
END DECLS 111

endgrent() 463
endhostent() 464
endian

big
BIGENDIAN manifest
111

little endian, converting
to/from 477, 479, 481,
483, 485, 487, 3093

messages 1550
native format, converting

to/from 465, 467, 469
unaligned values, accessing

safely 3364, 3366, 3368
unaligned values, writing

safely 3358, 3360, 3362
little

big endian, converting
to/from 477, 479, 481,
483, 485, 487, 3093

LITTLEENDIAN manifest
111

messages 1550
native format, converting

to/from 471, 473, 475
unaligned values, accessing

safely 3364, 3366, 3368

unaligned values, writing
safely 3358, 3360, 3362

ports
reading from 1005, 1009
writing to 1858, 1862

ENDIAN BE16() 465
ENDIAN BE32() 467
ENDIAN BE64() 469
ENDIAN LE16() 471
ENDIAN LE32() 473
ENDIAN LE64() 475
ENDIAN RET16() 477
ENDIAN RET32() 479
ENDIAN RET64() 481
ENDIAN SWAP16() 483
ENDIAN SWAP32() 485
ENDIAN SWAP64() 487
endnetent() 489
endprotoent() 490
endpwent() 491
endservent() 492
endspent() 493
endutent() 494
ENETDOWN 508
ENETRESET 508
ENETUNREACH 508
ENFILE 508
ENOANO 508
ENOBUFS 508, 2482
ENOCSI 508
ENODATA 508
ENODEV 508, 1890, 1892, 1896
ENOENT 508
ENOEXEC 508
ENOLCK 508
ENOLIC 508
ENOLINK 508

3656 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

ENOMEM 508
ENOMSG 508
ENONDP 508
ENONET 508
ENOPKG 508
ENOPROTOOPT 508
ENOREMOTE 508
ENOSPC 508
ENOSR 508
ENOSTR 508
ENOSYS 508
ENOTBLK 508
ENOTCONN 508
ENOTDIR 508
ENOTEMPTY 508
ENOTSOCK 508
ENOTSUP 508
ENOTTY 508
ENOTUNIQ 508
ENTER 963
ENTRY 963
env 537, 560, 2669, 2934, 2944,

2961, 2970
environ 495, 1496, 2670
environment

restoring 1473, 2787
saving 2691, 2832

environment variables
COLUMNS 274
defining 495, 537, 559, 2255,

2669, 2927, 2939, 2948,
2954, 2966, 2974

deleting 274, 2255, 2669,
2927, 2939, 2948, 2954,
2966, 2974, 3383

DL DEBUG 422
files, searching for 2602

getting 777
HOSTALIASES 807
HOSTNAME 817, 2684
INCLUDE 2602
LD LIBRARY PATH 422
LIB 2602
LINES 274
LOCALDOMAIN 2374,

2378, 2382, 2384, 2387,
2390

PATH 57, 274, 536, 559,
2602, 2943, 2947, 2952,
2969, 2973

pointer to 495
SHELL 274, 1955, 3158
SNMPCONFIGFILE 2313
TERM 274
TERMINFO 274
TZ 274, 3342

ENXIO 508
EOF 3417
eof() 496
EOK 508
EOPNOTSUPP 508, 2913
EOVERFLOW 508
EPERM 508
EPFNOSUPPORT 508
EPIPE 508
EPROCUNAVAIL 508
EPROGMISMATCH 508
EPROGUNAVAIL 508
EPROTO 508
EPROTONOSUPPORT 508, 2913
EPROTOTYPE 508
erand48() 498
ERANGE 508
EREMCHG 508

May 31, 2004 Index 3657

Index 2004, QNX Software Systems Ltd.

EREMOTE 508
ERESTART 508, 1669
erf(), erff() 500
erfc() 502
erfcf() 502
EROFS 508
ERPCMISMATCH 508
err(), errx() 504
errno 507

threads 507, 3242
error function 500

complementary 502
errors See also signals

command-line options, printing
for 843

end-of-file 602
errno global variable 507
hosts 953, 958, 967
message-passing 1669
messages

for an error code 1945, 3029
formatted 504, 3414

regular expressions 2359
resolver 953, 958, 967
signals, raising 2283
socket address

information 748
stderr 69, 504, 1945, 3005,

3414
stream I/O

clearing 277
testing for 604

escape characters 1612
ESHUTDOWN 508
ESOCKTNOSUPPORT 508
ESP (Encapsulated Security

Payload) 1320

ESPIPE 508
ESRCH 508
ESRMNT 508
ESRVRFAULT 508
ESTALE 508
ESTRPIPE 508
etext 515

ETIME 508
ETIMEDOUT 508
ETOOMANYREFS 508
ETXTBSY 508
EUNATCH 508
EUSERS 508
events

blocking while waiting for 388
channels, delivering

through 1661
checking validity of 1746
handling 401
interrupts

attaching 1077
detaching 1083

last selected 2623
sigevent 2778
system

notification of 1981
triggering 1985

tracing 3331
unblocking 406

EWOULDBLOCK 508, 907
exceptional conditions, file

descriptors with 2493,
2610

exceptions, floating-point
mask 661
registers 664

exclusive locks 634

3658 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

EXDEV 508
exec* family of functions 49, 57,

1843
execl() 516
execle() 522
execlp() 529
execlpe() 536
executable files

base name 1993
file descriptor 315
full path 316
mounted filesystem, preventing

from loading on 1617
execv() 540
execve() 546
execvp() 552
execvpe() 559
EXFULL 508
exit() 563

exit() 566
exp(), expf() 569
expm1(), expm1f() 571
exponentials, floating point 569,

571, 701, 1428
exponents,

radix-independent 1468,
2523, 2526

export 537, 560, 2669, 2934,
2944, 2961, 2970

F

fabs(), fabsf() 574
F ALLOCSP 588, 1268
fcfgopen() 577

fchmod() 578
fchown() 581
FCHR MAX 2723
fclose() 584
fcloseall() 586
fcntl() 588

F DUPFD 450, 453
resource managers,

implementing in 1190
FD See file descriptors
fdatasync() 597
FD CLOEXEC 590, 2754, 2925,

2952
FD CLR() 2611
fdinfo()

resource managers,
implementing in 1173,
1175

FDINFO FLAG LOCALPATH 1125,
1176

FD ISSET() 2611
fdopen() 599
FD SET() 2611
FD SETSIZE 2611
F DUPFD 589
FD ZERO() 2611
feof() 602
ferror() 604
fflush() 606
F FREESP 589, 1268
ffs() 608
fgetc() 609
fgetchar() 611
F GETFD 589
F GETFL 589
F GETLK 589
fgetpos() 613

May 31, 2004 Index 3659

Index 2004, QNX Software Systems Ltd.

fgets() 615, 889
fgetspent() 618
fgetwc() 621
fgetws() 623
FIFO scheduling 2031
FIFOs

creating 1566, 1569
reading from 1965, 2306, 2334
unnamed (pipes)

closing 1943
creating 1947
opening 1955

FILE 158
file descriptors

connection IDs as 327
creating 1835, 2918
duplicating 450, 453, 589,

1846, 2923
exceptional conditions 2493,

2610
full path 3337, 3339
handle

attaching 2616
detaching 2619

maximum number of 2720
properties 1360
ready for reading or

writing 2493, 2610
selecting 2493, 2610
sets of, manipulating 2611
stderr 3005
stdin 3006
stdout 3007
streams, associating with 599,

626
table size, getting 773

terminal, testing for association
with 1354

fileno() 69, 626
files

access times 3390
disabling logging of on

mounted filesystems
1617

resource managers,
implementing in 1283,
1295, 1298

access, checking 120, 456
base name 199
closing 309
configurable limits 673, 1249,

1866
configuration, opening 236,

577
controlling 588
core, maximum size 2720
creating 650, 1835, 2918

low-level 349
not allowing on mounted

filesystems 1617
resource manager 1113,

1236
deleting 2368, 3380
device parameters,

manipulating 1123
directory name 385
executable

base name 1993
file descriptor 315
full path 316

extending 271, 588
flushing 606

all 641

3660 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

information, getting 710,
1485, 2993

input, formatted 703, 746,
3421, 3426

link count, maximum 673,
1866

linking to 631, 1438, 1874,
1876, 2331, 3099

locking 589, 634, 1459
by a thread 637
nonblocking 729

modification times 736, 3387,
3390

resource managers,
implementing in 1283,
1295, 1298

names
full path 3337, 3339
matching 647
maximum length 673, 1866

opening 349, 650, 1835, 2918
resource manager 1236

output, formatted 676, 741,
3418, 3424

ownership, changing 265, 581,
1423

pathnames matching a
pattern 943, 947

PATH UTMP 494
PATH UTMP 927, 930, 932,

2264, 2740, 3395
permissions

changing 261, 578
daemons 1978
on creation 3353
restricting the changing

of 674, 1867

position
getting 613
setting 706, 708, 1482, 3204

private access 1846
processes, maximum files

per 3137
reading 1066, 1965, 2306

blocks 2315
characters, number waiting to

be read 3187
checking 2300
iov t 2334

renaming 2371
reopening 697
rewinding 2462
scanning directories for 2531
searching

environment variables 2602
list of directories 1871

seeking 706
shared access 2918, 2923
size, changing 271
size, maximum 2720
SNMP configuration 2311
status flags 589
status-change times

resource managers,
implementing in 1283,
1295, 1298

synchronizing 597, 718
temporary

creating 3315
creating and opening 1573
name, generating 1575,

3209, 3318
tree, walking 731, 1820

May 31, 2004 Index 3661

Index 2004, QNX Software Systems Ltd.

truncating 271, 589, 726,
1491, 3334

unlinking 2368, 3380
unlocking 590, 634, 734, 1459
writing 2272, 3550

blocks 3555
characters 678, 680
iov t 3558
strings 682
wide characters 684
wide-character strings 686

filesystems
free space 715
information, getting 714, 3001
mounting 1618

options, parsing 1620
read-only 1617
synchronizing 3102

requesting 1985
unmounting 1618, 3356

FIND 963
finite number, determining if 629
finite(), finitef() 629
first-in first-out scheduling 2031
flink() 631
floating point

absolute value 222, 574
arccosines 123
arcsines 154
arctangents 161, 163
Bessel functions 1408, 1410,

1412, 3563, 3565, 3567
complementary error

function 502
cosines 345
cube roots 226
error function 500

exceptions, signal for 2797
exponentials 569, 571
exponents,

radix-independent 2523,
2526

finite, determining if 629
fractional part 1615
gamma functions 750, 1435
hyperbolic cosines 347
hyperbolic sines 2849
hyperbolic tangents 3163
hypotenuse, length of 981
infinite, determining if 1364
input, formatted 2533
integral logarithms 999
integral part 1615
integral power of 2 701, 1428
inverse hyperbolic cosines 125
inverse hyperbolic sines 156
inverse hyperbolic

tangents 165
logarithms 1462, 1464, 1466
modular arithmetic 643
next representable 1816
normalized fractions 701
not a number, determining

if 1368
powers 1963
printing 1968
radix-independent

exponents 1468, 2523,
2526

remainders 433, 2366
residue 643
rounding 228, 639, 2472
settings

exception mask 661

3662 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

exception registers 664
precision 667
rounding 670

sign, copying 343
significant bits 2819
sines 2847
square roots 2980
tangents 3161
wide-character strings,

converting to/from 3508
flock 591
flock() 634
flockfile() 637
floor(), floorf() 639
flow control 3170
flushall() 641
fmod(), fmodf() 643
fnmatch() 647
FNM PATHNAME 646
FNM PERIOD 646
FNM QUOTE 646
F OK 120, 456
fopen() 650
fork() 655, 1843
forkpty() 659
fpathconf() 673
FP EXC DENORMAL 661, 664
FP EXC DIVZERO 661, 664

fp exception mask() 661
fp exception value() 664
FP EXC INEXACT 661, 664
FP EXC INVALID 661, 664
FP EXC OVERFLOW 661, 664
FP EXC UNDERFLOW 661, 664
fpos t 613, 708
FP PREC DOUBLE 667
FP PREC DOUBLE EXTENDED 667

FP PREC EXTENDED 667
FP PREC FLOAT 667

fp precision() 667
fprintf() 676
fp rounding() 670
FP ROUND NEAREST 670
FP ROUND NEGATIVE 670
FP ROUND POSITIVE 670
FP ROUND ZERO 670

fputc() 678
fputchar() 680
fputs() 682
fputwc() 684
fputws() 686
FQNN (Fully Qualified Node

Name) 1807
FQPN (Fully Qualified Path

Name) 1806
fractional part of a floating-point

number 1615
F RDLCK 590
fread() 688
free memory, amount of 2999
free space, filesystem 715, 3002
free() 691
freeaddrinfo() 693
freeifaddrs() 695
freopen() 69, 697
frexp(), frexpf() 701
fscanf() 703
fseek() 706, 2462
F SETFD 590
F SETFL 590
F SETLK 590
F SETLKW 590
fsetpos() 708
fstat(), fstat64() 710

May 31, 2004 Index 3663

Index 2004, QNX Software Systems Ltd.

fstatvfs(), fstatvfs64() 714
fsync() 718
ftell() 720
ftime() 723
ftruncate(), ftruncate64() 726
ftrylockfile() 729
ftw() 731
FTW D 732, 1820
FTW DNR 732, 1820
FTW F 732, 1820
FTW NS 732, 1820
FTYPE ANY 1112, 1118, 1120,

2392
FTYPE LINK 1112, 1118, 1120,

2392
FTYPE MOUNT 1112, 1118, 1120,

2392
FTYPE MQUEUE 1112, 1118,

1120, 2392
FTYPE PIPE 1112, 1118, 1120,

2392
FTYPE SEM 1112, 1118, 1121,

2393
FTYPE SHMEM 1112, 1118, 1121,

2393
FTYPE SOCKET 1112, 1118,

1121, 2393
FTYPE SYMLINK 1112, 1118,

1121, 2393
full-duplex connection, shutting

down 2762
Fully Qualified Node Name

(FQNN) 1807
Fully Qualified Path Name

(FQPN) 1806
function

classification 103

safety 107
F UNLCK 589, 590
funlockfile() 734
futime() 736
fwide() 739
fwprintf() 741
fwrite() 743
F WRLCK 590
fwscanf() 746

G

gai strerror() 748
gamma functions 750, 1435
gamma(), gamma r(),gammaf(),

gammaf r() 750
General Purpose Interface Bus

(GPIB) 1880
getaddrinfo() 753
getc() 760
getchar() 764
getchar unlocked() 766
getc unlocked() 762
getcwd() 768
get device command() 372
get device direction() 372
getdomainname() 771
getdtablesize() 773
getegid() 775
getenv() 537, 560, 777, 2934, 2944,

2961, 2970
geteuid() 779
getgid() 781
getgrent() 783
getgrgid() 786

3664 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

getgrgid r() 788
getgrnam() 791
getgrnam r() 793
getgrouplist() 796
getgroups() 798
gethostbyaddr() 800
gethostbyaddr r() 804
gethostbyname(), gethostbyname2()

806
gethostbyname r() 810
gethostent() 812
gethostent r() 815
gethostname() 817
getifaddrs() 819
GETIOVBASE() 821
GETIOVLEN() 823
getitimer() 825
getlogin() 827
getlogin r() 829
getnetbyaddr() 836
getnetbyname() 838
getnetent() 840
GETNEXT REQ MSG 2887
getopt() 842
getpass() 848
getpeername() 850
getpgid() 852
getpgrp() 854
getpid() 856
getppid() 858
getprio() 860
getprotobyname() 862
getprotobynumber() 864
getprotoent() 866
getpwent() 868
getpwnam() 871
getpwnam r() 873

getpwuid() 876
getpwuid r() 878
GET REQ MSG 2887
getrlimit(), getrlimit64() 881
GET RSP MSG 2887
getrusage() 884
gets() 889
getservbyname() 891
getservbyport() 893
getservent() 895
getsid() 897
getsockname() 899, 3573
getsockopt() 902
getspent() 911
getspnam(), getspnam r() 915
getsubopt() 918
gettimeofday() 923
getuid() 925
getutent() 927
getutid() 929
getutline() 932
getw() 934
getwc() 936
getwchar() 938
getwd() 940
glob t 942
glob() 943
global variables

amblksiz 149
argc 150
argv 151
auxv 198
btext 217

daylight 362
edata 459
end 462

errno 507

May 31, 2004 Index 3665

Index 2004, QNX Software Systems Ltd.

etext 515
optarg 842
opterr 843
optind 842
optopt 843

progname 1993
stderr 3005
stdin 3006
stdout 3007
sys errlist 507
sys nerr 508
sys nsig 2796
syspage ptr 3157

sys siglist 2796
timezone 3312
tzname 3341

globfree() 947
gmtime() 949
gmtime r() 951
GPIB (General Purpose Interface

Bus) 1880
greater of two numbers 1504
groups See also process groups

access list
getting 796
initializing 1061

database
closing 463
membership 1061
next entry, getting 783
rewinding 2678

IDs
effective 775, 2666, 2675,

2714
information about 786, 788
process 854
real 781, 2675, 2714

saved 2675
name, getting information

about 791, 793
set-group ID 3137
supplementary

IDs 798, 2680
maximum per process 3136

guard area 2003, 2024
guardian process, specifying 1987

H

hardware
information in system

page 973, 975, 977, 979
manufacturer, getting 319
serial number, getting 319
type 319, 3370

hardware interrupts See interrupts
hash table

creating 955
destroying 957
searching 963

hcreate() 955
hdestroy() 957
h errno 801, 807, 953, 958, 2381,

2387
herror() 958
hexadecimal numbers

digit, testing a character
for 1401, 1403

strings, converting to/from 172
host-byte order

3666 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

network-byte order, converting
to/from 969, 971, 1829,
1831

HOSTALIASES 807
hostent 961
HOSTNAME 817, 2684
HOST NOT FOUND 953, 958
hosts

addresses
strings, converting

to/from 1036, 1039
database

closing 464
entries, getting 800, 804,

806, 810, 812, 815
errors 953, 958, 967
opening 2682
structure 961

domain name
getting 318, 771
setting 2664

names 817, 2684
getting 319
valid characters 319

remote
identity, checking 2518

hot swapping 1932
hsearch() 963
hstrerror() 967
htonl() 969
htons() 971
HUPCL 3212
hwi find item() 973
hwi find tag() 975
HWI NULL OFF 974
hwi off2tag() 977
hwi tag2off() 979

hyperbolic functions See also
trigonometry

hyperbolic cosine 347
hyperbolic sine 2849
hyperbolic tangent 3163
inverse hyperbolic cosine 125
inverse hyperbolic sine 156
inverse hyperbolic tangent 165

hypot(), hypotf() 981
hypotenuse, length of 981

I

I/O
buffers, flushing 3173
configuration files,

opening 236
end-of-file, checking for 496
FIFOs, creating 1566, 1569
file descriptors

duplicating 450, 453, 589,
1846, 2923

selecting 2493, 2610
file-mode creation mask 3353

daemons 1978
files

closing 309
controlling 588
extending 588
information, getting 710
linking to 1438, 1874, 1876,

2331, 3099
locking 589, 1459
names, matching 647
opening 349, 1835, 2918

May 31, 2004 Index 3667

Index 2004, QNX Software Systems Ltd.

reading 1965, 2306, 2315
status flags 589
truncating 589
unlocking 590, 634, 1459
writing 2272, 3550, 3555

filesystems
information, getting 714,

3001
iov t

reading 2334
writing 3558

ports, managing 2494
privity, requesting 1069, 1078,

1083, 1095, 1097, 1100,
1102, 3246

requests, initiating list of 1443
I/O functions (resource managers)

chmod 1145
default 1148

chown 1150
default 1153

close
default 1157, 1160

default values, setting 1179
devctl 1166

default 1170
fdinfo 1173

default 1175
link 1182
lock

default 1190
lseek 1197

default 1200
mknod 1202
mmap 1205

default 1209
openfd 1243

default 1247
pathconf 1249

default 1252
read 1256

default 1254
readlink 1260
space 1267
stat 1271

default 1273
sync 1280

default 1278
utime 1295

default 1298
write

default 1301
I/O vector

base, getting 821
fields, filling 2686
length, getting 823
reading from a file 2334
writing to a file 3558

ICANON 3213
ICMP (Internet Control Message

Protocol) 983
ICMP6 (Internet Control Message

Protocol v6) 985
ICMP6 FILTER 986
ICMP6 FILTER SETBLOCK() 986
ICMP6 FILTER SETBLOCKALL() 986
ICMP6 FILTER SETPASS() 986
ICMP6 FILTER SETPASSALL() 986
ICMP6 FILTER WILLBLOCK() 986
ICMP6 FILTER WILLPASS() 986
ICRNL 3211
IEXTEN 3213
if msghdr 2483
if nameindex 993

3668 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

ifa msghdr 2483
ifaddrs 997
if freenameindex() 989
if indextoname() 991
if nameindex() 993
if nametoindex() 995
IFNAMSIZ 991
IGNBRK 3211
IGNCR 3211
IGNPAR 3211
IHFLOW 3212
ilogb(), ilogbf() 999
in16() 1005
in16s() 1007
in32() 1009
in32s() 1011
in6 pktinfo 1342
in8() 1001
in8s() 1003
INADDR ANY 1315, 3189
INADDR NONE 1015, 1016, 1030
inbe16() 1005
inbe32() 1009
INCLUDE 2602
incoming connections, listening

for 1447, 2475
index() 1013
INET6 (Internet protocol v6

family) 1051
INET6 ADDRSTRLEN 1036
inet addr() 1015
INET ADDRSTRLEN 1036
inet aton() 1017
inet lnaof() 1019
inet makeaddr() 1021
inet net ntop() 1023
inet netof() 1026

inet net pton() 1028
inet network() 1030
inet ntoa() 1032
inet ntoa r() 1034
inet ntop() 1036
inet pton() 1039
infinite number, determining

if 1364
INFORM REQ MSG 2887
inheritance 2925, 2952
initgroups() 1061
INIT PROCESS 929, 3393
initstate() 1063
INLCR 3211
inle16() 1005
inle32() 1009
inodes

getting 2417
number of 715, 3002

INPCK 3211
input, formatted 703, 746, 2533,

3421, 3426, 3430, 3454,
3561

input line() 1066
input line max 1066

instruction set architecture 318
instrumented kernel 1093, 3331

INT BITS 111
integers

absolute value 115
atomic operations

addition 178, 180
subtraction 190, 192

division 408
pseudo-random numbers 2286,

2288
quotient 408

May 31, 2004 Index 3669

Index 2004, QNX Software Systems Ltd.

remainder 408
rounding 228, 639
size of 111
system message log, writing

to 2873
integral logarithms 999
integral part of a floating-point

number 1615
integral power of 2 701, 1428
Intel 80x86-specific interrupts 1107
interfaces

index, mapping to name 991
list of, freeing 989
list of, getting 993
name, mapping to index 995

international characters See wide
characters

Internet Control Message Protocol
See ICMP

Internet domain
errors 953, 958, 967
name servers

initializing 2374
querying 2378, 2381, 2384,

2387, 2389
names

compressing 427
expanding 429

Internet Protocol See IP
InterruptAttach(),

InterruptAttach r() 1069
InterruptAttachEvent(),

InterruptAttachEvent r()
1077

InterruptDetach(),
InterruptDetach r() 1083

InterruptDisable() 1085

InterruptEnable() 1087
InterruptHookIdle() 1089
InterruptHookTrace() 1093
InterruptLock() 1095
InterruptMask() 1097
interrupts

classes 1069
disabling 1085
enabling 1087
events

attaching 1077
detaching 1083

handlers
attaching 1069
detaching 1083
disabling hardware

interrupts 1085
guidelines for writing 1072
idle, attaching 1089
locking 1095, 1100
stack size 1072

Intel 80x86-specific 1107
level-sensitive 1097
masking 1097, 1102
PCI

mapping 1919
routing information 1916

requests, managing 2494
waiting for 1104

InterruptUnlock() 1100
InterruptUnmask() 1102
InterruptWait(), InterruptWait r()

1104
intr v86() 1107

inverse hyperbolic cosines 125
inverse hyperbolic sines 156
inverse hyperbolic tangents 165

3670 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

io chmod t 1146
io chown t 1151
io close t 1158
io devctl t 1167
io fdinfo t 1176
io link t 1183
io lseek t 1198
io mknod t 1203
io mmap t 1206
io notify t 1213
io open t 1238
io openfd t 1244
io pathconf t 1250
io read t 1257
io readlink t 1261
io rename t 1264
io space t 1268
io stat t 1274
io sync t 1280
io unlink t 1291
io utime t 1296
io write t 1304
IO CHMOD 1145, 1148
IO CHOWN 1150, 1153
IO CLOSE 1157, 1160
IO COMBINE FLAG 1146, 1151,

1158, 1168, 1176, 1198,
1206, 1214, 1244, 1250,
1258, 1268, 1274, 1281,
1296, 1305

IO CONNECT 1111
IO CONNECT 1241
IO CONNECT COMBINE 1111
IO CONNECT COMBINE CLOSE 1111
IO CONNECT EFLAG DIR 1116,

1121

IO CONNECT EFLAG DOT 1116,
1121

IO CONNECT EXTRA LINK 1116
IO CONNECT EXTRA MOUNT 1116
IO CONNECT EXTRA MOUNT OCB

1116
IO CONNECT EXTRA MQUEUE 1116
IO CONNECT EXTRA NONE 1116
IO CONNECT EXTRA PHOTON 1116
IO CONNECT EXTRA PROC SYMLINK

1116
IO CONNECT EXTRA RENAME 1116
IO CONNECT EXTRA RESMGR LINK

1116
IO CONNECT EXTRA SEM 1116
IO CONNECT EXTRA SOCKET 1116
IO CONNECT EXTRA SYMLINK 1116
IO CONNECT LINK 1112
IO CONNECT MKNOD 1112
IO CONNECT MOUNT 1112
IO CONNECT OPEN 1111
IO CONNECT READLINK 1112
IO CONNECT RENAME 1112,

1264
IO CONNECT RET LINK 1237
IO CONNECT RSVD UNBLOCK 1112
IO CONNECT UNLINK 1111

ioctl() 1123
IO DEVCTL 1166, 1170
IOFBF 2742
IO FDINFO 1173, 1175

iofdinfo() 1125
IO FLAG RD 1276
IO FLAG WR 1276
iofunc attr t 1132
iofunc notify t 1215
iofunc ocb t 1234

May 31, 2004 Index 3671

Index 2004, QNX Software Systems Ltd.

IOFUNC ATTR ATIME 1133, 1283,
1299

IOFUNC ATTR CTIME 1133, 1283,
1299

IOFUNC ATTR DIRTY MODE 1133,
1299

IOFUNC ATTR DIRTY MTIME 1133
IOFUNC ATTR DIRTY NLINK 1133
IOFUNC ATTR DIRTY OWNER 1133
IOFUNC ATTR DIRTY RDEV 1133
IOFUNC ATTR DIRTY SIZE 1133
IOFUNC ATTR DIRTY TIME 1133,

1283, 1299
iofunc attr init() 1127
iofunc attr lock() 1129
IOFUNC ATTR MTIME 1283, 1299
IOFUNC ATTR PRIVATE 1133
IOFUNC ATTR T 1234
iofunc attr trylock() 1137
iofunc attr unlock() 1139
iofunc check access() 1141
iofunc chmod() 1145
iofunc chmod default() 1148
iofunc chown() 1150
iofunc chown default() 1153
iofunc client info() 1155
iofunc close dup() 1157
iofunc close dup default() 1160
iofunc close ocb() 1162
iofunc close ocb default() 1164
iofunc devctl() 1166
iofunc devctl default() 1170
iofunc fdinfo() 1173
iofunc fdinfo default() 1175
iofunc func init() 1179
iofunc link() 1182
iofunc lock() 1186

iofunc lock calloc() 1188
iofunc lock default() 1190
iofunc lock free() 1193
iofunc lock ocb default() 1195
iofunc lseek() 1197
iofunc lseek default() 1200
iofunc mknod() 1202
iofunc mmap() 1205
iofunc mmap default() 1209
IOFUNC MOUNT 32BIT 1197
IOFUNC MOUNT T 1132
iofunc notify() 1213
IOFUNC NOTIFY INPUT 1220
IOFUNC NOTIFY OBAND 1220
IOFUNC NOTIFY OUTPUT 1220
iofunc notify remove() 1218
iofunc notify trigger() 1220
iofunc ocb attach() 1224
iofunc ocb calloc() 1225
iofunc ocb detach() 1228
IOFUNC OCB FLAGS PRIVATE 1235
iofunc ocb free() 1231
IOFUNC OCB PRIVILEGED 1235
iofunc open() 1236
iofunc open default() 1241
iofunc openfd() 1243
iofunc openfd default() 1247
iofunc pathconf() 1249
iofunc pathconf default() 1252
iofunc read default() 1254
iofunc readlink() 1260
iofunc read verify() 1256
iofunc rename() 1264
iofunc space verify() 1267
iofunc stat() 1271
iofunc stat default() 1273
iofunc sync() 1276

3672 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

iofunc sync default() 1278
iofunc sync verify() 1280
iofunc time update() 1283
iofunc unblock() 1285
iofunc unblock default() 1287
iofunc unlink() 1290
iofunc unlock ocb default() 1293
iofunc utime() 1295
iofunc utime default() 1298
iofunc write default() 1301
iofunc write verify() 1303
IOLBF 2742
IO LOCK 1190
IO LSEEK 1197, 1200
IO MMAP 1205, 1209
IONBF 2742

ionotify() 1307
IO OPENFD 1243, 1247
IO OPENFD NONE 1245
IO OPENFD PIPE 1245
IO OPENFD RESERVED 1245
IO PATHCONF 1249, 1252
IO READ 1254, 1256
IO SET CONNECT RET() 1237
IO SET PATHCONF VALUE() 1249
IO SET READ NBYTES() 1257
IO SET WRITE NBYTES() 1304
IO SPACE 1267
IO STAT 1271, 1273
IO SYNC 1278, 1280
IO UTIME 1296, 1298
iov t 2334, 2686, 3558

base, getting 821
fields, filling 2686
length, getting 823
reading from a file 2334
resource managers 2446

writing to a file 3558
iovec

copying 1540
IO WRITE 1301
IO XFLAG BLOCK 1258, 1305
IO XFLAG DIR EXTRA HINT 1258,

1305
IO XFLAG NONBLOCK 1258,

1305
IO XTYPE MQUEUE 1258, 1305
IO XTYPE NONE 1258, 1305
IO XTYPE OFFSET 1258, 1305
IO XTYPE READCOND 1258,

1305
IO XTYPE REGISTRY 1258, 1305
IO XTYPE TCPIP 1258, 1305
IO XTYPE TCPIP MSG 1258,

1305
IP (Internet Protocol) 1313
ip mreq 1317
IP addresses

CIDR (Classless Internet
Domain Routing),
converting to/from 1023,
1028

classes of 1024
extracting

network number 1026
local network addresses,

extracting 1019
manipulating 1021
network numbers, converting

to/from strings 1030
specifying in dot notation 1024
strings, converting

to/from 1015, 1017, 1032,
1034, 1036, 1039

May 31, 2004 Index 3673

Index 2004, QNX Software Systems Ltd.

IP Payload Compression
Protocol 1325

IP6 (Internet Protocol v6) 1338
IP ADD MEMBERSHIP 1317
IP DROP MEMBERSHIP 1317
IP HDRINCL 903, 1314
IP MAX MEMBERSHIPS 1317
IP MULTICAST IF 1316
IP MULTICAST LOOP 1316
IP MULTICAST TTL 1315
IP OPTIONS 1313
IPPROTO ICMPV6 985, 986
IPPROTO RAW 1314, 1345
IP RECVDSTADDR 1314
IP RECVIF 1314
IPsec (secure Internet

Protocol) 1320
IP TOS 903, 1313
IP TTL 1313
ipv6 mreq 1340
IPV6 BINDV6ONLY 1341
IPV6 DSTOPTS 1342
IPV6 HOPLIMIT 1342
IPV6 HOPOPTS 1342
IPV6 JOIN GROUP 1340
IPV6 MULTICAST HOPS 1339
IPV6 MULTICAST IF 1339
IPV6 MULTICAST LOOP 1339
IPV6 PKTINFO 1341
IPV6 PORTRANGE 1341
IPV6 RTHDR 1342
IPV6 UNICAST HOPS 1338
IRQs (Interrupt ReQuests),

managing 2494
isalnum() 1348
isalpha() 1350
isascii() 1352

isatty() 1354
iscntrl() 1356
isdigit() 1358
isfdtype() 1360
isgraph() 1362
ISIG 3213
isinf(), isinff() 1364
islower() 1366
isnan(), isnanf() 1368
isprint() 1370
ispunct() 1372
isspace() 1374
ISTRIP 3211
isupper() 1377
iswalnum() 1379
iswalpha() 1381
iswcntrl() 1383
iswctype() 1385
iswdigit() 1387
iswgraph() 1389
iswlower() 1391
iswprint() 1393
iswpunct() 1395
iswspace() 1397
iswupper() 1399
iswxdigit() 1401
isxdigit() 1403
ITIMER REAL 826, 2689
itimerspec 3269
itoa() 1405
IXOFF 3211
IXON 3211

3674 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

J

j0(), j0f() 1408
j1(), j1f() 1410
jn(), jnf() 1412
job control, supporting 3137
jrand48() 1414
jumps, nonlocal 1473, 2691, 2787,

2832

K

kerinfo 3152
kernel

blocking states, setting timeouts
on 3299

calls
ChannelCreate(),

ChannelCreate r() 248
ChannelDestroy(),

ChannelDestroy r() 255
ClockAdjust(),

ClockAdjust r() 282
ClockCycles() 284
ClockId(), ClockId r() 300
ClockPeriod(),

ClockPeriod r() 304
ClockTime(), ClockTime r()

306
ConnectAttach(),

ConnectAttach r() 327
ConnectClientInfo(),

ConnectClientInfo r()
331

ConnectDetach(),
ConnectDetach r() 251,
335

ConnectFlags(),
ConnectFlags r() 337

ConnectServerInfo(),
ConnectServerInfo r()
340

DebugBreak() 363
DebugKDBreak() 365
DebugKDOutput() 366
InterruptAttach(),

InterruptAttach r() 1069
InterruptAttachEvent(),

InterruptAttachEvent r()
1077

InterruptDetach(),
InterruptDetach r() 1083

InterruptDisable() 1085
InterruptEnable() 1087
InterruptHookIdle() 1089
InterruptHookTrace() 1093
InterruptLock() 1095
InterruptMask() 1097
InterruptUnlock() 1100
InterruptUnmask() 1102
InterruptWait(),

InterruptWait r() 1104
MsgDeliverEvent(),

MsgDeliverEvent r()
1661

MsgError(), MsgError r()
1669

MsgInfo(), MsgInfo r()
1672

MsgKeyData(),
MsgKeyData r() 1675

May 31, 2004 Index 3675

Index 2004, QNX Software Systems Ltd.

MsgRead(), MsgRead r()
1682

MsgReadv(), MsgReadv r()
1686

MsgReceive(),
MsgReceive r() 1689

MsgReceivePulse(),
MsgReceivePulse r()
1694

MsgReceivePulsev(),
MsgReceivePulsev r()
1697

MsgReceivev(),
MsgReceivev r() 1700

MsgReply(), MsgReply r()
1704

MsgReplyv(), MsgReplyv r()
1707

MsgSend(), MsgSend r()
1710

MsgSendnc(), MsgSendnc r()
1714

MsgSendPulse(),
MsgSendPulse r() 1719

MsgSendsv(), MsgSendsv r()
1722

MsgSendsvnc(),
MsgSendsvnc r() 1726

MsgSendv(), MsgSendv r()
1730

MsgSendvnc(),
MsgSendvnc r() 1734

MsgSendvs(), MsgSendvs r()
1738

MsgSendvsnc(),
MsgSendvsnc r() 1742

MsgVerifyEvent(),
MsgVerifyEvent r() 1746

MsgWrite(), MsgWrite r()
1748

MsgWritev(), MsgWritev r()
1752

SchedGet(), SchedGet r()
2570

SchedInfo(), SchedInfo r()
2574

SchedSet(), SchedSet r()
2577

SchedYield(), SchedYield r()
2579

SignalAction(),
SignalAction r() 2796

SignalKill(), SignalKill r()
2804

SignalProcmask(),
SignalProcmask r() 2810

SignalSuspend(),
SignalSuspend r() 2813

SignalWaitinfo(),
SignalWaitinfo r() 2816

SyncCondvarSignal(),
SyncCondvarSignal r()
3104

SyncCondvarWait(),
SyncCondvarWait r()
3107

SyncCtl(), SyncCtl r() 3112
SyncDestroy(),

SyncDestroy r() 3114
SyncMutexEvent(),

SyncMutexEvent r() 3117
SyncMutexLock(),

SyncMutexLock r() 3119

3676 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

SyncMutexRevive(),
SyncMutexRevive r()
3122

SyncMutexUnlock(),
SyncMutexUnlock r()
3124

SyncSemPost(),
SyncSemPost r() 3127

SyncSemWait(),
SyncSemWait r() 3129

SyncTypeCreate(),
SyncTypeCreate r() 3133

ThreadCancel(),
ThreadCancel r() 3234

ThreadCreate(),
ThreadCreate r() 3239

ThreadCtl(), ThreadCtl r()
1069, 1078, 1083, 1085,
1087, 1095, 1097, 1100,
1102, 3245

ThreadDestroy(),
ThreadDestroy r() 3249

ThreadDetach(),
ThreadDetach r() 3252

ThreadJoin(), ThreadJoin r()
3254

TimerAlarm() 3282
TimerCreate() 3285
TimerDestroy(),

TimerDestroy r() 3288
TimerInfo(), TimerInfo r()

3291
TimerSettime(),

TimerSettime r() 3295
TimerTimeout(),

TimerTimeout r() 3299
TraceEvent() 3331

debugging 365, 366
instrumented 1093, 3331
thread scheduler 2574

kill() 1416
killpg() 1419

L

labs() 1421
large-file support 103

file information 710, 1485,
2993

filesystem information 714,
3001

mapped memory, offset
of 1527

memory, offset of 1959
opening 349, 1835
position

setting 1482, 3204
reading 1965
shared memory, mapping 1585
symbolic link

information 1485
system-resource limits 881,

2719
truncating 726
writing 2272

LC ALL 2698
LC COLLATE 2698
LC CTYPE 1385, 2698
lchown() 1423
LC MESSAGES 2698
LC MONETARY 2698
LC NUMERIC 2698

May 31, 2004 Index 3677

Index 2004, QNX Software Systems Ltd.

lcong48() 1426
lconv 1449
L ctermid 355
LC TIME 2698
ldexp(), ldexpf() 1428
ldiv t 1430
ldiv() 1430
LD LIBRARY PATH 422
length, calculating

hypotenuse 981
strings 3039
wide-character strings 3490

lesser of two numbers 1561
level-sensitive interrupts 1097
lfind() 1433
lgamma(), lgamma r(),lgammaf(),

lgammaf r() 1435
LIB 2602
libraries, locating 319
limits

core files, size of 2720
data segment, size of 2720
device numbers 2510
files

descriptors, number of 2720
link count 673, 1866
maximum per process 3137
names, length of 673, 1866
size 2720

filesystems 714, 3001
hops 1338, 1342
host names, length 2684
inheriting 519
iov arrays 2334
path names, length of 674,

1867

pipes, number of bytes written
atomically 674, 1867

processes
argument lists 3136
CPU time 2720
execution time 2559
files, number open 3137
I/O requests 1442
mapped address space 2720
maximum per real user

ID 3136
scheduling policy 2547,

2549
supplementary group

IDs 3136
sockets, pending

connections 1447, 2475
stack size 2720
system resources

getting 773, 881
setting 2719

TCP maximum segment
size 3190

terminals
canonical input buffer

size 673, 1866
raw input buffer size 673,

1866
threads

execution time 2574
priority 2574
stack size 2039

LINE 158
line buffering, setting for stream

I/O 2696
linear search 1433, 1479
LINES 274

3678 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

link() 1438
resource managers,

implementing in 1182
link-local addresses 1052
linker symbols

btext 217
edata 459
end 462
etext 515

LINK MAX 632, 1439
links, symbolic

creating 3099
deleting 2368, 3380
information, getting 1485
ownership, changing 1423
reading 2331
resolving 2341
temporary 1874, 1876

lio listio() 1443
LIO NOP 1443
LIO NOWAIT 1442
LIO READ 1443
LIO WAIT 1442
LIO WRITE 1443
listen() 1447, 3189, 3573
little endian

big endian, converting
to/from 477, 479, 481,
483, 485, 487, 3093

LITTLEENDIAN manifest
111

messages 1550
native format, converting

to/from 471, 473, 475
ports

reading from 1005, 1009
writing to 1858, 1862

unaligned values
accessing safely 3364, 3366,

3368
writing safely 3358, 3360,

3362
LITTLEENDIAN 111

lltoa() 1488
local network addresses, converting

to/from IP addresses
1021

local times, converting to/from
calendar times 1454,
1456, 1577

LOCAL CREDS 3379
LOCALDOMAIN 2374, 2378,

2382, 2384, 2387, 2390
localeconv() 1449
locales

classes, wide-character 3533
daylight saving time 362
numeric formatting 1449
setting 2699
strings, comparing 3021, 3482

localtime() 1454
localtime r() 1456
LOCK EX 634
lockf() 1459
LOCK NB 634
locks

files 589, 634, 637, 729, 1459
mutexes

attributes, destroying 2137
attributes, initializing 2150
attributes, priority

ceiling 2139, 2152

May 31, 2004 Index 3679

Index 2004, QNX Software Systems Ltd.

attributes,
process-shared 2143,
2156

attributes, recursive 2145,
2158

attributes, scheduling
protocol 2141, 2154

attributes, type 2147, 2161
destroying 2118, 3114
events 3112, 3117
initializing 2122, 3133
locking 2124, 2130, 2133,

3119, 3124
priority 3112
priority ceiling 2120, 2128
reviving 3122
unlocking 2135

read-write
attributes, creating 2191
attributes, destroying 2187
attributes,

process-shared 2189,
2193

destroying 2166, 3114
initializing 2168, 3133
locking for reading 2171,

2173, 2179
locking for writing 2176,

2181, 2185
unlocking 2183

sleepon
destroying 2855
initializing 2857
locking 2210, 2859
unblocking 2208, 2212,

2853, 2861
unlocking 2218, 2863

waiting 2214, 2220, 2865
LOCK SH 634
LOCK UN 634
log(), logf() 1462
log, system message

closing 314
log priority mask 2701
opening 1850
writing to 3147, 3448

blocks 2867
formatted output 2869, 3433
integers 2873

log10(), log10f() 1466
log1p(), log1pf() 1464
LOG ALERT 3148
logarithms

base 10 1466
integral 999
natural 1462
x + 1 1464

logb(), logbf() 1468
LOG CRIT 3148
LOG DEBUG 3148
LOG EMERG 3148
LOG ERR 3148
logging in

previous lines, discarding 1602
pseudo-ttys 659, 1471

logical interrupt vector
numbers 1069

LOG INFO 3148
LOGIN PROCESS 929, 932, 3393
login tty() 1471
LOG MASK() 2701
LOG NOTICE 3148
LOG UPTO() 2701
LOG WARNING 3148

3680 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

long integers
absolute value 1421
division 1430
pseudo-random numbers

nonnegative 1476, 1825
signed 1414, 1656, 2290

quotient 1430
remainder 1430
size of 111

LONG BITS 111
longjmp() 1473, 2283
lowercase

characters, converting to 3321
strings, converting to 3041
testing a character for 1366,

1391
wide characters, converting

to 3325, 3327, 3531
lrand48() 1476
lsearch() 1479
lseek(), lseek64() 1482

resource managers,
implementing in 1197,
1200

lstat(), lstat64() 1485
L tmpnam 3318
ltoa() 1488
ltrunc() 1491

M

Machine Status Register 3152
main() 1495, 2791

arguments
auxiliary 198

number of 150
parsing 842
vector of 151

major device numbers 2417, 2510,
2997

major() 2997
MAJOR BLK PREFIX 2509
MAJOR CHAR PREFIX 2509
MAJOR DEV 2509
MAJOR FSYS 2509
MAJOR PATHMGR 2509

makedev() 2997
mallinfo 1498
mallinfo() 1498
malloc() 1500
MALLOC ARENA SIZE 1502
MALLOC MONOTONIC GROWTH 1502
mallopt() 1503
manifests 111
MAP ANON 1586
MAP BELOW16M 1586
MAP FAILED 1588, 1595
MAP FIXED 1585, 1586, 1594,

1595
MAP LAZY 1586
MAP NOX64K 1587
MAP PHYS 1587
MAP PRIVATE 1585
MAP SHARED 1585, 1586
MAP STACK 1587
MAP TYPE 1585
mathematics

absolute values 115, 222, 574,
1421

Bessel functions 1408, 1410,
1412, 3563, 3565, 3567

May 31, 2004 Index 3681

Index 2004, QNX Software Systems Ltd.

complementary error
function 502

division 408, 1430
error function 500
exponentials 569, 571, 701,

1428, 2523, 2526, 2819
finite numbers 629
floating-point settings 661,

664, 667, 670
gamma functions 750, 1435
hyperbolic functions 125, 156,

165, 347, 2849, 3163
hypotenuse, length of 981
infinite numbers 1364
logarithms 999, 1462, 1464,

1466
maximum 1504
minimum 1561
modular arithmetic 643
next representable

number 1816
not a number, determining

if 1368
powers 1963
pseudo-random numbers 431,

498, 1063, 1414, 1426,
1476, 1656, 1825, 2286,
2288, 2290, 2605, 2733,
2982, 2984, 2986

radix-independent
exponents 1468

remainders 433, 2366
roots 226, 2980
rounding 228, 639, 2472
sign, copying 343
trigonometry 123, 154, 161,

163, 345, 2847, 3161

max() 1504
MAXHOSTNAMELEN 2684
Maximum Segment Size

(MSS) 3190
MB CUR MAX 3528
mblen() 1506
mbrlen() 1509
mbrtowc() 1511
mbsinit() 1514
mbsrtowcs() 1516
mbstate t 1514
mbstowcs() 1518
mbtowc() 1521
mcheck status 1623
mcheck() 1524
MCHECK DISABLED 1623
MCHECK FREE 1624
MCHECK HEAD 1624
MCHECK OK 1624
MCHECK TAIL 1624
memalign() 1530
members, offset of within a

structure 1833
memccpy() 1532
memchr() 1534
memcmp() 1536
memcpy() 1538
memcpyv() 1540
memicmp() 1542
memmove() 1544
mem offset(),mem offset64() 1527
memory

allocating
aligned 1530, 1961
amblksiz 2875

array 224, 2529
automatic (from stack) 144

3682 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

blocks 1500, 2338, 2875
break value, changing 149,

2520
consistency check 1524,

1623
controlling 1503
data segment, changing 211
heap block, aligned on page

boundary 3412
information about,

getting 1498
comparing 1536, 1542, 3537
copying 1532, 1538, 1540,

3539
overlapping objects 1544,

3541
devices

I/O, mapping 1591, 1764
physical, mapping into

process’s address space
1594

direct memory access (DMA)
channels, managing 2494

free, amount of 2999
freeing 240, 691, 2338, 2745,

2988
locking 1580, 1582, 1758
managing 2494
mapped

contiguous length 1527
maximum size 2720
offset of 1527

offset of, getting 1959
physical storage, synchronizing

with 1756
reallocating 2338, 2988
searching

for a character 1534
for a wide character 3535

setting 1546, 3543
shared

mapping 1585
unmapping 1762

unlocking 1760
unmapping 1766

memset() 1546
message attr t 1549
message queues

attributes 1630, 1646
closing 1628
messages

receiving 1640, 1648
sending 1643, 1651

notifying when
nonempty 1633

opening 1637
persistence of 1638
receive-only 1636
send-only 1636
send-receive 1636
unlinking 1654

message attach() 1549
message connect() 1555
message detach() 1558
messages

channels
attaching to a process 327
creating 248, 1768
destroying 255, 1777

dispatch interface
handlers 1549, 1558

errors, handling 1669
information about

getting 1672

May 31, 2004 Index 3683

Index 2004, QNX Software Systems Ltd.

structure 1658
Internet domain name servers

errors 953, 958, 967
queries 2378, 2381, 2384,

2387, 2389
sending and

interpreting 427, 429,
2374

key, adding 1675
reading data 1682, 1686, 2438,

2440
receiving 1689, 1700
replying 1704, 1707
resource managers

blocking while waiting
for 2401

handling 2425
sending 1710, 1714, 1722,

1726, 1730, 1734, 1738,
1742

SNMP
creating 2887
freeing 2879
reading 2889
sending 2894

sockets
peeking at 2343, 2346, 2350
receiving from 2344, 2347,

2351
sending to 2651, 2653, 2657

tampering, preventing 1675
unblocking 1669
writing data 1748, 1752, 2442,

2444
MFLAG OCB 1617, 1620

M GRAIN 1502
min() 1561

minor device numbers 2417, 2510,
2997

minor() 2997
misaligned access response 3245
mkdir() 1563, 3353
M KEEP 1502
mkfifo() 1566, 3353
mknod() 1133, 1569

resource managers,
implementing in 1202

mkstemp() 1573
mktemp() 1575
mktime() 1577
mlock() 1580
mlockall() 1582
mmap(), mmap64() 1585

resource managers,
implementing in 1205,
1209

mmap device io() 1591
mmap device memory() 1594
M MMAP MAX 1502
M MMAP THRESHOLD 1502
M MXFAST 1502
M NLBLKS 1502
modem script 1605
MODEM ALLOW8BIT 1601
MODEM ALLOWCASE 1601
MODEM ALLOWCTRL 1601
MODEM BAUD 1605, 1610
MODEM LASTLINE 1602
MODEM NOECHO 1605, 1606,

1610
modem open() 1597
modem read() 1602
modems

opening 1597

3684 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

reading 1602
script, running on 1605

states 1607
writing 1612

escape characters 1612
special characters 1612

modem script() 1605
modem write() 1612
modf(), modff() 1615
modular arithmetic, floating

point 643
mount() 1618
MOUNT AFTER 1618, 1620
MOUNT ATIME 1620
MOUNT BEFORE 1617, 1620
MOUNT CREAT 1620
MOUNT ENUMERATE 1618, 1620
MOUNT FORCE 1618, 1620, 3356
MOUNT NOATIME 1617, 1620
MOUNT NOCREAT 1617, 1620
MOUNT NOEXEC 1167, 1617,

1620
MOUNT NOSUID 1167, 1617,

1620
MOUNT OFF32 1617, 1620
MOUNT OPAQUE 1618, 1620

mount parse generic args() 1620
MOUNT READONLY 1167, 1617,

1620
MOUNT REMOUNT 1618, 1620
MOUNT SUID 1620
MOUNT UNMOUNT 1618, 1620

mprobe() 1623
mprotect() 1625
mq attr 1630
mq close() 1628
mq getattr() 1630

mq notify() 1633
mq open() 1637
MQ PRIO MAX 1643
mq receive() 1640
mq send() 1643
mq setattr() 1646
mq timedreceive() 1648
mq timedsend() 1651
mq unlink() 1654
mrand48() 1656
MS ASYNC 1755
MSG CTRUNC 2352
MsgDeliverEvent(),

MsgDeliverEvent r()
1309, 1661

MSG DONTROUTE 2650, 2653,
2656

MSG EOR 2352
MsgError(), MsgError r() 1669
MSG FLAG CROSS ENDIAN 402
MSG FLAG SIDE CHANNEL 1555
msghdr 2351
MsgInfo(), MsgInfo r() 1672
MsgKeyData(), MsgKeyData r()

1675
MSG OOB 905, 2343, 2346, 2350,

2352, 2650, 2653, 2656
MSG PEEK 2343, 2346, 2350
MsgRead(), MsgRead r() 1682
MsgReadv(), MsgReadv r() 1686
MsgReceive(), MsgReceive r()

1689
MsgReceivePulse(),

MsgReceivePulse r()
1694

May 31, 2004 Index 3685

Index 2004, QNX Software Systems Ltd.

MsgReceivePulsev(),
MsgReceivePulsev r()
1697

MsgReceivev(), MsgReceivev r()
1700

MsgReply(), MsgReply r() 1704
MsgReplyv(), MsgReplyv r() 1707
MsgSend(), MsgSend r() 1710
MsgSendnc(), MsgSendnc r() 1714
MsgSendPulse(), MsgSendPulse r()

1719
MsgSendsv(), MsgSendsv r() 1722
MsgSendsvnc(), MsgSendsvnc r()

1726
MsgSendv(), MsgSendv r() 1730
MsgSendvnc(), MsgSendvnc r()

1734
MsgSendvs(), MsgSendvs r() 1738
MsgSendvsnc(), MsgSendvsnc r()

1742
MSG TRUNC 2352
MsgVerifyEvent(),

MsgVerifyEvent r() 1746
MSG WAITALL 2343, 2347, 2350
MsgWrite(), MsgWrite r() 1748
MsgWritev(), MsgWritev r() 1752
MS INVALIDATE 1755
MS INVALIDATE ICACHE 1755
MSS (Maximum Segment

Size) 3190
MS SYNC 1755
msync() 1756
M TOP PAD 1502
M TRIM THRESHOLD 1502
multibyte characters

bytes, counting 1506, 1509
wide characters

conversion object 1514
wide characters, converting

to/from 1511, 1516, 1518,
1521, 3474, 3502, 3518,
3528

munlock() 1758
munlockall() 1760
munmap() 1762
munmap device io() 1764
munmap device memory() 1766
mutexes

attributes
destroying 2137
initializing 2150
priority ceiling 2139, 2152
process-shared 2143, 2156
recursive 2145, 2158
scheduling protocol 2141,

2154
type 2147, 2161

destroying 2118, 3114
events, attaching 3112, 3117
initializing 2122, 3133
locking 2124, 2130, 2133,

3119, 3124
priority 3112

ceiling 2120, 2128
reviving 3122
unlocking 2135

N

name attach t 1769
name servers

errors 953, 958, 967

3686 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

initializing 2374
names

compressing 427
expanding 429

queries 2378, 2381, 2384,
2387, 2389

name attach() 1768
NAME ATTACH FLAG GLOBAL 1768
name close() 1775
name detach() 1777
NAME FLAG ATTACH GLOBAL 1768,

1779
NAME FLAG DETACH SAVEDPP 1777
NAME MAX 1780
name open() 1779
names

binding to sockets 206, 2293
domain

setting 2664
domain, getting 318, 771
host

getting 817
setting 2684

peer, getting 850
socket, getting 899, 2468

NAN (not-a-number) 1368
nanoseconds

busy-waiting for 1784, 1786,
1789, 1791, 1793

threads, suspending for 1782
timespec, converting to/from

1827, 3310
nanosleep() 1782
nanospin() 1784
nanospin calibrate() 1786
nanospin count() 1789
nanospin ns() 1791

nanospin ns to count() 1793
nap() 1796
napms() 1797
natural logarithms 1462
nbaconnect() 1798
nbaconnect result() 1801
ND2S DIR HIDE 1807
ND2S DIR SHOW 1807
ND2S DOMAIN HIDE 1808
ND2S DOMAIN SHOW 1808
ND2S LOCAL STR 1808
ND2S NAME HIDE 1808
ND2S NAME SHOW 1808
ND2S QOS HIDE 1808
ND2S QOS SHOW 1808
ND2S SEP FORCE 1809
NDEBUG 158
ND LOCAL NODE 1803
ND NODE CMP() 1803
NETDB INTERNAL 807, 953, 959
netent 1805
netmgr ndtostr() 1806
netmgr remote nd() 1812
netmgr strtond() 1814
network

database
closing 489
entries, getting 836, 838,

840
opening 2703
structure 1805

host entries
errors 953, 958, 967
getting 800, 804, 806, 810,

812, 815
network interface addresses

freeing 695

May 31, 2004 Index 3687

Index 2004, QNX Software Systems Ltd.

getting 819
structure 997

network numbers
IP addresses, converting

to/from 1021, 1026
strings, converting

to/from 1030
network-byte order

host-byte order, converting
to/from 969, 971, 1829,
1831

Neutrino classification 106
NEW TIME 929, 3393
nextafter(), nextafterf() 1816
nftw() 1820
NGROUPS MAX 331, 798, 2680
nice() 1823
NO DATA 954, 959
node descriptors

comparing 1803
current 3370
relative to a remote node 1812
strings, converting

to/from 1806, 1814
NOFD 1527, 1585, 1586
NOFLSH 3213
nonlocal jumps 1473, 2691, 2787,

2832
NO RECOVERY 954, 959
normalized fractions 701
not a number, determining if 1368
NOTIFY ACTION POLL 1309,

1310
NOTIFY ACTION POLLARM 1310
NOTIFY ACTION TRANARM 1310
NOTIFY COND INPUT 1214, 1308
NOTIFY COND MASK 1308

NOTIFY COND OBAND 1215,
1308

NOTIFY COND OUTPUT 1214,
1308

NOTIFY DATA MASK 1309
nrand48() 1825
nsec2timespec() 1827
NSIG 2780
NTO CHF COID DISCONNECT 250
NTO CHF DISCONNECT 251
NTO CHF FIXED PRIORITY 249,

251
NTO CHF NET MSG 251
NTO CHF REPLY LEN 251, 1659
NTO CHF SENDER LEN 252,

1659
NTO CHF THREAD DEATH 252
NTO CHF UNBLOCK 252, 253,

1659
NTO COF CLOEXEC 327, 337

ntohl() 1829
ntohs() 1831
NTO INTR CLASS EXTERNAL 1069
NTO INTR CLASS SYNTHETIC 1069
NTO INTR FLAGS END 1073,

1074, 1079, 1090
NTO INTR FLAGS PROCESS

1073, 1074, 1079, 1090,
1091

NTO INTR FLAGS TRK MSK 1073,
1090

NTO INTR SPARE 1069
NTO KEYDATA CALCULATE 1674,

1677
NTO KEYDATA VERIFY 1674,

1677
NTO MI UNBLOCK REQ 1659

3688 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

NTO RESET OVERRUNS 3290
NTO SCTL GETPRIOCEILING 3111
NTO SCTL SETEVENT 3111
NTO SCTL SETPRIOCEILING 3111
NTO SYNC COND 3132
NTO SYNC MUTEX FREE 3132
NTO SYNC SEM 3132
NTO TCTL ALIGN FAULT 3245
NTO TCTL IO 1069, 1078, 1083,

1085, 1087, 1095, 1097,
1100, 1102, 3246

NTO TCTL RUNMASK 3246
NTO TCTL THREADS CONT 3247
NTO TCTL THREADS HOLD 3247
NTO TIMEOUT CONDVAR 3300
NTO TIMEOUT INTR 3300
NTO TIMEOUT JOIN 3300
NTO TIMEOUT MUTEX 3300
NTO TIMEOUT RECEIVE 3300
NTO TIMEOUT REPLY 3300
NTO TIMEOUT SEM 3300
NTO TIMEOUT SEND 3300
NTO TIMEOUT SIGSUSPEND 3300
NTO TIMEOUT SIGWAITINFO 3300
NTO TIMER SEARCH 3290
NTO TRACE * 3332
NTO VERSION 111

numbers
determining if

finite 629
infinite 1364
not a number 1368

formatting 1449
maximum 1504
minimum 1561
next representable

floating-point 1816

strings, converting
to/from 170, 172, 174,
176, 1405, 1488, 3072,
3076, 3083, 3086, 3350,
3397

wide-character strings,
converting to/from 3508,
3512, 3516, 3522

O

O APPEND 589, 1113, 1245, 1836,
1846, 2917, 2922, 3550

OCBs (Open Control Blocks)
allocating 1225
attaching 1224, 2450
detaching 1162, 1164, 1228,

2460
freeing 1164, 1231
getting 2448
structure 1234
unlocking 1293

O CLOEXEC 1113, 1836
O CREAT 349, 1636, 1836, 2753,

2917, 2918
O DSYNC 1113, 1276, 1281, 1837,

3556
O EXCL 1113, 1636, 1837, 1891,

2753, 2917
off t, limiting to 32 bits 1617
offsetof() 1833
OHFLOW 3212
O LARGEFILE 1113, 1837
OLD TIME 929, 3393
once-initialization 2163

May 31, 2004 Index 3689

Index 2004, QNX Software Systems Ltd.

O NOCTTY 1114, 1837
O NONBLOCK 589, 1256, 1267,

1303, 1603, 1636, 1837,
1947, 2307, 2322, 2335,
3551

OOB (out-of-band) data
determining if at mark 2906
sending/receiving 2343, 2346,

2350
Open Control Blocks See OCBs
open(), open64() 349, 1835, 3353

resource managers,
implementing in 1241

opendir() 1843
openfd() 1846

resource managers,
implementing in 1243,
1247

openlog() 1850
OPEN MAX 2723, 2925, 2952
openpty() 1852
operating system

name 319, 3370
release level 319
target 111
version 111, 319, 3370

OPOST 3212
optarg 842
opterr 843
optimization, compiling with 111

OPTIMIZE 111
optind 842
options

command-line
parsing 842, 918

mount, parsing 1620
socket-level 902, 2730

optopt 843
O RDONLY 589, 1113, 1244, 1636,

1836, 1846, 2753, 2917,
2922

O RDWR 589, 1113, 1244, 1491,
1636, 1836, 1846, 1891,
2753, 2917, 2922

O REALIDS 1114, 1155, 1838
O RSYNC 1114, 1281, 1838
O SYNC 1114, 1276, 1281, 1839,

3556
other scheduling 2031
O TRUNC 349, 1114, 1245, 1839,

1846, 2753, 2917, 2922
out-of-band (OOB) data

determining if at mark 2906
sending/receiving 2343, 2346,

2350
out16() 1858
out16s() 1860
out32() 1862
out32s() 1864
out8() 1854
out8s() 1856
outbe16() 1858
outbe32() 1862
outle16() 1858
outle32() 1862
output, formatted 676, 741, 1968,

3418, 3424, 3428, 3452,
3548

overlapping memory,
copying 1544, 3541

ownership, changing of a file 265,
581, 1423

3690 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

O WRONLY 349, 589, 1113, 1244,
1491, 1636, 1836, 1846,
2917, 2922

P

packets See also ROUTE
routing 2481
SNMP

reading 2889
P ALL 3466
PARENB 3212
PARMRK 3211
PARODD 3212
PARSTK 3212
passwd 868, 871, 873, 876, 878
passwords

database
closing 491
entries, getting for a

user 871, 873, 876, 878
entries, getting next 868
rewinding 2713

encrypting 353, 2275
prompting for and reading 848
shadow database

closing 493
entry, reading 618, 911, 915
entry, structure 2260
entry, writing 2260
rewinding 2732

PATH 57, 274, 536, 559, 2602,
2943, 2947, 2952, 2969,
2973

pathconf() 1866

resource managers,
implementing in 1249,
1252

pathfind(), pathfind r() 1871
PATH MAX 768, 1780
pathmgr symlink() 1874
pathmgr unlink() 1876
paths

base name 199
directory name 385
names

maximum length 674, 1867
patterns, matching 647, 943,

947
truncating 674, 1867

resolving 2341
resource managers

attaching to 2394
detaching from 2413
getting 2453

PATH UTMP 494
pattern matching See regular

expressions
pause() 1878
PC Card server

arming 1881
attaching 1884
card insertion/removal,

notification of 1881
CIS (Card Information

Structure), reading 1894
detaching 1886
locking 1891
socket setup information 1888
unlocking 1895

pccard arm() 1881
PCCARD ARM INSERT REMOVE 1880

May 31, 2004 Index 3691

Index 2004, QNX Software Systems Ltd.

pccard attach() 1884
pccard detach() 1886
PCCARD DEV AIMS 1880
PCCARD DEV ALL 1880
PCCARD DEV FIXED DISK 1880
PCCARD DEV GPIB 1880
PCCARD DEV MEMORY 1880
PCCARD DEV NETWORK 1880
PCCARD DEV PARALLEL 1880
PCCARD DEV SCSI 1880
PCCARD DEV SERIAL 1880
PCCARD DEV SOUND 1880
PCCARD DEV VIDEO 1880

pccard info() 1888
pccard lock() 1891
PCCARD MEMTYPE ATTRIBUTE 1893
PCCARD MEMTYPE COMMON 1893

pccard raw read() 1894
pccard unlock() 1895
PC CHOWN RESTRICTED 674,

1867
PCI

addresses
converting 1904
testing 1904

BIOS, determining if
present 1922

classes, finding 1912
devices

attaching 1899
configuration, reading 1924,

1926, 1928, 1930
configuration, writing 1934,

1937, 1939, 1941
detaching 1910
finding 1912, 1914
rescanning for 1932

functions, finding 1912
interrupts

mapping 1919
routing information 1916

memory, sharing 1587
server

attaching 1897
detaching 1908

pci dev info 1900
pci attach() 1897
pci attach device() 1899
PCI BAD REGISTER NUMBER 1925,

1927, 1929, 1931, 1938,
1940, 1942

PCI BUFFER TOO SMALL 1925,
1927, 1929, 1938, 1940

pci detach device() 1910
PCI DEVICE NOT FOUND 1910,

1912, 1913, 1915, 1925
pci find class() 1912
pci find device() 1914
PCI INIT ALL 1904
PCI INIT BASE0 . . .

PCI INIT BASE5 1904
PCI INIT IRQ 1903
PCI INIT ROM 1903
PCI IO ADDR() 1904
pci irq routing options() 1916
PCI IS IO() 1904
PCI IS MEM() 1904
pci map irq() 1919
PCI MEM ADDR() 1904
PCI PERSIST 1903, 1910
pci present() 1922
pci read config() 1924
pci read config16() 1928
pci read config32() 1930

3692 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

pci read config8() 1926
pci rescan bus() 1932
PCI ROM ADDR() 1904
PCI SEARCH BUSDEV 1903
PCI SEARCH CLASS 1903
PCI SEARCH VEND 1903
PCI SEARCH VENDEV 1903
PCI SET FAILED 1919
PCI SHARE 1903
PCI SUCCESS 1913, 1915, 1922,

1927, 1929, 1931, 1938,
1940, 1942

PCI UNSUPPORTED FUNCTION 1920
pci write config() 1934
pci write config16() 1939
pci write config32() 1941
pci write config8() 1937
PC LINK MAX 673, 1866

pclose() 1943, 1956
PC MAX CANON 673, 1866
PC MAX INPUT 673, 1866
PC NAME MAX 673, 1866
PC NO TRUNC 674, 1867
PC PATH MAX 674, 1867
PC PIPE BUF 674, 1867
PC VDISABLE 674, 1867, 3214

PDU (Protocol Data Unit) See
SNMP

peers, getting names of
connected 850

Peripheral Component Interconnect
See PCI

permissions
changing 261, 578
files, on creation 3353

daemons 1978
perror() 1945

PF INET 3141
PF KEY 1320
PF KEY V2 1320
PF ROUTE 1052
pipe() 1947
PIPE BUF 3551
pipes

bytes, writing atomically 674,
1867

closing 1943
creating 1947
opening 1955
reading from 1965, 2306, 2334

P NOWAIT 2933, 2938, 2943,
2947, 2960, 2965, 2969,
2973

P NOWAITO 2933, 2938, 2943,
2947, 2960, 2965, 2969,
2973

pointers, size of void 111
POOL FLAG EXIT SELF 3218
POOL FLAG USE SELF 3218
popen() 1955
portable code 103
ports

managing 2494
privileged

socket, binding to 209
socket, getting for 2490

reading from 1001, 1003,
1005, 1007, 1009, 1011

serial
opening 1597
reading 1602
script, running on 1605
writing 1612

services, finding for 893

May 31, 2004 Index 3693

Index 2004, QNX Software Systems Ltd.

writing to 1854, 1856, 1858,
1860, 1862, 1864

POSIX See also message queues;
semaphores; threads

signals 2796
standards 103
version supported 3137

POSIX AIO MAX 1442
POSIX CHOWN RESTRICTED 265,

581, 1423
POSIX LOGIN NAME MAX 829

posix memalign() 1961
posix mem offset(),posix mem offset64()

1959
POSIX THREAD SAFE FUNCTIONS

788, 829
P OVERLAY 49, 2933, 2938, 2943,

2947, 2960, 2965, 2969,
2973

pow(), powf() 1963
PowerPC platforms, variable-length

argument lists on 3401
powers 1963
P PGID 3466
P PID 3466
pread(), pread64() 1965
precision, floating-point 667
printable, testing a character

for 1362, 1370, 1389,
1393

printf() 1968
priorities

adjusting 1823, 2545
getting 860, 2542
maximum 2547
minimum 2549
setting 2561, 2565, 2709

process groups
changing 1991
creating 2705, 2727, 2926
devices 3178, 3197
ID, getting 852, 854
joining 2705
membership, inheriting 518,

524, 531, 542, 548, 554,
2929

pulses, sending 1719
remote node 2930
session of a controlling

terminal 3180
setting 2708, 2926
signals, sending 1416, 1419,

2767, 2801, 2804
SIGHUP 564
SIGURG 2909

status of 3462, 3469
waiting for 3466

processes See also threads
address space

device I/O memory,
mapping 1594

limits 2720
locking 1582
unlocking 1760

alarms, scheduling 141, 3345
analyzing 1093, 3331
arguments

auxiliary 198
maximum length 3136
number of 150
parsing 842
vector of 151

background 360, 1978

3694 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

termination, notification
of 1980

child
state change, waiting

for 3456, 3460, 3463,
3467, 3470

zombie, preventing from
becoming 2766, 2799

configurable limits 3136
connections

client, information
about 331

detaching 251, 335
flags, modifying 337
information about 340

controlling terminal, path
name 355

CPU time, maximum 2720
creating 516, 522, 529, 536,

540, 546, 552, 559, 655,
659, 2927, 2934, 2939,
2944, 2948, 2954, 2961,
2966, 2970, 2974

data segment, changing space
allocated for 211

debugging 363
dynamically linked libraries

addresses, translating 411
closing 413
debugging 422
errors 415
opening 417
symbol, getting address

of 424
environment 495

clearing 274
restoring 1473, 2787

saving 2691, 2832
environment variables

defining 2255, 2669
deleting 2255, 2669, 3383
getting 777

executable file
base name 1993
file descriptor 315
full path 316

executing 516, 522, 529, 536,
540, 546, 552, 559

execution time 300
execution time limit,

getting 2559
file-mode creation mask 3353

daemons 1978
files, maximum per 3137
forking 655, 659
group ID

effective 775, 2666, 2675,
2714

real 781, 2675, 2714
saved 2675
supplementary 798, 2680

guardian, specifying 1987
I/O privity, requesting 1069,

1078, 1083, 1085, 1087,
1095, 1097, 1100, 1102,
3246

ID, getting 856, 858
interrupts

disabling 1085
enabling 1087
events 1077, 1083
handlers 1069, 1083, 1095,

1100
handlers, idle 1089

May 31, 2004 Index 3695

Index 2004, QNX Software Systems Ltd.

masking 1097, 1102
waiting for 1104

maximum per real user
ID 3136

memory, sharing 1587
message channels, attaching

to 327
name 316, 1993
parent

blocking 3416
ID, getting 858

priority
adjusting 1823, 2545
getting 860, 2542
maximum 2547
minimum 2549
setting 2561, 2565, 2709

processor affinity 3246
program entry function 1495
scheduling policy

getting 2551
setting 2565

sessions 897, 2708, 2727
set-group ID 3137
set-user ID 3137
SIGALRM sending to 3260,

3285, 3345
signals

actions for 2764, 2791, 2796
information about 2845
pending 2824
queuing 2829
raising 2283
sending 1416, 1419, 2804
suspending until

delivered 2813

waiting for 1878, 2816,
2838, 2843, 2845

spawning 2927, 2934, 2939,
2944, 2948, 2954, 2961,
2966, 2970, 2974

spawning and blocking 3416
supplementary group IDs,

maximum 3136
suspending 368, 1782, 1796,

1797, 2851, 3385, 3456,
3460, 3463, 3467, 3470

system commands,
executing 3158

system-wide events
notification of 1981
triggering 1985

terminating 113, 563, 566
diagnostics 158
functions to be called,

registering 167
time

clock ID 286
clock ticks 279

time-accounting
information 3306

user ID
effective 779, 2672, 2717,

2737
real 925, 2717, 2737
saved 2737

user name, getting 827, 829
yielding 2567
zombies, preventing children

from becoming 2766,
2799

processor affinity 3246
Processor Version Register 3152

3696 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

procmgr daemon() 1978
PROCMGR DAEMON KEEPUMASK 1978
PROCMGR DAEMON NOCHDIR 1978
PROCMGR DAEMON NOCLOSE 1978
PROCMGR DAEMON NODEVNULL 1978
PROCMGR EVENT DAEMON DEATH 1980
procmgr event notify() 1981
PROCMGR EVENT SYNC 1980
procmgr event trigger() 1985
procmgr guardian() 1987
procmgr session() 1991
PROCMGR SESSION SETPGRP 1991
PROCMGR SESSION SETSID 1991
PROCMGR SESSION SIGNAL LEADER

1991
PROCMGR SESSION SIGNAL PGRP

1991
PROCMGR SESSION SIGNAL PID 1991
PROCMGR SESSION TCSETSID 1991

progname 1993
program entry function 1495
PROT EXEC 1207, 1584, 1593,

1625
PROT NOCACHE 1207, 1584,

1593, 1625
PROT NONE 1207, 1584, 1593,

1625
Protocol Data Unit (PDU) See

SNMP
protocols

database
closing 490
entries, getting 862, 864,

866
entry structure 1994
opening 2711

ICMP (Internet Control Message
Protocol) 983

ICMP6 (Internet Control
Message Protocol v6)
985

INET6 (Internet protocol v6
family) 1051

interprocess
communication 3377

IP (Internet Protocol) 1313
IP6 (Internet Protocol

v6) 1338
IPsec (secure Internet

Protocol) 1320
TCP (Transmission Control

Protocol) 3189
UDP (User Datagram

Protocol) 3348
protoent 1994
PROT READ 1207, 1584, 1593,

1625
PROT WRITE 1207, 1584, 1593,

1625
proxy server (SOCKS) 3571
pseudo-random numbers

double 431, 498
int 2286, 2288
long

nonnegative 1476, 1825
signed 1414, 1656, 2290

seed, setting 2605, 2982, 2984,
2986

sequence, initializing 2984
state

initializing 1063, 1426
switching 2733

pseudo-ttys

May 31, 2004 Index 3697

Index 2004, QNX Software Systems Ltd.

opening 659, 1852
preparing for a login 659, 1471

pthread attr t 2089
PTHREAD COND INITIALIZER

2066
pthread abort() 1995
PTHREAD ABORTED 1995
pthread atfork() 1997
pthread attr destroy() 1999
pthread attr getdetachstate() 2001
pthread attr getguardsize() 2003
pthread attr getinheritsched()

2005
pthread attr getschedparam() 2007
pthread attr getschedpolicy()

2009
pthread attr getscope() 2011
pthread attr getstackaddr() 2013
pthread attr getstacklazy() 2015
pthread attr getstacksize() 2017
pthread attr init() 2019
pthread attr setdetachstate() 2022
pthread attr setguardsize() 2024
pthread attr setinheritsched()

2027
pthread attr setschedparam() 2029
pthread attr setschedpolicy() 2031
pthread attr setscope() 2033
pthread attr setstackaddr() 2035
pthread attr setstacklazy() 2037
pthread attr setstacksize() 2039
pthread barrierattr destroy() 2047
pthread barrierattr getpshared()

2049
pthread barrierattr init() 2051
pthread barrierattr setpshared()

2053

pthread barrier destroy() 2041
pthread barrier init() 2043
PTHREAD BARRIER INITIALIZER()

2043
pthread barrier wait() 2045
PTHREAD CANCEL 3234
pthread cancel() 2055
PTHREAD CANCEL ASYNCHRONOUS 2091,

2198, 3241
PTHREAD CANCEL DEFERRED 2091,

2198, 3241, 3242
PTHREAD CANCEL DISABLE 2091,

2196
PTHREAD CANCELED 2108, 2236
PTHREAD CANCEL ENABLE 2091,

2196, 3242
pthread cleanup pop() 2057
pthread cleanup push() 2059
pthread condattr destroy() 2077
pthread condattr getclock() 2079
pthread condattr getpshared()

2081
pthread condattr init() 2083
pthread condattr setclock() 2085
pthread condattr setpshared()

2087
pthread cond broadcast() 2062
pthread cond destroy() 2064
pthread cond init() 2066
PTHREAD COND INITIALIZER 3104,

3107
pthread cond signal() 2068
pthread cond timedwait() 2070
pthread cond wait() 2074
pthread create() 2090
PTHREAD CREATE DETACHED 2022,

3241

3698 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

PTHREAD CREATE JOINABLE 2019,
2022, 3241

PTHREAD DESTRUCTOR ITERATIONS
2111

pthread detach() 2094
pthread equal() 2096
pthread exit() 2098
PTHREAD EXPLICIT SCHED 2027,

2029, 2031, 3240, 3241
pthread getconcurrency() 2100
pthread getcpuclockid() 2102
pthread getschedparam() 2104
pthread getspecific() 2106
PTHREAD INHERIT SCHED 2019,

2027
pthread join() 2108
pthread key create() 2110
pthread key delete() 2114
pthread kill() 2116
PTHREAD MULTISIG ALLOW 2091,

3241
PTHREAD MULTISIG DISALLOW 2091,

3241
pthread mutexattr destroy() 2137
pthread mutexattr getprioceiling()

2139
pthread mutexattr getprotocol()

2141
pthread mutexattr getpshared()

2143
pthread mutexattr getrecursive()

2145
pthread mutexattr gettype() 2147
pthread mutexattr init() 2150
pthread mutexattr setprioceiling()

2152

pthread mutexattr setprotocol()
2154

pthread mutexattr setpshared()
2156

pthread mutexattr setrecursive()
2158

pthread mutexattr settype() 2161
PTHREAD MUTEX DEFAULT 2161
pthread mutex destroy() 2118
PTHREAD MUTEX ERRORCHECK 2160
pthread mutex getprioceiling()

2120
pthread mutex init() 2122
PTHREAD MUTEX INITIALIZER 2122
pthread mutex lock() 2124
PTHREAD MUTEX NORMAL 2160
PTHREAD MUTEX RECURSIVE 2160
pthread mutex setprioceiling()

2128
pthread mutex timedlock() 2130
pthread mutex trylock() 2133
pthread mutex unlock() 2135
pthread once() 2163
PTHREAD ONCE INIT 2163
PTHREAD PRIO INHERIT 2150,

2154, 3132
PTHREAD PRIO NONE 2154
PTHREAD PRIO PROTECT 2154,

3132
PTHREAD PROCESS PRIVATE 2053,

2083, 2156, 2193, 2226
PTHREAD PROCESS SHARED 2053,

2083, 2087, 2156, 2193,
2226

PTHREAD RECURSIVE DISABLE 2145,
2150, 2158

May 31, 2004 Index 3699

Index 2004, QNX Software Systems Ltd.

PTHREAD RECURSIVE ENABLE 2145,
2158

PTHREAD RMUTEX INITIALIZER 2122
pthread rwlockattr destroy() 2187
pthread rwlockattr getpshared()

2189
pthread rwlockattr init() 2191
pthread rwlockattr setpshared()

2193
pthread rwlock destroy() 2166
pthread rwlock init() 2168
PTHREAD RWLOCK INITIALIZER 2168
pthread rwlock rdlock() 2171
pthread rwlock timedrdlock() 2173
pthread rwlock timedwrlock() 2176
pthread rwlock tryrdlock() 2179
pthread rwlock trywrlock() 2181
pthread rwlock unlock() 2183
pthread rwlock wrlock() 2185
PTHREAD SCOPE PROCESS 3241
PTHREAD SCOPE SYSTEM 2019,

2033, 3241
pthread self() 2195
pthread setcancelstate() 2196
pthread setcanceltype() 2198
pthread setconcurrency() 2200
pthread setschedparam() 2203
pthread setspecific() 2204
pthread sigmask() 2206
pthread sleepon broadcast() 2208
pthread sleepon lock() 2210
pthread sleepon signal() 2212
pthread sleepon timedwait() 2214
pthread sleepon unlock() 2218
pthread sleepon wait() 2220
pthread spin destroy() 2224
pthread spin init() 2226

pthread spin lock() 2228
pthread spin trylock() 2230
pthread spin unlock() 2232
PTHREAD STACK LAZY 2037
PTHREAD STACK MIN 2035,

2036, 2039, 2040, 3239,
3244

PTHREAD STACK NOTLAZY 2037
pthread testcancel() 2234
pthread timedjoin() 2235

PTR BITS 111
pulse attach() 2241
PULSE CODE COIDDEATH 250,

2238
PULSE CODE DISCONNECT 251,

2238
PULSE CODE MAXAVAIL 1718,

2238, 2779
PULSE CODE MINAVAIL 1718,

2238, 2779
PULSE CODE NET ACK 2238
PULSE CODE NET DETACH 2238
PULSE CODE NET UNBLOCK 2238
PULSE CODE THREADDEATH 252,

402, 2238
PULSE CODE UNBLOCK 252,

2238
pulse detach() 2244
pulses

compression 1719
dispatch interface

attaching 2241
detaching 2244

queueing 1719
receiving 1694, 1697
sending 1719
structure 2238

3700 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

PULSE SUBTYPE 2238
PULSE TYPE 2238

punctuation, testing a character
for 1372, 1395

putc() 2247
putchar() 2251
putchar unlocked() 2253
putc unlocked() 2249
putenv() 537, 560, 2255, 2934,

2944, 2961, 2970
puts() 2258
putspent() 2260
pututline() 2263
putw() 2266
putwc() 2268, 2270
P WAIT 49, 2933, 2938, 2943,

2947, 2960, 2965, 2969,
2973

pwrite() 2272

Q

QNX 111
QNX 4 classification 106
QNX Neutrino classification 106
qnx crypt() 2275

QNXNTO 111
QoS (Quality of Service) 1807
qsort() 2277
qtime 3154
Quality of Service (QoS) 1807
QUERY 2378
quick sort 2277
quotients

integer 408

long integer 1430

R

Raccept() 2281
radix-independent exponents 1468,

2523, 2526
raise() 1473, 2283
rand() 2286
RAND MAX 2286, 2288
random numbers

double 431, 498
int 2286, 2288
long

nonnegative 1476, 1825
signed 1414, 1656, 2290

seed, setting 2605, 2982, 2984,
2986

sequence, initializing 2984
state

initializing 1063, 1426
switching 2733

random() 2290
rand r() 2288
raw input mode

buffer 673, 1866
conditions for input

request 2319
FORWARD qualifier 2320
MIN qualifier 2319
TIME qualifier 2319
TIMEOUT qualifier 2320

Rbind() 2293
rcmd() 2295, 3572
Rconnect() 2298

May 31, 2004 Index 3701

Index 2004, QNX Software Systems Ltd.

rcvid (receive identifier) 1690,
1701

checking validity of 1746
rdchk() 2300
read() 1135, 2306, 2318

resource managers,
implementing in 1254,
1256

read-write locks
attributes

creating 2191
destroying 2187
process-shared 2189, 2193

destroying 2166, 3114
initializing 2168, 3133
locking

for reading 2171, 2173,
2179

for writing 2176, 2181, 2185
unlocking 2183

readblock() 2315
readcond() 2318
readdir() 1843, 2324
readdir r() 2328
readlink() 2331

resource managers,
implementing in 1260

read main config file() 2311
readv() 2334
realloc() 2338
realpath() 2341
realtime timers

busy-waiting 1784, 1789,
1791, 1793

calibrating 1786
creating 3259
destroying 3263

expiry status 3265
overruns 3267
setting 3295
threads 294
time

getting 3269
setting 3272

rebooting 3150
receive identifier See rcvid
RECEIVED MESSAGE 2899
receiving

messages 1689, 1700
from a socket 2344, 2347,

2351
pulses 1694, 1697

re comp() 2302
recv() 2344
recvfrom() 2347
recvmsg() 2351
re exec() 2304
regcomp() 2354
regerror() 2359
regex t 2354
regexec() 2362
REG EXTENDED 2354
regfree() 2364
REG ICASE 2354
registers

devices
access to, gaining and

relinquishing 1591, 1764
reading 1924, 1926, 1928,

1930
writing 1934, 1937, 1939,

1941
floating-point exceptions 664
Machine Status Register 3152

3702 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

Processor Version
Register 3152

real-mode software
interrupts 1107

TSC (Time Stamp
Counter) 284

regmatch t 2362
REG NEWLINE 2354
REG NOSUB 2354, 2362
REG NOTBOL 2361
REG NOTEOL 2361
regular expressions

basic 2355
compiling 2302, 2354
errors, explaining 2359
extended 2356
freeing 2364
string, comparing to 2304,

2362
remainder(), remainderf() 2366
remainders

floating point 433, 2366
integer 408
long integer 1430

remote hosts
commands, executing on 2295,

2488
identity, checking 2518

remove() 2368
rename() 2371
RES DEBUG 2374
RES DEFNAMES 2375, 2387
RES DNSRCH 2375, 2387
residue, floating point 643
RES INIT 2375
res init() 2374
resmgr attr t 2395

resmgr connect funcs t

2404
resmgr context t 2411
resmgr io funcs t 2431
resmgr attach() 2394
resmgr block() 2401
RESMGR CONNECT NFUNCS 1179

resmgr context alloc() 2406
resmgr context free() 2409
RESMGR DEFAULT 1285

resmgr detach() 2413
RESMGR DETACH ALL 2413
RESMGR DETACH PATHNAME 2413

resmgr devino() 2417
RESMGR FLAG AFTER 1618,

1620
RESMGR FLAG AFTER 2396

RESMGR FLAG ATTACH OTHERFUNC
2396

RESMGR FLAG BEFORE 1617,
1620

RESMGR FLAG BEFORE 2396
RESMGR FLAG DIR 2396
RESMGR FLAG FTYPEONLY 2397
RESMGR FLAG OPAQUE 2397

RESMGR FLAG OPAQUE 1618,
1620

RESMGR FLAG SELF 2397
resmgr handle grow() 2423

resmgr handler() 2425
resmgr io func() 2428

resmgr iofuncs() 2436
RESMGR IO NFUNCS 1179

resmgr msgread() 2438
resmgr msgreadv() 2440
resmgr msgwrite() 2442
resmgr msgwritev() 2444

May 31, 2004 Index 3703

Index 2004, QNX Software Systems Ltd.

RESMGR NOREPLY 1285
RESMGR NPARTS() 2446
resmgr ocb() 2448

resmgr open bind() 2450
resmgr pathname() 2453
RESMGR PATHNAME LOCALPATH 2453
RESMGR PTR() 2456
RESMGR STATUS() 2458

resmgr unbind() 2460
res mkquery() 2378
resolv.conf, contents of 319
resolver routines

errors 953, 958, 967
initializing 2374
Internet domain names

compressing 427
expanding 429

options 2374
queries 2378, 2381, 2384,

2387, 2389
resource database manager

about 2494
device numbers

attaching 2510
detaching 2513

resources
creating 2501
destroying 2505
querying 2516
reserving 2494
returning 2507

resource managers
access, checking 1141
arming for notification 1307
attaching 2394
attributes

initializing 1127

locking 1129, 1134, 1137,
1195

structure 1132
time members,

updating 1283
unlocking 1139

clients
information about 1155
unblocking 1285, 1287

connect functions 2404
default values, setting 1179
open 1241

connect messages
file type reply 1118
link reply 1120
structure 1111

connection IDs 327
context

allocating 2406
freeing 2409
structure 2411

database, expanding
capacity 2423

detaching 2413
device number, getting 2417
device-control commands 372
function tables,

initializing 1179
helper functions

chmod 1145
chown 1150
close 1157
devctl 1166
fdinfo 1173
link 1182
lseek 1197
mknod 1202

3704 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

mmap 1205
open 1236
openfd 1243
pathconf 1249
read 1256
readlink 1260
rename 1264
space 1267
stat 1271
sync 1280
unlink 1290
utime 1295
write 1303

I/O functions
chmod 1148
chown 1153
client connection, getting

for 2436
close 1160
default values, setting 1179
devctl 1170
fdinfo 1175
lock 1190
lseek 1200
mmap 1209
OCB, close 1164
OCB, lock 1195
OCB, unlock 1293
openfd 1247
pathconf 1252
read 1254
retrieving 2428
stat 1273
structure 2431
sync 1278
unblock 1287
utime 1298

write 1301
inode number, getting 2417
iov t

filling 2456
getting 2446

locks (not implemented) 1186,
1188, 1193

messages
blocking while waiting

for 2401
handling 2425
reading 2438, 2440
writing 2442, 2444

notification
arming for 1307
installing, polling, and

removing 1213
removing for a client 1218
triggering 1220

Open Control Block (OCB)
allocating 1225
attaching 1224, 2450
detaching 1162, 1228, 2460
freeing 1231
getting 2448
structure 1234

path
attaching to 2394
detaching from 2413
getting 2453

server attributes, getting 1125
status, returning 2458
synchronization, checking to see

if required 1276
threads in 1134

resources, system
creating 2501

May 31, 2004 Index 3705

Index 2004, QNX Software Systems Ltd.

destroying 2505
limits

getting 773, 881
setting 2719

querying 2516
reserving 2494
returning 2507
usage, getting 884

res query() 2381
res querydomain() 2384
RES RECURSE 2375
res search() 2387
res send() 2389
RES STAYOPEN 2375
RES USEVC 2375
rewind() 2462
rewinddir() 2465
rftp 3571
Rgetsockname() 2468
rindex() 2470
rint(), rintf() 2472
RLIM INFINITY 2720, 2723
RLIMIT AS 2720
RLIMIT CORE 2720
RLIMIT CPU 2720
RLIMIT DATA 2720
RLIMIT FSIZE 2720, 2723
RLIMIT NOFILE 773, 2720, 2723
RLIMIT STACK 2720
RLIMIT VMEM 2720
RLIM SAVED CUR 2723
RLIM SAVED MAX 2723
Rlisten() 2475
rmdir() 2477
R OK 120, 456
root directory, changing 268
roots

cube 226
square 2980

round-robin scheduling 2031
rounding

floating point 2472
integers 228, 639
mode, floating-point 670

ROUTE (system packet forwarding
database) 2480

Rrcmd() 2488
rresvport() 2490
Rselect() 2493
rshd 2295
rsrc alloc t 2501
rsrc request t 2495
rsrcdbmgr attach() 2494
rsrcdbmgr create() 2501
rsrcdbmgr destroy() 2505
rsrcdbmgr detach() 2507
rsrcdbmgr devno attach() 2510
rsrcdbmgr devno detach() 2513
RSRCDBMGR DMA CHANNEL 2496,

2502, 2515
RSRCDBMGR FLAG ALIGN 2496
RSRCDBMGR FLAG RANGE 2496
RSRCDBMGR FLAG RSVP 2502
RSRCDBMGR FLAG SHARE 2496
RSRCDBMGR FLAG TOPDOWN 2496
RSRCDBMGR IO PORT 2496,

2502, 2515
RSRCDBMGR IRQ 2496, 2502,

2515
RSRCDBMGR MEMORY 2496,

2502, 2515
RSRCDBMGR PCI MEMORY 2496,

2502, 2515
rsrcdbmgr query() 2516

3706 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

RSRCMGR IRQ 2502, 2515
rt metrics 2483
rt msghdr 2483
RTA AUTHOR 2484
RTA BRD 2484
RTA DST 2484
RTA GATEWAY 2484
RTA GENMASK 2484
RTA IFA 2484
RTA IFP 2484
RTA NETMASK 2484
rtelnet 3571
RTF BLACKHOLE 2484
RTF CLONING 2484
RTF DONE 2484
RTF DYNAMIC 2484
RTF GATEWAY 2484
RTF HOST 2484
RTF LLINFO 2484
RTF MASK 2484
RTF MODIFIED 2484
RTF PROTO1 2484
RTF PROTO2 2484
RTF REJECT 2484
RTF STATIC 2484
RTF UP 2484
RTF XRESOLVE 2484
RTLD DEFAULT 424
RTLD GLOBAL 420
RTLD GROUP 421
RTLD LAZY 420
RTLD LOCAL 420
RTLD NOW 420
RTLD WORLD 421
RTM ADD 2482
RTM CHANGE 2482
RTM DELADDR 2482, 2483

RTM DELETE 2482
RTM GET 2482
RTM IFINFO 2482, 2483
RTM LOSING 2482
RTM MISS 2482
RTM NEWADDR 2482, 2483
RTM REDIRECT 2482
RTM RESOLVE 2482
RTV EXPIRE 2484
RTV HOPCOUNT 2484
RTV MTU 2484
RTV RPIPE 2484
RTV RTT 2484
RTV RTTVAR 2484
RTV SPIPE 2484
RTV SSTHRESH 2484
RUN LVL 929, 3393
rusage 884
ruserok() 2518

S

SA NOCLDSTOP 2792, 2798
SA ONSTACK 517
SA SIGINFO 1443, 2765, 2799,

2829
SAT (System Analysis

Toolkit) 1093, 3331
sbrk() 2520
scalb(), scalbf() 2523
scalbn(), scalbnf() 2526
scalloc() 2529

scandir() 2531
scanf() 2533
SC ARG MAX 3136

May 31, 2004 Index 3707

Index 2004, QNX Software Systems Ltd.

SC CHILD MAX 3136
SC CLK TCK 3136
SC GETGR R SIZE MAX 788
SC GETPW R SIZE MAX 873,

878, 911, 915
sched param 2553
SCHED FIFO 2031, 2547, 2549,

2564, 2570, 2573
SchedGet(), SchedGet r() 2570
sched getparam() 2542
sched get priority adjust() 2545
sched get priority max() 2547
sched get priority min() 2549
sched getscheduler() 2551
SchedInfo(), SchedInfo r() 2574
SCHED NOCHANGE 2031, 3240
SCHED OTHER 2031, 2547, 2549,

2564, 2570, 2573
SCHED RR 2031, 2547, 2549,

2564, 2570, 2573
sched rr get interval() 2559
SchedSet(), SchedSet r() 2577
sched setparam() 2561
sched setscheduler() 2565
SCHED SPORADIC 2031, 2570
scheduling

information, getting 2574
parameters 2553

threads, getting for 2007,
2029, 2104, 2570

threads, inheriting 2005,
2027, 3241

threads, setting for 2203,
2577

policy
don’t change 2031
FIFO 2031

other 2031
processes, getting for 2551
processes, setting for 2565
round-robin 2031
sporadic 2031
threads, getting for 2009,

2104, 2570
threads, inheriting 2005,

2027, 3241
threads, setting for 2031,

2203, 2577, 3240
yielding 2579

sched yield() 2567
SchedYield(), SchedYield r() 2579
SC JOB CONTROL 3137

SCM RIGHTS 3378
SC NGROUPS MAX 3136

scoped addresses 1052
SC OPEN MAX 3137
SC PAGESIZE 2024

scripts, running 536, 559, 2925,
2928, 2934, 2939, 2944,
2948, 2955, 2961, 2966,
2970, 2974

SC SAVED IDS 3137
SC VERSION 3137

searchenv() 2602
secure Internet Protocol See IPsec
secure RPC domain 319
Security Policy Database

(SPD) 1324
seed48() 2605
SEEK CUR 591, 705, 1197, 1268,

1481, 1491
seekdir() 2607
SEEK END 591, 705, 1197, 1269,

1481, 1491

3708 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

SEEK SET 589, 591, 705, 1197,
1269, 1481, 1491

segments
data

maximum size 2720
data, end of 459, 462
text

beginning of 217
end of 515

select attr t 2615
select() 118, 2610, 3572

data from snmp select info()
2892

select attach() 2616
select detach() 2619
SELECT FLAG EXCEPT 2616
SELECT FLAG READ 2616
SELECT FLAG REARM 2616
SELECT FLAG SRVEXCEPT 2617
SELECT FLAG WRITE 2616
select query() 2623
semaphores

named
accessing and creating 2635
closing 2625
destroying 2646

posting 2639, 3127
unnamed

destroying 2627, 3114
initializing 2631, 3133

value
decrementing 2641, 2644,

2648, 3129
getting 2629
incrementing 2639, 3127
setting 2631, 2635

waiting on 2648, 3129

with a time limit 2641
without blocking 2644

sem close() 2625
sem destroy() 2627
sem getvalue() 2629
sem init() 2631
sem open() 2635
sem post() 2639
sem timedwait() 2641
sem trywait() 2644
sem unlink() 2646
SEM VALUE MAX 2631, 2632,

2635
sem wait() 2648
send() 2651
sendmsg() 2653
sendto() 2657
serial number, getting 319
serial ports

opening 1597
reading 1602
script, running on 1605
writing 1612

servent 2659
server attributes, getting 1125
servers

connections
creating 248
destroying 255
information about 331, 340

data server
applications, registering and

deregistering 440, 446
variables, creating and

destroying 435, 438
variables, flags 442

May 31, 2004 Index 3709

Index 2004, QNX Software Systems Ltd.

variables, getting and
setting 444, 448

PCI
attaching 1897
detaching 1908

services
database

closing 492
entries, getting 891, 893,

895
entry structure 2659
opening 2725

sessions
character device terminal

drivers, support for 1991
controlling terminal 3180
creating 1471, 2727
current 2451
disassociating 564
ID, getting 897
leader, creating 2708
membership, inheriting 518,

524, 531, 542, 548, 554,
2955

remote node 2930
system daemons 1978

termination, notification
of 1980

setbuf() 2660
setbuffer() 2662
setdomainname() 2664
setegid() 2666
setenv() 537, 560, 2669, 2934,

2944, 2961, 2970
seteuid() 2672
setgid() 2675
setgrent() 2678

setgroups() 2680
sethostent() 800, 807, 2682
sethostname() 2684
SETIOV() 2686
setitimer() 2688
setjmp() 2691
setkey() 2694
setlinebuf() 2696
setlocale() 2699, 3090
setlogmask() 2701
setnetent() 2703
setpgid() 2705
setpgrp() 2708
setprio() 2709
setprotoent() 2711
setpwent() 2713
setregid() 2714
SET REQ MSG 2887
setreuid() 2717
setrlimit(), setrlimit64() 2719
setservent() 2725
setsid() 2727
setsockopt() 2730
setspent() 2732
setstate() 2733
settimeofday() 2735
setuid() 2737

not honoring on mounted
filesystems 1617

setutent() 2740
setvbuf() 2742
sfree() 2745
sh 1955
shadow password database

closing 493
entries

reading 618, 911, 915

3710 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

structure 2260
writing 2260

rewinding 2732
shared locks 634
shared memory

access protection,
changing 1625

attributes, modifying 2748
mapping 1585
opening 2754
removing 2760
unmapping 1762

shared objects
addresses, translating 411
closing 413
debugging 422
errors 415
opening 417
symbol, getting address of 424

SH COMPAT 1115, 1245, 2918,
2922

SH DENYNO 1115, 1245, 2918,
2922

SH DENYRD 1115, 1245, 2918,
2922

SH DENYRW 1115, 1245, 2918,
2922

SH DENYWR 1115, 1245, 2918,
2922

SHELL 274, 1955, 3158
shell scripts, running 536, 559,

2925, 2928, 2934, 2939,
2944, 2948, 2955, 2961,
2966, 2970, 2974

shm ctl() 2748
SHMCTL ANON 2747
SHMCTL GLOBAL 2747

SHMCTL LOWERPROT 2747
SHMCTL PHYS 2747
SHMCTL PRIV 2747
shm open() 2754
shm unlink() 2760
shutdown() 2762
SI ASYNCIO 2767, 2800, 2806
side channels 327
S IEXEC 1115, 2995
S IFBLK 1114, 1121, 2996
S IFCHR 1114, 1121, 2996
S IFDIR 1114, 1121, 1569, 2996
S IFIFO 1114, 1121, 1569, 2996
S IFLNK 1114, 1121, 2996
S IFMT 1114, 1121, 2996
S IFNAM 1115, 1121, 2996
S IFREG 1115, 1121, 2996
S IFSOCK 1115, 1121, 1360, 2996
SIGABRT 113, 2796
sigaction 2798
sigaction() 2764
sigaddset() 2770
SIGALRM 141, 826, 2689, 2797,

3282
process, sending to 3260,

3285, 3345
SIG BLOCK 2826
sigblock() 2772
SIGBUS 1586, 2797
SIGCHLD 564, 884, 2765, 2792,

2793, 2797, 3467
default actions 2765, 2799
ignoring 2766, 2799

SIGCONT 564, 2772, 2797
default actions 2765

sigdelset() 2774
SIG DFL 517, 2765, 2791

May 31, 2004 Index 3711

Index 2004, QNX Software Systems Ltd.

sigemptyset() 2776
SIGEMT 2796
SIG ERR 2793
sigevent 1309, 1661, 2778
SIGEV INTR 1072, 1078, 1104,

1633, 1662, 2778
SIGEV INTR INIT() 2779
SIGEV NONE 1443, 2778
SIGEV NONE INIT() 2779
SIGEV PULSE 1072, 1078, 1633,

1662, 2778, 3260
SIGEV PULSE INIT() 2780
SIGEV SIGNAL 1073, 1078, 1443,

1633, 1662, 2778, 3260
SIGEV SIGNAL CODE 1073, 1078,

1633, 2778, 3260
SIGEV SIGNAL CODE INIT() 2781
SIGEV SIGNAL INIT() 2780
SIGEV SIGNAL THREAD 1073,

1078, 1633, 2778, 3260
SIGEV SIGNAL THREAD INIT() 2781
SIGEV SIGNAL VALUE INIT() 2780
SIGEV THREAD 2778
SIGEV THREAD INIT() 2782
SIGEV UNBLOCK 1662, 2778
SIGEV UNBLOCK INIT() 2782
sigfillset() 2783
SIGFPE 2797
SIGHUP 563, 2796

process groups, targeting 564
SIG IGN 517, 2766, 2791, 2799
SIGILL 2796
siginfo t 2766, 2800, 2805
SIGINT 2796

process groups, sending
to 3197

SIGIO 2797

default actions 2765, 2799
SIGIOT 2796
sigismember() 2785
SIGKILL 2206, 2767, 2772, 2792,

2793, 2797
siglongjmp() 2787
sigmask() 2789
SIGMAX 2798
SIGMIN 2798

sign, copying 343
signal() 2791
SignalAction(), SignalAction r()

2796
SignalKill(), SignalKill r() 2804
SignalProcmask(),

SignalProcmask r() 2810
signals

actions 2764, 2791, 2796
default 2765

blocking 2772, 2834
SIGCONT 2772
SIGKILL 2206, 2772
SIGSTOP 2206, 2772
SIGTTOU 685, 687, 2269,

2271
catching

SIGKILL 2792
SIGSTOP 2792

ignoring 2766
SIGCHLD 884, 2793
SIGKILL 2767, 2793
SIGSTOP 2767, 2793
SIGTTOU 685, 687, 2269,

2271
information about 2845
masks

constructing 2789

3712 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

restoring 2787
saving 2832
signal-blocked 2810
threads 2206

names 2796
POSIX 2796
process groups, targeting 564,

1416, 1419, 2767, 2801,
2804

processes
pending 2824
queuing 2765, 2829
suspending until

delivered 2813
sending 1416, 1419, 2283,

2804
SIGABRT 113
SIGALRM 141, 826, 2689
SIGBUS 1586
SIGCHLD 564, 2765, 2792
SIGCONT 564
SIGHUP 563
SIGKILL 2792
SIGPIPE 685, 687, 905,

1611, 1613, 2269, 2271,
2273

SIGSEGV 1078, 1762, 1766,
2024, 2720

SIGTRAP 363
SIGXCPU 2720
SIGXFSZ 2720

sets
adding to 2770
initializing 2776, 2783
membership, checking

for 2785
removing from 2774

string describing 3066
threads

mask 2826, 2836
threads, targeting 2116, 2767,

2801, 2804
unblocking 2841
user-defined 2797
waiting for 1878, 2816, 2822,

2836, 2838, 2843, 2845
signalstub() 2795

SignalSuspend(), SignalSuspend r()
2813

SignalWaitinfo(), SignalWaitinfo r()
2816

significand(), significandf() 2819
sigpause() 2822
sigpending() 2824
SIGPIPE 685, 687, 905, 1611, 1613,

2269, 2271, 2273, 2797
SIGPOLL 2797
sigprocmask() 2826
SIGPWR 2797
sigqueue() 2829
SIGQUIT 2796
SIGRTMAX 2798
SIGRTMIN 2798
SIGSEGV 1078, 1100, 1102, 1762,

1766, 2024, 2720, 2797
sigsetjmp() 2832
SIG SETMASK 2826
sigsetmask() 2834
SIGSTOP 2206, 2767, 2772, 2792,

2793, 2797
default actions 2765

sigsuspend() 2836
SIGSYS 2797
SIGTERM 2797

May 31, 2004 Index 3713

Index 2004, QNX Software Systems Ltd.

sigtimedwait() 2838
SIGTRAP 363, 2796
SIGTSTP 2797
SIGTTIN 2797, 3417
SIGTTOU 685, 687, 2269, 2271,

2797, 3417
SIG UNBLOCK 2826
sigunblock() 2841
SIGURG 2797

default actions 2765, 2799
process groups, sending

to 2909
SIGUSR1 2797
SIGUSR2 2797
sigwait() 2843
sigwaitinfo() 2845
SIGWINCH 2797

default actions 2765, 2799
SIGXCPU 2720
SIGXFSZ 2720, 3334
SI MAXAVAIL 2780
SI MESGQ 2767, 2800, 2806
SI MINAVAIL 2780
Simple Network Management

Protocol See SNMP
sin(), sinf() 2847
sines 2847

hyperbolic 2849
inverse hyperbolic 156

sinh(), sinhf() 2849
SIOCGIFCONF 1316
SIOCGIFFLAGS 1316
SI QUEUE 2767, 2800, 2806
S IREAD 1115, 2995
S IRGRP 1115, 2995, 3353
S IROTH 1115, 2995, 3353
S IRUSR 1115, 2995, 3353

S IRWXG 1115, 2634, 2995, 3353
S IRWXO 1115, 2634, 2995, 3353
S IRWXU 1115, 2634, 2995, 3353
S ISBLK() 710, 2996
S ISCHR() 710, 2996
S ISDIR() 710, 2996
S ISFIFO() 710, 2996
S ISGID 261, 262, 266, 578, 581,

711, 1424, 2996, 3334
S ISLNK() 710, 2997
S ISNAM() 2997
S ISREG() 711, 2997
S ISSOCK() 2997
S ISUID 261, 262, 266, 578, 581,

711, 1424, 2995, 3334
S ISVTX 261
site-local addresses 1052
SI TIMER 2767, 2800, 2806
SI USER 2767, 2800, 2806
S IWGRP 1115, 2995, 3353
S IWOTH 1115, 2995, 3353
S IWRITE 1115, 2995
S IWUSR 1115, 2995, 3353
S IXGRP 1115, 2995, 3353
S IXOTH 1115, 2995, 3353
S IXUSR 1115, 2995, 3353
sleep() 2851
sleeping

for microseconds 3385
for milliseconds 368, 1796,

1797
sleepon locks

destroying 2855
initializing 2857
locking 2210, 2859
unblocking 2208, 2212, 2853,

2861

3714 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

unlocking 2218, 2863
waiting 2214, 2220, 2865

sleepon broadcast() 2853
sleepon destroy() 2855
sleepon init() 2857
sleepon lock() 2859
sleepon signal() 2861
sleepon unlock() 2863
sleepon wait() 2865

slogb() 2867
SLOG CRITICAL 2870
SLOG DEBUG1 2870
SLOG DEBUG2 2870
SLOG ERROR 2870

slogf() 2869
slogi() 2873
SLOG INFO 2870
SLOG NOTICE 2870
SLOG SETCODE() 2869, 3433
SLOG SHUTDOWN 2870
SLOG WARNING 2870
smalloc() 2875

SNMP (Simple Network
Management Protocol)

classification 106
daemon, configuration file

for 2311
messages

creating 2887
freeing 2879
reading 2889
sending 2894

Protocol Data Unit (PDU)
creating 2887
freeing 2879
processing 2889
sending 2894

structure 2883
sessions

characteristics 2897
closing 2877
opening 2881

timeouts, handling 2901
transactions,

asynchronous 2892
snmp pdu 2883
snmp session 2881, 2897
snmp close() 2877
SNMPCONFIGFILE 2313
snmpd conf data 2311
snmpd.conf 2311
SNMP DEFAULT ADDRESS 2898
SNMP DEFAULT COMMUNITY LEN 2897
SNMP DEFAULT ENTERPRISE LENGTH

2884
SNMP DEFAULT ERRINDEX 2884
SNMP DEFAULT ERRSTAT 2884
SNMP DEFAULT PEERNAME 2898
SNMP DEFAULT REMPORT 2898
SNMP DEFAULT REQID 2884
SNMP DEFAULT RETRIES 2897
SNMP DEFAULT TIME 2885
SNMP DEFAULT TIMEOUT 2897
SNMPERR BAD ADDRESS 2881,

2895
SNMPERR BAD LOCPORT 2882
SNMPERR BAD SESSION 2877,

2895
SNMPERR GENERR 2882, 2888,

2895
snmp errno 2877, 2881, 2888,

2895
snmp free pdu() 2879
snmp open() 2881

May 31, 2004 Index 3715

Index 2004, QNX Software Systems Ltd.

snmp pdu create() 2887
snmp read() 2889

using with select() 2892
snmp select info() 2892

using with select() 2892
snmp send() 2894
snmp timeout() 2901

using with select() 2892
SNMP VERSION 1 2883, 2899
SNMP VERSION 2 2883, 2899
snprintf() 2903
SO BINDTODEVICE 904
SO BROADCAST 904
sockaddr un 3377
sockatmark() 2906
sockcred 3379
SOCKCREDSIZE() 3379
SOCK DGRAM 323, 908, 1051,

1313, 1341, 2908, 2909,
3348, 3377, 3571

socket() 983, 985, 1051, 1313,
1320, 1338, 2480, 2594,
2909, 3189, 3348, 3377

socketpair() 2912
sockets

addresses
errors 748
freeing 693
getting 753
structure 127

connections
accepting on 117, 2281
initiating 323, 1798, 2298
listening for 1447, 2475
shutting down 2762
status 1801

creating 2909

a pair of 2912
connected 2912

datagrams 2908, 2909, 3348
debugging 904
file descriptors, testing for

association 1360
messages

peeking at 2343, 2346, 2350
receiving from 2344, 2347,

2351
sending to 2651, 2653, 2657

names
binding to 206, 2293
getting 899, 2468

options
getting 902
setting 2730

out-of-band (OOB) mark 2906
privileged IP port, binding

to 209
privileged ports, getting 2490
raw 2908, 2909
stream 2908, 2909
types 2908

determining 904, 908
SOCK RAW 983, 985, 1313, 1314,

1320, 1338, 2908, 2909
SOCKS 3571

classification 106
commands, executing

remotely 2488
compiling for 3571
initializing 2915
library 3572
sockets

connections 2281, 2298,
2475

3716 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

names 2293, 2468
socks3r.lib 3571
SOCKSinit() 2915, 3571
SOCK STREAM 117, 323, 1051,

1313, 1341, 1448, 2281,
2296, 2908, 2909, 3189,
3377

SO DEBUG 904
SO DONTROUTE 904
SO ERROR 904
SO KEEPALIVE 905
SO LINGER 901, 905, 2729
SOL SOCKET 901, 2482
SO OOBINLINE 905
sopen() 2918
sopenfd() 2923
SO RCVBUF 906
SO RCVLOWAT 906
SO RCVTIMEO 901, 906, 2729
SO REUSEADDR 906
SO REUSEPORT 907
sorting

directory entries 147, 2531
quick sort 2277

SO SNDBUF 906
SO SNDLOWAT 907
SO SNDTIMEO 901, 907, 2729
SO TIMESTAMP 908
SO TYPE 908
SO USELOOPBACK 908, 2482
space, amount free for a

filesystem 715
space, filesystem 3002
space, testing a character for 1374,

1397
spawn() 2927

spawn* family of functions 49, 57,
1843

SPAWN CHECK SCRIPT 2925,
2953

spawnl() 2934
spawnle() 2939
spawnlp() 2944
spawnlpe() 2948
SPAWN NEWPGROUP 2926, 2953
spawnp() 2954
SPAWN SEARCH PATH 2926, 2953
SPAWN SETGROUP 2926, 2929,

2953, 2955
SPAWN SETND 2926, 2953
SPAWN SETSIGDEF 2926, 2927,

2930, 2953, 2954, 2956
SPAWN SETSIGMASK 2926, 2929,

2953, 2956
spawnv() 2961
spawnve() 2966
spawnvp() 2970
spawnvpe() 2974
SPD (Security Policy

Database) 1324
special characters 1612
spinlocks

destroying 2224
initializing 2226
locking 2228, 2230
unlocking 2232

sporadic scheduling 2031
sprintf() 2978
spwd 2260
sqrt(), sqrtf() 2980
square roots 2980
srand() 2982
srand48() 2984

May 31, 2004 Index 3717

Index 2004, QNX Software Systems Ltd.

srandom() 2986
srealloc() 2988

sscanf() 2991
SS REPL MAX 2555
stack

maximum size 2720
memory, allocating from 144
overflow, protecting

against 2024
threads 2013, 2015, 2017,

2035, 2037, 2039
stat 710, 2993
stat(), stat64() 1485, 2993

resource managers,
implementing in 1271,
1273

STATE CONDVAR 3109, 3299
STATE INTR 3299
STATE JOIN 3299
STATE MUTEX 3108, 3109, 3299
STATE RECEIVE 3299
STATE REPLY 1711, 3299
STATE SEM 3299
STATE SEND 1711, 3299
STATE SIGSUSPEND 3299
STATE SIGWAITINFO 3299
st atime 1563, 1566, 1947, 2308,

2336
statvfs, statvfs64 714, 3001
statvfs(), statvfs64() 3001
st ctime 266, 579, 581, 1424, 1438,

1563, 1566, 1947, 2477,
3552

stderr 69, 586, 626, 1945, 3005
buffering 2662, 2696
command-line options, errors

when parsing 843

daemons 1978
formatted messages on 504,

3414, 3450, 3472
host errors 958

STDERR FILENO 626, 3005
stdin 69, 586, 626, 3006

characters, reading 611, 764,
766

daemons 1978
input, formatted 2533, 3430,

3454, 3561
strings, reading 889
wide characters, reading 938

STDIN FILENO 626, 1947, 1956,
3006

stdout 69, 586, 626, 2258, 3007
buffering 2662, 2696
characters, writing 680, 2251,

2253
daemons 1978
output, formatted 1968, 3428,

3452, 3548
strings, writing 2258
wide characters, writing 2270

STDOUT FILENO 626, 1947, 1956,
3007

st ftime 1566, 1947
st mode 2996
st mtime 1438, 1563, 1566, 1947,

2477, 3552
ST NOSUID 518, 715, 2930, 3002
straddstr() 3008
strcasecmp() 3010
strcat() 3013
strchr() 3015
strcmp() 3017
strcmpi() 3019

3718 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

strcoll() 3021, 3090
strcpy() 3023
strcspn() 3025
ST RDONLY 715, 3002
strdup() 3027
stream I/O

buffering
associating with 2660, 2742
block 2662
line 2696

characters
pushing back 3373, 3375
reading 609, 611, 615, 760,

762, 764, 766, 936, 938
writing 678, 680, 2247,

2249, 2251, 2253, 2268,
2270

closing 584, 586
end-of-file 602

clearing 277
errors 604

clearing 277
messages, printing 1945

file descriptors
associating streams with 599
getting 626

files
flushing 606, 641
locking 637, 729
opening 650
reading 1066
unlocking 734

input, formatted 703, 746,
2533, 3421, 3426, 3430,
3454, 3561

output, formatted 676, 741,
1968, 3418, 3424, 3428,
3452, 3548

pipes
closing 1943
creating 1947
opening 1955

position
getting 613, 720
setting 706, 708

reading 688
reopening 697
rewinding 2462
seeking 706
strings

reading 889
writing 682, 686, 2258

telling 720
temporary files 1573, 1575,

3315
wide characters

orientation 739
reading 621, 623
writing 684

words
getting next 934
writing 2266

writing 743
stream sockets 2908, 2909
stream, returning to remote

command 2295, 2488
streams

flushing 3173
strerror() 3029
strftime() 3031
stricmp() 3037

May 31, 2004 Index 3719

Index 2004, QNX Software Systems Ltd.

strings See also characters; wide
characters

character, filling with 3054,
3064

comparing 202, 1536, 1542
case-insensitive 3010, 3019,

3037, 3043, 3052
case-sensitive 3017, 3048
locale’s collating sequence,

using 3021
concatenating 3008, 3013,

3046
configuration, getting and

setting 318
copying 204, 1532, 3023,

3027, 3050, 3090
encrypting 353, 460, 2275,

2694
error messages 1945, 3029
formatted 2903, 2978, 3435,

3438
hexadecimal numbers,

converting to/from 172
input, formatted 703, 2533,

3421, 3430
IP addresses, converting

to/from 1036, 1039
IPv4 addresses, converting

to/from 1015, 1017, 1032,
1034

length 3039
lowercase, converting to 3041
matching 647
network numbers, converting

to/from 1030
node descriptors, converting

to/from 1806, 1814

numbers, converting
to/from 170, 172, 174,
176, 1405, 1488, 3072,
3076, 3083, 3086, 3350,
3397

output, formatted 676, 1968,
3418, 3428

paths, resolving 2341
reversing 3060
scanning input from 2991,

3441, 3446
searching

characters 1013, 2470, 3015,
3058

sets of characters 3025,
3056, 3068

sets of wide characters 3486,
3498, 3504

slashes (/) 199, 385
strings 3070
wide characters 3478, 3500

signal descriptions 3066
splitting 3062, 3077, 3080
stdin, reading from 889
stdout, writing to 2258
streams

reading from 615
writing 682, 686

substrings
comparing,

case-insensitive 3043,
3052

comparing,
case-sensitive 3048

time t, converting to/from
357

time, formatted 3031, 3488

3720 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

tm, converting to/from 152
tokens, splitting into 3077,

3080
transforming 3090
uppercase, converting to 3088
zeroing 220

strlen() 3039
strlwr() 3041
strncasecmp() 3043
strncat() 3046
strncmp() 3048, 3090
strncpy() 3050, 3090
strnicmp() 3052
strnset() 3054
strpbrk() 3056
strrchr() 3058
strrev() 3060
strsep() 3062
strset() 3064
strsignal() 3066
strspn() 3068
strstr() 3070
strtod() 3072
strtoimax() 3076
strtok() 3077
strtok r() 3080
strtol(), strtoll() 3083
strtoul(), strtoull() 3086
strtoumax() 3076
struct, offset of members

within 1833
strupr() 3088
strxfrm() 3090
S TYPEISMQ() 711, 2997
S TYPEISSEM() 711, 2997
S TYPEISSHM() 711, 2997
suboptions, parsing 918

SUN LEN() 3377
swab() 3093
swprintf() 3095
swscanf() 3097
symbolic links

creating 3099
deleting 2368, 3380
information, getting 1485
ownership, changing 1423
reading 2331
resolving 2341
temporary 1874, 1876

symlink() 3099
SYMLOOP MAX 2332
sync() 3102

resource managers,
implementing in 1278,
1280

SyncCondvarSignal(),
SyncCondvarSignal r()
3104

SyncCondvarWait(),
SyncCondvarWait r()
3107

SyncCtl(), SyncCtl r() 3112
SyncDestroy(), SyncDestroy r()

3114
synchronization objects See also

mutexes; semaphores;
threads

creating 3133
destroying 3114
mutexes

events 3112, 3117
locking 3119, 3124
priority 3112
reviving 3122

May 31, 2004 Index 3721

Index 2004, QNX Software Systems Ltd.

semaphores
incrementing 3127, 3129

threads
blocking 3107
waking up 3104

SyncMutexEvent(),
SyncMutexEvent r() 3117

SyncMutexLock(),
SyncMutexLock r() 3119

SyncMutexRevive(),
SyncMutexRevive r()
3122

SyncMutexUnlock(),
SyncMutexUnlock r()
3124

SyncSemPost(), SyncSemPost r()
3127

SyncSemWait(), SyncSemWait r()
3129

SyncTypeCreate(),
SyncTypeCreate r() 3133

sysconf() 3136
sysctl() 3140
sys errlist 507
syslog() 3147
sysmgr reboot() 3150
sys nerr 508
sys nsig 2796
SYSPAGE CPU ENTRY() 3152
SYSPAGE ENTRY() 3154

qtime 3154
boot time 3154
cycles per sec 3154

syspage ptr 3157
sys siglist 2796
system

clock

getting 306
period, getting and

setting 304
setting 306
ticks per second 3154

commands, executing 3158
daemons 360, 1978

termination, notification
of 1980

events
notification of 1981
triggering 1985

hardware information 973,
975, 977, 979

information, getting and
setting 3140

instruction set architecture 318
limits, getting 3136
rebooting 3150
resources

creating 2501
destroying 2505
limits, getting 773, 881
limits, setting 2719
querying 2516
reserving 2494
returning 2507
usage, getting 884

time since booting 3154
time, adjusting 282

System Analysis Toolkit
(SAT) 1093, 3331

system databases
groups

closing 463
ID, getting information

about 786, 788

3722 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

membership 1061
name, getting information

about 791, 793
next entry, getting 783
rewinding 2678

passwords
closing 491
encrypting 353, 2275
entry, getting for a user 871,

873, 876, 878
entry, getting next 868
rewinding 2713

shadow passwords
closing 493
entry, reading 618, 911, 915
entry, structure 2260
entry, writing 2260
rewinding 2732

system message log
closing 314
log priority mask 2701
opening 1850
writing to 3147, 3448

blocks 2867
formatted output 2869, 3433
integers 2873

system packet forwarding database
See ROUTE

system page 3157
CPU-specific entry, getting a

pointer to 3152
entry, getting a pointer to 3154

system() 49, 3158

T

tan(), tanf() 3161
tangents 3161

hyperbolic 3163
inverse hyperbolic 165

tanh(), tanhf() 3163
target operating system 111
tcdrain() 3165
tcdropline() 3167
tcflow() 3170
tcflush() 3173
tcgetattr() 3176
tcgetpgrp() 3178
tcgetsid() 3180
tcgetsize() 3182
TCIFLUSH 3173
tcinject() 3184
TCIOFF 3170
TCIOFFHW 3171
TCIOFLUSH 3173
TCION 3171
TCIONHW 3171
tcischars() 3187
TCOFLUSH 3173
TCOOFF 3170
TCOOFFHW 3170
TCOON 3170
TCOONHW 3170
TCP (Transmission Control

Protocol) 3189
connection, closing 464
SOCKS 3572

TCP/IP
address information
addrinfo 127

addresses

May 31, 2004 Index 3723

Index 2004, QNX Software Systems Ltd.

manipulating 1021
network numbers,

extracting 1026
strings, converting

to/from 1015, 1017, 1032,
1034, 1036, 1039

errors 953, 958, 967
host entries

getting 806, 810, 812, 815
hosts database

opening 2682
Internet domain names

compressing 427
expanding 429

messages
receiving 2344, 2347, 2351
sending 2651, 2653, 2657

network database
closing 489
opening 2703

protocols database
closing 490
opening 2711

services database
closing 492
entry structure 2659
opening 2725

sockets
ports, binding to 209

TCP KEEPALIVE 3190
TCP MAXSEG 3190
TCP NODELAY 908, 3190
TCSADRAIN 3194
TCSAFLUSH 3194
TCSANOW 3194
tcsendbreak() 3192
tcsetattr() 3194

tcsetpgrp() 3197
tcsetsid() 3200
tcsetsize() 3202
tell() 1483
tell(), tell64() 3204
telldir() 3207
tempnam() 3209
temporary files

creating 3315
creating and opening 1573
name, generating 1575, 3209,

3318
TERM 274
terminal control

characters, injecting 3184
communications line

break condition,
asserting 3192

disconnecting 3167
draining 3165
flow control 3170
flushing 3173
process group ID 3180

getting 3178, 3197
size 3182, 3202

terminals
attributes, setting 230
canonical input buffer 673,

1866
control

attributes 3176, 3194
structure 3211

controlling
making 3200
path name 355

file descriptor, testing for
association with 1354

3724 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

input speed 232, 242
operating attributes 1123
output speed 234, 245
raw input buffer 673, 1866
reading 2318

TERMINFO 274
termios 230, 2318, 3194, 3211
text segment

beginning of 217
end of 515

ThreadCancel(), ThreadCancel r()
3234

ThreadCreate(), ThreadCreate r()
3239

ThreadCtl(), ThreadCtl r() 1069,
1078, 1083, 1085, 1087,
1095, 1097, 1100, 1102,
3245

ThreadDestroy(), ThreadDestroy r()
3249

ThreadDetach(), ThreadDetach r()
3252

ThreadJoin(), ThreadJoin r() 3254
thread pool attr t 3219
thread pool control() 3216
THREAD POOL CONTROL HIWATER

3215
THREAD POOL CONTROL INCREMENT

3215
THREAD POOL CONTROL LOWATER

3215
THREAD POOL CONTROL MAXIMUM

3216
THREAD POOL CONTROL NONBLOCK

3216
thread pool create() 3218
thread pool destroy() 3225

thread pool limits() 3229
thread pool start() 3231
threads

aborting 1995
attributes 3239

contention scope 2011, 2033
destroying 1999
detach state 2001, 2022
guard area, size of 2003,

2024
initializing 2019
scheduling parameters 2007,

2029
scheduling policy 2009,

2031
stack address 2013, 2035
stack size 2017, 2039
stack, lazy 2015, 2037

barriers
attributes 2043, 2047, 2051
attributes,

process-shared 2049,
2053

destroying 2041
initializing 2043
waiting at 2045

blocking 3107
busy-waiting 1784, 1789,

1791, 1793
calibrating 1786
canceling 2055, 3234
cancellation

cleanup handlers 2057, 2059
points 3241
points, creating 2234
state 2196
type 2198

May 31, 2004 Index 3725

Index 2004, QNX Software Systems Ltd.

clock ID 2102
concurrency 2100, 2200
condition variables

attributes 2077, 2083
attributes, clock 2079, 2085
attributes,

process-shared 2081,
2087

blocking on 2070, 2074
destroying 2064, 3114
initializing 2066, 3133
unblocking 2062, 2068

creating 2090, 3239
data 2106, 2110, 2114, 2204,

3242
destroying 3249
detached 2022, 3241
detaching from a

process 2094, 3252
errno 507, 3242
files, locking 637
fork handlers, registering 1997
freezing 3247
I/O privity, requesting 3246
IDs

calling thread 2195
comparing 2096

initializing 2163
joinable 2022, 3241
joining 2108, 3254

with a time limit 2235
keys 2110, 2114
local storage 2106, 2110,

2114, 2204, 3242
misaligned access

response 3245
mutexes

attributes, destroying 2137
attributes, initializing 2150
attributes, priority

ceiling 2139, 2152
attributes,

process-shared 2143,
2156

attributes, recursive 2145,
2158

attributes, scheduling
protocol 2141, 2154

attributes, type 2147, 2161
destroying 2118, 3114
initializing 2122, 3133
locking 2124, 2130, 2133
priority ceiling 2120, 2128
unlocking 2135

once-initialization 2163
pool See also resource

managers
attributes, changing 3216,

3229
creating 3218
destroying 3225
starting 3231

private data 2106, 2110, 2114,
2204, 3242

processor affinity 3246
read-write locks

attributes, creating 2191
attributes, destroying 2187
attributes,

process-shared 2189,
2193

destroying 2166, 3114
initializing 2168, 3133

3726 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

locking for reading 2171,
2173, 2179

locking for writing 2176,
2181, 2185

unlocking 2183
return status 3240
scheduling parameters 2104,

2203, 2570, 2577
scheduling policy 2104, 2203,

2570, 2577, 3240
inheriting 2005, 2027, 3241

scope 3241
signal mask

getting 2826
restoring 2787
saving 2832
setting 2826, 2836
signal-blocked 2810

signals
initial state 3242
mask 2206
targeting 2767, 2801, 2804
terminating on 3241

signals, sending 2116
sleepon locks

destroying 2855
initializing 2857
locking 2210, 2859
unblocking 2208, 2212,

2853, 2861
unlocking 2218, 2863
waiting 2214, 2220, 2865

spinlocks
destroying 2224
initializing 2226
locking 2228, 2230
unlocking 2232

stack 3239
suspending 294, 1782, 2836,

2851
synchronizing 2045
terminating 2098
terminating

unconditionally 1995
unfreezing 3247
waking up 2208, 2212, 2853,

2861, 3104
yielding 2567, 2579
zombies 3241

ticksize, getting and setting 304
time t 3257

tm, converting to/from 949,
951

time members
in attribute structure of resource

managers 1136
Time Stamp Counter (TSC) 284
time to live (TTL) 1313
time zone

abbreviations 3341
default 319
offset from UTC 3312
setting 3342

time() 3257
timeb 723
TIMED OUT 2899, 2901
timeout, setting on a blocking

state 3275
timeouts, SNMP 2901
TIMER ABSTIME 293, 3271
TimerAlarm(), TimerAlarm r()

3282
timer create() 3259

May 31, 2004 Index 3727

Index 2004, QNX Software Systems Ltd.

TimerCreate(), TimerCreate r()
3285

timer delete() 3263
TimerDestroy(), TimerDestroy r()

3288
timer getexpstatus() 3265
timer getoverrun() 3267
timer gettime() 3269
TimerInfo(), TimerInfo r() 3291
timers

alarm, scheduling 3282
creating 3285
destroying 3288
information about,

getting 3291
interval

value, getting 825
value, setting 2688

realtime
creating 3259
destroying 3263
expiry status 3265
overruns 3267
time until expiry 3269,

3272, 3295
threads 294
timeout, setting on kernel

blocking state 3299
timer settime() 3272
TimerSettime(), TimerSettime r()

3295
TimerTimeout(), TimerTimeout r()

3299
timer timeout(),timer timeout r()

3275
times

booting, since 3154

calendar
current 3257
local, converting

to/from 1454, 1456, 1577
structure 3313

clock
adjusting 282
cycles 284
getting 290
getting and setting 306
ID, getting 286, 300
period, getting and

setting 304
resolution, getting 288
setting 297

current
calendar 3257
getting 723, 923
setting 2735

daylight saving time 362, 3342
difference, calculating 380
files

access 1283, 1295, 1298,
3390

modification 736, 1283,
1295, 1298, 3387, 3390

status-change 1283, 1295,
1298

formatting 2699, 3031, 3488
local

calendar, converting
to/from 1454, 1456, 1577

nanoseconds
timespec, converting

to/from 1827, 3310
processes

3728 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

execution time limit,
getting 2559

execution time, in clock
ticks 279

specification structure 3309
time t

strings, converting
to/from 357

tm, converting to/from 949,
951

timespec

nanoseconds, converting
to/from 1827, 3310

tm

strings, converting
to/from 152

times() 3306
timespec 288, 3309

nanoseconds, converting
to/from 1827, 3310

timespec2nsec() 3310
timezone 3312, 3342
TLS 3242
tm 949, 1454, 1577, 3313, 3488

strings, converting
to/from 152, 357

time t, converting to/from
949, 951

tmpfile() 3315
TMP MAX 3209
tmpnam() 3318
tms 3306
tokens, breaking a string into 3077,

3080, 3513
tolower() 3321
TOS (type of service) 1313
TOSTOP 3213

toupper() 3323
towctrans() 3325
towlower() 3327
towupper() 3329
T PTR 2377, 2380, 2383, 2386
TraceEvent() 3331
Transmission Control Protocol See

TCP
trigonometry See also hyperbolic

functions
arccosine 123
arcsine 154
arctangent 161, 163
cosine 345
sine 2847
tangent 3161

TRP2 REQ MSG 2887
TRP REQ MSG 2887
truncate() 3334
TRY AGAIN 954, 959
TSC (Time Stamp Counter) 284
TTL (time to live) 1313
ttyname() 3337
ttyname r() 3339
type of service (TOS) 1313
TZ 274, 3342
tzname 3341, 3342
tzset() 1577, 3034, 3342

U

ualarm() 3345
UDP (User Datagram

Protocol) 3348
not supported by SOCKS 3571

May 31, 2004 Index 3729

Index 2004, QNX Software Systems Ltd.

UIO MAXIOV 2334, 2336, 3558
ulltoa() 3350
ultoa() 3350
umask() 3353
umount() 3356
UNALIGNED PUT16() 3358
UNALIGNED PUT32() 3360
UNALIGNED PUT64() 3362
UNALIGNED RET16() 3364
UNALIGNED RET32() 3366
UNALIGNED RET64() 3368
uname() 3370
ungetc() 3373
ungetwc() 3375
Unicode 97
union, offset of members

within 1833
Unix classification 106
UNIX-domain protocol 3377
unlink() 3380
unsetenv() 3383
uppercase

characters, converting to 3323
strings, converting to 3088
testing a character for 1377,

1399
wide characters, converting

to 3325, 3329, 3531
usage of system resources 884
User Datagram Protocol

(UDP) 3348
not supported by SOCKS 3571

user information file
closing 494
entry 3393
reading 927, 932
renaming 3395

returning to beginning of 2740
searching 929
writing 2263

USER PROCESS 929, 3394
users

IDs
effective 779, 2672, 2717,

2737
real 925, 2717, 2737
saved 2737
set-user 3137

names 827, 829
password database, getting entry

for 871, 873, 876, 878
processes, maximum per real

user ID 3136
usleep() 3385
utilities, locating 319
utimbuf 736, 3387
utime() 3387

resource managers,
implementing in 1295,
1298

utimes() 3390
utmp 3393
utmpname() 3395
utoa() 3397
utsname 3370

V

va arg() 3400
va copy() 3406
va end() 3408
valloc() 3412

3730 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

variable list 2885
variable-length argument lists

(“varargs”) 3400, 3406,
3408, 3410

coercion 3401
variables, global

amblksiz 149
argc 150
argv 151
auxv 198
btext 217

daylight 362
edata 459
end 462

errno 507
etext 515

optarg 842
opterr 843
optind 842
optopt 843

progname 1993
stderr 3005
stdin 3006
stdout 3007
sys errlist 507
sys nerr 508
sys nsig 2796
syspage ptr 3157

sys siglist 2796
timezone 3312
tzname 3341

va start() 3410
verr(), verrx() 3414
vfork() 3416
vfprintf() 3418
vfscanf() 3421
vfwprintf() 3424

vfwscanf() 3426
video memory, sharing 1587
virtual 8086 mode 1107
void pointers, size of 111
vprintf() 3428
vscanf() 3430
vslogf() 3433
vsnprintf() 3435
vsprintf() 3438
vsscanf() 3441
vswprintf() 3444
vswscanf() 3446
vsyslog() 3448
vwarn(), vwarnx() 3450
vwprintf() 3452
vwscanf() 3454

W

wait() 3307, 3456, 3463, 3470
wait3() 3460
wait4() 3463
waitid() 3467
waitpid() 3307, 3470
warn(), warnx() 3472
warnings, formatted on stderr

3450, 3472
WCONTINUED 3459, 3462, 3466,

3469
WCOREDUMP() 3457
wcrtomb() 3474
wcscat() 3476
wcschr() 3478
wcscmp() 3480
wcscoll() 3482, 3524

May 31, 2004 Index 3731

Index 2004, QNX Software Systems Ltd.

wcscpy() 3484
wcscspn() 3486
wcsftime() 3488
wcslen() 3490
wcsncat() 3492
wcsncmp() 3494
wcsncpy() 3496
wcspbrk() 3498
wcsrchr() 3500
wcsrtombs() 3502
wcsspn() 3504
wcsstr() 3506
wcstod() 3508
wcstof() 3508
wcstoimax() 3512
wcstok() 3513
wcstol() 3516
wcstold() 3508
wcstoll() 3516
wcstombs() 3518
wcstoul(), wcstoull() 3522
wcstoumax() 3512
wctob() 3526
wctomb() 3528
wctrans() 3531
wctype() 3533
WEXITED 3459, 3462, 3466, 3469
WEXITSTATUS() 3159, 3456
whitespace, testing a character

for 1374, 1397
wide characters See also

characters; strings
classes 3533
converting 3325, 3531
copying 3539

overlapping objects 3541

lowercase, converting to 3325,
3327, 3531

multibyte characters, converting
to/from 1511, 1521,
3474, 3528

conversion object, status
of 1514

searching
in a string 3478, 3500
in memory 3535

sets of, searching for 3486,
3498, 3504

setting 3543
single-byte characters,

converting to/from 218,
3526

stdin, reading from 938
stdout, writing to 2270
streams

orientation 739
pushing back 3375
reading 621, 623, 936
writing to 684, 2268

strings
comparing 3480, 3482,

3494, 3537
concatenating 3476, 3492
copying 3484, 3496, 3524
formatted 3095, 3444
input, formatted 746, 3097,

3426, 3454, 3561
length 3490
multibyte characters,

converting to/from 1516,
1518, 3502, 3518

3732 Index May 31, 2004

 2004, QNX Software Systems Ltd. Index

numbers, converting
to/from 3508, 3512, 3516,
3522

output, formatted 741, 3424,
3452, 3548

searching for a set of wide
characters 3486, 3498,
3504

searching for a string 3506
searching for a wide

character 3478, 3500
splitting into tokens 3513
streams, writing to 686
transforming 3524

testing for
alphabetic 1381
alphanumeric 1379
character class 1385
control character 1383
decimal digit 1387
hexadecimal digit 1401
lowercase 1391
printable 1389, 1393
punctuation 1395
uppercase 1399
whitespace 1397

uppercase, converting to 3325,
3329, 3531

WIFCONTINUED() 3457
WIFEXITED() 3457
WIFSIGNALED() 3457
WIFSTOPPED() 3457
wmemchr() 3535
wmemcmp() 3537
wmemcpy() 3539
wmemmove() 3541
wmemset() 3543

WNOHANG 3459, 3462, 3466,
3469

WNOWAIT 3459, 3462, 3466, 3469
W OK 120, 456
word expansions 3545, 3547
wordexp() 3545
wordfree() 3547
working directory 258, 768, 940
wprintf() 3548
WRDE NOSYS 3545
write() 1135, 3550

resource managers,
implementing in 1301

writeblock() 3555
writev() 3558
wscanf() 3561
WSTOPPED 3459, 3463, 3466,

3470
WSTOPSIG() 3457
WTERMSIG() 3457
WUNTRACED 3459, 3463, 3466,

3470

X

X OK 120, 456

Y

y0(), y0f() 3563
y1(), y1f() 3565
yn(), ynf() 3567

May 31, 2004 Index 3733

Index 2004, QNX Software Systems Ltd.

Z

zombies
preventing children from

becoming 2766, 2799
threads 3241

3734 Index May 31, 2004

